
Zás – Aspect-Oriented Authorization Services (first take) – Final
draft

Paulo Zenida1 Manuel Menezes de Sequeira2 Diogo Henriques3 Carlos Serr̃ao4

July 3, 2006

1Paulo.Zenida@iscte.pt, ISCTE – Instituto Superior de Ciências do Trabalho e da Empresa, Av. das Forças Armadas, 1649-026
Lisboa, Portugal

2Manuel.Sequeira@iscte.pt
3Diogo.Henriques@iscte.pt
4Carlos.Serrao@iscte.pt

Abstract

This paper proposes Zás, a novel, flexible, and expressive authorization mechanism for Java. Źas has been inspired by
Ramnivas Laddad’s proposal to modularize Java Authentication and Authorization Services (JAAS) using an Aspect-
Oriented Programming (AOP) approach. Zás’ aims are to be simultaneously very expressive, reusable, and easy to
use and configure. Źas allows authorization services to be non-invasively added to existing code. It also cohabits
with a wide range of authentication mechanisms.

Zás uses Java 5 annotations to specify permission requirements to access controlled resources. These require-
ments may be changed directly during execution. They may also be calculated by client supplied permission classes
before each access to the corresponding resource. These features, together with several mechanisms for permission
propagation, expression of trust relationships, depth of access control, etc., make Zás, we believe, an interesting
starting point for further research on the use of AOP for authorization.

Keywords: JAAS, RBAC, authorization, Java, AspectJ, AOP, Zás

Chapter 1

Introduction

This paper proposes a novel, flexible, and expressive authorization mechanism. Its advantages stem mainly from the
fact that an AOP1 approach is used, allowing it to address some of the problemsfound in industry standards like
JAAS2 [9, 3, 12]. AspectJ [1] has been used to develop the proposal.

AOP is strong in terms of reduction of code scattering and tangling, provides for the separation of crosscutting
concerns from the core code, and nicely integrates with the expressiveness of Java 5 annotations. This, together
with our practical interest in authorization services for Java applications, led us to attempt to develop a new, aspect-
oriented authorization mechanism, called Zás. Our aims were to make Zás simultaneously very expressive, allowing
programmers to state very clearly what they mean, and independent from the business context, though being possible
to make it business aware, allowing the separation of particular permission specifications from the authorization
concerns embedded into the code by programmers. Another of our goals was to make the application of Zás to
already existing code as simple as possible and, if necessary, totaly non-invasive.

Expressiveness requires code which is as clear and simple aspossible. We do not want to tangle business code
with code related to the checking of user permissions. We also do not want permission checking code scattered
all over the application, in every method requiring verification of authorized access. In other words, we want to
modularize, into aspects, the crosscutting concerns related to authorization. On the other hand, the programmer
should be able, though not required, to guide the application of the authorization concerns to his own code. In this
sense, one might say that one of the tenets of AOP, viz. obliviousness [5], is violated. However, annotations may be
though of as allowing the programmer to express in the code its required semantics, still oblivious of the exact way
in which this semantics will actually be implemented.

According to [2], aspects can be divided into two categories: assistants and spectators. They suggest that assis-
tance should be explicitly accepted by a module. Once a module accepts assistance of an aspect, then the aspect is
allowed to advise that module. Annotations can be seen as a way to express assistance acceptance. Authorization
annotations, as proposed by Zás, will thus acknowledge specific semantics for, say, a method, and implicitly accept
(or rather, require) assistance of a corresponding aspect implementing that semantics.

In [13], Recebli proposes a different classification related to the role of aspects in software systems from a higher-
level engineering point of view. He proposes the division into integral and attachable aspects. According to him, we
can say that the aspects within our approach are attachable,since they can be removed from an application, without in
any way changing the correctness of its business implementation (except, of course, in what concerns authorization).

The JAAS authentication service, based on PAM3 [14], provides an abstraction layer that greatly simplifies
changes in the actual authentication method used. However,since this work was motivated by the need to add
authorization to the Heliópolis Web application,4 which already possessed its own authentication code, our main

1Aspect-Oriented Programming
2Java Authentication and Authorization Services
3Pluggable Authentication Modules
4See http://heliopolis.iscte.pt/ (the source code uses Zás and is available in https://svn.ci.iscte.pt/Heliopolis/trunk/).

2

focus was solely on authorization concerns. Nevertheless,we expect the developed solution to integrate seamlessly
with a wide range of authentication mechanisms.

This work was inspired by Laddad’s proposal [8] to use AOP to modularize JAAS-based authentication and
authorization. The main interest of his proposal, at least from our point of view, is related to the authorization
concerns. Our work is thus based in Laddad’s, extending further the modularization of authorization concerns, thus
reducing code tangling and scattering, and reducing the configuration effort required from the programmers.

This paper is structured as follows. The next section will review some of the existing Java-based authorization
mechanisms. It is followed by a detailed description of the requirements that have have used as guidelines to develop
Zás. Afterwards, Źas implementation is described with some detail. And finally, conclusions will be drawn and some
possible directions for further work will be pointed to.

3

Chapter 2

Authorization solutions in Java

Authorization is not a new research topic. There are many different proposals and tools readily available, ranging
from ad hoc solutions, where the developer implements everything from scratch, to complete solutions like JAAS,
and from OOP1 approaches to approaches where the power of AOP is leveraged.

Our main interest while studying existing authentication and authorization mechanisms was JAAS, since it is a
standard for authentication and authorization services inJava [18] and an integral part of the JDK2.

JAAS is not as flexible as we would like it to be. Its use requires considerable configuration effort [12]. For
example, security policy files have to be used in order to specify the principals3 and what they are permitted to do.
For example:

grant Principal
sample.principal.Principal "user" {

permission test.Permission "perm";
};

Besides, and importantly, the permissions can not be changed in runtime. This is a serious restriction for dy-
namic applications, where an administrator must be able to add users and their corresponding permissions during
the operation of the system. It is possible to use a database for this task, as in the example provided in [3], increas-
ing the flexibility of the system by allowing the privileges of the principals to be specified at runtime. However,
such a solution requires the use of a specific database model that, for already existing systems, may not be easy to
accomplish.

The original JAAS model is implemented with an OO4 approach, thus being prone to the common problems of
code scattering and tangling: code must be added to the application classes in order to implement authorization:

public class MyClass {
public void businessMethod() {

AccessController.checkPermission(new MyPermission("aPermission"));
// business code

}

public static void main(String args[]) {
// authentication code
MyClass a = new MyClass();
Subject authenticatedSubject = lc.getSubject();
Subject.doAsPrivileged(authenticatedSubject, new PrivilegedAction() {

public Object run() {
a.businessMethod();

1Object-Oriented Programming
2J2SE (Java 2 Platform Standard Edition) Development Kit
3“A name associated with a subject”, taken as “any user of a computing service” [9] or “the identity assigned to an entity as a result of

authentication” [16].
4Object-Oriented

4

}
},
null

);
}

}

Clearly, the authorization code is entangled with businesscode, both in the code requesting access to the resource
(the caller code) and in the resource code itself (the calleecode). Moreover, authorization code will be scattered
through the application, since it must be used wherever access control is required. Both problems can be fixed using
AOP, as shown by [8]. Laddad proposes an AO5 approach to the application of JAAS that significantly simplifies the
code required for access control, though only at the caller:

public class MyClass {
// as before

public static void main(String args[]) {
MyClass a = new MyClass();
a.businessMethod();

}
}

We still need to call thecheckPermission() method in the business methods. This can be avoided if we use
the expressiveness of Java 5 annotations (an interesting study on some of the benefits and problems of annotations
can be seen in [7]) and modularize that call into an aspect responsible for authorization verification:

@AccessControlled(requires = "aPermission", permissionClass = MyPermission.class)
public void businessMethod() {

// business code
}

The use of annotations clearly improves the quality of the code, augmenting its expressiveness while reducing
scattering and entanglement. However, by itself it does notdecrease the required configuration effort nor makes
access control dynamic. Zás, as will be seen in the next sections, does.

5Aspect-Oriented

5

Chapter 3

Requirements

Originally, the implementation of authorization in Heliópolis was very brittle, being limited to the interface layer,
where appropriate menu options were hidden from non-authorized users. Anyone knowing, or guessing, the URL of
a page containing private or protected information would beable to gain access. It was a clear case of a simplistic
implementation of Yoder’s “Limited View” pattern [19]. Ouraim was thus to solve the authorization problem not by
merely limiting the view of each user to whatever s/he is allowed to view or manipulate, but mainly by making sure,
at the business layer itself, that no user can ever gain unpermitted access to any resource that is outside the privileges
associated with his roles within the system.

For the reasons stated in the previous section, we were not satisfied with the available solutions to this problem.
Zás, as described in this paper, was thus developed as a non-adhoc solution to the authorization problem fulfilling
the following broad requirements:

1. It should be independent from JAAS.

2. It should be compatible with the simultaneous use of JAAS,especially with its authentication services.

3. Its authorization services should require no more from the application model than access to the current prin-
cipal’s permissions. It should thus support the RBAC1 [4, 15] model, though never dealing directly with roles
itself.

4. It should greatly simplify the code of client applications, as compared with alternative solutions.

5. It should be as non-invasive as possible, allowing business code to concentrate on the business logic, allowing
the programmer to specify access requirements within the code, if s/he so desires, but also to completely
separate access control from the business logic code.

6. It should require less configuration effort than the alternatives.

7. It should allow dynamic changes to the resources’ access requirements.

8. It should have a generic logging interface.

Since Źas was meant to be a Java/AspectJ library of classes and aspects for use in Java applications, the require-
ments above were further refined into the following detailedrequirements:

1. The access requirements for each such resource should be specifiable using Java 5 annotations.

2. The resources whose access should be controlled are represented by constructors, methods, and attributes.

1Role-Based Access Control

6

3. It should be possible to force the propagation of the access requirements of a resource to all its members. For
instance, from a package to all its types and nested packages, and from a class to all its (non-private) methods
and attributes.

4. It should not be possible to propagate access control specification to resources explicitly marked as having no
access control.

5. It should be possible to define access requirements eithernext to the corresponding resource definition (invasive
usage), centralized in a single or in several access requirement definition aspects (non-invasive), or both.

6. It should be possible to use outside sources of permissionrequirements, such as property files. Permission
requirements should be possible to change dynamically.

7. It should allow the definition of access requirements using boolean expressions involving permission names.

8. It should allow the quantification of the definition of access requirements using wildcards.

9. It should allow the specification of the required depth of access control as either deep or shallow.

10. When shallow access control is required, it should be possible to specify the degree of suspiciousness of a
resource.

11. Special cases should be provided to bypass access control, viz. using privileged methods and trusted classes.

12. It should be easy to add authorization features to existing projects.

The next sections go through several of these requirements,exemplifying their impact in the client code, and
thus clarifying the importance of the requirements themselves. Notice, however, that at the current state not all
requirements have been implemented and some are only partially implemented. The status of development will be
stated wherever appropriate.

3.1 Annotations (1 and 2)

Zás should allow the programmer to guide the application of aspects through the annotation of the non-private2

resources where access control is required:

import pt.iscte.ci.zas.authorization.*;
public class MyClass {

@AccessControlled(requires = "aPermission")
public void foo() {
}

}

The previous code explicitly states that access to methodfoo(), that is, calling permission, is restricted to prin-
cipals having permissionaPermission. When not specified in the annotation, the access requirements correspond
to a single permission whose name is the signature of the method without the return type.3 Hence, the permission
required to callfoo() as defined in

package mypackage;
public class MyClass {

@AccessControlled
public void foo() {
}

}

2Private “resources´´ are implementation details.
3Using complete signatures as permission names guarantees thatoverloaded resources.

7

is mypackage.MyClass.foo().
It should also be possible to annotate attributes, similarly to what happens for methods.4:

package mypackage;
public class MyClass {

@AccessControlled protected int bar;
}

Permission requirements should always be filtered by methodgetRequirements() of thePermission class:

package pt.iscte.ci.zas.authorization;
public class Permission {

public String getRequirements(String currentRequirements,
JoinPoint joinPoint, JoinPoint.StaticPart enclosingStaticPart) {

return currentRequirements;
}

}

Before each access to a protected resource, this method shall be passed the current permission requirements, which
the default implementation will simply return, as well as the execution context of the access, including the caller and
callee objects.

It should be possible to provide access control specifications with client classes extendingPermission and
overridinggetRequirements():

import pt.iscte.ci.zas.authorization.*;
public class MyPermission extends Permission {

@Override
public String getRequirements(String currentRequirements,
JoinPoint joinPoint, JoinPoint.StaticPart enclosingStaticPart) {

...
}

}

Hence, an arbitrary client code may be executed during access control, making it possible to add business specific
access control methods to Zás.

Then, in the protected resource, we specify the permission class which must be used to compute the permission
specification:

package mypackage;
public class MyClass {

@AccessControlled(permissionClass = MyPermission.class)
protected void myMethod(String x) {
}

}

Our model saves internally the relationship between the instantiated permission classes and the protected resources
being accessed. This improves the application efficiency, because we instantiate each permission class for each
protected resource only once and reuse it when necessary, each time that resource is accessed. That is required
because it is necessary to compute the permission specification each time a resource is executed.

The current version of Źas does not distinguish between sets and gets, as it should. It also does not support access
control for constructors. However, those may be provided ina near future.

3.2 Propagation (3 and 4)

Zás should provide a mechanism allowing access control specifications to be propagated to members of the cor-
responding resource, if any. For instance, the access control specification of a class should be inherited by all its
non-private members:

4The current version of Źas does not distinguish between sets and gets, as it should.

8

@AccessControlled(requires = "aPermission", depth = Depth.SHALLOW)
public class MyClass {

public void foo() {
}

}

In this case,foo() should inherit the access control specification of classMyClass, i.e., callingfoo() requires
permissionaPermission and the access control should be shallowly verified (see Section 3.6).

By default, non-private resources should not be access controlled, except when propagation is being used.
Notice that there should be two different effects in propagation. The first one is static, and leads to all non-private

members of an access controlled resource, with the exception of those marked with annotation@NotAccessControlled,
to also be access controlled. The second one is dynamic, and leads to all non-private members of an access controlled
resourcethat have not been explicitly marked as being either access controlled or not access controlled to dynami-
cally inherit the required permissions from the enclosing resource (see Section 3.4). Hence, in

@AccessControlled(requires = "aPermission", depth = Depth.SHALLOW)
public class MyClass {

public void foo() {
}

@AccessControlled
public void bar() {
}

@NotAccessControlled
public void baz() {
}

}

foo() would inherit its access control specifications from classMyClass: the permission name ”aPermission” and
the depth (see Section 3.6) verification as shallow. However, bar(), while access controlled, would not inherit
required permissions fromMyClass, andbaz() would remain free of any access controls.

The current version of Źas still does not provide the same mechanisms in the case of attributes. This problem will
be solved in the near future.

Also, since the current version of AspectJ [1] does not allowthe capture of package annotations, Zás still does
not provide the inheritance mechanism for packages from thesource code.5 Notice, however, that we have created a
way to simulate this by using wildcards (see Section 3.5) in outside sources (see Section 3.4).

3.3 Specification locations (5)

Usually resources requiring access control are directly annotated as such, i.e., their definition is directly annotated.
This requires source code invasion and leads to scattering the meta-information related to access control concerns,
which in some cases may be considered a bad practice.6

It is possible to use AspectJ ITDs7 to inject annotations in types, methods, attributes, etc. Hence, it is possible to
modularize all access control specifications in a single aspect:

public aspect AccessSpecifications {
declare @method:

void mypackage.MyClass.foo():
@AccessControlled(requires = "foo");

...
}

5However, we will soon open an AspectJ feature request.
6The authors consider this use of annotations to be advisable, however, since it leads to improved source expressiveness without hampering

abstraction.
7Inter-Type Declarations

9

This code should mark methodfoo() in package.MyClass as being access controlled and requiring permission
foo.

Just as Java prohibits double annotations, AspectJ prohibits the injection of an annotation already present in the
source code, next to the resource definition. Hence, the two approaches, one using annotations next to the access
controlled resource, the other modularizing access control specifications in a single aspect, may be used together
without any problem: the compiler will issue an error in caseof a collision.

3.4 Dynamic permissions (6)

Permission requirements, as indicated in access control specification annotations are initial permissions, which should
be changeable in runtime. That is, permission requirementsshould be dynamic, but not the access controlled re-
sources.

In conjunction with the ability to use wildcards (see Section 3.5) both to specify permissions and to specify
the resources to which the permissions apply, this requirement makes it possible to dynamically load permissions
specification from a generic input stream, allowing it to use, for example, access control property files:

import pt.iscte.ci.zas.authorization.*;
...
public InputStream outsideSource() {

return ConcreteAC.class.getClassLoader().getResourceAsStream("permissions.properties");
}

, thus allowing permissions to be changed dynamically and easily by a system operator. For instance,

package mypackage;
class MyClass {

@AccessControlled
public void foo(String s) {
}

}

specifies thatfoo is access controlled and initially requires permissionmypackage.MyClass.foo(String). It
should be possible to change the required permission using aproperties file such as:

mypackage.MyClass.foo(String) = foo

In this case, after loading the properties file, the requiredpermission for callingfoo is no longermypackage.-
MyClass.foo(String), but foo. Of course, the same effect should be obtained by directly calling a permission
changing method of Źas:

import pt.iscte.ci.zas.authorization;
...
AccessController.addAccessControl("mypackage.MyClass.foo(String)", "foo");

The use of external sources of permission requirements allows them to be provided at the appropriate granularity
level. For example,

mypackage.MyClass.foo() = foo || bar
mypackage.MyClass.* = bar
mypackage.*() = foo

which might be found in an access control property file, states that all access controlled methods without any para-
meters within packagemypackage will require permissionfoo, with the exception of those within classMyClass,
which require permissionbar. Again, methodMyClass.foo() is an exception, since it requires either permission
foo or permissionbar (see Section 3.5). The order is relevant because Zás will always look for the first occurrence of
a matching signature and load the permission specification.This simplifies both the program algorithm and reading
the permissions specification.

10

Symbol Meaning
* 0 or more characters
+ 1 or more characters
? 0 or 1 characters

Table 3.1: Wildcards used in Zás notation.

3.5 Expressions (7 and 8)

It should be possible to compose Boolean permission expressions, both in-code as initial permission requirements,
and dynamically (e.g., inside property files). For instance, in the access control specification

@AccessControlled(requires = "aPermission || !anotherPermission")
public void foo() {
}

the permission expression requires any principal callingfoo() either to have permissionaPermission or to lack
permissionanotherPermission.

Currently, Źas supports operators|| (“or”), && (“and”), and! (“not”), as well as the use of parentheses to control
evaluation order.

Regular expressions [11, 17] should also be possible in permissions expressions. Table 3.1 shows the currently
supported wildcards.

For example, using

@AccessControlled(requires = "perm*")
public void foo() {

...
}

any call tofoo() would require a principal having at least one permission whose name starts withperm (e.g.,perm
or permission). Notice that regular expressions introduce a form of quantification into Źas. In this case they
introduce existential quantifiers into permission requirements.

Wildcards should also be possible when dynamically specifying permission requirements, of course. In this case,
however, they can also be used to specify multiple resourcesin a single step, as shown in the last example of Section
3.4. This introduces the notion of universal quantifiers into Zás.

3.6 Depth (9 and 10)

By default, access control should be applied for all accesses to access controlled resources, regardless of the context.
Regardless, namely, of the controls which have already beenperformed in upper levels of the current call stack. This
is usually the safest option and thus the most desirable default. However, occasionally it may be necessary to turn off
access control in the control flow of a given method execution.

The @AccessControlled annotation’s elementdepth represents the level of access control. In a way that
is reminiscent of copy depth, access control is applied to method execution either in aDepth.SHALLOW or in a
Depth.DEEP manner, depending on the value of this element. Shallow access control means that if access to a
method is granted to a principal, it will also be granted to its complete flow of control, effectively turning off access
control during its execution. On the contrary, if access to amethod specifying deep access control, which is the safe
default, is granted to a principal, it willnot be automatically granted to all other accesses to resourcesin the method’s
control flow.

For example, in

public class A {
@AccessControlled
public void foo() {

11

new B().bar();
}

}

public class B {
@AccessControlled
public void bar() {
}

}

a call tofoo() will be possible only if the principal has both permissionA.foo() and permissionB.bar(). Chang-
ing the depth toDepth.SHALLOW in the annotation offoo(), access control willnot be applied during the execution
of foo():

@AccessControlled(depth = Depth.SHALLOW)
public void foo() {

new B().bar();
}

Using shallow access control should generally be considered dangerous. Hence, a mechanism should be devised
to short-circuit the consequences of shallow access control. If a given method declares itself to be suspicious, its
access control specification shouldnot be turned off in the flow of a shallowly access controlled method. For instance,
in

public class A {
@AccessControlled(depth = Depth.SHALLOW)
public void foo() {

new B().bar();
new C().baz();

}
}

public class B {
@AccessControlled
public void bar() {

new C().baz();
}

}

public class C {
@AccessControlled(suspicious = true)
public void baz() {
}

}

a call tofoo() will fail if the principal does not have permissionC.baz(): it is not sufficient for him to have permission
A.foo(), sincebaz() is suspicious. On the other hand, permissionB.bar() is not necessary when the call is performed
in the flow of control offoo(), sincebar() is unsuspecting andfoo()’s access control is shallow.

3.7 Bypasses (11)

Zás should provide two methods to bypass access control. The first is more dangerous, and should be used with care:
it should be possible to annotate some methods as privileged, i.e., as turning off access control to calls within their
control flow:

@Privileged
public void foo() {
}

The difference between calling a privileged method and calling a method with shallow access control is that
the first call always succeeds, while the success of the second one depends (solely) on the current principal having
permission to make the call.

12

The second required bypassing mechanism, trust, is more disciplined and less dangerous. Instead of being used
in a method to bypass access control during its entire execution, regardless of the access control specifications of the
intervening resources, trust in specified classes is explicitly acknowledged by the callee method. For example, given

public class A {
@AccessControlled(requires = "aPermission", trusts = { B.class })
public void foo() {
}

}

public class B {
@AccessControlled(requires = "anotherPermission")
public void bar() {

new A().foo();
}

}

any call tobar() will require a principal with permissionanotherPermission, as usual, but the call tofoo()
from within bar() will not be subject to access control, sincefoo() declared its trust in classB. Notice, however,
that calls from within the flow of control offoo() will in general be access controlled, since trust does not propagate.
This will improve even further the safety of trust relationships.

3.8 Ease of use (12)

Zás should be easily integrated into an existing project, because we have adopted the template advice idiom [6].
Indeed, if the requirements illustrated in the previous sections are fulfilled, particularly the ability to use ITDs to
modularize access control specifications, little or no changes will be required in existing code.

Zás integration shall simply require

1. adding thezas.jar Java archive into the class path of the application;

2. defining a concrete aspect that extends the provided abstract aspectAccessController; and

3. adding the access control specifications either directlyto the resources requiring authorization, or using ITDs
concentrated in, e.g., the concrete aspect defined.

These steps are quite straightforward, with the possible exception of the definition of the concrete aspect. Access
control is only possible if the current principal’s set of permissions is available. However, Zás should be as inde-
pendent as possible both of the authentication mechanism used in the application, and of the roles existing in the
application and their corresponding permissions. How and where to find the permissions associated with (the roles
of) the current principal is not Źas’ problem.AccessController simply declares an abstract methodcurrent-
PrincipalPermissions() which the concrete aspect, defined in the client code, shouldimplement.

For example, the definition of the concrete aspect for a simple desktop application should be as simple as:

package pt.iscte.ci.myapp;
import pt.iscte.ci.zas.authorization.*;

public aspect MyController extends AccessController {
private User user;

public Set<String> currentPrincipalPermissions() {
// get and return permissions
// from the roles of "user".

}

before() : accessToControlledResources(AccessControlled) {
// code to authenticate the
// user, if necessary.

13

}
}

In the case of Helíopolis, authentication was already available. Therefore,no authentication related advice was
necessary. However, it was still necessary to get the user trying to access a controlled resource:

public aspect MyController extends AccessController {
private User user;

public Set<String> currentPrincipalPermissions() {
// get and return permissions
// from the roles of "user".

}

private pointcut authorizationCallsScope() :
execution(* *..BaseBean+.new(..)) ||
execution(* *..BaseBean+.*(..));

before(AccessControlled specifications, BaseBean baseBean) :
accessToControlledResources(requirements) &&
cflow(authorizationCallsScope()) &&
this(baseBean) {

// Code to get the current user
}

}

Sub-aspects have precedence relative to the aspect they extended. Hence, the before advice in the code above is
executed before Źas’ access control related advice, thus making sure the current user is already stored inuser when
currentPrincipalPermissions() is called.

14

Chapter 4

Zás implementation

In our model implementation, there are some important ideas, which will be detailed in the current section. First
of all, we have tried to create a reusable library of classes and aspects, which should be easy to use and configure
in client projects. We have used AspectJ to implement Zás, whose implementations follow the template advice
idiom [6], which entails creating an abstract aspect declaring reusable abstractions, and a concrete aspect tailored to
a case-specific code base that defines the case-specific joinpoints to be captured in the logic declared by the abstract
aspect.

The concrete aspect, as we showed in Section 3.8, must implement a method for gather the set of permissions
associated to principals. We thus delegate all the knowledge related to authentication and how to gather the principals
authorization sets to the concrete aspect. This way, we allow the abstract aspectAccessController to remain
general and independent from the business logic, hence reusable.

Next, we will make a top-bottom list of all the relevant points in the Źas implementation, providing as necessary,
an explanation of the code.

TheAccessController constructor sets the debug mode to false so that no warning/error message is printed
to the console (at the moment, we have not provided a generic logging interface, which may be supplied in a future
version of Źas). Also, it puts a ”shutdown hook”, which is a thread that executes in the end of the program, just
before it finishes. This mechanism is still under development and, therefore, it is not properly tested nor properly
implemented. Nevertheless, the idea is for helping the developer about potential errors one might have done when
specifying the permission requirements for the access controlled resources. For example, if we have a permission
designated by ”foo” but we made a mistake when writing it, setting it as ”fop”, that would be hard to detect. That
way, this thread should print, in the end of the program, the packages that have been loaded by the Java class loader
and make a comparison with the namespaces provided for the permissions requirements that have been used.

public AccessController() {
setIsDebugActive(false);
// This makes it possible to preserve the insertion order.
props = new LinkedHashMap<String,String>();
permissionsPackages = new HashSet<String>();
permissionsPerResource = new Hashtable<String,Permission>();
Runtime.getRuntime().addShutdownHook(new ShutdownHook());

}

private class ShutdownHook extends Thread {
public void run() {

...
}

}

We have adopted the Java way for namespaces: when a class has no package, the default one is used. The same
thing happens for permissions requirements:

15

@AccessControlled(requires = "foo")
public void foo() {
}
...
@AccessControlled(requires = "pt.iscte.ci.bar")
public void bar() {
}

In the previous example, we assume that the permission ”foo”belongs to the default package and that, for ”bar”,
the packagept.iscte.ci exists in the project. In the end of the program’s execution we would issue a warning if
we had not detected thept.iscte.ci. We can only issue a warning because it is not certain that thepackage does
not exist. It simply means that one class in that package might have not been used, therefore, not having been loaded.
So, with a warning message provided by Zás, it is possible for the developer to, at least, check for mistakes in the
permissions specification. This mechanism should be enabled and disabled as wanted: in development time, it may
be useful. However, in deployment time, it may add an undesirable overhead to the application.

One important requirement we have addressed in Zás implementation is related to the source or origin of the
permissions requirements specification. We made it possible to load, in runtime, the specifications for each access
controlled resource by reading those from a generic input stream, and load them into a map containing the authoriza-
tions specification for each joinpoint:

protected Map<String,String> getPermissionsFromOutside() throws IOException {
throw new UnsupportedOperationException();

}

By default, it is set to simply throw anUnsupportedOperationException, meaning that the client aspect
extending Źas needs to override the method, to enable the capability of reading from generic outside streams. An
example of a concrete implementation could be (we have not used theProperties class from the JDK because it does
not care about the order in the file, which is something we are interested in):

private java.io.Reader outsideSource() {
return new java.io.InputStreamReader(ConcreteAccessController.class
.getClassLoader().getResourceAsStream("permissions.properties"));

}

public Map<String, String> getPermissionsFromOutside() throws IOException {
if (outsideSource() != null) {

BufferedReader bufferedReader = new BufferedReader(outsideSource());
String line;
while ((line = bufferedReader.readLine()) != null) {

int firstCommentChar = line.indexOf("#");
if (firstCommentChar != -1) {

line = line.substring(0, firstCommentChar);
}
if (line.length() != 0) {

String[] tmp = line.split("=");
if (tmp.length == 2)

addAccessControl(tmp[0].trim(), tmp[1].trim());
}

}
}
return getPermissionsRequirements();

}

Zás verifies the current principal permissions against the permissions specification supplied for a certain protected
resource as follows:

private final boolean hasPermission(Set<String> authenticatedUserPrivileges,
String permissions) {

16

if(authenticatedUserPrivileges == null)
return false;

for (String p : authenticatedUserPrivileges) {
try {

if(ExpressionValidator.validate(ExpressionParser.
convertToBooleanExpression(p, permissions)))

return true;
} catch (MalformedBooleanException e) {

if(isDebugModeActive())
e.printStackTrace();

}
}
return false;

}

TheconvertToBooleanExpression() method will turn a string expression into a boolean one, by matching
each permission attached to the principal against the permission requirements provided for the resource under access
control, setting true or false according to a successful or not matching. For example, matching ”foo” against the
expression ”foo|| bar” would result in ”true|| false”. Next, thevalidate() method will evaluate the boolean
expression result. For the example provided (”true|| false”), it would return true.

Notice in the method, when catching the exception that we make a verification by calling the methodisDebug-
ModeActive(), which is simply a method returning true or false (by defaultis set to false) that can be overridden in
the concrete aspect, in order to enable or disable error messages being shown, when an error occurs.

The requirements related to the propagation of permissionsrequirements through the members of an access
controlled resource such as a class or a package, as we have mentioned previously, needs ITD. That is addressed with
the following definition, where we put theAccessControlled annotation1 in all non private methods of annotated
types, not having neither aAccessControlled nor aNotAccessControlled annotations.

declare @method :
!@AccessControlled !@NotAccessControlled !private *
(@AccessControlled *..*).*(..) :

@AccessControlled(inherited = true);

When we add authorization requirements to types resources like the previous, we set theinherited() attribute to
true so that the resource will gain the requirements from thetype where it is in. The programmer can also make a
resource inherit the authorization requirements from the type without ITD by putting theinherited() attribute to true.
However, if the type is not annotated asAccessControlled, Zás will throw aRuntimeException. The same happens
for attributes. Nevertheless, we were not particularly interested in studying Źas for controlling attributes.

One of the main points of interest of the implementation is related to the quantification[5] mechanism provided by
AspectJ, to capture the points of interest in the base code, so that aspects are then able to advice them. We capture all
methods calls and sets/gets to attributes which are annotated with@AccessControlled. We have used annotations
to restrict the applicability of aspect weaving, being surewe are not advising unwanted resources. The following
defines that the controlled resources are the sets and gets ofattributes, and also the calls to methods annotated with
AccessControlled. We have chosen the call pointcut instead of execution, because it provides a wider scope,
namely both the caller and the callee objects and because, inAccess Control, the semantics are granting access or not
to the principals’ orders or ”calls” to resources.

protected pointcut accessToControlledResources(AccessControlled requirements) :
(accessToControlledMethods() ||
accessToControlledFieldsSets() ||
accessToControlledFieldsGets()) &&
@annotation(requirements);

1Theinherited element is set to true to enable the inheritance of all elementsprovided in theAccessControlled of the type.

17

The previous pointcut definition isprotected so that only sub-aspects can ”see” it. Also, the pointcut hasnot
been defined as final to make it possible for aspects extendingAccessController to override it and, if necessary,
further refine the access controlled resources. For example, one could restrict the scope of application of Zás by using
the Border Control Design Pattern as defined in [10]:

public aspect BorderControl {
...
public pointcut accessControlScope() :

within(pt.iscte.ci.myproject);
}

import pt.iscte.ci.zas.authorization.*;
public aspect MyAspect extends AccessController {
...

protected pointcut accessToControlledResources(AccessControlled requirements) :
AccessController.accessToControlledResources(requirements) &&
BorderControl.accessControlScope();

}

The depth feature requires the definition of different pointcuts to quantify the top level access controlled resources,
this is, the resources that have not been called or executed within the control flow of another protected resource, and
those that are within the control flow of resources under Zás access control:

public final pointcut topLevelAccessToControlledResources(AccessControlled
requirements) :

accessToControlledResources(requirements) &&
!cflowbelow(accessToControlledResources(AccessControlled));

public final pointcut nonTopLevelAccessToControlledResources(AccessControlled
requirements, AccessControlled topLevelRequirements) :

accessToControlledResources(requirements) &&
cflowbelow(topLevelAccessToControlledResources(topLevelRequirements));

Both pointcuts are defined as being final so that they can not beoverridden. This way, we prevent the definition
for the top level and non top level accesses to be misdefined.

The following method is one of the most important ones in Zás. It computes the permissions or authorizations
requirements for a certainjoinPoint, in a certainenclosingStaticPart context, according to therequirement
annotation and a map ofprops which have been loaded (or not, in the case that the feature has not been implemented
in the concrete aspect) from an external source2:

private synchronized String getPermissionsRequirements(AccessControlled
requirement, JoinPoint joinPoint, JoinPoint.StaticPart enclosingStaticPart,
Map<String,String> props) {

Permission permission = null;
try {

if(permissionsPerResource.containsKey(joinPoint.toLongString()))
permission = permissionsPerResource.get(joinPoint.toLongString());

else {
Class permissionClass = requirement.permissionClass();
permission = (Permission)permissionClass.newInstance();
permissionsPerResource.put(joinPoint.toLongString(), permission);

}
if(requirement.inherited())

return permission.getRequirements(getPermissionsNamesForInheritedRequires(
requirement, joinPoint, props), joinPoint, enclosingStaticPart);

else
return permission.getRequirements(getPermissionsNamesForNotInheritedRequires(

2If no external source is specified, props will be null.

18

requirement, joinPoint, props), joinPoint, enclosingStaticPart);
} catch(IllegalAccessException e) {

if(getIsDebugActive())
System.err.println(e);

} catch(InstantiationException e) {
if(getIsDebugActive())

System.err.println(e);
}
// returns null when something wrong
// occurs. This should never happen
return null;

}

As we have mentioned previously in this paper, we have created a mechanism to store the permission classes
used for access controlled resources, so that we can make Zás faster and also to make it possible to add state to the
Permission classes used. With such a mechanism, we can also add more possibilities to the permission classes, such
as make it possible to compute the number of times a certain permission has been used to calculate the access control
requirements. The first section of code in the previous method:

...
if(permissionsPerResource.containsKey(joinPoint.toLongString()))

permission = permissionsPerResource.get(joinPoint.toLongString());
else {

Class permissionClass = requirement.permissionClass();
permission = (Permission)permissionClass.newInstance();
permissionsPerResource.put(joinPoint.toLongString(), permission);

}
...

is used to search for the stored permissions during the Java project execution in which Źas has been integrated,
and reuse the permission if the protected resource has been previously executed. If, however, the protected resource
has not been executed so far, the permission class specified for that resource will be instantiated and stored in an
internal map of permission classes for join points.

The second part of the method will ”redirect” the computation of the permissions requirements to an appropriate
method, according to theinherited() attribute of theAccessControlled annotation:

...
if(requirement.inherited())

return permission.getRequirements(getPermissionsNamesForInheritedRequires(
requirement, joinPoint, props), joinPoint, enclosingStaticPart);

else
return permission.getRequirements(getPermissionsNamesForNotInheritedRequires(
requirement, joinPoint, props), joinPoint, enclosingStaticPart);

...

Both methodsgetPermissionsNamesForInheritedRequires() andgetPermissionsNamesForNotInherited-
Requires() share a similar logic, with particular differences relatedto the annotation’sinherited() element. To
simplify this point, we have decided to provide only the description for the most complex of the two (the first one).
They are equal except for the logic related to checking for the permissions specification in the types where the
resource is contained:

1. Look for permission requirements specified in external sources

(a) Look for a property matching the resource signature and,if found, return it

(b) Look for a property matching the type signature where theresource is in and, if found, return it

2. Look for permission requirements specified in the code

19

(a) Look for the resource permission specification and, if any has been provided (one different than #), return
it

(b) Look for the type containing the resource specification and, if there is a permission specification provided
(one different than #), return it

3. If all the other steps have failed, simply return the protected resource signature as the permission requirements
specification

As we have explained in Section 3.8, concrete aspects need toprovide a way for Źas to get the permissions speci-
fication. This is supplied by the implementation of a method returning a set of names of permissions or authorizations
for an authenticated user, whose implementation is mandatory:

public abstract java.util.Set<String> currentPrincipalPermissions();

After capturing the important points in the code, it is necessary to check,before the protected resources are
executed, if the user who is trying to access that resource has access to it. This is designated as advice and next we
can see the piece of advice necessary to check for authorization. To capture the resources’ annotations elements, we
need reflection. That involves searching, in runtime, for the details of a certain object, thus causing a penalty in terms
of performance. This subject, however, needs further research.

The first advice requires a more complex logic because it mustcheck if the verification should be executed deeply
or shallowly, while the second piece of advice is only for toplevel resources, thus being much simpler:

before(AccessControlled requireHighLevelAuthorization, AccessControlled
requireLocalAuthorization) :

nonTopLevelAccessToControlledResources(requireLocalAuthorization,
requireHighLevelAuthorization) &&
!cflow(privilegedOps(Privileged)) {

JoinPoint joinPoint = thisJoinPoint;
JoinPoint.StaticPart enclosingStaticPart = thisEnclosingJoinPointStaticPart;
if(shouldBeShallowlyVerified(requireLocalAuthorization,
requireHighLevelAuthorization, joinPoint)) {

if(requireLocalAuthorization.suspicious()) {
checkAuthorization(requireHighLevelAuthorization, joinPoint,
enclosingStaticPart);

} else {
Signature enclosingPoint = enclosingStaticPart.getSignature();
if(joinPoint.getKind().toString().equals(METHOD_CALL)) {

for(Method m : enclosingPoint.getDeclaringType().getDeclaredMethods()) {
if(m.toString().equals(enclosingPoint.toLongString())) {

AccessControlled requireEnclosingPoint = m.getAnnotation(
AccessControlled.class);
if(requireEnclosingPoint != null)

checkAuthorization(requireEnclosingPoint, joinPoint,
enclosingStaticPart);

else
checkAuthorization(requireHighLevelAuthorization,
joinPoint, enclosingStaticPart);

}
break;

}
} else { // it is for fields

for(Field f : enclosingPoint.getDeclaringType().getDeclaredFields()) {
if(f.toString().equals(enclosingPoint.toLongString())) {

AccessControlled requireEnclosingPoint = f.getAnnotation(
AccessControlled.class);
if(requireEnclosingPoint != null)

checkAuthorization(requireEnclosingPoint, joinPoint,
enclosingStaticPart);

else

20

checkAuthorization(requireHighLevelAuthorization,
joinPoint, enclosingStaticPart);

}
break;

}
}

}
} else
checkAuthorization(requireLocalAuthorization, joinPoint, enclosingStaticPart);

}

before(AccessControlled requirements) :
topLevelAccessToControlledResources(requirements) &&
!cflow(privilegedOps(Privileged)) {

checkAuthorization(requirements, thisJoinPoint, thisEnclosingJoinPointStaticPart);
}

The first piece of advice first verifies if the access controlled is shallowly verified. The methodshouldBe-
ShallowlyVerified() returns true if the permission requirements for the protected resource have been specified
as being shallow, either by inheriting that specification from the type where the resource is defined or in the resource
permissions requirements definition itself, or if thethis object that is accessing the resource is an instance of a class
that belongs to the set of trusted classes for that protectedresource:

private synchronized boolean shouldBeShallowlyVerified(AccessControlled localRequirement,
AccessControlled highLevelRequirement, JoinPoint joinPoint) {

if(localRequirement.inherited()) {
AccessControlled classRequirement = getClassRequiresAnnotation(joinPoint);
checkIfRequiresAnnotationIsNull(classRequirement);
if(isLevelShallow(classRequirement.depth()))

return true;
if(joinPoint.getThis() != null) {

if(isFriendClass(discardReturnTypeFromSignature(joinPoint.getThis().
getClass().toString()), classRequirement.trusts()))

return true;
}

} else {
if(isLevelShallow(highLevelRequirement.depth())) {

return true;
}
if(joinPoint.getThis() != null) {

if(isFriendClass(discardReturnTypeFromSignature(joinPoint.getThis().
getClass().toString()), localRequirement.trusts()))

return true;
}

}
return false;

}

If the verification for shallow or deep results in shallow access control, it needs to verify if the protected resource
is ”suspicious” or not:

if(requireLocalAuthorization.suspicious()) {
...
} else {
...

If the protected resource ”A” is suspicious, then Zás will verify if the principal has access to the first protected
resource ”B” in the control flow of this access to the protected resource ”A”. Otherwise, it will behave as if it was a
deep access control, always checking for the ”closest” protected resource calling ”A”.

21

If the protected resource needs deep access control, Zás will always check the principal’s permissions against
each access controlled resource.

It should not be possible to specify a method or attribute as needing and not needing authorization requirements
at the same time. Therefore, a compile time error must occur when that happens:

declare error:
(execution(@AccessControlled @NotAccessControlled * *..*.*(..)) ||
set(@AccessControlled @NotAccessControlled * *..*) ||
get(@AccessControlled @NotAccessControlled * *..*)) :

"You cannot specify the same point as requiring and not
requiring authorization";

We have also created an aspect to enforce best practices and policies for Źas. In order for client code to enable it,
it simply needs to extend the aspectPolicyEnforcer.

This aspect detects private attributes (sets and gets) and private methods annotated as being access controlled (as
we said before, those are implementation details, and therefore, should not be access controlled):

public pointcut declareWarningScope() :
pt.zenida.paulo.thesis.common.pointcuts.CommonPointcuts.all();

public final pointcut declareErrorScope() :
!declareWarningScope();

declare warning :
declareWarningScope() &&
(execution(@AccessControlled private * *..*.*(..)) ||
set(@AccessControlled private * *..*) ||
get(@AccessControlled private * *..*)) :

"Private methods and fields should not be annotated as points
requiring authorization";

declare error :
declareErrorScope() &&
(execution(@AccessControlled private * *..*.*(..)) ||
set(@AccessControlled private * *..*) ||
get(@AccessControlled private * *..*)) :

"Private methods and fields should not be annotated as points
requiring authorization";

This aspect has a particular capability, related to the possibility of choosing between compile time warnings and
errors, by simply setting thedeclareWarningScope() pointcut. Notice thedeclareErrorScope() is final and
defined as being the opposite of the warning declaration. This way, all messages not specified as being shown as
warnings will be shown as errors. By default, it uses a commonly used pointcut from a pointcuts library we have
created:

public final pointcut all() : !none();

public final pointcut none();

The previous definitions are quite powerful, becausenone() will not capture anything. However,all() will be
defined as being its opposite, thus capturing everything else.

However, we could set scopes (packages and classes) where wewould like warning messages to be shown, and
others where we would prefer errors. For example:

public pointcut declareWarningScope() : within(pt.iscte.ci.foo+);

The previous would make the compiler show warning messages for each private attribute or method annotated as
being access controlled in any class in the packagept.iscte.ci.foo and all its subpackages. Every other private
resources in different package classes would cause the compile to show error messages.

22

Chapter 5

Conclusions

A new AO authorization package, Zás, has been proposed which leverages AspectJ to make it possible to add au-
thorization concerns to existing applications in a simple,non-invasive way. The model used is both independent of
the authentication mechanism used, and of the specific way permissions are attached to principals. Hence, while
supporting RBAC, Źas is not strictly speaking RBAC-based.

Even though in its early stages of development, Zás has shown the potential of AO approaches to authoriza-
tion concerns, making them simpler to implement, support, and configure. Źas is also dynamic, allowing runtime
changes to the permission requirements associated with access controlled resources. The use of Zás, which builds
on a previous proposal by Laddad [8], greatly reduces the scattering of authorization code and its entanglement
with business code. The use of Java 5 annotations led to a model where Źas’ client code is not explicitly guiding
advice introduction [2], but augmenting the expressiveness of the code by annotating it with authorization meta-
information that is then taken into account by Zás’ aspects. If this is deemed unacceptable, or if it is impossible in
practice, then authorization concerns can be concentratedin a single module, thus freeing business code not only
from authorization-related codebut also from scattered meta-information.

Zás is, in certain cases, a good alternative to JAAS: it behaves much like JAAS, though with some important
limitations. For instance, unlike JAAS, it can not be used toadd access control concerns to resources inside JDK
classes, since AspectJ does not allow ITDs to add annotations to code inside JDK’s archives.1 However, Źas’ aim is
not to replace JAAS, since Zás can be used together with JAAS-based authorization and, in a future version, Źas may
even leverage JAAS authorization services.

The Źas source code and related projects can be downloaded from https://svn.ci.iscte.pt/zenida. Even though Zás
is still in its infancy, we plan to revise and improve it regularly. Some possible next steps to the improvement of Zás
are described next.

5.1 Further work

In the near future we intend to improve Zás, especially taking into account the insight gained by itsuse in a large
scale Java-based Web application.2

Nevertheless, some points requiring further research havealready been identified. Should the basic concepts of
authorization be extended such that each domain object is considered a principal, with its own set of permissions
and its own set of trust relationships with other objects? What is the connection between trust and the composition,
aggregation, and association relations? Should a distinction be somehow drawn between query and modifier methods,
in the same way we need to distinguish sets and gets in the caseof attributes? How do contracts relate to authorization

1An interesting extension point for Zás would be the creation of an alternative to annotations to be used in such situations.
2Namely F́enixEDUR©. Seehttp://fenix-ashes.ist.utl.pt/FrontPage/.

23

and access control? What does this tell us regarding the relation between the runtime permission requirements of a
method and the method it overrides?

24

Chapter 6

Acknowledgements

Special thanks to Professor Dulce Domingos for her important suggestions and for trying to make sure we would not
miss the most important authorization references.

25

Bibliography

[1] AspectJ Team. The AspectJ project at Eclipse.org, [April 16th, 2006]. http://www.eclipse.org/aspectj/.

[2] Curtis Clifton and Gary T. Leavens. Spectators and assistants: Enabling modular aspect-oriented reasoning.
Technical Report 02-10, Iowa State University, Departmentof Computer Science, October 2002.

[3] Michael Cot́e. JAAS book: Java authentication and authorization. Originally written for publication by Man-
ning, http://www.jaasbook.com/, [April 16th, 2006].

[4] David F. Ferraiolo, D. Richard Kuhn, Ramaswamy Chandramouli, and John Barkley. Role Based Access
Control (RBAC), [8th March, 2006]. http://csrc.nist.gov/rbac/.

[5] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quantification and obliviousness.
In Aspect-Oriented Software Development, chapter 2, pages 21–35. Addison-Wesley, Boston, Massachusetts,
2005.

[6] Stefan Hanenberg, Rainer Unland, and Arno Schmidmeier.AspectJ idioms for aspect-oriented software con-
struction. InProceedings of the 8th European Conference on Pattern Languages of Programs (EuroPLoP’03),
Irsee, Germany, June 2003.

[7] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. Detecting and resolving ambiguities
caused by inter-dependent introductions. InProceedings of the 5th International Conference on Aspect-Oriented
Software Development, Bonn, Germany, March 2006.

[8] Ramnivas Laddad.AspectJ in Action. Manning, Greenwich, Connecticut, 2003.

[9] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and Roland Schemers. User authentication and autho-
rization in the JavaTMplatfom. InProceedings of the 15th Annual Computer Security Applications Conference,
Phoenix, Arizona, December 1999.

[10] Russell Miles.AspectJ Cookbook. O’Reilly, Boston, Massachusetts, 1st edition, January 2005.

[11] Dana Nourie and Mike McCloskey. Regular expressions and the Java programming language, 2001 [2002].
http://java.sun.com/developer/technicalArticles/releases/1.4regex/.

[12] Scott Oaks.Java Security. O’Reilly, 2nd edition, 2005.

[13] Elçin A. Recebli. Pure aspects. Master’s thesis, University of Oxford, Computing Laboratory, August 2005.

[14] Vipin Samar and Charlie Lai. Making login services independent of authentication technologies. InProceedings
of the SunSoft Developer’s Conference, 1996. http://java.sun.com/security/jaas/doc/pam.html.

[15] Ravi Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based access control models.
IEEE Computer, 29(2):38–47, 1996.

26

[16] Sun Microsystems, Inc. Java technology: Glossary, [8th March, 2006]. http://java.sun.com/docs/glossary.html.

[17] Sun Microsystems, Inc. Java 2 platform SE 5.0 API: Pattern class, [April 16th, 2006]. http://java.sun.com/-
j2se/1.5.0/docs/api/java/util/regex/Pattern.html.

[18] Sun Microsystems, Inc. Java technology: Security and the Java platform, [April 16th, 2006].
http://java.sun.com/security/.

[19] Joseph Yoder and Jason Barcalow. Architectural patterns for enabling application security. InPLoP’97, Pro-
ceedings of the 4th Conference on Patterns Language of Programming, 1997.

27

