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Abstract—We use an information-theoretic criterion to assess
the goodness-of-fit of the output of archetypal analysis (AA),
also intended as a fuzzy clustering tool. It is an adaptation of
an existing AIC-like measure to the specifics of AA. We test its
effectiveness using artificial data and some data sets arising from
real life problems. In most cases, the results achieved are similar
to those provided by an external similarity index. The average
reconstruction accuracy is about 93%.

I. INTRODUCTION

The application of a matrix factorization approach to fuzzy
clustering dates back to at least 1974. Woodbury and Clive
devise in [23] a method to estimate fuzzy partitions underlying
multivariate categorical data. It is called grade of membership
model, and focuses especially on clinical data for diagnostic
and prognostic purposes. Independently, Mirkin and Satarov
[14] propose an extension of this model to real-valued data,
assuming the data as convex linear combinations of a set of
c ≥ 2 prototypes. In the same vein, Cutler and Breiman [4]
present their archetypal analysis (AA), which has received
some popularity and following in the literature. The subject has
recently attracted researchers’ attention. The work by Ding,
Li, and Jordan [5] is an example of how to fit crisp k-means
cluster analysis into the framework of matrix factorization;
or the factorized fuzzy c-mean algorithm [18], which provides
an alternative way to performing the traditional fuzzy c-means
(FCM) [1] clustering.

The matrix factorization approach to fuzzy clustering can
be explored from different perspectives. This study focuses
on the validation problem, particularly that of archetypal
analysis. Indeed, one of the key issues of AA is the lack of
credible measures to verify its validity; this is actually an on-
going topic of research [15]. The present work is an attempt
to answer the following question: how can we assess the
goodness-of-fit of a fuzzy c-partition, c = 2, 3, ..., determined
by an AA? We aim to examine the effectiveness of an AA as
a fuzzy clustering tool, in addition to its ability to reconstruct
the original data set. To the best of our knowledge, strategies
to select the number of prototypes, i.e. c, have to date been
based mostly on visual inspection. Scree plot-like or elbow
criteria exploring the monotonic nature of either an objective
function [7], or of some measure of the variation explained by
different models [4], [15], are examples of validation methods
we find in the literature. Our proposal is analytical, and relies
on information-theoretic principles. It is an adaptation of an
AIC-like measure, proposed in [19], to the specifics of AA.

We evaluate its effectiveness using artificial data and also
some data sets arising from real life problems. The numerical
results attest its reliability in both dimensions of interest:
clustering and reconstruction of the source data.

This paper is organized as follows. In Section II, we briefly
describe the matrix factorization approach to fuzzy clustering
and then highlight the way archetypal analysis positions itself
in this context. Section III is devoted to theoretical aspects of
our validity measure for AA. Some results of its numerical
assessment are presented in Section IV; finally, Section V
concludes.

II. ARCHETYPAL ANALYSIS

Let X = [xjk] ∈ Rn×N be an n×N sample real data matrix,
where n ≥ 2 is the dimension of the feature space, and N > n
is the sample size. We denote the kth data point by the column
vector xk. Consider two matrices, V = [vji] ∈ Rn×c, c ≥ 2,
and U = [µik] ∈ [0, 1]

c×N , such that
∑c

i=1 µik = 1, 1 ≤ k ≤
N , and 0 <

∑N
k=1 µik < N , 1 ≤ i ≤ c; and let P = [pjk] be

equal to their product

P = VU. (1)

This matrix configures a polytope with c extreme points,
spanned by the c columns of V, namely v1, v2, ..., and vc;
denote it Π(c)

V . We assume the data are drawn from Π
(c)
V , and

read with small errors, i.e,

X = P+E ≡ VU+E, (2)

where E is the matrix that accounts for the measurement
errors. This is known as a matrix factorization approach to
data analysis and here, in particular, it means X is modeled
or structured by a fuzzy c-partition. Therefore, we refer to
the columns of V as prototypes and, in this context, each
entry of the partition matrix U, i.e. the membership degree
µik, additionally expresses the proportion of vi present in xk

[16]. Hence, every data point xk is in the convex hull of c
prototypes, apart from an error:

xk =
c∑

i=1

µikvi + εk. (3)

The first question is how to estimate U and V from the
observed data X.



Given a pre-specified value of c, the matrices U and V are
often estimated by the minimization of the objective function1

Jc ≡ Jc (U,V|X) = ∥X−VU∥2F , (4)

subject to the constraints on µik referred to above. The symbol
∥A∥F denotes the Frobenius norm of the matrix A. The
objective function Jc (4) is separately convex in U and V, but
not in the product VU. Therefore, no practical computational
method for solving the problem should be expected anytime
soon. On the other hand, given V, the optimization problem is
reduced to N independent constrained least squares problems.
As a result, a flat common solver can be used to minimize
Jc (U|V,X), regardless of the way the matrix of prototypes
V is obtained. Here, for example, we adopt an alternating
optimization scheme for estimation purposes; it is also a valid
option when the computational tool allows parallelization [11],
as in this case. The total number of parameters involved in the
estimation of U is

Kµ = N × (c− 1) . (5)

The subsequent second question is how to estimate V,
given U. Before addressing this question, we need to know
whether there is any constraint in the definition of a prototype.
According to the AA approach, the prototypes, now called
archetypes, are convex combinations of the observed data
points,

vi =

N∑
k=1

βkixk, i = 1, 2, ..., c, (6)

where 0 ≤ βki ≤ 1 and
∑N

k=1 βki = 1. Given c, the total
number of free β parameters is then

Kβ = c× (N − 1) . (7)

Gathering them all in an N × c matrix B = [βki], allows us
to write (6) in a matrix form, as follows

V = XB. (8)

Hence, in the context of an AA, the estimation of V converts
into the estimation of the matrix B. In this study, we estimate
this matrix using the algorithm proposed by Ding et al.
in [5]; alternative approaches are found elsewhere (e.g. [4],
[20]). Specifically, the β parameters are estimated using the
following update rule [5]:

βki ← βki

√√√√√
[
(XTX)

+
UT

]
ki
+
[
(XTX)

−
BUUT

]
ki[

(XTX)
−
UT

]
ki
+
[
(XTX)

+
BUUT

]
ki

,

where AT means the transpose of the matrix A, and (A)
±
=

(abs (A)±A) /2. The estimation process alternates between
updates of U and V, until convergence. The V matrix is
updated using (8). Interested readers may find a brief review
of alternative approaches to the estimation of V in [18].

1Two alternative objective functions are provided in [22]

III. VALIDITY MEASURE

The original version of our proposal is given in [19], where
the reconstruction ability of the Bezdek [1] fuzzy c-means
(FCM) algorithm is tested. We do not present its functional
formula here, for reasons that soon will become clear. In this
study, we adapt it to the specificity of an AA, as follows.

Motivated by the regression-like model adopted for the
observed data (3), we start from the loss function used to
select regressors in multiple regression analysis [21]:

ln
(
σ̂2

)
+

cpx

N
, (9)

where σ̂2 is an estimate of the residual variance σ2, and cpx
is a nonnegative variable accounting for the complexity of a
given model. For example, in Akaike’s information criterion
(AIC), the value of cpx is twice the number of the estimated
parameters. Following [19], we use the quantity

δ2 =
1

n×N

∥∥∥X− P̂
∥∥∥2
F

, (10)

to account for the residual variance; here, P̂ is an estimate of
P given in (1), so that δ2 is the objective function (4) related
to n×N .

It has been noted in the literature that, in cluster analysis,
the AIC approach to cpx in (9) tends to favor data partitions
with fewer clusters, and may potentially lead to poor clustering
[12]; this is also observed by Suleman in [19]. This effect
might be connected to the number of parameters of a fuzzy
c-partition, which increases with the sample size N and, thus,
potentially tends to infinity [10]. Therefore, the aforemen-
tioned author proposes to additionally balance the complexity
term in (9) using a measure of efficiency of the sought fuzzy
c-partition, to prevent the underestimation of the true value of
c. For this purpose, he considers the quantity

effic
(
P̂|X

)
= tr

(
ΣP̂ × Σ−1

X

)
, (11)

which proves effective in an FCM framework. In the ex-
pression (11), tr (A) is the trace of the matrix A; ΣX and
ΣP̂ are the covariance matrices of X and P̂, respectively.
Nevertheless, unlike [19], in (9) we adopt twice the quantity

npar

effic(P̂|X)
for cpx, i.e.

cpx = 2× npar

effic
(
P̂|X

) ,

which mimics the AIC and, in our experiments, provides better
results. In this expression, npar = Kµ + Kβ + 1 is the
total number of parameters involved in the estimation process:
Kµ is the number of membership degrees µik, as in (5); Kβ

accounts for the β parameters (7); and the extra one is for
δ2 (10); the function effic (.) is given in (11). Hence, the
final form of the validity measure we are using to assess the
goodness-of-fit of an AA outcome is this:

υAA (c) = ln
(
δ2
)
+ 2× (Kµ +Kβ + 1)

N × effic
(
P̂|X

) . (12)



We note, however, that in most real life applications, both
Kµ and Kβ ≫ 1, and N − 1 ≃ N ; therefore Kµ + Kβ +
1 ≃ N (2c− 1) and, consequently, one can use a simplified
approximate version of υAA (c),

υ̃AA (c) = ln
(
δ2
)
+ 2× 2c− 1

effic
(
P̂|X

) . (13)

In our numerical experiments, we make the same inferences
about the underlying data structure, whether using (12) or (13).
Hence, in practice, we can validate an AA using the latter
index, which looks a simpler option. In sum, given a collection
of competing fuzzy c-partitions of the same observed data
X, c = 2, 3, ..., the best partition is selected by solving
argminc υAA (c) or, alternatively, argminc υ̃AA (c).

We end this section stressing that the formula (12) differs
from the one proposed in [19] essentially in the second term
of its right hand side: here, we instead duplicate the quantity

npar

effic(P̂|X)
, and obtain better results.

IV. EMPIRICAL ANALYSIS

A. General procedure

The numerical computations are performed in MATLAB.
We use the lsqlin() function to estimate the membership
degrees µik, with the interior-point algorithm option [3],
and explore the potential of the parallel computing feature.
The maximum number of iterations is set to be 500, and
the maximum absolute difference between two consecutive
estimates of µik, i.e. the error term, is set as 0.01.

In all numerical experiments, we use data sets arranged
in c∗ ≥ 2 clusters with known class labels. The best fuzzy
c-partition is obtained by varying c from 2 to cmax =
max (8, 1.5× c∗), and eventually solving

copt = argmin
2≤c≤cmax

υAA (c) . (14)

At the same time as we compute υAA (c), we record the value
of the fuzzy generalization of the Dice index or criterion
proposed in [9], ΨDice (c), and let

cDice = argmax
2≤c≤cmax

ΨDice (c) (15)

be the optimal value of c, according to the Dice criterion. The
quantity ΨDice (cDice) is a reference metric. We also record
the Dice index value associated with the fuzzy copt-partition
(14), i.e. ΨDice (copt). This procedure is intended to see how
effective an AA is as a fuzzy clustering tool. It is implicit here
that an external index provides a more accurate evaluation of
the estimated fuzzy partitions, since it uses the information
of the cluster structure of the data. Recall that ΨDice ranges
between 0 and 1, and the higher the values of ΨDice, the closer
the estimated partition is to the partition being used as the
ground truth.

A FCM clustering is performed beforehand to provide for
a matrix of prototypes, for seeding purposes. The weighting
exponent parameter is set to 2. This algorithm has proved
helpful in solving the initialization problem in related matrix

factorization contexts [17], [24]. For alternative seeding me-
thods see, for example, [2], [5], [15].

We test our proposal using artificial data as well as data
sets arising from real life problems, and available in the
UCI Machine Repository [13]. Given the estimated fuzzy c-
partitions of X, 2 ≤ c ≤ cmax, we compute the following
statistics for decision purposes: υAA (12), υ̃AA (13), the Dice
index ΨDice (c), and ΨDice (copt); and, of course, keep track
of copt (14) and cDice (15).

B. Synthetic data sets
1) Test data generation: The artificial test data are drawn

from the polytope Π
(c∗)
V , c∗ = 2, 3, .., or 7, whose vertices

are located on the unit (hyper)sphere of Rn, centered at the
origin, for n = 2, 3, 4, or 5. When possible, i.e. for c∗ > n, we
generate the vertices of V matrix using polymake software [8],
and for c∗ ≤ n, we use our own software code. As a cross-
validation procedure, we verify the location of the columns
of V on the hypershepre, and confirm their extremality. The
latter procedure is merely an LP problem [6].

We consider four threshold levels, γ, for the membership
degree in underlying fuzzy clusters: γ = 0.95, 0.85, 0.75, or
0.65. For example, γ = 0.75 means the proportion of the
prototype vi in data point xk, i.e. µik, is at least 0.75. Each
fuzzy cluster is populated with Ni = 50 points; the sample
size is, therefore, N = 50× c∗. The membership degrees are
generated from the standard uniform distribution, giving rise
to the partition matrix U. This enables us to eventually build
the matrix P, as defined in (1). In the next step, we add
normal (0, σI) noise to P, to generate, i.e. simulate, the real
data matrix X, as in (2). Here, we consider three levels for
the noise, σ = 0.001, 0.01, or 0.05; I is the n × n identity
matrix. Our synthetic data sets can therefore be expressed as
X ≡ X (c∗, n, γ, σ). We focus particularly on the effect of the
space dimension, n, since, in practice, we have no control
over other parameters. Summing up, six cluster structures, four
dimensions, four threshold levels for µik and three noise levels,
amounts to Ncc = 6× 4× 4× 3 = 288 cluster contexts.

We generate 10 random samples or runs for each cluster
context, which total to 2880 artificial data sets. An eleventh
run provides a flat seed for the AA algorithm, for every case;
specifically, an initial guess of the matrix of prototypes V.
Then, the AA algorithm alternates between updates of U and
V, until convergence.

Besides the statistics referred to above, we also calculate
the relative error between the optimal value of υAA (12) and
υ̃AA (13), denoted here by η, as well as a measure for the
reconstruction accuracy of an AA, that is 1−R, where,

η =
|υ̃AA − υAA|
|υAA|

(16)

and

R =

∥∥∥P̂−P
∥∥∥
F

∥P∥F
. (17)

Here, P̂ = V̂Û is an estimate of P, and V̂ and Û are
the outputs of AA algorithm. We stress that P̂ is estimated



from noisy data matrix X, but has been compared in (17)
to noiseless data P. For inferential purposes, we employ the
average values based on a trial of 10 runs.

2) Experimental results: To evaluate the accuracy of an AA
as a fuzzy clustering tool, we begin by examining the distribu-
tion of the difference between ΨDice (cDice) and ΨDice (copt)
by means of box plots, in function of the space dimension, n
(Fig. 1). We can see at a glance that the AA behaves differently
in the cases n = 2 and n > 2. Even though it performs better
in the latter case, we find no severe outliers when n = 2. Table
I gives a numerical account of how far the partition unveiled by
the proposed measure of similarity υAA is from that provided
by the external index. For higher dimensions, the difference
between the two values is less than 0.05 in more than 84% of
cases. The rate is slightly lower for n = 3, and much lower
for 2D data sets.

Fig. 1. Box plots representing the distribution of the difference between
ΨDice (cDice) and ΨDice (copt), depending on the space dimension, n.

TABLE I
SIMILARITY BETWEEN ΨDice (cDice) AND ΨDice (copt) IN FUNCTION OF
SPACE DIMENSION n, FOR THREE LEVELS OF CLOSENESS; THE COLUMN

LABELED Overall INDISTINCTLY REFERS TO ALL OUTCOMES. THE
VALUES ARE IN PERCENTAGE.

n
Difference Overall 2 3 4 5

= 0 70.8 43.1 77.8 88.9 73.6
< 0.05 78.8 54.2 79.2 97.2 84.7
< 0.10 85.8 66.7 84.7 98.6 93.1

We further represent (Fig. 2) the distribution of Dice index
values associated with the fuzzy c-partitions determined by
υAA, i.e. ΨDice (copt). We notice a good clustering perfor-
mance of the AA, given that, for n > 2, the first quartile
and the median are higher than 0.7 and 0.8, respectively.
Hence, combining this result with the previous one (Fig. 1),
we see enough empirical evidence to support υAA as a credible
measure for assessing the goodness-of-fit of an AA, notably
for the data arranged in clusters and drawn from three- or
higher-dimensional space.

Fig. 2. Box plots representing the distribution of ΨDice (copt), in function
of space dimension, n.

Although a good clustering does not entail the condition
copt = c∗, we believe that a match between these two quanti-
ties is always appealing. In our experiments, it occurs in 63.5%
of cases, and in 31.6% of cases we find copt < c∗. When we
make the same comparison for cDice, we obtain 68.4% and
10.4%, respectively, which signals that our similarity measure
may be somewhat conservative.

Another aspect that deserves attention is understanding the
extent to which an AA allows the reconstruction of the original
data set. The histogram in Fig. 3 shows the distribution of
1 − R (17), regardless of the cluster context. The average
reconstruction accuracy is found to be fairly good: 0.93±0.05.
This becomes even better, e.g. ∼ 0.99, if we alternatively
measure the accuracy using 1−R2, as in [20]. Given this, one
can expect a negligible loss of information when replacing the
original data set X by the fuzzy c-partition determined by υAA
index.

Fig. 3. An empirical distribution of the reconstruction accuracy of AA. The
quantities Q1, Q2, and Q3 are the first, second (median) and third quartiles,
respectively; Ncc is the number of cluster contexts.

Now we give a brief account of how υ̃AA (13) differs
from υAA (12). The histogram of Fig. 4 shows an empirical



TABLE II
EVALUATION OF THE PERFORMANCE OF FUZZY cDice-PARTITION AND FUZZY copt-PARTITION BY MEANS OF ΨDice . HERE,

∆ = ΨDice (cDice)−ΨDice (copt).

Data set N n c∗ cDice copt ΨDice (cDice) ΨDice (copt) ∆
Banknote Authentication 1372 4 2 2 3 0.51 0.41 0.10
Forest Type Mapping 523 9 4 2 4 0.50 0.48 0.02
Glass Identification 214 9 6 2 2 0.46 0.46 0.00
Glass (Window / Non-W) 214 9 2 2 2 0.81 0.81 0.00
Hill-Valley 606 100 2 2 6 0.60 0.57 0.03
Iris 150 3 3 2 2 0.69 0.69 0.00
Seeds 210 7 3 3 3 0.63 0.63 0.00
Wisconsin BC 683 9 2 2 2 0.86 0.86 0.00

distribution of η (16), where it is clear that we can generally
expect that υ̃AA approximates υAA to two decimal digits. In
our experiments, no difference in data structure can be seen,
using either index.

Fig. 4. An empirical distribution of the relative difference between υAA
and υ̃AA, η, as given in (16). The quantities Q1, Q2, and Q3 are the first,
second (median) and third quartiles, respectively; Ncc is the number of cluster
contexts.

We end this account on the experimental results with
a curiosity: unlike most related research studies, here the
ground truth is itself a fuzzy partition, i.e. the class labels
are themselves fuzzy, meaning that µ∗

ik ∈ [0, 1] rather than
crisp, {0, 1}. Therefore, this context is appropriate for using
the generalized Dice index [9].

C. Real datasets

We select from the UCI Machine Repository [13] seve-
ral data sets devoted to the clustering task, and look how
differently our index υAA and the Dice index perform in
a more realistic setting. As before, we calculate the best
partition according to the Dice criterion, ΨDice (cDice), and the
corresponding value associated with the fuzzy copt-partition,
notably ΨDice (copt). The results obtained are displayed in
Table II; the absolute difference between these two quantities
are indicated in the last column, labeled ∆. In most cases,
both indices provide quite similar results. However, there are
two results that deserve particular attention: the υAA index

identifies the same number of clusters as expected theoretically
in the case of Forest Type Mapping data set, c∗ = 4, and,
on the contrary, sees an abnormal number of clusters in the
Hill-Valley data set (6 vis-á-vis 2). We note that for the data
set identified as Glass (Window / Non-W) in Table II, the
glasses are alternatively categorized into window and non-
window type, hence c∗ = 2.

V. CONCLUSION

We propose an analytical formula to address the issue
of assessing the goodness-of-fit of archetypal analysis (AA).
The proposed internal measure of similarity, υAA, relies on
information-theoretic principles, and takes into account the
specifics of fuzzy clustering, namely, that it involves unlimited
number of parameters. This leads us to balance the number of
parameters in the complexity term in (9) with a measure of
efficiency of a fuzzy c-partitions.

The results of comparing the output of υAA index to that
of an external index confirm it as a credible criterion in the
unsupervised clustering framework. This is further reinforced
by the estimated reconstruction accuracy, which is about 93%.
We note, however, that our artificial data sets are balanced.
The next step of our empirical research is to evaluate how
υAA behaves in the presence of imbalanced data.
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