Zas — Aspect-Oriented Authorization Services (first take) — Final
draft

Paulo Zenida Manuel Menezes de Sequéira Diogo Henrique$ Carlos Seiad

July 3, 2006

lPaulo.Zenida@iscte.pt, ISCTE - Instituto Superior d&nCias do Trabalho e da Empresa, Av. das For¢cas Armadas 0P&49-
Lisboa, Portugal

2Manuel.Sequeira@iscte.pt

®Diogo.Henriques@iscte.pt

4Carlos.Serrao@iscte.pt

Abstract

This paper proposesad, a novel, flexible, and expressive authorization meshafor Java. Zs has been inspired by
Ramnivas Laddad'’s proposal to modularize Java Authergitand Authorization Services (JAAS) using an Aspect-
Oriented Programming (AOP) approachasZaims are to be simultaneously very expressive, reusabteeasy to
use and configure. & allows authorization services to be non-invasively dddeexisting code. It also cohabits
with a wide range of authentication mechanisms.

Zas uses Java 5 annotations to specify permission requitsriieaccess controlled resources. These require-
ments may be changed directly during execution. They maykascalculated by client supplied permission classes
before each access to the corresponding resource. Theégeefedogether with several mechanisms for permission
propagation, expression of trust relationships, depthcokss control, etc., makeaZ, we believe, an interesting
starting point for further research on the use of AOP for aritfation.

Keywords: JAAS, RBAC, authorization, Java, AspectJ, ACE Z

Chapter 1

Introduction

This paper proposes a novel, flexible, and expressive daéttiimn mechanism. Its advantages stem mainly from the
fact that an AOP approach is used, allowing it to address some of the probfemr® in industry standards like
JAAS? [9, 3, 12]. AspectJ [1] has been used to develop the proposal.

AOP is strong in terms of reduction of code scattering andliag, provides for the separation of crosscutting
concerns from the core code, and nicely integrates with Xipeessiveness of Java 5 annotations. This, together
with our practical interest in authorization services faval applications, led us to attempt to develop a new, aspect-
oriented authorization mechanism, calle@sZ Our aims were to makeéiZ simultaneously very expressive, allowing
programmers to state very clearly what they mean, and imattre from the business context, though being possible
to make it business aware, allowing the separation of paatiqpermission specifications from the authorization
concerns embedded into the code by programmers. Anothenrafarls was to make the application disZto
already existing code as simple as possible and, if negesstaly non-invasive.

Expressiveness requires code which is as clear and simplesathle. We do not want to tangle business code
with code related to the checking of user permissions. We @tsnot want permission checking code scattered
all over the application, in every method requiring verifica of authorized access. In other words, we want to
modularize, into aspects, the crosscutting concernsegklat authorization. On the other hand, the programmer
should be able, though not required, to guide the applioaifdhe authorization concerns to his own code. In this
sense, one might say that one of the tenets of AOP, viz. obisriess [5], is violated. However, annotations may be
though of as allowing the programmer to express in the cadeguired semantics, still oblivious of the exact way
in which this semantics will actually be implemented.

According to [2], aspects can be divided into two categoréssistants and spectators. They suggest that assis-
tance should be explicitly accepted by a module. Once a recattdepts assistance of an aspect, then the aspect is
allowed to advise that module. Annotations can be seen ag/donexpress assistance acceptance. Authorization
annotations, as proposed b@< will thus acknowledge specific semantics for, say, a atktand implicitly accept
(or rather, require) assistance of a corresponding aspgd¢imenting that semantics.

In [13], Recebli proposes a different classification redatethe role of aspects in software systems from a higher-
level engineering point of view. He proposes the divisidw imtegral and attachable aspects. According to him, we
can say that the aspects within our approach are attaclsaide,they can be removed from an application, without in
any way changing the correctness of its business implereni@xcept, of course, in what concerns authorization).

The JAAS authentication service, based on BANM], provides an abstraction layer that greatly simplifies
changes in the actual authentication method used. Howsiare this work was motivated by the need to add
authorization to the Hebipolis Web applicatioft,which already possessed its own authentication code, oir ma

1Aspect-Oriented Programming

2Java Authentication and Authorization Services

3Pluggable Authentication Modules

4See http://heliopolis.iscte.pt/ (the source code usesahd is available in https://svn.ci.iscte.pt/Heliogitdiink/).

focus was solely on authorization concerns. Nevertheles€xpect the developed solution to integrate seamlessly
with a wide range of authentication mechanisms.

This work was inspired by Laddad’s proposal [8] to use AOP tduolarize JAAS-based authentication and
authorization. The main interest of his proposal, at leemihfour point of view, is related to the authorization
concerns. Our work is thus based in Laddad’s, extendingdutthe modularization of authorization concerns, thus
reducing code tangling and scattering, and reducing thégromation effort required from the programmers.

This paper is structured as follows. The next section wille& some of the existing Java-based authorization
mechanisms. It is followed by a detailed description of #guirements that have have used as guidelines to develop
Zas. Afterwards, ds implementation is described with some detail. And finaltiyiclusions will be drawn and some
possible directions for further work will be pointed to.

Chapter 2

Authorization solutions in Java

Authorization is not a new research topic. There are marfgreifit proposals and tools readily available, ranging
from ad hoc solutions, where the developer implements &viexy from scratch, to complete solutions like JAAS,
and from OOP approaches to approaches where the power of AOP is leveraged

Our main interest while studying existing authentication authorization mechanisms was JAAS, since it is a
standard for authentication and authorization servicdawa [18] and an integral part of the JBK

JAAS is not as flexible as we would like it to be. Its use requicensiderable configuration effort [12]. For

example, security policy files have to be used in order toigp#e principals and what they are permitted to do.
For example:

grant Princi pal

sanpl e. princi pal . Principal "user" {
perm ssion test.Perm ssion "pernt;

b

Besides, and importantly, the permissions can not be cldbimgrintime. This is a serious restriction for dy-
namic applications, where an administrator must be ablatbusers and their corresponding permissions during
the operation of the system. It is possible to use a dataloagki$ task, as in the example provided in [3], increas-
ing the flexibility of the system by allowing the privilege$ the principals to be specified at runtime. However,
such a solution requires the use of a specific database nfadefdr already existing systems, may not be easy to
accomplish.

The original JAAS model is implemented with an ®@pproach, thus being prone to the common problems of
code scattering and tangling: code must be added to thecapiph classes in order to implement authorization:

public class Myd ass {
public void businessMethod() {
AccessControl | er. checkPer nm ssi on(new MyPerm ssi on("aPerm ssion"));
/1 business code

}

public static void main(String args[]) {
/1 authentication code
MyCl ass a = new Myd ass();
Subj ect aut henti cat edSubj ect = |c. get Subject();
Subj ect . doAsPri vi | eged(aut henti cat edSubj ect, new Privil egedAction() {
public Object run() {
a. busi nessMet hod() ;

10Object-Oriented Programming

2J2SE (Java 2 Platform Standard Edition) Development Kit

3“A name associated with a subject”, taken as “any user of a ctingpservice” [9] or “the identity assigned to an entity asesult of
authentication” [16].

40Object-Oriented

b

nul |

Clearly, the authorization code is entangled with busicesie, both in the code requesting access to the resource
(the caller code) and in the resource code itself (the caltele). Moreover, authorization code will be scattered
through the application, since it must be used whereversaamantrol is required. Both problems can be fixed using
AOP, as shown by [8]. Laddad proposes arA@proach to the application of JAAS that significantly sitiigs the
code required for access control, though only at the caller:

public class Myd ass {
/'l as before

public static void main(String args[]) {
MyC ass a = new Wyd ass();
a. busi nessMet hod() ;

We still need to call theheckPer nmi ssi on() method in the business methods. This can be avoided if we use
the expressiveness of Java 5 annotations (an interestidg eh some of the benefits and problems of annotations
can be seen in [7]) and modularize that call into an aspepbresble for authorization verification:

@\ccessControl | ed(requires = "aPerm ssion", perm ssionC ass = My/Perni ssion. cl ass)
public void busi nessMet hod() {
/'l business code

}

The use of annotations clearly improves the quality of théec@ugmenting its expressiveness while reducing
scattering and entanglement. However, by itself it doesdectease the required configuration effort nor makes
access control dynamic.ag, as will be seen in the next sections, does.

5Aspect-Oriented

Chapter 3

Requirements

Originally, the implementation of authorization in Hagliolis was very brittle, being limited to the interface laye
where appropriate menu options were hidden from non-alizétusers. Anyone knowing, or guessing, the URL of
a page containing private or protected information wouldble to gain access. It was a clear case of a simplistic
implementation of Yoder’s “Limited View” pattern [19]. Oaim was thus to solve the authorization problem not by
merely limiting the view of each user to whatever s/he isvedld to view or manipulate, but mainly by making sure,
at the business layer itself, that no user can ever gain mmified access to any resource that is outside the privileges
associated with his roles within the system.

For the reasons stated in the previous section, we were tigfiesé with the available solutions to this problem.
Zas, as described in this paper, was thus developed as a rforeablution to the authorization problem fulfilling
the following broad requirements:

1. It should be independent from JAAS.
2. It should be compatible with the simultaneous use of JA#specially with its authentication services.

3. Its authorization services should require no more froenapplication model than access to the current prin-
cipal's permissions. It should thus support the RBAG, 15] model, though never dealing directly with roles
itself.

4. It should greatly simplify the code of client applicatipas compared with alternative solutions.

5. It should be as non-invasive as possible, allowing bgsicede to concentrate on the business logic, allowing
the programmer to specify access requirements within tle,cid s/he so desires, but also to completely
separate access control from the business logic code.

6. It should require less configuration effort than the akiives.
7. It should allow dynamic changes to the resources’ acezgsrements.
8. It should have a generic logging interface.

Since s was meant to be a Java/Aspect] library of classes andsafragse in Java applications, the require-
ments above were further refined into the following detaitgliirements:

1. The access requirements for each such resource shoypetiéable using Java 5 annotations.

2. The resources whose access should be controlled arseaped by constructors, methods, and attributes.

1Role-Based Access Control

w

10.

11.

12

. It should be possible to force the propagation of the acrmsguirements of a resource to all its members. For
instance, from a package to all its types and nested packageé$rom a class to all its (non-private) methods
and attributes.

. It should not be possible to propagate access controifigagion to resources explicitly marked as having no
access control.

. Itshould be possible to define access requirements eixéto the corresponding resource definition (invasive
usage), centralized in a single or in several access regairedefinition aspects (non-invasive), or both.

. It should be possible to use outside sources of permissigmrements, such as property files. Permission
requirements should be possible to change dynamically.

. It should allow the definition of access requirementsgibimolean expressions involving permission names.

. It should allow the quantification of the definition of ass@equirements using wildcards.

. It should allow the specification of the required depthaifesss control as either deep or shallow.

When shallow access control is required, it should beilplest specify the degree of suspiciousness of a
resource.

Special cases should be provided to bypass accessl¢oiztraising privileged methods and trusted classes.

. It should be easy to add authorization features to egjgiiojects.

The next sections go through several of these requiremexgsnplifying their impact in the client code, and

thus

clarifying the importance of the requirements thexesel Notice, however, that at the current state not all

requirements have been implemented and some are onlyliyartiplemented. The status of development will be
stated wherever appropriate.

3.1 Annotations (1 and 2)

Zas

should allow the programmer to guide the application peeis through the annotation of the non-private

resources where access control is required:

i mpo
publ

rt pt.iscte.ci.zas.authorization.*;

ic class Mdass {

@\ ccessControl | ed(requires = "aPerm ssion")
public void foo() {

}

~ The previous code explicitly states that access to meftbod) , that is, calling permission, is restricted to prin-
cipals having permissioaPer ni ssi on. When not specified in the annotation, the access requirsncentespond

toa

single permission whose name is the signature of theauetiithout the return typé.Hence, the permission

required to calf oo() as defined in

package mypackage;

publ

ic class Wd ass {
@\ccessControl | ed
public void foo() {

}

2Private “resources’” are implementation details.
3Using complete signatures as permission names guaranteeséhianded resources.

is mypackage. MyCl ass. foo().
It should also be possible to annotate attributes, sirgitarlvhat happens for methods.

package nypackage;
public class Myd ass {

@\ccessControl l ed protected int bar;
}

Permission requirements should always be filtered by majbo&equi r enent s() of thePer ni ssi on class:

package pt.iscte.ci.zas.authorization;
public class Pernmission {
public String getRequirements(String currentRequirenents,
Joi nPoi nt joinPoint, JoinPoint.StaticPart enclosingStaticPart) {
return current Requirenents;
}

}

Before each access to a protected resource, this methddst@Essed the current permission requirements, which
the default implementation will simply return, as well as #xecution context of the access, including the caller and

callee objects. _ _ o .
It should be possible to provide access control specifioatigith client classes extendirir ni ssi on and
overridingget Requi renent s() :

inmport pt.iscte.ci.zas.authorization.x*;
public class MyPerm ssion extends Perm ssion {

@verride
public String getRequirenments(String currentRequirenents,
Joi nPoi nt joinPoint, JoinPoint.StaticPart enclosingStaticPart) {

}
}

Hence, an arbitrary client code may be executed during acma#rol, making it possible to add business specific
access control methods t@g

Then, in the protected resource, we specify the permissass evhich must be used to compute the permission
specification:

package mnypackage;

public class MO ass {
@\ccessControl | ed(perni ssionC ass = MyPermi ssion. cl ass)
protected void nyMethod(String x) {
}

}

Our model saves internally the relationship between thaim®ted permission classes and the protected resources
being accessed. This improves the application efficienegabse we instantiate each permission class for each
protected resource only once and reuse it when necessaty,tigge that resource is accessed. That is required
because it is necessary to compute the permission specifiestch time a resource is executed.

The current version of @ does not distinguish between sets and gets, as it shbalso Hoes not support access
control for constructors. However, those may be provideal rear future.

3.2 Propagation (3 and 4)

Zas should provide a mechanism allowing access control figm@ns to be propagated to members of the cor-
responding resource, if any. For instance, the accessat@piecification of a class should be inherited by all its
non-private members:

4The current version of & does not distinguish between sets and gets, as it should.

@\ccessControl | ed(requires = "aPerm ssion", depth = Depth. SHALLOW
public class Myd ass {
public void foo() {

}

In this casef oo() should inherit the access control specification of cMgd ass, i.e., callingf oo() requires
permissioraPer ni ssi on and the access control should be shallowly verified (seedPeBi15).

By default, non-private resources should not be accessdllent, except when propagation is being used.

Notice that there should be two different effects in propiaga The first one is static, and leads to all non-private
members of an access controlled resource, with the excegitthose marked with annotati@ot AccessCont rol | ed,
to also be access controlled. The second one is dynamiceads to all non-private members of an access controlled
resourcethat have not been explicitly marked as being either access controlled or not access controlled to dynami-
cally inherit the required permissions from the enclosiegpurce (see Section 3.4). Hence, in

@\ccessControl | ed(requires = "aPerm ssion", depth = Depth. SHALLOW
public class Myd ass {
public void foo() {

}

@\ccessControll ed
public void bar() {

}

@\ot AccessControl |l ed
public void baz() {

}
}

f oo() would inherit its access control specifications from clgiggl ass: the permission name "aPermission” and
the depth (see Section 3.6) verification as shallow. Howevar(), while access controlled, would not inherit
required permissions fromyd ass, andbaz() would remain free of any access controls.

The current version of & still does not provide the same mechanisms in the caskibtitgs. This problem will
be solved in the near future.

Also, since the current version of AspectJ [1] does not allogvcapture of package annotationgsztill does
not provide the inheritance mechanism for packages fronsdliece codé.Notice, however, that we have created a
way to simulate this by using wildcards (see Section 3.5)itside sources (see Section 3.4).

3.3 Specification locations (5)

Usually resources requiring access control are directhptated as such, i.e., their definition is directly annatate
This requires source code invasion and leads to scattdregeta-information related to access control concerns,
which in some cases may be considered a bad préttice.

Itis possible to use AspectJ ITD® inject annotations in types, methods, attributes, etmds, it is possible to
modularize all access control specifications in a singleesp

publ i c aspect AccessSpecifications {
decl are @ret hod:
voi d nypackage. Myd ass. foo():
@\ccessControl l ed(requires = "foo");

SHowever, we will soon open an AspectJ feature request.

6The authors consider this use of annotations to be advisabiesver, since it leads to improved source expressivenigssu hampering
abstraction.

"Inter-Type Declarations

This code should mark methédo() in package. MyCl ass as being access controlled and requiring permission
f oo.

Just as Java prohibits double annotations, AspectJ ptsthiits injection of an annotation already present in the
source code, next to the resource definition. Hence, the ppooaches, one using annotations next to the access
controlled resource, the other modularizing access cbgpecifications in a single aspect, may be used together
without any problem: the compiler will issue an error in ca$a collision.

3.4 Dynamic permissions (6)

Permission requirements, as indicated in access congoifgfation annotations are initial permissions, whichigtio
be changeable in runtime. That is, permission requiremsimsild be dynamic, but not the access controlled re-

sources.

In conjunction with the ability to use wildcards (see Setti5) both to_sFecify permissions and to specify
the resources to which the permissions apply, this req@intrmakes it possible to dynamically load permissions
specification from a generic input stream, allowing it to,eeexample, access control property files:

inmport pt.iscte.ci.zas.authorization.x*;

public | nput Stream outsi deSource() {
return ConcreteAC. cl ass. get O assLoader (). get Resour ceAsSt r ean(" per nm ssi ons. properties");
}

, thus allowing permissions to be changed dynamically asdyelay a system operator. For instance,

package nypackage;

class Myd ass {
@\ccessControl |l ed
public void foo(String s) {

}
}

SEecifies thaf oo is access controlled and initially requires permissigpackage. M\ydl ass. foo(String). It
should be possible to change the required permission ugingpeerties file such as:

mypackage. MyCl ass. foo(String) = foo

In this case, after loading the properties file, the requireeission for calling oo is no longemypackage. -
M/Cl ass. foo(String), butf oo. Of course, the same effect should be obtained by directlingaa permission
changing method of &s:

inmport pt.iscte.ci.zas.authorization;
AccessControl | er. addAccessControl ("nmypackage. My ass. foo(String)", "foo");

The use of external sources of permission requirementsstioem to be provided at the appropriate granularity
level. For example,

nypackage. MyCl ass.foo() = foo || bar
mypackage. MyCl ass. * = bar
nmypackage. *() = foo

which might be found in an access control property file, stétat all access controlled methods without any para-
meters within packageypackage will require permissiorf oo, with the exception of those within clasgC ass,
which require permissiohar . Again, methodwC ass. f oo() is an exception, since it requires either permission
f oo or permissiorbar (see Section 3.5). The order is relevant becadsendll always look for the first occurrence of

a matching signature and load the permission specificalibis simplifies both the program algorithm and reading
the permissions specification.

10

Symbol | Meaning

* 0 or more characters
+ 1 or more characters
? 0 or 1 characters

Table 3.1: Wildcards used ind3 notation.

3.5 Expressions (7 and 8)

It should be possible to compose Boolean permission expressoth in-code as initial permission requirements,
and dynamically (e.g., inside property files). For instariicéhe access control specification

@\ccessControl | ed(requires = "aPerm ssion || !anotherPerm ssion")
public void foo() {
}

the permission expression requires any principal calling() either to have permissicaPer mi ssi on or to lack
permissioranot her Per mi ssi on.

Currently, Zas supports operator$ (“or”), && (“and”), and! (“not”), as well as the use of parentheses to control
evaluation order.

Regular expressions [11, 17] should also be possible inipsioms expressions. Table 3.1 shows the currently

supported wildcards.
For example, using

@\ccessControl | ed(requires = "perm")
public void foo() {

}

any call tof oo() would require a principal having at least one permissionsghtame starts wither m(e.g.,per m
or per mi ssi on). Notice that regular expressions introduce a form of g€iaation into Zas. In this case they
introduce existential quantifiers into permission requieats.

Wildcards should also be possible when dynamically spexjfpermission requirements, of course. In this case,
however, they can also be used to specify multiple resoumcasingle step, as shown in the last example of Section
3.4. This introduces the notion of universal quantifiers ifhs.

3.6 Depth (9 and 10)

By default, access control should be applied for all acaetsaccess controlled resources, regardless of the context
Regardless, namely, of the controls which have already pedormed in upper levels of the current call stack. This
is usually the safest option and thus the most desirableiiefdowever, occasionally it may be necessary to turn off
access control in the control flow of a given method execution

The @\ccessControl | ed annotation’s elemerdept h represents the level of access control. In a way that
is reminiscent of copy depth, access control is applied tthateexecution either in &ept h. SHALLOWor in a
Dept h. DEEP manner, depending on the value of this element. Shallowsaccentrol means that if access to a
method is granted to a principal, it will also be granted sccibmplete flow of control, effectively turning off access
control during its execution. On the contrary, if access toeethod specifying deep access control, which is the safe
default, is granted to a principal, it witlot be automatically granted to all other accesses to resourties method'’s

control flow. _
For example, in

public class A {
@\ccessControl | ed
public void foo() {

11

new B(). bar();

}
}

public class B {
@\ccessControl | ed
public void bar() {
}

}

a call tof oo() will be possible only if the principal has both permissharf oo() and permissio®. bar () . Chang-
infg the depth tept h. SHALLOWin the annotation of oo() , access control wilhot be applied during the execution
of f oo():

@\ ccessControl | ed(depth = Depth. SHALLOW
public void foo() {

new B().bar();
}

Using shallow access control should generally be congidéaegerous. Hence, a mechanism should be devised
to short-circuit the consequences of shallow access dorifra given method declares itself to be suspicious, its
access control specification shoulat be turned off in the flow of a shallowly access controlled rodttFor instance,
in
public class A {

@\ccessControl | ed(depth = Depth. SHALLOW
public void foo() {

new B(). bar();

new C(). baz();

}

public class B {
@\ccessControll ed
public void bar() {
new C(). baz();
}

}

public class C {
@\ccessControl | ed(suspicious = true)
public void baz() {

}
}

a call tofoo() will fail if the principal does not have permissi@ibaz(): it is not sufficient for him to have permission
Afoo(), sincebaz() is suspicious. On the other hand, permisddsar() is not necessary when the call is performed
in the flow of control offoo(), sincebar() is unsuspecting anido()’'s access control is shallow.

3.7 Bypasses (11)

Zas should provide two methods to bypass access control. fBhesfimore dangerous, and should be used with care:
it should be possible to annotate some methods as privilégedas turning off access control to calls within their
control flow:

@rivil eged

public void foo() {

}

The difference between calling a privileged method andraald method with shallow access control is that
the first call always succeeds, while the success of the demoa depends (solely) on the current principal having
permission to make the call.

12

~ The second required bypassing mechanism, trust, is margplified and less dangerous. Instead of being used
in a method to bypass access control during its entire exegutgardless of the access control specifications of the
intervening resources, trust in specified classes is atplacknowledged by the callee method. For example, given

public class A {

@\ ccessControl l ed(requires = "aPerm ssion", trusts = { B.class })
public void foo() {
}

}

public class B {
@\ccessControl | ed(requires = "anot her Perm ssion")
public void bar() {
new A().foo();
}

}

any call tobar () will require a principal with permissioanot her Per i ssi on, as usual, but the call tboo()
from within bar () will not be subject to access control, sirfogo() declared its trust in clagsd Notice, however,
that calls from within the flow of control dfoo() will in general be access controlled, since trust does rapgyate.
This will improve even further the safety of trust relatibips.

3.8 Ease of use (12)

Zas should be easily integrated into an existing projectabse we have adopted the template advice idiom [6].
Indeed, if the requirements illustrated in the previougdisas are fulfilled, particularly the ability to use ITDs to
modularize access control specifications, little or no glearwill be required in existing code.

Zas integration shall simply require

1. adding theas. j ar Java archive into the class path of the application;
2. defining a concrete aspect that extends the providedaabsspechccessControl | er ; and

3. adding the access control specifications either dirg¢ottite resources requiring authorization, or using ITDs
concentrated in, e.g., the concrete aspect defined.

These steps are quite straightforward, with the possilideion of the definition of the concrete aspect. Access
control is only possible if the current principal’s set ofréssions is available. HoweveraZ should be as inde-
pendent as possible both of the authentication mechanisch insthe application, and of the roles existing in the
application and their corresponding permissions. How ahdresto find the permissions associated with (the roles
of) the current principal is not&’ problem.AccessControl | er simply declares an abstract method r ent -

Princi pal Per i ssi ons() which the concrete aspect, defined in the client code, shoybtment.
For example, the definition of the concrete aspect for a @rdpkktop application should be as simple as:

package pt.iscte.ci.nyapp;
inmport pt.iscte.ci.zas.authorization.*;

public aspect MyController extends AccessController {
private User user;

public Set<String> currentPrincipal Perm ssions() {
/1 get and return pernissions
/1 fromthe roles of "user".

}

before() : accessToControl |l edResources(AccessControl |l ed) {
// code to authenticate the
/'l user, if necessary.

13

In the case of Hetipolis, authentication was already available. Therefoceauthentication related advice was
necessary. However, it was still necessary to get the ugagtto access a controlled resource:

public aspect MyController extends AccessController {
private User user;

public Set<String> currentPrincipal Perm ssions() {
/1 get and return perm ssions
// fromthe roles of "user".

}

private pointcut authorizationCall sScope()
execution(* *..BaseBeant+.new(..)) ||
execution(x *..BaseBean+.x(..));

bef ore(AccessControl | ed specifications, BaseBean baseBean)
accessToControl | edResour ces(requirenents) &&
cfl ow(aut hori zati onCal | sScope()) &&
t hi s(baseBean) {
// Code to get the current user
}

Sub-aspects have precedence relative to the aspect tlemdert Hence, the before advice in the code above is
executed before&s’ access control related advice, thus making sure themuser is already storeduser when
current Princi pal Perni ssi ons() is called.

14

Chapter 4

Zas implementation

In our model implementation, there are some important ide&gch will be detailed in the current section. First
of all, we have tried to create a reusable library of classesaspects, which should be easy to use and configure
in client projects. We have used Aspect] to implemess, Avhose implementations follow the template advice
idiom [6], which entails creating an abstract aspect detjareusable abstractions, and a concrete aspect tailored t
a case-specific code base that defines the case-specifioifago be captured in the logic declared by the abstract
aspect.

The concrete aspect, as we showed in Section 3.8, must irepteanmethod for gather the set of permissions
associated to principals. We thus delegate all the knoveleelgted to authentication and how to gather the principals
authorization sets to the concrete aspect. This way, wevdhe abstract aspeéccessControl | er to remain
general and independent from the business logic, hencabileus

Next, we will make a top-bottom list of all the relevant paiimi the Zas implementation, providing as necessary,
an explanation of the code.

TheAccessControl | er constructor sets the debug mode to false so that no warningf@essage is printed
to the console (at the moment, we have not provided a geragyigrg interface, which may be supplied in a future
version of Zas). Also, it puts a "shutdown hook”, which is a thread thegaites in the end of the program, just
before it finishes. This mechanism is still under developnaer, therefore, it is not properly tested nor properly
implemented. Nevertheless, the idea is for helping theldpee about potential errors one might have done when
specifying the permission requirements for the accessated resources. For example, if we have a permission
designated by "foo” but we made a mistake when writing ittisgtit as "fop”, that would be hard to detect. That
way, this thread should print, in the end of the program, iekpges that have been loaded by the Java class loader
and make a comparison with the namespaces provided for thegstons requirements that have been used.

public AccessController() {
set | sDebugActi ve(fal se);
/1 This makes it possible to preserve the insertion order
props = new Li nkedHashMap<String, String>();
per m ssi onsPackages = new HashSet <String>();
per m ssi onsPer Resource = new Hasht abl e<Stri ng, Permi ssi on>()
Runti me. get Runti me() . addShut downHook(new Shut downHook());

}

private class ShutdownHook extends Thread {
public void run() {

}

We have adopted the Java way for namespaces: when a class paskage, the default one is used. The same
thing happens for permissions requirements:

15

@\ccessControll ed(requires = "foo")
public void foo() {
}

@\'ccessOontroI led(requires = "pt.iscte.ci.bar")
public void bar() {
}

In the previous example, we assume that the permission etngs to the default package and that, for "bar”,
the packaget . i scte. ci exists in the project. In the end of the program’s executienweuld issue a warning if
we had not detected the . i scte. ci . We can only issue a warning because it is not certain thgtdbkage does
not exist. It simply means that one class in that package trhig\e not been used, therefore, not having been loaded.
So, with a warning message provided b§sZit is possible for the developer to, at least, check fatakis in the
permissions specification. This mechanism should be edanid disabled as wanted: in development time, it may
be useful. However, in deployment time, it may add an undbléroverhead to the application.

One important requirement we have addressedas ifmplementation is related to the source or origin of the
permissions requirements specification. We made it passibload, in runtime, the specifications for each access
controlled resource by reading those from a generic inpeéast, and load them into a map containing the authoriza-
tions specification for each joinpoint:

protected Map<String, String> getPerni ssionsFronQutside() throws | CException {
t hrow new Unsupport edQperati onException();
}

By default, it is set to simply throw abnsupport edOper at i onExcept i on, meaning that the client aspect
extending As needs to override the method, to enable the capabilitgaafing from generic outside streams. An
example of a concrete implementation could be (we have reat tiseProperties class from the JDK because it does
not care about the order in the file, which is something weraerésted in):

private java.io. Reader outsideSource() {
return new j ava.i o. | nput St r eanReader (Concr et eAccessControl |l er. cl ass
. get Cl assLoader (). get Resour ceAsStrean(" perni ssi ons. properties"));

}
public Map<String, String> getPermn ssionsFronQutside() throws | OException {
if (outsideSource() != null) {
Buf f er edReader bufferedReader = new Buf f er edReader (out si deSource());
String line;
while ((line = bufferedReader.readLine()) != null) {
int firstComentChar = line.indexOf("#");
if (firstCommentChar != -1) {
line = line.substring(0, firstConmrentChar);
}
if (line.length() !'=0) {
String[] tnp = line.split("=");
if (tnp.length == 2)
addAccessControl (tnp[O].trin(), tnp[1l].trin());
}
}
}
return getPernissionsRequirements();
}

Zas verifies the current principal permissions against th@issions specification supplied for a certain protected
resource as follows:

private final bool ean hasPerm ssion(Set<String> authenticatedUserPrivil eges,
String perm ssions) {

16

i f (aut henticatedUserPrivileges == null)
return fal se;
for (String p : authenticatedUserPrivileges) {

try {
i f (ExpressionVal i dator. validat e(Expressi onParser.

convert ToBool eanExpr essi on(p, perm ssions)))
return true;
} catch (Ml fornmedBool eanException e) {
i f(isDebugMbdeActive())
e.printStackTrace();

}

return fal se;

Theconvert ToBool eanExpr essi on() method will turn a string expression into a boolean one, bichiag
each permission attached to the principal against the gerom requirements provided for the resource under access
control, setting true or false according to a successfulabmmatching. For example, matching "foo” against the
expression "foo|| bar” would result in "true|| false”. Next, theval i dat e() method will evaluate the boolean
expression result. For the example provided ("tjufalse”), it would return true.

Notice in the method, when catching the exception that weenaakerification by calling the methad Debug-
ModeAct i ve(), which is simply a method returning true or false (by def@i#tet to false) that can be overridden in
the concrete aspect, in order to enable or disable errorages$eing shown, when an error occurs.

The requirements related to the propagation of permissiegsirements through the members of an access
controlled resource such as a class or a package, as we hatiemed previously, needs ITD. That is addressed with
the following definition, where we put thiecessCont r ol | ed annotatiof in all non private methods of annotated
types, not having neitherAcessCont r ol | ed nor aNot AccessCont r ol | ed annotations.

decl are @ret hod :
I @\ccessControl | ed ! @lot AccessControlled !private *
(@\ccessControlled *..*).x(..) :
@\ccessControl | ed(inherited = true);

When we add authorization requirements to types resoutkeeshé previous, we set theherited() attribute to
true so that the resource will gain the requirements fromtype where it is in. The programmer can also make a
resource inherit the authorization requirements fromybpe tithout ITD by putting thénherited() attribute to true.
However, if the type is not annotated AscessControlled, Zas will throw aRuntimeException. The same happens
for attributes. Nevertheless, we were not particularlgriested in studyingas for controlling attributes.

One of the main points of interest of the implementationlateal to the quantification[5] mechanism provided by
AspectJ, to capture the points of interest in the base codbas aspects are then able to advice them. We capture all
methods calls and sets/gets to attributes which are amaotdth @ccessCont r ol | ed. We have used annotations
to restrict the applicability of aspect weaving, being sweeare not advising unwanted resources. The following
defines that the controlled resources are the sets and gatisibéites, and also the calls to methods annotated with
AccessControl | ed. We have chosen the call pointcut instead of execution, Usecé provides a wider scope,
namely both the caller and the callee objects and becausecess Control, the semantics are granting access or not
to the principals’ orders or "calls” to resources.

protected pointcut accessToControl | edResources(AccessControl | ed requirenents) :
(accessToControl | edMet hods() ||
accessToControl | edFi el dsSets() ||
accessToControl | edFi el dsGets()) &&
@nnot ati on(requi renents);

1Thei nheri t ed element is set to true to enable the inheritance of all elengentéded in theAccessCont r ol | ed of the type.

17

The previous pointcut definition i ot ect ed so that only sub-aspects can "see” it. Also, the pointcutritas
been defined as final to make it possible for aspects exterditwssCont r ol | er to override it and, if necessary,
further refine the access controlled resources. For exammpéecould restrict the scope of application @by using
the Border Control Design Pattern as defined in [10]:

publ i c aspect BorderControl {

public pointcut accessControl Scope()
wi thin(pt.iscte.ci.nyproject);
}

import pt.iscte.ci.zas.authorization.*;
publ i c aspect MyAspect extends AccessController {

protected poi ntcut accessToControl |l edResources(AccessControl |l ed requirenents)
AccessControl | er. accessToControl | edResour ces(requirenments) &&
Bor der Cont r ol . accessCont r ol Scope();

The depth feature requires the definition of different pmits to quantify the top level access controlled resources,
this is, the resources that have not been called or exectiteih whe control flow of another protected resource, and
those that are within the control flow of resources undes dccess control:

public final pointcut topLevel AccessToControl | edResources(AccessControlled
requi renents)

accessToControl | edResour ces(requirenents) &&

I cfl owbel ow(accessToControl | edResour ces(AccessControlled));

public final pointcut nonTopLevel AccessToControl | edResour ces(AccessControl |l ed
requi renents, AccessControlled topLevel Requirenents)

accessToControl | edResources(requirenents) &&

cfl owbel oWt opLevel AccessToControl | edResour ces(t opLevel Requirenents));

Both pointcuts are defined as being final so that they can novéeidden. This way, we prevent the definition
for the top level and non top level accesses to be misdefined.

The following method is one of the most important ones &sZIt computes the permissions or authorizations
requirements for a certajroi nPoi nt , in a certairencl osi ngSt ati cPart context, according to theequi r enent
annotation and a map pf ops which have been loaded (or not, in the case that the featgredtdeen implemented
in the concrete aspect) from an external sotirce

private synchroni zed String getPerm ssionsRequi rement s(AccessControll ed
requi renent, JoinPoint joinPoint, JoinPoint.StaticPart enclosingStaticPart,
Map<String, String> props) {
Perm ssion perm ssion = null;
try {
i f (perm ssi onsPer Resour ce. cont ai nsKey(j oi nPoi nt.toLongString()))
perm ssion = perm ssionsPer Resour ce. get (j oi nPoint.toLongString());
el se {
Cl ass perm ssionC ass = requirenent. perni ssiond ass();
perm ssion = (Perm ssion)pernissiond ass. new nstance();
per m ssi onsPer Resour ce. put (j oi nPoi nt.tolLongString(), pernmnission);
}
if(requirenent.inherited())
return perm ssion. get Requi renent s(get Perm ssi onsNanmesFor | nherit edRequi res(
requirenent, joinPoint, props), joinPoint, enclosingStaticPart);
el se
return perm ssion. get Requi renent s(get Per mi ssi onsNamesFor Not | nheri t edRequi r es(

2f no external source is specified, props will be null.

18

requirement, joinPoint, props), joinPoint, enclosingStaticPart);
} catch(l11egal AccessException e) {
i f(getlsDebugActive())
Systemerr.printlin(e);
} catch(lnstantiationException e) {
i f(getlsDebugActive())
Systemerr.println(e);

}

/'l returns null when sonething wong
/1 occurs. This should never happen
return null;

As we have mentioned previously in this paper, we have aleatmechanism to store the permission classes
used for access controlled resources, so that we can nékéaZter and also to make it possible to add state to the
Permission classes used. With such a mechanism, we can also add moikilgessto the permission classes, such
as make it possible to compute the number of times a certainiggon has been used to calculate the access control
requirements. The first section of code in the previous neketho

i f (perm ssi onsPer Resour ce. cont ai nsKey(j oi nPoi nt.toLongString()))

perm ssion = perm ssionsPer Resour ce. get (j oi nPoint.toLongString());
el se {

Cl ass perm ssionC ass = requirenment. perm ssionC ass();

perm ssion = (Perm ssion)pernissiond ass. new nstance();

per m ssi onsPer Resour ce. put (j oi nPoi nt.toLongString(), perm ssion);

is used to search for the stored permissions during the Yajecpexecution in which @s has been integrated,
and reuse the permission if the protected resource has be@oysly executed. If, however, the protected resource
has not been executed so far, the permission class spedfi¢dat resource will be instantiated and stored in an
internal map of permission classes for join points.

The second part of the method will "redirect” the computatid the permissions requirements to an appropriate
method, according to thenheri t ed() attribute of theAccessCont r ol | ed annotation:

if(requirement.inherited())
return perm ssion. get Requi renent s(get Per mi ssi onsNanmesFor | nherit edRequi res(
requi renment, joinPoint, props), joinPoint, enclosingStaticPart);

el se
return perm ssion. get Requi renent s(get Per m ssi onsNanmesFor Not | nheri t edRequi r es(
requi rement, joinPoint, props), joinPoint, enclosingStaticPart);

Both methodget Per i ssi onsNanesFor | nheri t edRequi r es() andget Per mi ssi onsNamesFor Not | nheri t ed-
Requi r es() share a similar logic, with particular differences relatethe annotation’snheri t ed() element. To
simplify this point, we have decided to provide only the dggion for the most complex of the two (the first one).
They are equal except for the logic related to checking fer germissions specification in the types where the
resource is contained:

1. Look for permission requirements specified in externarses

(a) Look for a property matching the resource signature éffaind, return it
(b) Look for a property matching the type signature whereréseurce is in and, if found, return it

2. Look for permission requirements specified in the code

19

(a) Look for the resource permission specification and,yifteass been provided (one different than #), return
it

(b) Look for the type containing the resource specificatiod, & there is a permission specification provided
(one different than #), return it

3. If all the other steps have failed, simply return the prted resource signature as the permission requirements
specification

As we have explained in Section 3.8, concrete aspects ngedvinle a way for As to get the permissions speci-
fication. This is supplied by the implementation of a methetdiming a set of names of permissions or authorizations
for an authenticated user, whose implementation is mandato

public abstract java.util.Set<String> currentPrincipal Perm ssions();

After capturing the important points in the code, it is neseeg to checkpefore the protected resources are
executed, if the user who is trying to access that resours@ateess to it. This is designated as advice and next we
can see the piece of advice necessary to check for authiorizdb capture the resources’ annotations elements, we
need reflection. That involves searching, in runtime, ferdbtails of a certain object, thus causing a penalty in terms
of performance. This subject, however, needs further rebea

The first advice requires a more complex logic because it ohestk if the verification should be executed deeply
or shallowly, while the second piece of advice is only for kel resources, thus being much simpler:

bef ore(AccessControl | ed requireH ghLevel Aut hori zati on, AccessControll ed
requi reLocal Aut hori zati on)
nonTopLevel AccessToControl | edResour ces(requi reLocal Aut hori zati on,
requi reH ghLevel Aut hori zati on) &&
IcflowprivilegedOps(Privileged)) {
Joi nPoi nt joi nPoi nt = thisJoinPoint;
JoinPoint. StaticPart enclosingStaticPart = thisEnclosingJoinPointStaticPart;
i f (shoul dBeShal | owl yVeri fi ed(requirelLocal Aut hori zati on,
requireH ghLevel Aut hori zation, joinPoint)) {
i f(requireLocal Authori zation. suspicious()) {
checkAut hori zati on(requi reH ghLevel Aut hori zati on, joi nPoint,
encl osi ngStaticPart);
} else {
Si gnat ure encl osi ngPoi nt = encl osi ngStati cPart. get Signature();
i f(joinPoint.getKind().toString().equal s(METHOD CALL)) {
for(Method m: encl osi ngPoint. get Decl ari ngType() . get Decl aredMet hods()) {
if(mtoString().equal s(enclosingPoint.toLongString())) {
AccessControl | ed requireEncl osi ngPoi nt = m get Annot ati on(
AccessControl | ed. cl ass);
i f(requireEncl osingPoint !'= null)
checkAut hori zati on(requi reEncl osi ngPoi nt, joi nPoi nt,
encl osi ngStaticPart);
el se
checkAut hori zati on(requireHi ghLevel Aut hori zati on,
joinPoint, enclosingStaticPart);
}

br eak;

} else { /] it is for fields
for(Field f : enclosingPoint. getDeclaringType().getDeclaredFields()) {
if(f.toString().equal s(enclosingPoint.toLongString())) {
AccessControl | ed requireEncl osi ngPoi nt = f. get Annot ati on(
AccessControl | ed. cl ass);
i f(requireEnclosingPoint !'= null)
checkAut hori zati on(requireEncl osi ngPoi nt, joinPoint,
encl osingStaticPart);
el se

20

checkAut hori zati on(requireHi ghLevel Aut hori zati on,
j oi nPoi nt, encl osingStaticPart);

br eak;

}

} else
checkAut hori zati on(requi relLocal Aut hori zati on, joinPoint, enclosingStaticPart);

}

bef ore(AccessControl | ed requirenents)
topLevel AccessToControl | edResour ces(requirenents) &&
lcflow(privilegedOps(Privileged)) {
checkAut hori zati on(requirements, thisJoinPoint, thisEnclosingJoinPointStaticPart);

The first piece of advice first verifies if the access conttbike shallowly verified. The methoshoul dBe-
Shal | oW yVeri fied() returns true if the permission requirements for the pretcesource have been specified
as being shallow, either by inheriting that specificatiamirthe type where the resource is defined or in the resource
permissions requirements definition itself, or if ts object that is accessing the resource is an instance of & clas
that belongs to the set of trusted classes for that proteeteirce:

private synchroni zed bool ean shoul dBeShal | owl yVeri fi ed(AccessControl |l ed | ocal Requirenent,
AccessControl | ed hi ghLevel Requirenent, JoinPoint joinPoint) {
i f(local Requirenent.inherited()) {
AccessControl | ed cl assRequi rement = get d assRequi resAnnot ati on(j oi nPoi nt);
checkl f Requi resAnnot ati onl sNul | (cl assRequi renent);
i f(isLevel Shallow cl assRequirenent.depth()))
return true;
i f(joinPoint.getThis() !'=null) {
i f(isFriendd ass(di scardReturnTypeFronSi gnat ure(j oi nPoint. get This().
getd ass().toString()), classRequirenent.trusts()))
return true;

} else {
i f(isLevel Shal |l ow hi ghLevel Requi rement.depth())) {
return true;

if(joinPoint.getThis() !'=null) {
i f(isFriendd ass(di scardReturnTypeFronSi gnat ure(joi nPoint. getThis().
getd ass().toString()), local Requirenent.trusts()))
return true;

}
}

return fal se;
If the verification for shallow or deep results in shallow @ss control, it needs to verify if the protected resource
is "suspicious” or not:

i f(requirelLocal Aut hori zati on. suspi cious()) {

‘}‘;3|se{

If the protected resource "A’ is suspicious, theasawill verify if the principal has access to the first proéett
resource "B” in the control flow of this access to the protdatesource "A’. Otherwise, it will behave as if it was a
deep access control, always checking for the "closestgtet resource calling "A’.

21

If the protected resource needs deep access contslydl always check the principal’'s permissions against
each access controlled resource.

It should not be possible to specify a method or attributeeslimg and not needing authorization requirements
at the same time. Therefore, a compile time error must ocbnvthat happens:

decl are error:
(execution(@\ccessControl |l ed @\ot AccessControlled * *..x.x(..)) ||
set (@\ccessControl | ed @\ot AccessControlled * *..*) ||
get (@\ccessControl | ed @ot AccessControlled * *..*)) :
"You cannot specify the sane point as requiring and not
requiring authorization";

We have also created an aspect to enforce best practicesbeidgpfor Zas. In order for client code to enable it,
it simply needs to extend the asp@ot i cyEnf or cer.

This aspect detects private attributes (sets and gets)rardegpmethods annotated as being access controlled (as
we said before, those are implementation details, andfthrereshould not be access controlled):

publ i c pointcut decl areWarni ngScope()
pt. zeni da. paul o. t hesi s. common. poi nt cut s. CommonPoi ntcuts. all ();

public final pointcut declareErrorScope()
I decl ar eWar ni ngScope();

decl are warning :
decl ar eWar ni ngScope() &&
(execution(@\ccessControlled private * *..x.x(..)) ||
set (@\ccessControlled private * *..*) ||
get (@\ccessControlled private * *..x)) :
"Private nmethods and fields should not be annotated as points
requiring authorization";

decl are error :
decl areError Scope() &&
(execution(@\ccessControlled private * *..*x.x(..)) ||
set (@\ccessControlled private * *..x) ||
get (@\ccessControlled private * x..x))
"Private nmethods and fields should not be annotated as points
requiring authorization";

This aspect has a particular capability, related to theipititg of choosing between compile time warnings and
errors, by simply setting theecl ar eWar ni ngScope() pointcut. Notice thelecl ar eEr r or Scope() is final and
defined as being the opposite of the warning declarations Waiy, all messages not specified as being shown as
warnings will be shown as errors. By default, it uses a comynogsed pointcut from a pointcuts library we have
created:

public final pointcut all() : !none();
public final pointcut none();

The previous definitions are quite powerful, becawsee() will not capture anything. Howeves) | () will be
defined as being its opposite, thus capturing everythirg els

However, we could set scopes (packages and classes) whaveulat like warning messages to be shown, and
others where we would prefer errors. For example:

public pointcut decl areWarni ngScope() : wthin(pt.iscte.ci.foo+);

The previous would make the compiler show warning messagesath private attribute or method annotated as
being access controlled in any class in the packagé sct e. ci . f oo and all its subpackages. Every other private
resources in different package classes would cause theilesimghow error messages.

22

Chapter 5

Conclusions

A new AO authorization package A&, has been proposed which leverages Aspect] to make iblpassadd au-
thorization concerns to existing applications in a simplen-invasive way. The model used is both independent of
the authentication mechanism used, and of the specific waygiggons are attached to principals. Hence, while
supporting RBAC, as is not strictly speaking RBAC-based.

Even though in its early stages of developmeriis ias shown the potential of AO approaches to authoriza-
tion concerns, making them simpler to implement, suppard, @nfigure. as is also dynamic, allowing runtime
changes to the permission requirements associated wigsscoontrolled resources. The use asZwhich builds
on a previous proposal by Laddad [8], greatly reduces thdesay of authorization code and its entanglement
with business code. The use of Java 5 annotations led to alwheee Zas’ client code is not explicitly guiding
advice introduction [2], but augmenting the expressiverafsthe code by annotating it with authorization meta-
information that is then taken into account bfsZ aspects. If this is deemed unacceptable, or if it is irsjpds in
practice, then authorization concerns can be concentiatadingle module, thus freeing business code not only
from authorization-related codeit also from scattered meta-information.

Zas is, in certain cases, a good alternative to JAAS: it behawgch like JAAS, though with some important
limitations. For instance, unlike JAAS, it can not be useddad access control concerns to resources inside JDK
classes, since AspectJ does not allow ITDs to add annosatiiorode inside JDK'’s archivésHowever, Zs’ aim is
not to replace JAAS, sinceéd can be used together with JAAS-based authorizationmadpiure version, @s may
even leverage JAAS authorization services.

The Zas source code and related projects can be downloaded ftpsvigvn.ci.iscte.pt/zenida. Even thoughsZ
is still in its infancy, we plan to revise and improve it regily. Some possible next steps to the improvementas Z
are described next.

5.1 Further work

In the near future we intend to improvedg, especially taking into account the insight gained byses in a large
scale Java-based Web applicatién.

Nevertheless, some points requiring further research Almgady been identified. Should the basic concepts of
authorization be extended such that each domain objectsidered a principal, with its own set of permissions
and its own set of trust relationships with other objects? Vighthe connection between trust and the composition,
aggregation, and association relations? Should a digtinbe somehow drawn between query and modifier methods,
in the same way we need to distinguish sets and gets in th@tagebutes? How do contracts relate to authorization

LAn interesting extension point foréd would be the creation of an alternative to annotationg tesed in such situations.
2Namely FenixEDU® . Seeht t p: / / f eni x- ashes. i st. utl . pt/ Front Page/ .

23

and access control? What does this tell us regarding théorela¢tween the runtime permission requirements of a
method and the method it overrides?

24

Chapter 6

Acknowledgements

Special thanks to Professor Dulce Domingos for her impogaggestions and for trying to make sure we would not
miss the most important authorization references.

25

Bibliography

[1] Aspectd Team. The AspectJ project at Eclipse.org, [A@th, 2006]. http://www.eclipse.org/aspectj/.

[2] Curtis Clifton and Gary T. Leavens. Spectators and tamsis: Enabling modular aspect-oriented reasoning.
Technical Report 02-10, lowa State University, Departnodéi@omputer Science, October 2002.

[3] Michael Cot. JAAS book: Java authentication and authorization. @aity written for publication by Man-
ning, http://www.jaasbook.com/, [April 16th, 2006].

[4] David F. Ferraiolo, D. Richard Kuhn, Ramaswamy Chandralm and John Barkley. Role Based Access
Control (RBAC), [8th March, 2006]. http://csrc.nist.gdvéc/.

[5] Robert E. Filman and Daniel P. Friedman. Aspect-oridmieogramming is quantification and obliviousness.
In Aspect-Oriented Software Development, chapter 2, pages 21-35. Addison-Wesley, Boston, Massattsu
2005.

[6] Stefan Hanenberg, Rainer Unland, and Arno SchmidmeispectJ idioms for aspect-oriented software con-
struction. InProceedings of the 8th European Conference on Pattern Languages of Programs (EuroPLoP’ 03),
Irsee, Germany, June 2003.

[7] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Me#irAksit. Detecting and resolving ambiguities
caused by inter-dependent introductionsPtoceedings of the 5th Inter national Conference on Aspect-Oriented
Software Development, Bonn, Germany, March 2006.

[8] Ramnivas LaddadAspect] in Action. Manning, Greenwich, Connecticut, 2003.

[9] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, andRnd Schemers. User authentication and autho-
rization in the Javlplatfom. InProceedings of the 15th Annual Computer Security Applications Conference,
Phoenix, Arizona, December 1999.

[10] Russell Miles.Aspect] Cookbook. O'Reilly, Boston, Massachusetts, 1st edition, Januafb20

[11] Dana Nourie and Mike McCloskey. Regular expressiors thie Java programming language, 2001 [2002].
http://java.sun.com/developer/technicalArticlegeses/1.4regex/.

[12] Scott Oaks.Java Security. O'Reilly, 2nd edition, 2005.
[13] Elgin A. Recebli. Pure aspects. Master’s thesis, drsity of Oxford, Computing Laboratory, August 2005.

[14] Vipin Samar and Charlie Lai. Making login services ipdadent of authentication technologiesPhaceedings
of the SunSoft Developer’s Conference, 1996. http://java.sun.com/security/jaas/doc/pam.htm

[15] Ravi Sandhu, Edward J. Coyne, Hal L. Feinstein, and [@kd&. Youman. Role-based access control models.
|EEE Computer, 29(2):38-47, 1996.

26

[16] Sun Microsystems, Inc. Java technology: Glossaryy March, 2006]. http://java.sun.com/docs/glossary.html

[17] Sun Microsystems, Inc. Java 2 platform SE 5.0 API: Pattdass, [April 16th, 2006]. http://java.sun.com/-
j2se/1.5.0/docs/apil/javalutil/regex/Pattern.html.

[18] Sun Microsystems, Inc. Java technology: Security ahd tlava platform, [April 16th, 2006].
http://java.sun.com/security/.

[19] Joseph Yoder and Jason Barcalow. Architectural patésr enabling application security. RLoP’97, Pro-
ceedings of the 4th Conference on Patterns Language of Programming, 1997.

27

