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INTRODUCTION 

Rigid Origami folding surfaces have very interesting qualities for Architecture and Engi-

neering for their geometric, structural and elastic qualities. The ability to turn a flat element, 

isotropic, without any structural capacity, into a self-supporting element through folds in the 

material opens the door to a multitude of uses. Besides that the intrinsic geometry of the 

crease pattern may allow the surface to assume doubly curved forms while the flat ele-

ment, before the folding, could never do it without the deformation of the material. 

(Schenk, 2011) (Demaine, 2011) 

The main objective of this PhD research is to reach a workflow from the definition of the 

geometry of the flat foldable surfaces to their implementation on a construction site. This 

paper will address mainly the steps taken to the parameterization of the Rigid Origami ge-

ometries. We intend to establish a method to simulate the folding of regular crease pat-

terns (tessellations) by understanding the geometric operations on the smallest set of 

faces (local) that can be reproduced to simulate the whole group (global). 

 

RESEARCH 

The use of digital parametric tools allows us to try and test all the solutions we want in or-

der to choose the most appropriate for a particular building site or function and to optimize 

the chosen solution before its construction. 

In this sense we are developing a system in Rhinoceros and Grasshopper, for the folding 

simulation of any regular Rigid Origami pattern. 
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In this system our goal is that from the crease pattern design and the definition of the 

mountain and valley folds the system could simulate the entire range of forms that a given 

pattern can produce from the plan state to the completely folded state. 

There is already a very extensive work on this matter, especially from authors like Robert 

Lang, that uses spherical trigonometry for the simulation, Tomohiro Tachi that uses the 

angles between edges and between faces as variables, Ron Resch and Christiansen who 

use a combination of analysis and elastic constraints between the connections and truss 

elements and also Casale and Valenti that use Rhinoceros and Grasshopper to simulate 

the folding of different crease patterns each one with a different approach. 

Our method is more similar to the one used by Casale and Valenti, but they create their 

definitions to fold the entire crease pattern at once and we define the local rules for the 

folding of the minimal possible module of the regular tessellation and then reproduce that 

module with vectorial copies allowing to extend the crease pattern as far as we want. 

Our method comprises 3 steps: 

1 – Analysis of the regular tessellation in order to define the base faces 

2- Simulate the folding of the base faces from the unfolded state to the completely folded 

state 

3 – Generate the complete tessellation through vectorial copies of the base faces 

 

On our definitions we always assume we have one point or crease that does not change 

during the folding. This element behaves has the attachment to the XYZ referential, is the 

centre of all the transformations. 

In this paper we will explain two examples of our folding simulations. These examples are 

the Miura pattern that folds on the plane and Yoshimura pattern that starts from a planar 

form and folds into a cylinder. 

 

MIURA PATTERN 

In this pattern we can observe that all the pattern can be described by two simple transla-

tions in the horizontal and vertical direction of the base faces. The base faces are com-

posed by four quadrilaterals also with a symmetry relation between them.  
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Figure 1. Miura-Ori Pattern, base faces and vectors of translation 

 

 

Figure 2. Base faces of Miura Pattern and vertices 

 

First we define the points A, B and D on Grasshopper, all are on the first quadrant so we 

can simplify the XYZ coordinates. The point E is defined by the translation of the line AD to 

the point B. The vertices of the line AD and the translated line define the face ADEB. 

The face ADEB rotates from 0º to 90º around the axis AD, this will be our fixed geometry, 

the reference to the movement of the whole surface. 

Using the rotated face ADEB we define the face BEFC by moving again the AD line to the 

point J on the XY plane. This point is defined by the intersection of a circle that has is cen-

tre on the BE crease, is perpendicular to it and passes on the point D. 
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This way we define the CF line, and consequently the face BEFC. 

To define the faces DGHE and EHIF we simply use the mirror operation with the plane 

defined by the 3 points D, E and F. 

To define the complete surface we use a rectangular array were the array cell is a quadri-

lateral defined by the points A, C, F and D. By defining the cell with these points we can 

guarantee that the cell adapts constantly to their movement, therefore creates a closed 

geometry with any number of columns and lines  

 

Figure 3. Miura surface, 3 folding states 

 

YOSHIMURA PATTERN 

In this pattern we chose a group of eight faces to be the base faces. These are not really 

the base of the pattern when we think of it in 2D, but we decided to choose these because 

this is a pattern that folds into a cylinder, so by choosing these triangle faces we can set 

the initial curvature when parameterizing the folding. This way it is easier to define the 

translation vectors and the assembly of the different units. 

 

 

Figure 4. Yoshimura Pattern, base faces and vectors of translation 
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Figure 5. Base faces of Yoshimura Pattern and vertices 

 

The folding starts when the creases AG and AF rotate in the vertical plane defined by them 

with centre on the point A. At the same time the arcs (red in Figure 5) follow the folding of 

lines AG and AF. The arc on the left defines the path where the points B and E can exist, 

the arc on the right defines the path for the points C and D. 

The total possible movement of each point during the folding is remapped from 0 to 1 no 

matter what is the length of the curve where they can exist. This way all the points go from 

the unfolded to the completely folded state in the same amount of time. 

After all the faces are set the copies are made first in a linear way according to the vector 

BE. Secondly we take this set and copy it according to a vector that starts in the centre of 

the circle defined by F, A and G and tip the point F and that transforms itself into a vector 

with the same start point but with endpoint G. 

This system only starts to work when the folding is bigger than 0. 
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Figure 6. Translation vectors 

 

Figure 7. Yoshimura surface, 3 folding states 

 

CONCLUSIONS 

This paper aims to add some structured knowledge to digital design in a specific type of 

form, folded surfaces. Although there are several works about Grasshopper definitions on 

folded surfaces these are mainly disseminated through open source channels and ex-

plained roughly or not at all. Instead of being a tutorial for specific patterns this paper ex-

plains a method to think about Origami Geometry, to understand the transformations that 

happen to the faces while folding and to replicate them in order to generate a surface. 
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