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As a fundamental phenomenon of fluid mechanics, recent studies suggested laminar-turbulent transition
belonging to the universality class of directed percolation. Here, the onset of a laminar separation bubble on
an airfoil is analyzed in terms of the directed percolation model using particle image velocimetry data. Our
findings indicate a clear significance of percolation models in a general flow situation beyond fundamental
ones. We show that our results are robust against fluctuations of the parameter, namely, the threshold of
turbulence intensity, that maps velocimetry data into binary cells (turbulent or laminar). In particular, this
percolation approach enables the precise determination of the transition point of the laminar separation
bubble, an important problem in aerodynamics.
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I. INTRODUCTION

Three decades ago, Pomeau [1] described the flow of a
fluid as a collection of oscillators that interact with each
other. When observing that “each oscillator if in a turbulent
state may either relax spontaneously toward its quiescent
state or contaminate its neighbors,” he concluded that “this
is precisely the definition of the process called ‘directed
percolation’ in statistical physics” and therefore raised the
possibility of laminar-turbulent transition belonging to the
same universality class as directed percolation (DP).
The idea is quite reasonable in the sense that transition

from laminar to turbulent flow (hereafter referred to as
transition) can be described via the so-called spatiotemporal
intermittency [2,3]. Since Pomeau’s work, several simula-
tions have supported his conjecture; however, only in the last
few years has it been possible to provide experimental
evidence [4] because of the novel possibilities of extracting
accurate measurements from a turbulent flow with sufficient
spatial and temporal resolution. Recent studies approached
transition from different angles by means of low-order
models [5–7] and sophisticated simulations [8–11], as well
as experiments [12–14]. They concordantly indicate non-
equilibrium phase transition occurring in basic shear flows,
i.e., pipe, channel, and Couette flows. While investigating

the hypothesis of transition belonging to the universality
class of directed percolation, those studies treat transition
into turbulence as a fundamental phenomenon. Up to now,
directed percolation has not been used in flows with a direct
aim of helping to solve specific needs in applied sciences that
deal with turbulence by extension.
Here, we argue that the applicability of percolation

models can be extended from fundamental fluid dynamics
to practical aerodynamics relevant for engineering prob-
lems and, thus, to a more generally valid concept. More
specifically, we provide evidence that directed percolation
modeling tools are capable of characterizing the onset of a
laminar separation bubble (LSB) on the suction side of an
airfoil (see Fig. 1) [15,16]. This is of particular importance
for two reasons: First, the aerodynamic functionality of an
airfoil depends sensitively on such transitions as the LSB.
Second, the precise determination of the onset of transition
into the LSB, as well as transition in general, is still an open
problem in aerodynamics. So far, there are no methods
available that reliably capture the nonlinear nature of a
LSB. Because of its known connection with turbulence
phenomena, DP is potentially valid for nonlinear flow
phenomena encountered in the class of external flows over
curved surfaces, where the flow becomes more and more
unstable as it is advected downstream. Based on our
findings, we discuss how DP properties can also be of
use in applications ranging from computational fluid
dynamics (CFD), to the design process of airfoils, through
the maintenance of rotor blades in wind turbines.
The paper is structured as follows. First, the experimental

setup is described in Sec. II. This includes an airfoil
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subjected to laminar inflow and the optical flow visuali-
zation method. In Sec. III, a procedure is explained for how
to map the measured flow field into binary cells, either
laminar or turbulent, which enable the estimation of a
critical Reynolds number identifying the onset of the LSB.
Characteristic exponents at this critical value are deter-
mined in Sec. IV and discussed subsequently in Sec. V.
Finally, Sec. VI concludes the paper.

II. EXPERIMENT

The phenomenon of the LSB can be qualitatively
visualized by means of laser-illuminated smoke photogra-
phy (see Fig. 1). The seeded flow comes from the left-hand
side; it separates just after the airfoil’s thickest cross
section, destabilizes, and undergoes transition resulting
in reattachment of the turbulent boundary layer. The
recirculation zone between the airfoil’s surface and the
shear layer is the one usually addressed as the LSB. In
Figs. 1(a) and 1(b), the LSB appears as the smoke-free
region above the airfoil. While the transition (taking place
within the shear layer between the LSB and free flow) is
three dimensional, the LSB’s onset happens in a linearly
stable laminar flow region whose boundary layer has a
thickness that is small compared to the dimensions of the

LSB. Therefore, transition into the LSB can be approxi-
mated locally as a quasi-two-dimensional process.
The formation of a LSB is a highly unsteady process that

emerges stochastically over a certain region on airfoils.
In order to properly investigate this complex and delicate
flow topology, it is crucial to use nonintrusive methods
featuring high spatiotemporal resolution. Therefore, high-
speed stereoscopic particle image velocimetry (HSPIV) is
used to visualize a LSB on the suction side of a CK220
airfoil in the wind tunnel. A schematic representation of
the experiment is given in Fig. 2. The experimental setup
consists of two Phantom Miro M320S high-speed cameras
and a Litron LDY303 laser. This enables HSPIV measure-
ments with a recording frequency of 2000 velocity fields
per second and a recording length of T ≈ 3 s at a reduced
resolution of 896 × 792 px2. For a measurement region of
Δx × Δy ¼ 40 × 40 mm2, where x and y are in a chord-
wise or spanwise direction, respectively, a spatial resolution
of dx ¼ dy < 0.4 mm is obtained with sufficient accuracy
(stereo residue below 0.5 px). This resolution corresponds
to dx=c < 2 × 10−3 at a given airfoil dimension of
c × s ¼ 220 × 250 mm2, where c denotes the airfoil’s
chord length and s is its span.
As illustrated in Fig. 2, the light sheet is adjusted

tangentially to the airfoil’s surface approximately at the
onset of the LSB at a distance dz=c < 3 × 10−3 or
dz ¼ 0.5 mm, respectively. Because of the airfoil’s curva-
ture, this distance varies slightly, by less than 5% of
the LSB’s thickness. The onset of the LSB is thus captured

(c)

(b)

(a)

FIG. 2. Experimental setup consisting of (a) a HSPIV system
and (b) a CK220 airfoil. A laminar inflow of u∞ ¼ 11 m=s
approaches the airfoil from the left-hand side, forming a LSB on
the suction side. The light sheet (in green) is adjusted (c) tangen-
tially to the surface approximately at the location where the
LSB is observed. The coordinate system has its origin at the
midspan leading edge and defines the main flow direction as
the x direction, the spanwise direction as the y direction, and the
normal to wind tunnel wall as the z direction. The chord length
and span of the airfoil are denoted c and s, respectively.

(a)

(b)

FIG. 1. (a) Photograph of a LSB on airfoil CK220. The laser
light sheet illuminates the particle-seeded inflow from the right-
hand side and perpendicular to the airfoil’s surface, resulting in
a shadow at the leading edge. The inflow is coming from the
left-hand side. The LSB can be identified as a region without
smoke between the airfoil’s surface and the ambient flow. False
colors are used for better visualization. (b) Labeled zoom,
emphasizing the flow topology at the LSB. The LSB occurs just
behind the airfoil’s thickest cross section, where streamlines (in
blue) separate from the surface. Further downstream, when the
LSB is at its maximum expansion, the laminar shear layer
destabilizes, resulting in transition to turbulence. High momen-
tum perpendicular to the airfoil’s surface contained in the shear
layer enables reattachment and the formation of a turbulent
boundary layer.
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properly. At the same time, the measurement region covers
the LSB completely.
In the present experiment, the LSB appears at a global

Reynolds number of Rechord ¼ 160;000 and an angle of
attack of α ¼ 5°. Here, Rechord is obtained with respect to
the chord length and a free-stream velocity of u∞ ¼ 11 m=s.
In this way, the ambient conditions of the experiment are
described in general. Moreover, any transition process is
strongly dependent on detailed flow conditions, such as free-
stream properties. To minimize this impact, the experiments
are performed in a wind tunnel with inlet 250 × 250 mm2,
length 2000 mm, and a closed test section with a low-
turbulence intensity of TI < 0.004.

III. FROM PARTICLE IMAGE
VELOCIMETRY DATA TO LAMINAR

AND TURBULENT STATES

Following the objective of this study, the LSB’s onset
needs to be derived from experimental data. HSPIV results
provide instantaneous velocity fields of the whole LSB
and the flow upstream as well as downstream of the LSB.
Characteristic differences between those three regions are
reflected by velocity magnitude u and the fluctuations u0.
Both quantities define the TI. The value of TI is usually
derived locally from the whole data set losing its temporal
information, whereas directed percolation analysis is based
on the time-resolved evolution of the laminar and turbulent
regions. Therefore, we define the TI at the time t as the TI
computed locally at the position ðx; yÞ from 10 consecutive
velocity fields in the following manner:

huðx; y; tÞi≡ huti ¼
1

10

Xtþ9

t0¼t

uðx; y; t0Þ; ð1aÞ

TIðx; y; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

10huti2
Xtþ9

t0¼t

(uðx; y; t0Þ − huti)2
vuut : ð1bÞ

The general mapping procedure into laminar and
turbulent states is visualized in Fig. 3. The flow moves
along the airfoil’s surface (gray) in the x direction, which
is chordwise. In the horizontal color-coded plane, the LSB
can be clearly identified as a high level of turbulence
intensity. Mainly, a velocity magnitude close to zero
within the LSB contributes to the sharp rise of TI, while
velocity fluctuations increase only slightly. It is important
to notice that the term “laminar separation bubble” is
misleading at this point. In the context of the present
work, the LSB is revealed by a turbulent flow region,
whereas it is referred to as laminar in airfoil aerodynamics.
This is due to the fact that velocity fluctuations within the
LSB are small compared to fluctuations present in a fully
turbulent boundary layer. With that in mind, we use a

threshold value of the turbulence intensity TIth to distin-
guish between laminar and turbulent regions, called
clusters. Each measurement point of the complete data
set is set to 0 if TIðx; y; tÞ < TIth (laminar phase) or 1 if
TIðx; y; tÞ ≥ TIth (turbulent phase). The turbulent phase
corresponds to the LSB, whereas the laminar phase
identifies ambient flow.
The onset of the LSB is accurately determined by the

evolution of laminar and turbulent clusters. The distribution
of clusters is evaluated at each position x along the spatial
and temporal dimensions y and t, as exemplary illustrated
close to the LSB’s onset by the bicolored vertical plane
in Fig. 3.

IV. TRANSITION INTO LAMINAR
SEPARATION BUBBLE

The flow along the airfoil is more likely to separate
from the surface (onset of the LSB) the further down-
stream from the leading edge it has been evolved because
of an increasing receptivity for perturbations. In analogy
to well-known transition results from flat plates [17],
this is expressed in terms of the local Reynolds number

FIG. 3. Illustration of measured and computed quantities. The
plane of space and the control parameter (Rex) is formed by the
airfoil’s spanwise and chordwise directions, where Rex ¼
Reðx; u∞Þ is based on the distance x from the leading edge
and the inflow velocity u∞. Here, Rex provides a measure for the
flow’s likelihood to undergo transition from laminar flow into a
LSB and, therefore, serves as a control parameter. The presence
of a LSB is indicated by means of turbulence intensity (TI)
exceeding a certain threshold denoted as turbulent phase. The
instantaneous turbulence intensity is derived from 10 temporally
consecutive velocity fields at one respective position Rex in a
plane crossing the laminar separation bubble. Transition from
laminar flow into the LSB happens after turbulent clusters merge
significantly. At this critical point Rec, characteristic turbulent
clusters occur, depicted as an evolution in time (vertical plane).
Averaging over time at each position Rex, the fraction of turbulent
cells, ρ, is shown next to the plane of TI. Following ρ in the
streamwise direction, transition from the laminar boundary layer
flow into the LSB and subsequent reattachment are obvious.
The first phase transition represents the LSB’s onset, which is
important for our work.
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ReðxÞ ¼ Rex ¼ xu∞=νkin, where νkin denotes the kinematic
viscosity. This locally changing Rex represents the state of
the boundary layer and must not be confused with the fixed
Rechord reflecting the experiment globally. Therefore, Rex is
used as the control parameter in the framework of DP for
the present experiment. Notice that one HSPIV snapshot is
composed of the control parameter Rex axis and the spatial
dimension y of our percolation model. The time dimension
t in this percolation model corresponds to the physical time
in the experiment. In this way, the evolution of turbulent
clusters is locally captured in a plane held by the spatial
dimension y and time t at each Rex.

In accordance with DP, a critical value Rec of the
Reynolds number Rex is observed, where transition to
the LSB takes place. In general, this value is characterized
by turbulent clusters merging into one infinitely connected
cluster. Figure 4(a) shows three illustrative extracts con-
taining laminar and turbulent clusters in space y and time t.
While below and above the critical Reynolds number
laminar and turbulent clusters, respectively, dominate,
the number of laminar and turbulent clusters span the
entire system in both directions at Rec.
In the framework of DP, transition from the laminar

boundary layer into the LSB is characterized by three
critical exponents at Rec. The first exponent, β, describes
the critical behavior of the so-called turbulent fraction,

ρðRexÞ ¼ ρ0ε
β; ð2Þ

as a function of the reduced Reynolds number, ε ≔
ðRex − RecÞ=Rec, and a proportionality factor ρ0. The
mean fraction is determined from turbulent cells over space
y and time t for each value Rex. The other two critical
exponents, ν⊥ and νk, characterize the diverging correla-
tions of cluster sizes at Rec in space and time. According to
the so-called hyperscaling relation, μ ¼ 2 − β=ν [18], the
correlation lengths are univocally expressed by the trans-
verse and longitudinal fractal dimensions, μ⊥ and μk.
These are defined as the exponents that relate the size of
laminar clusters and their number, NðL⊥Þ ∼ L−μ⊥⊥ and
NðLkÞ ∼ L

−μk
k , respectively, where L⊥ and Lk represent

the size of laminar clusters measured in the spatial and
temporal directions, y and t, respectively. By analogy with
the DP analysis presented by Refs. [12,13], we estimate,
from our measured data, first the critical Reynolds number
Rec and subsequently the set of critical exponents (β, μ⊥, μk).
The results will be discussed in Sec. V.
The turbulent fraction over local Reynolds number is

shown for three descriptive thresholds TIth ∈ ½0.8; 0.93;
1.42� in Fig. 4(b). A transition occurs within the narrow
range of values of Rex, where an abrupt increase of the
turbulent fraction is observed separating a laminar phase
(ρ ∼ 0) from a turbulent phase (ρ ∼ 1). For the whole DP
analysis, it is important to precisely determine the critical
value of Rec.
Note that Rec and β can be obtained simultaneously by

a best fit according to Eq. (2). The measurement points
used for the best fit are selected in two steps. First, the
derivative of the turbulent fraction with respect to the
Reynolds number, ½ðdρÞ=ðdRexÞ�, is computed, as shown in
Fig. 5(a). Considering the largest value of the derivative
together with the derivative values at the two nearest
measured Reynolds numbers [red stars in Fig. 5(a)], a
parabola with negative concavity is defined, whose math-
ematical maximum is taken as an initial estimate of the
critical value. While starting the best fit at this estimated
location, in step two, only measurement points are taken

(a)

(b)

FIG. 4. (a) Three illustrations of cluster distributions in t (time)
and y (space) derived for TIth ¼ 0.8: (Left panel) Reynolds
number below the critical value Rec, showing a dominance of
laminar clusters. (Right panel) Reynolds number above Rec,
where turbulent cells dominate. (Middle panel) Reynolds number
at the computed Rec for which laminar and turbulent clusters
span the entire system. (b) Turbulent fraction ρ (circles), as a
function of Rex, where ρ is the fraction of cells with a turbulence
intensity larger than a threshold TIth. Results are shown for three
different threshold values. The corresponding best fits (solid
lines) above the critical point cross the control parameter axis at
the critical Reynolds number Rec. Experimental uncertainty of ρ
is estimated by the standard error of 10 subsets constituting the
total data set.
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into account meeting 0.001 < ε < 0.01, in accordance with
the experimental spatial resolution. As shown in Fig. 4(b),
this procedure yields values of Rec ¼ 1.061ð9Þ × 105,
β ¼ 0.28ð4Þ for TIth ¼ 0.8, Rec ¼ 1.063ð6Þ × 105, β ¼
0.28ð0.05Þ for TIth ¼ 0.93, and Rec ¼ 1.07ð1Þ × 105,
β ¼ 0.28ð5Þ for TIth ¼ 1.42. In comparison, the predicted
theoretical value of 1þ 1D directed percolation is βDP ¼
0.276.
In order to evaluate the validity of the determined

characteristic values Rec and β, the rescaled turbulent
fraction ρ̃, defined as

ρ̃ðRexÞ ¼
ρðRexÞ
ρ0ε

βDP
; ð3Þ

is shown in Fig. 5(b) as a function of the reduced Reynolds
number using the theoretical value of βDP. In this represen-
tation, scaling is readily apparent as a horizontal line equal to
unity. Dashed lines also show the rescaled fraction obtained
for slight deviations from the exponent, βDP � 0.05.
To estimate the other two critical exponents describing

the fractal dimensions, the distributions of the sizes of
the laminar clusters at the critical Reynolds number have
to be known. Based on our finite experimental resolution,
we have no direct access to these critical distributions.
To overcome this problem, we take the corresponding
distributions at the two Reynolds numbers close to Rec
and sum them up in a weighted manner using the
normalized inverse of their distances a1 and a2 to Rec
[cf. inset of Fig. 5(a)].
While the procedure of estimating the critical size

distributions is not standard, it results in robust estimates
of spatial critical exponents μ⊥. The distributions of cluster
sizes in space and time at the critical Reynolds number are
shown in Figs. 6(a) and 6(b), respectively. The evaluations
are performed with the same three threshold values TIth as
used previously. Each best fit for the spatial fractal
dimension (smallest three cluster sizes are disregarded)
yields μ⊥ ¼ 1.75ð9Þ and compares well with the theoretical
value predicted by directed percolation, μ⊥;DP ¼ 1.748. For
the temporal direction, the results are not as conclusive as
for the spatial direction. Seemingly, the cluster distribution
tends towards exponential behavior and, because of the
continuous change in curvature, no exponent can be fitted
to our data. The theoretical exponent μk;DP ¼ 1.84 is shown
in Fig. 6(b) with a dashed line for comparison. Here, we
note that the temporal analysis is more affected by
experimental perturbations, as we work out in the
Appendix.
As a last step in our data analysis, we investigate the

effect of the choice of threshold values TIth for this
transition. Beyond the three threshold values considered
up to now, Fig. 7 shows the results for two of the
three critical exponents with 95% confidence intervals
for 200 values of TIth covering a range of 0.5 <
TIth < 2.5. The theoretically predicted values of the
critical exponents are shown by horizontal dashed lines.
It is evident that the values of the β and μ⊥ exponents are
robust against the change of the turbulence intensity
threshold for TIth > 0.64.
A variation of a factor of 5 in turbulence intensity

threshold implies an increase of less than 2% of the critical
Reynolds number, while the corresponding uncertainty is
on the order of 1%. The monotonic trend is a natural
consequence of mapping continuous HSPIV velocity data
into binary states using increasing threshold values TIth. As
it is ubiquitous in phase transitions, the value of the control

(a)

(b)

E
D
P

Re

Re

Re Re Re

Re

ReR
e

max

FIG. 5. (a) Illustration of how the critical Reynolds number Rec
is determined: (i) One first adjusts a parabola (red line) around
the three highest values (stars) of the derivative of the turbulent
fraction ½dρ=ðdRexÞ� (circles); (ii) one then performs a best fit,
expecting the critical Reynolds number Rec lying close to the
mathematical maximum (red dashed line) of the parabola
respecting the spatial resolution of the experiment. Based on
this determined interval, Rec is estimated after Eq. (2). The
obtained Rec is marked in the inset (gray dashed line) along
with weights a1 and a2 used for computation of distributions of
laminar cluster sizes at Rec (see Fig. 6). Here, TIth ¼ 0.8.
(b) Compensated plots [after Eq. (3)] for each value of the
turbulence intensity threshold: fraction of turbulent cells rescaled
to the one for 1þ 1D directed percolation predictions as a
function of the reduced Reynolds number ε.
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parameter at which a phase transition occurs is model
dependent. For claiming universal behavior at the phase
transition, it is important to observe critical exponents
that do not depend on these model details. All these features
are observed in our investigations (Fig. 7). We thus
conclude that the critical Reynolds number marking the
onset of the LSB depends only slightly on TIth without
contradicting DP.

V. DISCUSSION

The main aspect of our work is to show evidence for the
concept of DP being of use for understanding transition
phenomena in aerodynamics, in particular, the onset of a
LSB on an airfoil. This evidence is shown by means of
estimated critical exponents. However, as it is known,
this estimation is very sensitive to the computation or
measurement of the critical point, or here, the critical
Reynolds number. To show the quality of our estimate, we
present compensated plots in Fig. 5(b). For the critical
exponents of the turbulent fraction (β) as well as the
transverse fractal dimension (μ⊥), Figs. 5(b), 6(a), and 7
show accordance with the predicted values of 1þ 1D
directed percolation, even if one varies the confidence
intervals for the error estimation. The results of the
longitudinal fractal dimension (μk) are not so conclusive.
Tending towards exponential behavior, distribution of
laminar clusters actually contradicts 1þ 1D directed per-
colation [see Fig. 6(b)]. Since cluster distributions in time
are known to be particularly more difficult to estimate as
they seem to suffer more from finite size effects and
experimental uncertainty, our findings open the door for
future experimental sets: Minimizing the uncertainty may
uncover a critical behavior that is not resolved in our
experiment, or it may provide deeper evidence for the
occurrence of a phenomenon other than critical phase
transition, e.g., a continuous bifurcation.
The scaling ranges obtained for our systems are not

much larger than one decade. However, in contrast to
numerical investigations, we are limited by our experimen-
tal setup. Neither the spatial dynamic range of HSPIV nor

(a) (b)

FIG. 6. (a) Size distribution of laminar clusters in space at the estimated critical Reynolds number, i.e., consecutive laminar states
when sweeping in the y direction at a given time t, for three illustrative values of turbulence intensity thresholds and (b) their
corresponding size distribution of laminar clusters in time, i.e., consecutive laminar states when sweeping in the time t while keeping y
constant. Solid lines show the theoretical distribution predicted by the directed percolation model at the transition. For comparative
purposes, the turbulence intensity threshold values are the same as the ones in Fig. 4(b), where the critical value for each TI is given.
Cluster lengths are shown in multiples of the spatial and temporal resolution, respectively.

R
e

Re

FIG. 7. Systematic analysis of the critical exponents sensitivity
to the threshold of turbulence intensity imposed in the directed
percolation model: the exponent β and the transverse fractal
dimension μ⊥. The dashed lines indicate the theoretical value of
the exponents in directed percolation. For a turbulence intensity
TIth > 0.64, the critical exponents of directed percolation are
obtained within numerical errors (see text). Gray symbols show
the dependence of the critical Reynolds number on the threshold.
For the sake of clarity, only three illustrative error bars of Rec are
shown.
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the size of the wind tunnel can easily be changed. Also
taking into account that estimation of power laws may lead
to biased estimation and pitfalls [19], our experimental
results indicate, to the best of our knowledge, astonishingly
consistent results with the 1þ 1D directed percolation. We
also see that the quality of our results is comparable with
that of other groups, like the work on directed percolation
in a channel flow [13]. Other experimental studies on
DP [11,20] suffer from similar shortcomings, such as the
continuous onset of turbulence and truncated scaling
ranges. By establishing an adapted DP model, we are able
to trace these shortcomings back to typical experimental
constraints, such as noisy control parameters and exper-
imental coarse graining. We introduce this DP model in the
Appendix and show that these findings explain the exper-
imental deviations from theory and thus provide stronger
grounding for the potential importance of the DP frame-
work in LSB events and other transition phenomena in
aerodynamics.
Based on the findings in this paper, it is now possible to

introduce an alternative procedure to determine the onset
of the LSB. Under the assumption that 1þ1DDP holds true,
the critical Reynolds number can be determined following
the compensated representation shown in Fig. 5(b) but now
fixing βDP to its theoretical value and varying a reference
value Rec0 , which is deviated from the critical value,

ρ̂ðRex;Rec0 Þ ¼
ρ

εβDP
: ð4Þ

For a variety of reference Reynolds numbers, ρ̂ is shown as a
function of ε and Rec0 in Fig. 8(a). Here, we see that by
increasing (decreasing) Rec0 , the slope ρ̂0 ¼ ∂ρ̂=∂ε becomes

negative (positive). By analogy with Fig. 5(b), the horizontal
line in ρ̂ represents the case where DP properties are found.
Thus, from the zero crossing of ρ̂0, the best estimation Rec is
obtained. In comparison to the estimation of the critical
Reynolds number by fitting a power law about the maximum
derivative ofρ [see Figs. 4(b) and5(a)], the uncertainty inRec
decreases by 2 orders of magnitude from Rec ¼ 1.063ð6Þ ×
105 to Rec ¼ 1.06302ð2Þ × 105 for TIth ¼ 0.93. This shows
that the concept of DP enables us to determine the critical
Reynolds number for the LSB with very high precision.
Since such high-precision concepts are very rare in fluid
mechanical research, the procedure introduced may serve as
a new benchmark.

VI. CONCLUSION

This work presents the first experimental evidence that
percolation models are of practical relevance for the flow
over the suction side of an airfoil. Our work has been
inspired by recent achievements in fundamental turbulence
research that link the onset of turbulence to directed
percolation phase transition. In comparison to the flow
situations investigated up to now, the flow over an airfoil
changes its Reynolds number along with its stability while
evolving downstream.
Applying a bond directed percolation model to charac-

terize transition from a laminar boundary layer into a LSB
on an airfoil, one obtains values for the critical exponents
consistent with those in 1þ 1D directed percolation. The
physical implication of this universality class indicates that
the boundary layer at the LSB’s onset is slender compared
to the dimension of the LSB; thus, flow instabilities cannot
spread perpendicularly to the surface. As an important
aspect for practical applications, with the assumption of a
1þ 1D directed percolation, a new method is introduced to
determine the transition point into the LSB with very high
precision of better than 10 in Reynolds numbers. This is for
fixed TI less than 1 per mill or for all TI less than 1% of
the chord length. For our profile, the precision exceeds the
optical resolution of 0.4 mm.
Since instabilities like theLSBhave an essential impact on

the performance of airfoils, it is of great importance to know
how and where they emerge. From the findings of this work,
new directions for future applications and investigation are
now open. First, in CFD, several frameworks need a model
that delivers the location of transition [21] and, thus, the
LSB’s onset. Since the directed percolation framework is
now shown to be able to retrieve a consistent determination
where the LSB onset is located, it can be used to validate
current transition models. Additionally, the temporal evolu-
tion of the LSB’s onset parametrized by DP might be of use
for unsteady low-order models [22] which often couple
details of the boundary layer flowwithCFD approaches used
for the ambient flow [23,24].
Second, in many applications, transition to turbulence is

a phenomenon that needs to be controlled properly, also

(a)

(b)

FIG. 8. (a) Rescaled turbulent fraction ρ̂ as a function of ε
for a variety of possible critical Reynolds numbers, Rec0 ∈
½Rec;Rec � 75;Rec � 150�. Where ρ̂ becomes constant, Rec
can be estimated best. (b) Derivative of ρ̂ as a function of
Rec0 including standard errors. The critical Reynolds number is
determined by the zero crossing of ρ̂0. The uncertainty of Rec
is estimated by propagation of errors. Here, TIth ¼ 0.93.
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when taking place within a LSB. For instance, vortex
generators are applied to rotor blades of wind turbines close
to the location of a LSB in order to avoid aerodynamic
instabilities that cause high-fatigue loads. Nowadays, this is
done based on efficient engineering models used in the
design process of a wind turbine. As revealed by different
studies [25,26], these models cannot account for nonlinear
flow behavior that inherently governs the emergence of
LSBs. Particularly, when a LSB emerges very close to the
natural onset of laminar-turbulent transition, models fail to
correctly predict both phenomena. The more reliably such
situations can be identified and characterized, the better
vortex generators can be applied to rotor blades, resulting in
more efficient wind-turbine operation along with reduction
of destructive aerodynamic loads.
Third, in the wind-tunnel experiment investigated here,

we consider an airfoil subjected to a constant ambient
inflow. In reality, airfoils of a plane or a wind turbine are
subjected to nonstationary inflows. Assuming that the
nonstationarity of such flow occurs at a smaller time scale
than the time scale needed for the LSB onset to take place
as a percolation transition, the concept of directed perco-
lation has the potential to derive a model for the (nonsta-
tionary) dynamics of the LSB’s onset in time.
All in all, the results of the present study indicate a more

comprehensive significance of percolation models in fluid
mechanics beyond fundamental laminar-turbulent transi-
tion phenomena.
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APPENDIX: DIRECTED PERCOLATION WITH
FLUCTUATING CONTROL PARAMETERS

The results of the present study basically reveal threemain
deviations from standard DP, which are also present in
previous experiments [12,13]: Turbulent clusters appear
unconnected and dense, phase transition is rounded off,
and scaling ranges are truncated. While the latter two
observations, to some degree, are affected by well-known
finite size effects, in this appendix, we show that all three
apparent deviations from standard DP reflect two important
experimental features, namely, limited measurement reso-
lution and a “fluctuating control parameter.” The limited
measurement resolution is related to the apparently uncon-
nected clusters, while the fluctuating control parameter Rex,
which is caused by noisy inflow conditions in the

experiment, reflects the rounded-off phase transition. Both
experimental features affect the distribution of laminar
clusters.
We therefore introduce a modified DP model that

incorporates these experimental features, retrieves results
resembling laminar-turbulent transition in shear flows [5],
and, in particular, presents the same deviations observed in
our experimental HSPIV data.
The standard DP model is a two-parameter model

discretized in space and time with two different (fixed)
probabilities—one for turbulence prevalence in consecutive
time steps, p, and another for turbulent spreading to
neighboring cells, r. The flow field is represented by a
square lattice with N × N binary cells, which can be either
turbulent (state 1) or laminar (state 0). The binary flow
fields are initialized with a fully occupied turbulent system
at t ¼ 0. Turbulent decay or spreading is then investigated,
depending on the chosen values for p and r. Reference [5]
provides all additional details on the standard DP model.
The modified DP model extends the standard DP model

in two ways:
(I) Turbulent and laminar cells are coarse grained,

merging into larger cells that take binary states
depending on the majority of smaller cells within.
This extension accounts for natural constraints when
capturing a continuous flow by discrete measure-
ment techniques. In the case of HSPIV, the implied
averaging imposes a spatiotemporal low-pass filter
on continuous flow data.

(II) The turbulence spreading probability r is no longer
fixed but varies according to a normal distri-
bution of fixed (small) standard deviation σr and
an average value hri. The average value plays the
role of the new control parameter. A value of σr ≳ 0
accounts for experimental uncertainties in the

FIG. 9. Illustrations of cluster distributions in time and space at
criticality. In the right diagram, a typical snapshot obtained from
the experimental HSPIV data is depicted. In the left diagram, the
(detailed) result from a DP simulation is compared with the
corresponding coarse-grained visualization.
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inflow, resulting in a deviation at the critical
value rc ∼ hric. In the particular case with σr ¼ 0,
the modified model reduces to the standard DP
model.

To illustrate the first extension (I), we simulate a flow
field on a lattice with N ¼ 5000, exploiting accurate
determination of the critical point as given in Ref. [5].
Subsequent analysis is based on fixed turbulent propaga-
tion of p ¼ 0.7, yielding a critical turbulent spreading of

rc ≈ 0.3069. An example of a simulated cluster distribution
in time and space is depicted in Fig. 9 (left diagram), along
with the corresponding coarse-grained visualization using
a 3 × 3 kernel (middle diagram), and compared to typical
experimental data (right diagram). Merging simulation data
into a coarse-grained representation of larger cells thus
yields results qualitatively similar to our experimental
space-time plots. In other words, connected clusters in
our experimental flow field can appear unconnected and
dense because of coarse graining that results from the
HSPIV measurement procedure.
To illustrate the second extension (II), we choose a value

centered at a fixed average, hri, with a normal probability
density function, with σ ¼ 0.02 for the fluctuation. In
Fig. 10, the turbulent fraction ρ derived from the standard
model is compared with the modified DP model. Unlike
perfect systems underlying DP (blue curve), the transition
is smeared (red curve), a feature also observed in our
experiment [cf. Fig. 4(b)]. Although the two curves reveal
different behavior about the critical value, the inset of
Fig. 10 shows that critical behavior can be recovered in the
compensated representation.
Finally, one should also notice that experimental coarse

graining, as well as the noisy parameter r, both affect the
distributions of laminar clusters derived from our DP model
for the three cases, as depicted in Fig. 11. Based on a
snapshot of the (standard) DP simulation (N ¼ 5000), both
the transversal and the longitudinal gap distributions show
scaling behavior over at least two decades. If the noisy
parameter is introduced, the scaling range is significantly
restricted in the long clusters. Note that longitudinal
clusters are more strongly affected by such noise, as we
observe in our experimental data depicted in Fig. 6. Once

(a) (b)
O O

N

N

N

N

FIG. 11. (a) Size distribution of laminar clusters in space at the estimated critical value (i.e., turbulent spreading) for one illustrative
binary flow field generated by applying the baseline DP model (in blue) as presented in Ref. [5]. The baseline model is then modified
according to experimental constraints, allowing a fluctuating control parameter (in red) and considering metrological coarse graining (in
gray). (b) The corresponding size distribution of laminar clusters in time, depicted analogously. Dashed lines show the theoretical
distribution predicted by the directed percolation model at the transition. Cluster lengths are shown in multiples of the discretization used
in the simulation.

FIG. 10. Turbulent fraction for the baseline DP model (in blue)
according to Ref. [5], compared with a modified model (in red)
that allows a noisy parameter r, which changes in time according
to a standard normal distribution with a standard deviation of
σ ≈ 0.02 and a fixed average hri. This average value plays the
role of the “new” control parameter. In the inset, the respective
compensated representation indicates a first-order phase transi-
tion for both cases. Please note that the critical point is adjusted to
each model.
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coarse graining is added to noise, the number of short
clusters is reduced below the edge of the kernel.
Particularly, the distribution of longitudinal laminar clusters
is affected, showing an apparently exponential behavior.
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