
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2018-06-05

 
Deposited version:
Post-print

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Machado, V., Lopes, N., Silva, J. C. & Silva, J. L. (2017). Picture-based task definition and
parameterization support system. In Álvaro Rocha, Ana Maria Correia, Hojjat Adeli, Luís Paulo Reis,
Sandra Costanzo (Ed.), 5th World Conference on Information Systems and Technologies, WorldCIST.
(pp. 592-601). Porto Santo: Springer.

 
Further information on publisher's website:
10.1007/978-3-319-56538-5_60

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Machado, V., Lopes, N., Silva, J. C. & Silva,
J. L. (2017). Picture-based task definition and parameterization support system. In Álvaro Rocha, Ana
Maria Correia, Hojjat Adeli, Luís Paulo Reis, Sandra Costanzo (Ed.), 5th World Conference on
Information Systems and Technologies, WorldCIST. (pp. 592-601). Porto Santo: Springer., which has
been published in final form at https://dx.doi.org/10.1007/978-3-319-56538-5_60. This article may
be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for
self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-3-319-56538-5_60


Picture-based Task Definition and
Parameterization Support System

Vı́tor Machado1 Nuno Lopes1 J.C. Silva1 José Lúıs Silva2,3,4
1 EST/DIGARC - Instituto Politécnico do Cávado e do Ave

2 Madeira-ITI, Funchal, Portugal
3 DCTI/ISCTE - Instituto Universitário de Lisboa, Lisboa, Portugal

4 ISTAR-IUL, Lisboa, Portugal
vitormachado1988@hotmail.com , nlopes@ipca.pt, jcsilva@ipca.pt,

jose.luis.silva@iscte.pt

Abstract. Applications for task definition and automation are valuable
tools to automated software engineering area. This paper describes a
solution to support a parameterized task definition using screen capture
images. The approach allows the capture of a sequence of actions defined
by the user. Through the captured sequence of actions, the approach
assists in the implementation of task automation processes.

Based on picture-driven computing the proposed tool aims to reduce the
challenges that users face while trying to define tasks. This approach
provides also a foundation for the creation of picture-driven based tests
for interactive systems, enabling to test any interactive system but also
allowing for the definition, parameterization and execution of tests that
might involve the use of several independent interactive systems.

Keywords: Automation; Picture-driven computing; Software testing.

1 Introduction

In the user interface of software systems, two interrelated sets of concerns con-
verge. Users interact with the system by performing actions on the graphical
user interface (GUI) widgets. These, in turn, generate events at the software
level, which are handled by appropriate listener methods. In brief, and from a
user’s perspective, graphical user interfaces accept as input a predefined set of
user-generated events, and produce graphical output. The users’ interest is in
how well the system supports their needs.

From the programmers’ perspective, typical WIMP-style (Windows, Icon,
Mouse, and Pointer) user interfaces consist of a hierarchy of graphical widgets
(buttons, menus, text-fields, etc) creating a front-end to the software system. An
event-based programming model is used to link the graphical objects to the rest
of the system’s implementation. Each widget has a fixed set of properties which
have discrete values at any time during the execution of the GUI, constituting
the state of the GUI. The programmer’s interest, besides satisfying the user, is



in the intrinsic quality of the implementation, which will impact the system’s
maintainability.

As user interfaces grow in size and complexity, they become a tangle of object
and listener methods, usually accessing a common global state. Considering that
the user interface layer of interactive systems is typically the one most prone to
suffer changes, due to constant changes in the requirements and added features,
maintaining the user interface can become a complex and error prone task. Inte-
grated development environments (IDEs), while helpful in that they enable the
graphical definition of the interface, are limited when it comes to task automa-
tion or software testing areas. The first area, task automation, aims towards the
simplification of task execution, reducing the number of steps/actions that a user
has to perform. The second area, software testing, aims at improving the overall
quality of the software product, which is of great importance for organizations.

Still, organizations have some difficulties in testing software. The implemen-
tation of processes related to quality assurance are difficult by means of a con-
stant technological evolution together with the required time for the implemen-
tation of new processes. Software testing is essential to provide organizations
with information about the quality of software [1, 16]. Software testing provides
a global overview of the software allowing the evaluation of the risks of software
implementation. Several techniques are usually applied. These include executing
a program or application with the intent of finding software bugs (errors or other
defects). Functional testing is a testing type. It refers to activities that verify
a specific action or function of the code. These are usually found in the code
requirements documentation. Functional tests aim to validate if the application
execution satisfies the requirements. Considering functional test, tools for task
automation allow organizations to simplify the process of definition and execu-
tion of tests [12, 11, 7]. These tools enable the automatic execution of a high
number of tests [4].

This paper presents the development of a system to assist in the automatic
creation and execution of tasks representing the graphical interaction between
a user and an application. These tasks can then be used to support software
testing through the analysis of the graphical interface, i.e., without requiring
access to the application’s source code.

Using existing technologies of interaction with the Graphical User Inter-
face (GUI), the approach capture actions performed by the users through im-
ages/clippings (keylogger application type). It is intended that users perform
tasks naturally, as usual. At the same time, this system records the graphic ob-
jects manipulated by users. These objects will then be used for the construction
of an interpretative script for an open source tool named Sikuli [21]. Sikuli is an
application used to perform actions through picture-driven computing. In this
project, Sikuli will be used for the execution of scripts generated by analyzing
the flow of the captured actions and graphical object interactions.

In one hand, the paper intends to describe how to generate and automate
the execution of tasks through a picture-driven computing technique. In other
hand, the paper aims to present a proof of concept showing that this approach



supports the generation and automation of tasks. The automation of tasks is
also helpful to test the behavior of interactive systems.

2 Task Automation

The interaction model incorporates several stages (perception, evaluation, in-
tention and implementation). According to Parasuraman et al. [14], each step
can be automated. The same authors define that automation can be applied to
4 classes of functions, i.e., information acquisition, information analysis, deci-
sion and action selection, and action execution. Each action can be automated
to different degrees (from no automation to full automation) and according to
various criteria. Automation in different classes may have several implications,
for example, in terms of the performance of users and cost of the consequences
of a given decision/action.

Task models enable the identification of the interactions between the user
and the device, focusing on the features that should be considered when design-
ing interactive applications [3]. A task is an activity that must be performed to
achieve a certain goal. The task models represent the manner of use of appli-
cations and describe users interaction rules. These are used as support through
the development and test phases [18]. Whereas that the ultimate objective is to
specify a methodology to redefine GUI layer of interactive systems, task models
seem to be a promising basis for the definition of the methodology, i.e. tasks can
be identified using task models and then related to the new GUI layer [10, 13].

Task automation aims towards the simplification of task execution, reducing
the number of steps/actions that a user has to perform. Different approaches
provide support for task automation. For example, picture-driven computing is
useful for task automation of systems already developed and without requiring
access to their source code. As stated Sikuli is an example of a tool that follows
this paradigm, automating anything that appears on the screen via scripts.

Despite advances in tools that assist the users’ tasks, users still encounter
difficulties in defining tasks. Several approaches help users through capture and
replay techniques as starting points [9]. These approaches provide users an en-
vironment to define tasks and execute them, but none provides an approach
enabling the parameterization of graphical tasks through the user’s actions, i.e.,
copying and parameterizing the interaction with the graphic objects manipulated
by the user to be used later for the generation of an (executable) script.

2.1 Graphical User Interface Task Automation

Several tools can be used for the automation of tasks in systems already de-
veloped and/or without access to their source code. This section intends to list
some of them.

The first one is a picture-driven computing tool, named Sikuli, that uses
image recognition to identify and control GUI components [21]. Sikuli is a pro-
gramming environment making use of the picture-driven paradigm and is used as



a basis for several research works [17, 19, 20]. Selenium [6] another tool enabling
task execution of web applications by the browser in an automated way. Sele-
nium run tests on a finalized system, directly in a browser. Automa [2] is a tool
for Windows that automates repetitive tasks on interactive systems. RIATest
[15] is an automation tool for GUI tests capable of automating any item on the
screen, which is accessible through the Windows UI Automation API. Finally,
Eggplant Functional tool [8] enables to execute functional test automation, using
an approach based on patterns of pictures. The approach allows the test of any
technology on any platform to be made from the user perspective.

We believe Selenium, Automa, RIATest or Eggplant Functional could have
been successfully used as an alternative to Sikuli.

3 System’s Design

This section is intended to describe the design choices for the support system
considered in this paper. First, the system’s components are presented and then
multiple functional requirements of the application itself described.

The system is made of the two components, the picture-driven execution
engine (Sikuli) and a graphical user interface application designed to present the
user with the possibility to create and execute scripts.

The creation of the scripts is made through the listening of GUI events and
automatic creation of script code, compatible with the Sikuli engine. The exe-
cution of the script is made by the Sikuli engine in the background, so the user
do not need to code any part of the script.

Script generation is performed during recording. The user triggers the record-
ing by clicking on a button of the application GUI (see Figure 1) and after the
recording starts, the application window is minimized freeing the desktop for
user GUI interactions. All actions taken on the application itself are ignored by
the ”listening” events. Thus the user can freely perform the actions over the
GUI with the typical applications as it usually does. Finally, the user must sig-
nal the application to stop recording (this is done by pressing a button of the
application).

To execute a generated script, the user interacts with the same application,
but now for running the recorded script through Sikuli.

3.1 Capturing Image Snippets

During the recording of the script, it will become necessary for the user to specify
an image snippet for representing the visual region of the GUI which should be
interacted with. Two interaction types are available for the user: an action to be
made on the image region (e.g. clicking) or an assertion to be made (e.g. check
the image is present). Additionally, the system should offer a means to capture
an area of the screen and store it automatically.



3.2 Expected Outcome

The expected result of this system is to implement an application that allows
the user to create and perform tasks without knowledge of the features of the
tools that supports the process, in this case Sikuli.

With this application, organizations or users can build an automation script
in an assisted manner, making it easier to build scripts without the need to write
any code.

This application extends the Sikuli application [5] by assisting the creation
of scripts which can be parameterized, i.e., the application will help the user to
create an executable Sikuli script but at the same time it will allow for the user to
specify parameters on-the-fly, through dialog windows as the script is executed.
This feature allows the reuse of a single script for multiple cases, without the
need to change the specific values of the script. The application creates a Sikuli
script making use of the functionality available in such tool, in particular the
interactive actions and screen image assertions, while remaining intuitive for the
user.

4 Implementation

This section describes the implementation of the application proposed in this
paper. The application follows the architecture described previously which is
responsible for assisting the user in creating a versatile executable script to be
run by Sikuli.

4.1 Application’s User Interface

Fig. 1. Application GUI

The Figure 1 presents the graphical user interface of the created application.
The left side of the application contains the record/stop, wait, verification and
question buttons. The right side of the application contains buttons to run tasks,
choose an already created task and exit the application. The buttons positioned
at the bottom of the application enable the user to specify the folders for the
Sikuli executable files and created recordings.



4.2 Capture User actions

User actions are events performed through mouse’s click / double-click and
keystrokes. To capture user actions, a so-called library will be used, i.e. Hook-
Manager library. The library is open source and allows to use the features
user32.dll windows library to capture events executed with the mouse or key-
board.

The approach makes use of the MouseDoubleClick function to create an event
to capture mouse actions. This function is also responsible for creating the event
control function double click GetDoubleClickTime to obtain the double click time
which is set on the computer.

The same library allows the use of the KeyDown function related to lis-
tening the keyboard’s actions. This function is set to capture the key events.
The SetWindowsHookEx is used to create keyboard events. An input parame-
ter WH KEYBOARD LL serves to indicate what type of listening needs to be
observed.

The applications enables also to capture regions. To set the clipping the user
should use the mouse and set the starting point dragging to the point of arrival.
The area of the cut will have red contour which can be resized. Consequently
the user can increase or decrease previous defined regions. Captured regions are
only triggered when one of the following events types occurs: click event, double
click event, button waiting click or button question click.

Fig. 2. Window to introduce customizable text

The waiting and question buttons are related to features that can be useful in
a given task. They have the same concept, i.e. validate whether an element exists
in the screen. The waiting and question are intended to search for a particular
element on the screen. The first button, waiting, indicates that the application
is stopped as an element does not appear on screen. The waiting features au-
tomatically opens the capture region tool to set a region. The second button,
question, serves to introduce a data in a given element. An click in this button
triggers a dialog box that allows the user to define a text that will be presented
to the user when executing the task (cf. Figure 2). This functionality allows the
creation of scripts which can be parameterized, i.e., the application allow for the
user to specify parameters on-the-fly as the script is executed.



Fig. 3. Home Portuguese finance portal

The graphics library Graphics1 available in the C# programming language
was used to record images. The library enables the definition of images’ locations
and sizes and to copy them in the png format.

Fig. 4. Find records of the ”Current Year”

1 https://msdn.microsoft.com/en-us/library/system.drawing.graphics(v=vs.110).aspx
(last accessed: 5 Dezember 2016)



5 Task Generation Example

This section describes the use of the support system for picture-based task defi-
nition. As proof of concept, we propose to access the Portuguese finance portal to
extract the contents of tax movements of a given taxpayer related to automobiles
and motorcycles owning.

The authentication to the Portuguese finance portal is performed initially
through the My Services section, as shown in Figure 3.

Using the recording functionality, the support system helps to capture key-
board pressing actions. The sequence of keyboard actions are related to the
portal link that contains the text Pay which enables to access the Pay section.

Within the Pay section there are several options focused on the current year.
Choosing the option Search Automobiles and Motorcycles enables to visualize
taxpayer’s tax movements, as exposed in Figure 4.

Finally a sequence of keystrokes as follows, first CTRL + A, CTRL + C,
and CTRL + V enables to paste the copied data to another field. After finishing
recording, the script was created as described in Figure 5.

wait(”screenSikuli seq 1.png”, 300000);
click(”screenSikuli seq 1.png”);
type(Key.DOWN);
. . .
wait(”screenSikuli seq 6.png”, 300000);
click(”screenSikuli seq 6.png”);
wait(”screenSikuli seq 7.png”, 300000);
type(”v” ,KEY CTRL);

Fig. 5. Automatically generated Sikuli script

The execution of the previous script results in the listing from the finance
portal of relevant information which may be saved for the user convenience,
through an automated procedure. This proof-of-concept was successful and opens
the possibility, for users without programming skills, to use this tool and create,
run and parameterize automated scripts.

6 Discussion

The validity of the work was demonstrated with an example using one interac-
tive system. In this case the benefits were about the easiness of task definition
and consequent automation. This means that an user without programming
skills can automate any task. This was illustrated here for tasks running on only
one application (i.e. the Portuguese finance portal) but can also be applied to
inter-applications tasks. Due the use of a Windows library (i.e. user32.dll) the



approach is currently limited to Windows Operating Systems applications how-
ever, we are planning to improve this limitation enabling the automation of tasks
performed in Operating Systems.

7 Conclusions and Future Work

This paper presents a tool which aims to be the basis for user defined tasks
through picture-driven computing. The process used was described and results
were presented and discussed by means of a proof of concept.

Based on picture-driven computing and task automation, the proposed tool
aims to reduce the challenges that users face while trying to define a task. This
approach provides a foundation for the creation of picture-driven based tasks
for interactive systems. By using Sikuli, it becomes possible to automate any
interactive system but also allows for the definition and execution of tasks that
might involve the use of several independent interactive systems (e.g. websites
and desktop applications). The major advantages of this approach over other
automation tools is the ease with which users can define a task, parameterize
it, and complement it to obtain a test or to perform the task automatically
and repeatedly. This work creates a link between task definition and interactive
system’s quality assurance, enabling testers to be more efficient as they can use
the tool for naturally defining tasks as a basis for test suite specification and
execution.

In future projects we plan to use the approach with examples involving tests
accomplished through independent interactive systems, as well as tester’s studies,
to assess the usefulness, ease of use, effectiveness and tester satisfaction with the
tool.

8 Acknowledgments

José Lúıs Silva acknowledges support from Fundação para a Ciência e a Tec-
nologia (FCT, Portugal), through project UID/EEA/50009/2013.

References

1. P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University
Press, New York, NY, USA, 1 edition, 2008.

2. http://www.getautoma.com/. Automa tool, automate repetitive tasks in the
graphical user interface, accessed Apr. 12, 2016.

3. A. Barbosa, A. C. Paiva, and J. C. Campos. Test case generation from mutated
task models. In Proceedings of the 3rd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ’11, pages 175–184, New York, NY, USA,
2011. ACM.

4. M. L. Bolton, E. J. Bass, and R. I. Siminiceanu. Generating phenotypical erroneous
human behavior to evaluate human–automation interaction using model checking.
International Journal of Human-Computer Studies, 70(11):888 – 906, 2012.



5. T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using computer vision. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’10, pages 1535–1544, New York, NY, USA, 2010. ACM.

6. B. David. Selenium 2 Testing Tools: Beginner’s Guide. Packt Publishing, 2012.
7. R. de Kleijn. Learning Selenium: Hands-on tutorials to create a robust and main-

tainable test automation framework. Leanpub, 2014.
8. http://www.testplant.com/eggplant/. Eggplant tool, functional tests automation,

accessed Apr. 12, 2016.
9. Y. fang Li, P. K. Das, and D. L. Dowe. Two decades of web application testinga

survey of recent advances. Information Systems, pages 20–54, 2014.
10. D. Giannakopoulou, N. Rungta, and M. Feary. Automated test case generation

for an autopilot requirement prototype. In IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2011.

11. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. ACM Sigplan Not., 40(6):213–223, Junho 2005.

12. C. Martinie, P. A. Palanque, E. Barboni, and M. Ragosta. Task-model based
assessment of automation levels: Application to space ground segments. In Pro-
ceedings of the IEEE International Conference on Systems, Man and Cybernetics,
Anchorage, Alaska, USA, October 9-12, 2011, pages 3267–3273, 2011.

13. S. Pangoli and F. Paternó. Automatic generation of task-oriented help. In Pro-
ceedings of the 8th Annual ACM Symposium on User Interface and Software Tech-
nology, UIST ’95, pages 181–187, New York, NY, USA, 1995. ACM.

14. R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A model for types and
levels of human interaction with automation. Trans. Sys. Man Cyber. Part A,
30(3):286–297, May 2000.

15. http://www.cogitek.com/riatest.html. RiaTest tool, automate testing of web ap-
plications, accessed Apr. 12, 2016.

16. J. C. Silva, J. Saraiva, and J. Campos. A generic library for GUI reasoning and
testing. In SAC ’09: Proc. ACM Symp. on Applied Computing, pages 121–128.
ACM, 2009.

17. J. C. Silva and J. L. Silva. A methodology for gui layer redefinition through
virtualization and computer vision. In Computational Science and Its Applications
(ICCSA), 2014 14th International Conference on, pages 58–63. IEEE, 2014.

18. J. L. Silva, J. C. Campos, and A. C. R. Paiva. Model-based user interface testing
with spec explorer and concurtasktrees. volume 208, pages 77–93, Amsterdam,
The Netherlands, The Netherlands, 2008. Elsevier.

19. J. L. Silva, J. D. Ornelas, and J. C. Silva. Make it isi: interactive systems inte-
gration tool. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, pages 245–250. ACM, 2016.

20. J. L. Silva, J. D. Ornelas, and J. C. Silva. Supporting GUI exploration through
USS tool. Journal of Information Systems Engineering & Management, (ISSN:
2468-4376):1–4, 2016.

21. T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: Using gui screenshots for search and
automation. In Proceedings of the 22Nd Annual ACM Symposium on User Interface
Software and Technology, UIST ’09, pages 183–192, New York, NY, USA, 2009.
ACM.


