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Abstract. Human activity recognition has become one of the most active re-
search topics in image processing and pattern recognition. Manual analysis of
video is labour intensive, fatiguing, and error prone. Solving the problem of rec-
ognizing human activities from video can lead to improvements in several appli-
cation fields like surveillance systems, human computer interfaces, sports video
analysis, digital shopping assistants, video retrieval, gaming and health-care. This
paper aims to recognize an action performed in a sequence of continuous actions
recorded with a Kinect sensor based on the information about the position of
the main skeleton joints. The typical approach is to use manually labeled data to
perform supervised training. In this paper we propose a method to perform auto-
matic temporal segmentation in order to separate the sequence in a set of actions.
By measuring the amount of movement that occurs in each joint of the skele-
ton we are able to find temporal segments that represent the singular actions. We
also proposed an automatic labeling method of human actions using a clustering
algorithm on a subset of the available features.

Keywords: Human motion analysis, Motion-based recognition, Action recognition,
Temporal segmentation, Clustering, K-means, Labeling, Kinect, Joints, Video se-
quences

1 Introduction

Human activity recognition is a classification problem in which events performed by
humans are automatically recognized. Detecting specific activities in a live feed or
searching in video archives still relies almost completely on human resources. Detecting
multiple activities in real-time video feeds is currently performed by assigning multi-
ple analysts to simultaneously watch the same video stream. Manual analysis of video
is labour intensive, fatiguing, and error prone. Solving the problem of recognizing hu-
man activities from video can lead to improvements in several application fields like
surveillance systems, human computer interfaces, sports video analysis, digital shop-
ping assistants, video retrieval, gaming and health-care [15, 13, 8, 10]. Ultimately, we



are interested in recognizing high-level human activities and interactions between hu-
mans and objects. The main sub-tasks of this recognition are Usually achieved using
manually labeled data to train classifiers to recognize a set of human activities. An
interesting question is how far can we take the automatic labeling of human actions
using unsupervised learning? From our experiments we have found that this labeling is
possible, but still with a large margin for improvement.

2 Related Work

Human activity recognition is a classification problem in which events performed by hu-
mans are automatically recognized by a computer program. Some of the earliest work
on extracting useful information through video analysis was performed by O’Rourke
and Badler [9] in which images were fitted to an explicit constraint model of human
motion, with constraints on human joint motion, and constraints based on the imaging
process. Also Rashid [16] did some work on understanding the motion of 2D points in
which he was able to infer 3D position. Driven by application demands, this field has
seen a relevant growth in the past decade. This research has been applied in surveil-
lance systems, human computer interfaces, video retrieval, gaming and quality-of-life
devices for the elderly. Initially the main focus was recognizing simple human actions
such as walking and running [4]. Now that that problem is well explored, researchers
are moving towards recognition of complex realistic human activities involving multiple
persons and objects. In a recent review written by [1] an approach-based taxonomy was
chosen to categorize the activity recognition methodologies which were divided into
two categories. Single-layered approaches [2, 20, 18] typically represent and recognize
human activities directly based on sequences of images and are suited for the recog-
nition of gestures and actions with sequential characteristics. Hierarchical approaches
represent high-level human activities that are composed of other simpler activities [1].
Hierarchical approaches can be seen as statistical, syntactic and description-based [3, 6,
8, 14, 17, 21].

The previous approaches all used computer vision (CV) techniques to extract mean-
ingful features from the data. Motion capture data (MOCAP) has also been used in
this field, a relevant approach found was [22] where they pose the problem of learning
motion primitives (actions) as a temporal clustering one, and derive an unsupervised
hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA).
HACA finds a partition of a given multidimensional time series into m disjoint seg-
ments such that each segment belongs to one of k clusters representing an action. They
were able to achieve competitive detection performances (77%) for human actions in a
completely unsupervised fashion. Using MOCAP data has several advantages mainly
the accuracy of the extracted features but the cost of the sensor and the required setup
to obtain the data is often prohibitive.

With the cost in mind Microsoft released a sensor called Kinect which captures
RGB-D data and is also capable of providing joint level information in a non-invasive
way allowing the developers to abstract away from CV techniques. Using Kinect [11]
the authors consider the problem of extracting a descriptive labeling of the sequence of
sub-activities being performed by a human, and more importantly, of their interactions



with the objects in the form of associated affordances. Given a RGB-D video, they
jointly model the human activities and object affordances as a Markov random field
where the nodes represent objects and sub-activities, and the edges represent the rela-
tionships between object affordances, their relations with sub-activities, and their evo-
lution over time. The learning problem is formulated using a structural support vector
machine (SSVM) approach, where labelings over various alternate temporal segmenta-
tions are considered as latent variables. The method was tested on a dataset comprising
120 activity videos collected from 4 subjects, and obtained an accuracy of 79.4% for
affordance, 63.4% for sub-activity and 75.0% for high-level activity labeling.

In [7] the covariance matrix for skeleton joint locations over time is used as a
discriminative descriptor for a sequence of actions. To encode the relationship be-
tween joint movement and time, multiple covariance matrices are deployed over sub-
sequences in a hierarchical fashion. The descriptor has a fixed length that is indepen-
dent from the length of the described sequence. Their experiments show that using the
covariance descriptor with an off-the-shelf classification algorithm one can obtain an
accuracy of 90.53% in action recognition on multiple datasets.

In a parallel work [5] authors propose a descriptor for 2D trajectories: Histogram
of Oriented Displacements (HOD). Each displacement in the trajectory votes with its
length in a histogram of orientation angles. 3D trajectories are described by the HOD
of their three projections. HOD is used to describe the 3D trajectories of body joints
to recognize human actions. The descriptor is fixed-length, scale-invariant and speed-
invariant. Experiments on several datasets show that this approach can achieve a classi-
fication accuracy of 91.26%.

Recently [12] developed a system called Kintense which is a real-time system for
detecting aggressive actions from streaming 3D skeleton joint coordinates obtained
from Kinect sensors. Kintense uses a combination of: (1) an array of supervised learn-
ers to recognize a predefined set of aggressive actions, (2) an unsupervised learner to
discover new aggressive actions or refine existing actions, and (3) human feedback to
reduce false alarms and to label potential aggressive actions. The system is 11% - 16%
more accurate and 10% - 54% more robust to changes in distance, body orientation,
speed, and subject, when compared to standard techniques such as dynamic time warp-
ing (DTW) and posture based gesture recognizers. In two multi-person households it
achieves up to 90% accuracy in action detection.

3 Temporal Segmentation

This research is framed in the context of a doctoral program where the final objective is
to predict the next most likely action that will occur in a sequence of actions. In order
to solve this problem we divided it in two parts, recognition and prediction. This paper
will only refer to the recognition problem. Human activity can be categorized into four
different levels: gestures, actions, interactions and group activities. We are interested in
the actions and interactions category.

An initial research was conducted to analyze several datasets from different sources
like LIRIS (Laboratoire d’InfoRmatique en Image et Systèmes d’information) dataset



[19], CMU (Carnegie Mellon University) MoCap dataset5, MSR-Action3D and MSR-
DailyActivity3D dataset [13] and verify it’s suitability to our problem. All these datasets
contain only isolated actions, and for our task we require sequences of actions. We saw
this as an opportunity to create a new dataset that contains sequences of actions.

Fig. 1: Example of a sequence of actions in the dataset

We used Kinect to record the dataset which contains 8 aggressive actions like punch-
ing and kicking, 6 distinct sequences (each sequence contains 5 actions). Recorded 12
subjects, each subject performed 6 sequences. Total of 72 sequences, 360 actions. An
example of a recorded sequence is illustrated on Figure 1. Kinect captures data at 30
frames per second. The data is recorded in .xed files which contains RBG, depth and
skeleton information, and also a light version in .csv format containing only the skeleton
data. We expect to make the dataset available to public in a near future on a dedicated
website.

Fig. 2: Absolute speed of the right ankle while performing actions and regions of interest
found

Since our dataset contains sequences of actions our very first task was to automat-
ically decompose the sequence in temporal segments where each segment represents
an isolated action. We went for a very simple approach. From visual observation we’ve

5 http://mocap.cs.cmu.edu/



noticed that during each action there were joints that moved more than others. If we
could measure that movement and compare it with other joints we could be able to
tell which joint is predominant in a certain action and then assign a temporal segment
to a joint. Figure 2 shows a timeline which represents the movement of the right an-
kle. It is perfectly visible that there are two regions where that joint has a significant
higher absolute speed. These two regions represent moments in time where an action
was performed that involved mainly the right leg.

Our first step was to create these regions which we called regions of interest. This
was achieved by selecting frames in which the absolute speed value was above the
standard deviation multiplied by a factor of two. Then we selected all the neighboring
frames that were above the average value with a tolerance of 3 frames below of the
average. This data was collected for four different joints: right and left ankle, right and
left wrist. Then we searched for overlapping regions. While the user performs a kick the
rest of his body moves, specially the hands to maintain the body’s balance. Overlapping
regions were removed by considering only the joint moving at a higher average speed
in each frame. Figure 3 illustrates an example result of our automatic segmentation
method. Each color of the plot represents a temporal segment to which we assigned
a joint as being the dominant joint for that action. We obtained 5 temporal segments
which successfully correspond to the number of actions that the sequence contains, in
this case: right-punch; left-punch; front-right-kick; front-left-kick; side-right-kick.

Fig. 3: Visual representation of our action segmentation method

Table 1 shows that the automatic segmentation can be improved. These results re-
flect the measurements between the frames of the annotated data and the frames of our
automatic temporal segments. Overall the segmentation is satisfactory and we believe
that the segments have the most important part of the actions. This method might be
revisited in the future to improve the overall performance of our system.

Table 1: Automatic temporal segmentation per sequence
Sequence 1 2 3 4 5 6 Average

Segmentation Accuracy 94,23% 89,66% 73,55% 89,44% 76,31% 75,03% 83,04%



4 Action Labeling

In most cases, as seen in [12], action labeling is achieved by manually labeling the
segments obtained by the segmentation algorithm and then use that data to train one
classifier per action. Those classifiers would then be used in an application capable of
recognizing actions in real-time. Instead we thought that it would be more interesting if
we could automatically label equal actions performed by different subjects. For example
a right-punch performed by subject 1 should be very similar to a right-punch performed
by subject 2. This process is composed of the following stages:

1: Automatically find temporal segments that represent the actions of the sequence
2: Sample the dataset based on the previously found temporal segments
3: Extract meaningful features for each segment
4: Use clustering to automatically group similar actions and thus label them

4.1 Sampling

To sample the data for the clustering algorithm the program automatically selects the
automatically found temporal segments which ideally should be 5 per sequence, which
corresponds to the number of actions that compose the sequence. The most active joint
is assigned to that segment. Based on the window-frame of the segment found for a
specific joint we create new temporal segments for the remaining joints on the same
exact window-frame. This can be portrayed has stacking the joints timeline one on
top of another and making vertical slices to extract samples of data that correspond to
temporal segments where an action has occurred.

4.2 Feature Extraction

An action can be seen as a sequence of poses over time. Each pose respects certain
relative positions and orientation of joints of the skeleton. Based on the positions and
orientations of the joints we extracted several features that will be used to model the
movements performed by the subjects. We have experimented with several features
(speed; absolute speed; speed per axis; joint flexion in angles; bone orientation). After
a comparison of these different approaches (to be published) we selected the angles
of the elbows and the knees a1,a2,a3,a4 and the relative position of the wrists and
ankles s1,s2,s3,s4 (Figure 4) and used these to calculate other features like relative
speed of each joint. Different subsets of these features combined will constitute the
feature vectors that will be used by the clustering algorithm.

4.3 Clustering Experiments

As previously mentioned, the objective is to cluster similar actions performed by differ-
ent subjects (or by the same subject in different recordings). For that purpose we will
use k-means which is one of the simplest unsupervised learning algorithms. We made
several experiments with different combinations of features.



Fig. 4: Visual representation of body relative features used

Table 2: Clustering results for Sequence 1 using average speed as a feature
Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Right punch 8,33% 91,67% 0,0% 0,0% 0,0%
Left punch 0,0% 0,0% 0,0% 100,0% 0,0%
Front right kick 91,67% 0,0% 8,33% 0,0% 0,0%
Side right kick 33,33% 0,0% 66,67% 0,0% 0,0%
Side left kick 8,33% 8,33% 0,0% 0,0% 83,33%

Our initial experiments using simply the average speed of each joint over the whole
segment as a feature. Results of this experiment are shown in Table 2. Clustering all the
segments of the same sequence of actions being performed by different subjects brought
interesting results. All the actions were correctly labeled except for the side-right-kick.
As shown in the table this action was classified as a front-right-kick 33,33% of the time.
These two actions are similar and originate from the same body part. These results lead
us to believe that maybe more features could help distinguish these movements more
clearly. Table 3 shows the results of clustering using also the angles of the knees and
the elbows. Surprisingly the results are worst. The right-punch and the left-punch even
when they are from different arms are labeled with the same cluster-label, the same
happened to the front-right-kick and the side-right-kick.

Table 3: Clustering results for Sequence 1 using average speed and angles of the knees
and elbows as a feature

Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Right punch 0,0% 0,0% 0,0% 100,0% 0,0%
Left punch 0,0% 0,0% 0,0% 100,0% 0,0%
Front right kick 100,0% 0,0% 0,0% 0,0% 0,0%
Side right kick 100,0% 0,0% 0,0% 0,0% 0,0%
Side left kick 0,0% 16,67% 50,0% 0,0% 33,33%



This can be explained by the angle features becoming more relevant than the speed
features. Given that angles are less discriminative of these movements, this results in
more miss-classifications. When considering the amplitude of the movements of the
lower body members the differences between a right-punch and a left-punch become
minor. To prove this a simple experiment was performed using only the temporal seg-
ments originated by an action from the upper part of the body. Table 4 shows that using
only the upper body k-means is perfectly capable of distinguishing the actions of the
right arm from the actions of the left arm using the same features as in Table 3.

Table 5 shows the results using only the angles of the knees and elbows as features.
In this case the kicking actions are diluted amongst several clusters. So using only the
angles as features has proven insufficient to correctly label the actions.

Table 4: Clustering results for all the sequences using only upper body actions
Action Cluster 1 Cluster 2

Right punch 2,08% 97,92%
Left punch 91,67% 8,33%
Back fist 2,08% 97,92%
Elbow strike 16,67% 83,33%

Table 5: Clustering results for Sequence 1 using angles as a feature
Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Right punch 0,0% 0,0% 0,0% 75,0% 25,0%
Left punch 0,0% 0,0% 0,0% 0,0% 100,0%
Front right kick 50,0% 0,0% 25,0% 0,0% 25,0%
Side right kick 58,33% 0,0% 41,67% 0,0% 0,0%
Side left kick 0,0% 25,0% 50,0% 0,0% 25,0%

Since a single value (average) is used to represent a temporal segment a loss in the
granularity of information might be a problem. In the following experiments temporal
segments were divided in equal parts to increase the feature vector, but the results were
30 to 40% lower. This can be explained in figure 5 where we show a comparison be-
tween the same movement performed by two different subjects. The curves are similar
but they start at different frames, which if we divide the temporal segment in four parts,
for subject 10 the first two parts will have a higher value and for subject 1 the last two
will have a higher value. For this reason these two actions would probably be assigned
different clusters. Overall the results are very similar to all the other sequences that we
have in our dataset (total of 8). Due to space limitations we were unable to include the
clustering results for each sequence. Our final experiment (Table 6) was to see how well
k-means coped with all the sequences at the same time using only the average speed as



Fig. 5: Temporal segment of a right punch performed by subject 1 and subject 10

a feature since it was the feature that proved to have the best results. Again there is a
clear separation from actions from the right and left side of the body. As for actions that
are from the same part of the body there is room for improvement.

Table 6: Clustering results for all the sequences using speed as a feature
Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Right punch 2,08% 4,17% 0,0% 2,08% 0,0% 2,08% 75,0% 14,58%
Left punch 0,0% 0,0% 2,78% 0,0% 88,89% 2,78% 2,78% 2,78%
Front right kick 0,0% 0,0% 93,75% 0,0% 0,0% 4,17% 0,0% 2,08%
Side right kick 5,00% 0,0% 50,00% 0,0% 0,0% 45,00% 0,0% 0,0%
Front left kick 5,56% 0,0% 2,78% 86,11% 0,0% 0,0% 0,0% 5,56%
Side left kick 36,11% 0,0% 0,0% 38,89% 1,39% 2,78% 2,78% 18,06%
Back fist 0,0% 52,08% 0,0% 0,0% 2,08% 0,0% 45,83% 0,0%
Elbow strike 8,33% 16,67% 0,0% 0,0% 25,0% 0,0% 33,33% 16,67%

5 Conclusion

In this paper, we described a new dataset of sequences of actions recorded with Kinect,
which is, to the best of our knowledge, the first to contain whole sequences. We pro-
posed a method to achieve automatic temporal segmentation of a sequence of actions
trough a simple filtering approach. We also proposed and evaluated an automatic la-
beling method of human actions using a clustering algorithm. In summary, our results
show that, for the type of actions used, k-means is capable of grouping identical actions
performed by different users. This is evident when the clustering is performed with all
of the subjects performing the same sequence of actions. When all the sequences are
used the accuracy decreases. This might be explained by the effect that the neighbor-
ing actions have on the current action. So for different neighboring actions, the same
current action will have a different start and ending.



By using several features (absolute speed, absolute 3D speed, joint angle) we also
show that the choice of features affects greatly the performance of k-means. The poor
results achieved when using the angles of the knees and elbows, appear to be related
to how the flexion angles are calculated using the law of cosines. In our next experi-
ment Euler angles will be used which represent a sequence of three elemental rotations
(rotation about X,Y,Z). We also think that we could improve the results if we applied
dynamic time warping to the temporal segments. This technique is often used to cope
with the different speed with which the subjects perform the actions.

Our study showed how clustering and filtering techniques can be combined to
achieve unsupervised labeling of human actions recorded by a camera with a depth
sensor which tracks skeleton key-points.
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