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Resumo

Modelos preditivos são instrumentos fundamentais para a análise da segurança
de barragens. São importantes para obter conclusões acerca da segurança estru-
tural destas. Os dados utilizados nos modelos preditivos, são obtidos através de
sensores que se encontram embutidos nas estruturas. Apesar dos algoritmos pred-
itivos serem ferramentas poderosas para a análise e previsão, outras técnicas de
Machine Learning e modelos estatísticos, como as redes neuronais, têm sido desen-
volvidas e utilizadas nestas áreas ao longo dos anos. Devido às diferentes formas
que a monitorização destas estruturas é feita, o foco está em melhorar os métodos
existentes, através de uma análise comparativa. Este trabalho tem como finali-
dade o desenvolvimento de uma metodologia que compare os diferentes algoritmos
preditivos, como a Multiple Linear Regression, a Ridge Regression, a Principal
Component Regression e as Redes Neuronais, bem como a aplicação de diferentes
técnicas de separação de dados. Esta metodologia será aplicada a um caso de
estudo, com a finalidade de determinar qual ou quais as combinações de variáveis
que obtêm o melhor desempenho na previsão do seu comportamento.

Palavras-chave: Análise Preditiva, Aprendizagem Automática, Data Mining,
Análise de Big Data, Análise Estatística, Monitorização de Barragens.
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Abstract

Predictive models are fundamental instruments for providing dam safety anal-
ysis. They are important tools to retrieve conclusions about the structural safety
of these dams. The data for these predictive models is gathered through sensors
embedded within these structures. Even though predictive models are powerful
tools for analysis and prediction, other machine learning and statistical models,
like neural networks, have been developed over the years. Due to the many ways
dam safety analyses is performed, the focus is to improve the existing methods by
comparing them with each other. This work is focused on developing the methodol-
ogy that compares different predictive models, like the Multiple Linear Regression
Model, the Ridge Regression Model, the Principal Component Regression Model
and Neural Networks, as well as comparing different re-sampling techniques for
separating the data. This methodology is applied to a case study, with the pur-
pose of finding which combinations of input variables provide the highest accuracy
for predicting the behavior of these structures.

Keywords: Predictive Analytics, Machine Learning, Data Mining, Big Data,
Statistical Analysis, Dam Monitoring.
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Chapter 1

Introduction

Engineering structures like bridges, dams and buildings, have become indispens-
able instruments for human society. These structures ensure and provide a diverse
range of benefits, from an economic, social or environmental point of view. Once
these structures are built and constantly used they start aging and begin to de-
teriorate. Due to the constant usage and environmental effects suffered by these
structures and the growing vulnerability associated with their aging, there has
been an increasing need to assess, manage and monitor the risks associated with
them, as well as to provide constant improvements to their safety throughout their
entire lifespan, meaning that their structural integrity and maintainability must
be guaranteed in order to prevent possible catastrophic events that may occur,
either economic, environmental or humanitarian.

With these problems in mind, the goal of structural health monitoring (SHM)
of engineering structures consists in determining with high accuracy the location
and severity of damages on the structures as soon as they happen. The methods
that are currently being used for structural health monitoring can only determine
whether there is an existing damage within the structures but not the entirety
extent of these damages (Chang, Flatau, & Liu, 2003).

To monitor, assess and evaluate these structures several factors must be taken
into consideration to make sure that these structures are functioning as intended
and to provide a way of detecting any abnormal behavior that could endanger their
safety and the safety of the surrounding areas. These factors are gathered either
through manually inspections by the engineering teams or specialists from these
areas, or automatically by instrumentation within and around these structures,
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Chapter 1. Introduction

mainly through the use of sensors, but it can also be generated based on knowl-
edge from engineering experts. Figure 1.1 exemplifies these situations where the
Experimenter can be identified as the visual inspector and the Embedded sensor as
the automatic instrument generating the necessary information, both monitoring
a structure that is interacting with its surrounding environment.

Figure 1.1: Structural Health Monitoring, manual inspection and automatic
data retrieval (Balageas et al., 2010)

The most important factors that allow the monitoring of these structures are,
when applied, the level and temperature of the water, air movement and temper-
ature, the weight and movement of external elements on the structure, structural
shifts, the age of the structure, among others. Despite the existence of instruments
capable of obtaining most of these factors automatically, there is still the need for
visual intervention and inspection to determine the possibility of existing unde-
tected damages or deterioration. The task of getting reliable measurements from
the instruments located within the structure is not easy, due to their placement
often in hostile environments, where they are not easily reachable or the condi-
tions inside the structure are not favorable for mechanical or electronic tools, like
humidity for instance, which can, in time, cause these instruments to malfunction
and provide unreliable information.

The emerging ability to acquire data from several different sources creates
a new and different paradigm where science is now able to generate knowledge
from pattern detection, correlations or dependencies from sources with different
properties or representations. In the case of sensors, a great level of potential can
be gathered from the data where they represent real events, and can easily assume
a great volume of information, leading to a Big Data scenery where this generated
information can aid analysts adding more value to businesses and find hidden
knowledge that was not previously identified. It is very important to correctly
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Chapter 1. Introduction

analyze the data to further rely on the engineering structures either when they
are functional and in use or abandoned, and to be able to assess their ability to
withstand unlikely events like earthquakes or other environmental causes.

Engineering structures like dams, which will be the focusing structure covered
throughout the dissertation, are artificial reservoirs that are able to hold large
amounts of water, ensuring a diverse range of benefits, either from an economic or
from a social point of view, where their roles are to prevent floods, generate and
provide hydroelectric power, to reclaim land that otherwise would be submerged
and to provide water supply to several human activities, either for consumption
or industrial use. Water, especially fresh water, is relatively scarce and needs
to be preserved and so, it is imperative to ensure the successful monitoring of
these structures. Thus, this dissertation proposes an approach for monitoring and
evaluating dam response behavior based on the analyses of predictive, statistical
and machine learning modeling techniques for the assessment of the structural
engineering safety and maintainability of this type of structures.

The research methodology followed throughout this dissertation is the Design
Science Research Methodology (DSRM) for developing and evaluating the success-
fulness of the artifacts to solve the identified research problems (Von Alan, March,
Park, & Ram, 2004); (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007).

1.1 Research Methodology

The Design Science Research Methodology (DSRM) focuses on the importance of
creating, developing and evaluating different artifacts to meet and solve the pro-
posed and relevant objectives and problems. According to (Von Alan et al., 2004),
Design Science Research (DSR) is a problem-solving process which means that its
main objective is the acquisition of knowledge and understandability of the prob-
lems and their respective solutions to allow for the development and application
of these created artifacts. And so, the authors propose seven DSR guidelines to be
followed in order to prove the successfulness of each of the artifacts. The guidelines
are presented as follows, including a very brief explanation about each of them:

1. Design as an Artifact: DSR must produce successful and viable artifacts
that can either be defined as a construct, model, method or instantiation
artifacts;

3
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2. Problem Relevance: The objective of DSR is to develop solutions capable
of solving either technological or relevant business problems;

3. Design Evaluation: The utility, quality and efficacy of each of the created
artifact must be demonstrated though proper evaluation methods;

4. Research Contributions: Effective DSR must provide contributions that
are able to be verified in the areas of focus of each of the artifacts;

5. Research Rigor: DSR relies on the application of rigorous methods for
developing, demonstrating and evaluating the artifacts;

6. Design as a Search Process: An effective artifact requires using all avail-
able means to reach a desired end under the scope of the environment of the
problem;

7. Communication of Research: DSR must be presented to both, techno-
logical and management oriented audiences.

To (Peffers et al., 2007), the DSRM revolves around six main steps: (1) problem
identification and motivation, (2) definition of the objectives, (3) the design and
development of a proposal for the solution, (4) demonstration of the use of the
developed proposal, (5) evaluation of the proposed artifacts and their results and
(6) communication. Depending on the type of investigation, its entry point can
vary depending on the problem at hand. In the case of this dissertation, the
entry point is a Problem-Centered Initiation because in this case the objectives,
as suggested in both Figure 1.2 and Figure 1.3, can only be inferred from first
defining the problem and its motivation (Section 1.2).

Figure 1.2: Design Science Research Methodology (extracted from (Peffers et
al., 2007))

4



Chapter 1. Introduction

Figure 1.3: Adaptation Design Science Research Methodology (extracted from
(Peffers et al., 2007))

The artifacts that have been developed in this dissertation are: an instantia-
tion artifact which focuses on analyzing the currently used (Baseline) methods; a
method artifact for the identification of other predictive models for monitoring the
behavioral responses of the structures; and a model artifact for the comparison of
the predictive algorithms identified, against the baseline as well as against each
other. The combination of these artifacts and the possibility for some improve-
ments from these models are supposed to lead to advancements on the current
body of knowledge for the identified problem.

The artifacts demonstration is done through their application on a case study
with data from a real dam in Portugal which has been provided by the GestBar-
ragens software developed and currently being used by Laboratório Nacional de
Engenharia Civil (hereafter noted as LNEC). The focus of this demonstration is to
identify the best combinations of input variables for the models and the response
variables themselves, with the goal of obtaining a generic approach to the prob-
lem as well as obtaining a higher accuracy in predicting the behavioral structural
responses. The evaluation of the artifacts is done using a framework proposed by
(Von Alan et al., 2004) and using the identified model and combination of vari-
ables that provide the highest accuracy from the same source of datasets, to prove
the validity of each of the artifacts.
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1.2 Problem Identification and Motivation

This section of the dissertation corresponds to the Problem Identification and
Motivation step of the DSRM, which purpose is to define and justify the research
problem and what value will be given by applying the proposed solution.

The main problem, shared by several authors in the area, is the limited mon-
itoring and representation currently being applied to the engineering structures
that, in time, provide for a loss of information that could endanger the structures
culminating in disaster. The application of models to predict the behavior of
structural responses has become a standard for SHM. But for the most part, the
input variables are chosen without considering the best combination for each of the
behavioral responses. On one hand, it is expected that area specialists (i.e. civil
engineers) know which variables to choose from to positively affect the response
variables, thus generating high accuracy models. But on the other hand, there
are other unexpected factors that could impact the structures response, such as
the existence of patterns not yet discovered that could prove to be beneficial, thus
increasing the predictions, and that could also provide higher insights on how the
safety of these structures should be monitored and maintained.

The motivation of this dissertation derives from the necessity of improving the
monitoring of the behavioral structural responses, using different predictive model
techniques and input variables combinations as well as other differentiating fac-
tors that could allow for beneficial improvements to the models. The success of
the proposed research could provide a significant positive impact on the analysis
and monitoring of generic engineering structures and their behavioral structure
response. The case study used to exemplify the application of the different pre-
dictive model techniques is a real dam in Portugal with automatic and manual
acquisition sensors.

1.3 Contributions of the Solution

Considering the definition of the problem and the motivation behind it, as well
as the related work, which is comprised by the knowledge of what has been ac-
complished in the past, the objectives can then be inferred. This dissertation
focuses on one main objective: explore alternative predictive and statistical meth-
ods as well as machine learning algorithms for structural behavior monitoring and
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safety to improve results and their interpretation by the analysts, through com-
parison between them and those that are currently being used. The application
of these techniques has the potential to improve the predictive capabilities of en-
gineering structures and structural problem monitoring and detection, facilitating
interventions on these structures. Furthermore, to determine if the objectives of
the solution have been correctly defined and successfully resolved, three research
questions have been created:

1. Can there be a better alternate method and combination of input variables
for improving the predictive accuracy of each of the different structural be-
havior responses of dams?

2. Can the representation of results be improved to provide new insights and
help decision-makers improve their business decisions?

3. Can the application of the methodology developed for demonstrating the
created artifacts be applied to other generic engineering structures, and not
only for the application on dams?

Throughout the dissertation, several artifacts have been created, focused on
resolving the previously identified problems (refer to section 1.2), that are able to
improve the body of knowledge already possessed as well as use this knowledge in
new ways. And so, from the following artifacts, contributions provided from this
dissertation can also be inferred:

• An instantiation artifact to determine the baseline model performance from
the techniques currently in place that, according to (Mata, 2011), are con-
sidered to be good practices for structural behavior prediction and safety
on dams. This baseline model performance will then be compared to the
other predictive models to determine what models, combination of input
variables and necessary parameters, provide a higher accuracy of the results,
considering what is currently being done.

• A method artifact for applying other predictive statistical models or ma-
chine learning algorithms to the datasets and generate new models to im-
prove the basis knowledge and to allow for further comparison of their per-
formance against the baseline model.

• A model artifact for comparing the performance of the resulting predictive
models with the performance of the baseline model performance.

7
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The demonstration of how the developed artifacts are going to solve the iden-
tified problems is done through the development of a methodology (Chapter 3)
applied to a real case study (Chapter 3.1) in which, example datasets, each refer-
ring to one of the five behavioral response variables considered, are going to be
used for determining the performance results of each of the models that are then
compared to the performance of the baseline model.

And finally, to evaluate and validate the success as well as the performance
of the artifacts, taking into account the identified problems, the model artifact is
then applied to different datasets to demonstrate the generalization of the artifact
as well as to determine its efficiency and effectiveness.

1.4 Document Structure

The remainder of this dissertation is structured as follows:

• Chapter 2 - Related Work: In this chapter, it is provided an overview
of the existent literature in the area of this research, as well as the related
work on predicting the behavior of engineering structures, with a focus on
Dams, as introduced in Chapter 1;

• Chapter 3 - Design and Development: In this chapter, the objectives of
the solution are identified through the development of the artifacts applied
on the Demonstration phase (Chapter 4) as well as the case study (Section
3.1);

• Chapter 4 - Demonstration and Evaluation: In this chapter, the pro-
posed solution is applied to the datasets and the results are demonstrated
and evaluated in order to determine their efficiency and validity on this re-
search;

• Chapter 5 - Conclusions: In this chapter, it is concluded the dissertation,
the research questions proposed on Chapter 1 are answered and is defined
the future work to this research.
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Chapter 2

Related Work

This chapter of the dissertation covers the theoretical background and work related
to the problem and motivation that have been previously identified (Section 1.2),
which allows for the definition of the objectives of the solution of the DSRM. The
knowledge of the body of work contained throughout this chapter will serve as
input for the advancement of the following steps of the research, as expressed in
Figure 2.1.

• Section 2.1: In this section it is introduced the Big Data Analytics paradigm
to motivate the capabilities of Big Data and the value that it gives to busi-
nesses;

• Section 2.2: In this section it is introduced the notion of Data Mining, in
order to introduce the accepted methodologies for creating a valuable Data
Mining Project and the different data preparation techniques that go along
with it;

• Section 2.3: In this section it is introduced the concept of Predictive Mod-
eling in which are presented the different predictive models used throughout
the Demonstration and Evaluation phase;

• Section 2.4: In this section there will be presented the concept of Mod-
els Evaluation where are explained the different evaluation metrics and re-
sampling methods used to evaluate the different predictive models;

• Section 2.5: In this section it is presented the current Predictive Model-
ing techniques for Dam Behavior where the existing work, related to dam
behavior monitoring, is shown.
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Chapter 2. Related Work

Figure 2.1: Adaptation Design Science Research Methodology - Related Work
(extracted from (Peffers et al., 2007))

2.1 Big Data Analytics

Data has been growing at an exponential rate, due to constant technological ad-
vances, which in time, created the need to improve the ability to store, access,
manipulate and manage data, giving the possibility for the emergence of Busi-
ness Intelligence systems. Business Intelligence (BI) was first introduced in 1958
by an IBM researcher (Luhn, 1958) and has been around for decades where its
definition has been reviewed and improved multiple times, focusing on changing
how organizations should implement their strategies and improve their decisions.
The purpose of BI is to provide insightful knowledge and find useful information
to provide with the decision makers the means of detailed and summarized data
through use reporting tools and dashboards (Elena et al., 2011). The reporting
and analyzing requirements associated with these systems tend to maintain a sim-
ilar growth rate as technology itself to allow for the most valuable and on time
information as possible (Nedelcu et al., 2013). (Larson, 2012) and (Kimball &
Ross, 2011) agree that BI is comprised of three fundamental stages:

• Data gathering and manipulation, retrieved from different sources and incor-
porated into one big repository, usually incorporated into a Data Warehouse
system;
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• Data analyses by use of several Data Mining techniques, Machine Learning
algorithms and/or Statistical models;

• Data representation techniques, like dashboards, through access and manip-
ulation of the data as tools for decision makers in their decision making
processes.

The rising amounts of data being generated through a diverse range of indus-
tries lead to a new and interesting paradigm, which is for the moment, identified
as Internet of Things (IoT), which main purpose is to enhance the potential of
the data. According to (Atzori, Iera, & Morabito, 2010) data can be generated
in three ways: from the Internet, from sensors or from extracted knowledge. This
new data potential, quality and growing quantity allows businesses to improve their
systems and by extension, their decisions, in order to gain competitive advantage
over others. These amounts of data provides businesses with the realization of
the importance of Big Data Analytics to support their strategies (Ularu, Puican,
Apostu, Velicanu, et al., 2012); (Huisman, 2015).

Big Data Analytics adds new challenges and opportunities to BI with a sim-
ilar definition, being the main difference the fact that it is used to find and re-
trieve value from Big Data instead of the "normal" data businesses are used to.
(Gandomi & Haider, 2015) points out that Big Data is worthless unless when used
to drive the process of decision making. This assertion tells us that businesses
should be more focused in applying Big Data Analytics on their data to improve
their decision-making process. But on the other hand it is also true that most com-
panies have huge amounts of data but these amounts can not yet be considered as
Big Data.

(Assunção, Calheiros, Bianchi, Netto, & Buyya, 2015) describes BD as being
a “multi-V model” where each “V” characterizes its main aspects:

• Variety, refers to the different types of data being generated and can now
be used. Throughout the years the generated data has been focused on
structured data that its currently being used in traditional databases, but
now, the biggest part of the data that is being generated is unstructured.

• Volume, which refers to the vast amounts of data that is being generated
every second;

• Velocity, which refers to the speed rate that new data is being generated
and moving around;

11



Chapter 2. Related Work

• Veracity, which refers to the quality and control of the volume of data being
generated

• Value, which refers to the value that the study of this unstructured data,
provides to the growth of businesses and their decision-making processes.

To retrieve knowledge from BD, (Sun, Zou, & Strang, 2015) and (Huisman,
2015) agree that BDA is comprised of three main components: Descriptive Ana-
lytics, which is often described as a summarization of historic data into knowledge
and meaningful information through the discovery of existing relationships within
the BD (Huisman, 2015); (Sun et al., 2015). It focuses on answering questions
like “What and when did it happen?”; Predictive Analytics that according to
(Buytendijk & Trepanier, 2010) is the use of several statistical, forecasting and
data mining techniques to predict future events based on the descriptive data and
focuses on questions like “What will happen?”; and finally, Prescriptive Analytics
which tries to explain why something has happened.

2.2 Data Mining

Machines have become powerful instruments for providing the industries with the
ability to automate processes that would be too time consuming if being done
manually, even though, it is common that machines are sometimes unable to do
simple tasks that humans are able to do with great ease. The Data Mining (DM)
concept became relevant due to the growing availability of data, from IoT devices
for instance, and the need to generate knowledge and information from these data.
(Jain & Srivastava, 2013) and (Padhy, Mishra, Panigrahi, et al., 2012) define DM
as a way of mining knowledge and improve decisions through processes of Machine
Learning (ML) by exploring and analyzing large amounts of data or BD. The
authors describe DM as a Knowledge Discovery Process (KDD) or as a way of
extracting hidden information to predict trends and behaviors to gain competitive
advantage. In contrast, (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) refers to the
KDD process as being composed of several tasks to extract knowledge where one
of those tasks is DM where he considers it as the process of retrieving important
and relevant information, like patterns, anomalies or any alterations made to the
dataset. According to (Lei-da Chen, Frolick, et al., 2000) DM is used depending
on the needs of the organization thus generating different types of information to
find meaningful relationships between the data and to predict trends and patterns.
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Figure 2.2: KDD Process (extracted from (Fayyad et al., 1996))

DM projects according to (Marbán, Mariscal, & Segovia, 2009) follow the
CRISP-DM (Cross Industry Standard Process for Data Mining) methodology.
This methodology, also described as the Data Mining Life Cycle (DM-LC), demon-
strated in Figure 2.3, has a comprehensibly flexible sequence of phases due to the
possibility to go back to each of the previous steps to improve and modify the
reasoning or the variables being used.

Figure 2.3: CRISP-DM Methodology

The Business Understanding phase or Problem Identification phase is crucial
when developing DM projects, because it identifies the objectives and requirements
of the business and in almost every case they are the success criteria for a good
DM project. Data Understanding phase includes the initial insight to the data
to describe and explore it to form ideas and to find ways of retrieving hidden
information. According to (Zhang, Zhang, & Yang, 2003) the Data Preparation
phase takes approximately 80% of the total project and covers the steps of creating
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quality data to construct the dataset that will be used as input for the modeling
phase, including data selection and data cleaning. The Modeling phase is where the
different modeling techniques are selected and the model is built. The Evaluation
phase is where the results produced by the models will be evaluated to see if
they can achieve the business requirements and objectives that were previously
identified and where the knowledge is created. The Deployment phase is the end
phase of the project where the knowledge gained from the Evaluation phase is
deployed.

According to (Lei-da Chen et al., 2000) DM methods are divided into two
main learning groups, Statistical Learning (SL) and ML. SL is defined as a tool
to build statistical models to predict outcomes by having an underlying prob-
ability model and combining different fields of computer science like Statistics,
Artificial Intelligence (AI) and DM (James, Witten, Hastie, & Tibshirani, 2013).
ML, according to (Mohri, Rostamizadeh, & Talwalkar, 2012), is defined as the use
of efficiently designed computational methods or algorithms that are improved
using experience or training, improving their performance and provide more ac-
curate predictions.(Deshpande & Thakare, 2010) on the other hand, refers that
DM should be separated into two categories, Descriptive Models and Predictive
Models. This definition differs from what (Lei-da Chen et al., 2000) described in
the sense that SL and ML include both Descriptive and Predictive modeling. Pre-
dictive modeling problems consist in obtaining knowledge from analysis on past
experiences while Descriptive modeling problems consist in analyzing the evolution
of a given dataset to increase its knowledge.

2.2.1 Data Preparation and Cleaning

Data Preparation is a very important part of any Data Mining project and one of
the most time consuming, including several tasks. The main goal is to generate
quality data from existing raw data. When generated automatically, this data is
usually “dirty” or in other words, inconsistent, noisy or with missing values.

In the Data Preparation process, if applied, there is also the need for dimen-
sionality reduction. By reducing irrelevant or redundant features or even instances
of the data, the efficiency, speed and accuracy of the next DM processes can be
significantly improved.
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By cleaning the data and selecting the features that will be used it is also possi-
ble, by combining other, different features, to find and add hidden and undetected
features (Zhang et al., 2003).

2.2.1.1 Incorrect and Missing Values

Most of the predictive models make the assumption that all the input data values
are present and correct, hence the need to previously identify and revise incorrect
and missing values. If incorrect values reach the algorithms, as to overcome them,
they are either rendered insignificant or overrated which in both cases, causes a
negative impact on the model response. If incorrect values cannot be interpreted
by the algorithm then they are treated as a missing values and if they do not
appear that frequently on the dataset than they may be considered as irrelevant
(Abbott, 2014).

Missing values cause a negative impact on the accuracy of the models and
are hard to deal with and so, (Grzymala-Busse & Hu, 2001) and (Abbott, 2014),
consider several approaches to mitigate them:

• Replace the missing value with a new value: By using this approach, the
missing values can take on the value of either the most common attribute
value, a special value (-1, for instance) or the form of a mathematical arith-
metic function like the average or median of the attributes values;

• Delete missing values: The simplest approach is to delete the instances con-
taining the missing values, either by removing an entire row or an entire
column depending on what the modeler decides. The fact that an entire col-
umn or row is deleted, especially with a column, a great deal of information
is also being removed and not only the missing value, which can even cause
a greater impact over leaving the missing values on the data.

2.2.1.2 Outliers

Outliers are defined as unusual values that do not present the same behavior as
other values do. They are caused either by an anomaly caused by an equipment,
like sensors for instance, or either by a real abnormal event, like an earthquake
(Chen, Wang, & van Zuylen, 2010). The difficulty lies in dealing with outliers
on the premise that not all outliers can be considered insignificant and can be
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positively influence the outcome in terms of adding valuable information to the
dataset. (Abbott, 2014) describes several approaches to deal with outliers:

• Removing the outlier from the dataset: This approach can reveal to be either
good or bad, depending on the significance of the outlier. If the presence of
the outlier proves significant then information is being lost, and if not then
the model is improved;

• Transforming the outliers: Based on the same premise of the previous ap-
proach of removing the outlier from the dataset, changing the nature of an
outlier can also compromise the model and its response;

• Keep the outliers: This approach limits the modelers choice in which models
to use, being only able to use models that are not greatly affected by the
presence of outliers, or penalize their existence.

Figure 2.4: Exemplification of an outlier in a plot

2.2.1.3 Feature Selection and Dimensionality Reduction

Reducing the dimensionality of the data allows for an model to operate faster and
more effectively by removing irrelevant or redundant information. This reduction
can be done through feature selection providing a better understanding and inter-
pretation of the data or either by the application of Principle Component Analysis
(PCA) (S. Kotsiantis, Kanellopoulos, & Pintelas, 2006). Another way of gaining
valuable information from the data is through adding new features or as (Abbott,
2014) defines them as “derived variables”. The commonality between reducing and

16



Chapter 2. Related Work

creating features is that when features are proven to be good they reduce the
necessity for a more complex understanding of the data and they produce more
valuable and trustworthy results.

2.2.1.4 Principal Component Analysis

According to (Abdi & Williams, 2010) and (James et al., 2013) Principal Com-
ponent Analysis (PCA) focuses on the following objectives: extracting the most
important information from the dataset; and reducing the dataset with the intent
of only maintaining the most important information, thus simplifying its under-
standability. To do this, PCA applies linear combinations to the original set of
variables revealing the principal components which try to explain and reduce the
existent variability of the original dataset. Before the PCA analysis can be done,
all the variables must be standardized or normalized to eliminate any influences
or weight that one variable might have over the rest of the variables. According
to (Friedman, Hastie, & Tibshirani, 2001) PCA is computed using Singular Value
Decomposition (SVD) which decomposes a matrix X (M ∗ N) into three other
matrices:

X = U ∗ S ∗ V t (2.1)

where U is a (M ∗ M) matrix, S is a diagonal (M ∗ N) matrix and V t is
the transpose of V , where V is a (N ∗ N) matrix. PCA is commonly used for
increasing the efficiency of the analysis of the models by reducing the redundancy
of the model. It does this by reducing the dimensionality with losing the minimum
amount of information. And so, the original variables that presented some form of
correlation between them, are transformed into uncorrelated variables or Principal
Components (PC), which are linear combinations of the correlated variables.

2.3 Predictive Modeling

Based on (Abbott, 2014), predictive modeling algorithms are supervised learning
algorithms which implies that they learn based on previous experiences, in other
words, they generate a new predictive response by testing a new set of input data
to a known set of inputs that are already known to produce a certain response.
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(Friedman et al., 2001) refers to this as a process of “learning by example”. Su-
pervised Learning is usually divided into two main categories: Regression and
Classification. In the Regression setting, response variables are usually charac-
terized as quantitative or numerical and the main objective is to predict based
on continuous measurements. In contrast, in the Classification setting, response
variables are usually qualitative or categorical and the main objective is to assign
a label to the response variables. The main goal of these models is to predict a
given variable Y εR in terms of a set of inputs XεRv:

Y = F (X) + ε (2.2)

where F (X) is the observed value of the function in use, ε is an error term
and v is the number of inputs. There are several predictive algorithms (regres-
sion, neural networks, decision trees, k-nearest neighbors, etc.) but throughout
this dissertation the focus will be mainly on neural networks and on regression
algorithms, such as: Multiple Linear Regression, Ridge Regression and Principal
Component Regression, as they provide a far better comprehension of quantitative
results.

2.3.1 Multiple Linear Regression

Linear Regression is the most basic and commonly used predictive model where
its purpose is to explain the existing relationship (the weight or value of the coeffi-
cients) between a dependent variable Y or response, and one or more independent
variables X or predictors (James et al., 2013). In other words, Linear regression
provides a general description of how the inputs affect the output by weighing
the coefficients (Friedman et al., 2001). Depending on the number of independent
variables when applying Linear Regression, it can either be described as Simple
Linear Regression when only one independent variable is used or Multiple Linear
Regression (MLR) otherwise. The Multiple Linear Regression model is represented
by the following equation:

F (X) = β0 +
P∑
j=1

∗Xj ∗ βj (2.3)

Where β0...P corresponds to the coefficients, X1...j to the independent variables
and P the total number of independent variables. According to (Friedman et
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al., 2001), the independent variables can be considered by taking on several forms,
mainly as quantitative inputs, as transformations of those quantitative inputs, like
the logarithm for example, of the polynomial representation of those inputs (X2,
X3, X4) or of arithmetic interactions between the variables, like X3 = X1 ∗X2 for
instance.

Figure 2.5: Example output of a Linear Regression

(Friedman et al., 2001) also refers that in most of the cases where the appli-
cation of Linear Regression is prominent, the coefficients are usually calculated
through the Least Squares, in which the coefficients are chosen to minimize the
Residual Sum of Squares (RSS), given by Equation 4 and to find the best fit to
the data.

RSS(β) =
N∑
i=1

(yi − F (X)))2 (2.4)

Sometimes the Least Squares method does not provide the best accuracy or
interpretation of the model due to the possibility that some predictors can present
a large variance of their data which means that they provide little to almost no
additional information to the model, and if large number of predictors are used,
then the interpretation of the model becomes a lot more complex (Friedman et
al., 2001).

The interpretability of Linear Regression models can be done in two different
ways: (1) through the values of the coefficients that describe the weight that
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is given to a certain predictor variable and how they will impact the estimated
values; (2) by comparing the values of the response variable or estimated values,
with the actual values of the model by use of error measures as will be discussed
afterwards in Section 2.4 (Abbott, 2014). (Tobias et al., 1995) refers that to take
full advantage of the MLR models, three different conditions should be met: (1)
the predictors that are used to express a response must be few; (2) there must not
be any correlation between them (which as explained in 2.2.1.4 could be achieved
through the use of PCA) or in other words, there must not have a highly linear
relation, and (3) they must express some sort of relationship to the responses.

2.3.2 Ridge Regression

According to (Friedman et al., 2001), the idea of Ridge Regression (RR), also de-
scribed as the Tikhonov regularization, is to penalize the regression coefficients.
This algorithm is similar to the MLR algorithm, where the only noticeable differ-
ence is in the application of a lambda (λ) parameter that controls the amount of
penalty going that is going to be applied to the coefficients, thus allowing for a
more controlled shrinkage of the model by shrinking the coefficients towards zero,
which causes a smoothing the model. This method provides a decorrelation of the
variables, without applying any sort of dimensionality reduction like PCA. Just
like MLR, RR uses the Least Squares method to minimize the RSS but in this
case, it considers the influence of the penalty on the coefficient to minimize the
sum of the squares, as shown in Equation 2.5. If the value of the coefficients (β)
is large than the value for the penalty will increase.

RSS(λ) = (y −Xβ)T ∗ (y −Xβ) + λβTβ (2.5)

Where λ is the amount of shrinkage to be applied to the model and X is the
input matrix.

2.3.3 Principal Component Regression

Sometimes, there are a large number of independent variables that can sometimes
be correlated between them and so Principal Component Regression (PCR) is
a linear predictive model which estimates the response of the model based on
the selection of Principal Components (PC) that represent the most explanatory
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variables by making use of PCA that has been discussed in 2.2.1.4 Since the PCs
don not present any sort of correlation between them, they are then considered as
inputs for the model (Liu, Kuang, Gong, & Hou, 2003). According to (Friedman et
al., 2001), the PCR starts by standardizing the inputs, and only then is the PCA
algorithm applied so that there are only PC applied to the regression instead of the
original predictors. By standardizing and applying the PCA to the model, reducing
the dimensionality of the model, PCR takes care of any possible collinearity or
correlation between the predictors. By considering Equations 2.1 and 2.5 (refer to
2.2.1.4 and 2.3.2, respectively), the representation of the PCR model becomes:

X = z1v
T
1 + z2v

T
2 + ...+ ziv

T
i + ε (2.6)

where z1...i are the score values, v1...i are the eigenvalues of the matrix X and
ε is the error term.

2.3.4 Neural Networks

Neural Networks are defined as Multi-Layer Perceptrons (MLP). MLPs are com-
prised of neurons, where each neuron is defined by an equation, usually referred
to as a transfer function (Abbott, 2014).

Figure 2.6: Example of a neuron (extracted from (Abbott, 2014))

A single neuron can produce a linear model. Using a single neuron does not
provide better results than by using other predictive models because there are
several linear models that have greater accuracy and are more efficient. To show
improvements when compared to linear models, neural networks stack these single
neurons in layers allowing for more powerful and flexible prediction algorithms.
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As said, a layer is a set of stacked neurons, and can be defined either as an input
layer, output layer or hidden layer. The hidden layers are usually between the
input and the output layer.

Figure 2.7: Example of a neural network (extracted from (Abbott, 2014))

Neural Networks are iterative learners which means that they learn step by
step. In the first step the weights are randomly initialized in order to start training
the algorithm, passing through the different layers of the network ending up on
the hidden layers and finally in the output layer. The resulting prediction is
compared by measuring the error, to the actual expected value. The weights are
then adjusted with the calculated error measured and a new cycle or epoch starts.
This happens until the entire dataset is trained, thus being ready to be tested with
new unknown values.

2.4 Models Evaluation

Predictive models are developed based on past data, that will then be applied to
new instances of data that have not yet been introduced in the models, or in other
words, new generated data. It is necessary to evaluate and verify these in terms
of accuracy and performance when confronted with new data.

The evaluation of the performance of the models is usually divided using dif-
ferent or a combination of several re-sampling methods into two sets, the training
set and the test set (Figure 2.8). Sometimes a third set may also be considered
where it is defined as the validation set. And so, this evaluation is made through
the use of an evaluation measure (or error measure) in mind. To estimate the
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accuracy and performance of this models is to provide a method for comparing
the models between them to be able to fine tune these models.

Figure 2.8: Models evaluation lifecycle

2.4.1 Criteria for Model Comparison

Many criteria, that can also be defined as accuracy measures, are used to estimate
how well the models are performing, their purpose is to measure the difference
between the estimated or predicted values and the actual or real values:

ei = yi − ŷi (2.7)

Where yi is the real value and ŷi is the estimated value of the model. Accuracy
measures are scale dependent which means that they cannot compare values with
different scales. This information is then used by the modelers, so that they can
fine tune these models in order to either improve them or decide that it is not
worthy using them in the long run (James et al., 2013).

2.4.1.1 Correlation Coefficient

Correlation Coefficient or R measures the linear relationships between the vari-
ables. It focuses on quantifying the dependence or correlation between the vari-
ables. It ranges from [-1.0,1.0] where it indicates either a negative or positive
correlation between the variables, respectively. If the result equals to 1.0 then
there is a perfect positive linear correlation between x and y, presenting the same
amount of variation. If, by contrast the result equals to -1.0, then there is a perfect
negative linear correlation between the variables which means that they vary in an
opposite way. If the result equals to 0 then there is no correlation between them.
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The most common calculation for the Correlation Coefficient is through the
Pearson product-moment, where its first calculated the covariance between the
variables and then is divided by their standard deviations:

Rxy =
Cov(vx, vy)

σx ∗ σy
(2.8)

Where v(x, y) corresponds to the real and estimated variables and σ(x, y) cor-
responds to each of the variables standard deviations.

2.4.1.2 Coefficient of Determination

Coefficient of Determination or R2, measures how well the model can predict
future outcomes, in other words, how well the dependent variables can be predicted
considering the independent variables. It accounts for the variability of the model
and it is calculated through the square of the Coefficient Correlation and it ranges
from [0.0,1.0]:

R2
xy = (

Cov(vx, vy)

σx ∗ σy
)2 (2.9)

An improvement can be made to the R2, that is defined as the Coefficient of
Determination Adjusted or R2

adj, which gives the percentage of variation that the
independent variables are really affecting the dependent variable, in other words,
with provides the confidence of the model predicting the correct outcome.

2.4.1.3 Mean Squared Error

Mean Squared Error or MSE measures the quality of the estimated value or, in
other words, how close the estimated values differ from the actual values. The
MSE of the predictions is the mean of the squares of difference between the
estimated value and actual values and it can be defined as:

MSE =
1

n

n∑
i=1

(ei)
2 (2.10)

Where n is the number of instances within the dataset and ei is the error
exemplified in Equation 2.7. The MSE ranges from [0.0,1.0] where the results
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that are close to 0 are highly desirable, because if the estimate for the predictive
value is 0, then the algorithms accuracy was perfect. TheMSE is extremely useful
because it shows the variance and deviation from the estimated value to the actual
value (James et al., 2013).

A variation of the MSE can be defined as the Root Mean Squared Error or
RMSE, where nothing more than the root of the MSE metric. This is an useful
metric due to its ability to amplify through penalization, large errors that by using
only the MSE would most likely pass undetected.

RMSE =

√√√√ 1

n

n∑
i=1

(ei)2 (2.11)

2.4.1.4 Mean Absolute Error

The Mean Absolute Error or MAE is the sum of the absolute values of the errors.
The advantage of applying this metric rather than MSE is when dealing with
outliers. Despite the outliers, MAE accuracy follows the same logic as MSE

being that it is better when closest to zero. MAE is defined as:

MAE =
1

n

n∑
i=1

|ei| (2.12)

2.4.2 Re-sampling Methods

Re-sampling methods are used to determine and/or increase the accuracy of a
model by refitting a model to retrieve new hidden information that sometimes
can only be obtained by fitting the model more than one time. This process of
evaluating the performance of a model is also defined as model assessment (James
et al., 2013). According to (S. B. Kotsiantis, Zaharakis, & Pintelas, 2007) there
are two ways for evaluating the predictive accuracy of a model: (1) by splitting the
dataset into training and testing sets or Hold-Out and (2) through K-Fold Cross-
Validation. (James et al., 2013) refers an additional variance of cross-validation
referred to as Leave-One-Out Cross-Validation.

According to (Tashman, 2000) in order to provide a real-time assessment for
forecasting, there is a need to wait a long time for data to be generated in order
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to get a reliable picture of what is going to be forecast. He also refers that the
Hold-Out method has become the most generally accepted re-sampling method.

2.4.2.1 Hold-Out

Hold-Out is one of the simplest and easiest validation techniques by randomly
splitting the training and the tests sets only once (usually dividing 2

3
of the data

to the training set and the other 1
3
to the test set) as exemplified in Figure 2.9

(James et al., 2013). For predictive models that, to provide better results, account
for most of the historical data, usually the training set takes up 80 to 95% of the
records on the dataset.

Figure 2.9: Hold-Out Re-Sampling Method

2.4.2.2 K-Fold Cross-Validation

K-Fold Cross-Validation (K-Fold CV) takes the same approach as Hold-Out but
instead of splitting the dataset only once it splits it k times, usually of the same
size. The k=0 subset is used as the validation set and the remaining k-1 subsets
are treated as the training set. The model repeats k times where each time the
validation set changes. One variation of the K-Fold Cross-Validation is the Leave-
One-Out Cross-Validation (LOOCV) which follows the same logic as the K-Fold
CV where the k times that the model is split corresponds to the number of elements
with the dataset. In other words, the dataset is trained and tested k (number of
elements minus one) times (James et al., 2013).

2.4.2.3 Rolling-Origin Cross-Validation

Rolling-Origin Cross-Validation or ROCV is an out-of-sample evaluation, in which
the the origin of the training set is successively being updated, much like the Slid-
ing Window method, which results in the production of several new forecasts
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(Tashman, 2000). Assuming the division of a dataset with 10 years into N=10,
where N is the number of samples, each corresponding to a year of records. The
ROCV maximum number of samples would be N=5, where the last sample cor-
responds to the test set and the other 4 to the training set. The forecast is then
generated and the ROCV moves forward one until it reaches the tenth sample,
thus generating 5 forecasts.

Figure 2.10: Example of Rolling-Origin Cross-Validation

2.5 Predictive Modeling for Dam Behavior

Structural Health Monitoring (SHM) has been growing and evolving over the years,
mainly with the appearance and evolution of sensor technologies to identify struc-
tural damages. It offers automated methods for assessing the structural integrity
and health through structural monitoring systems. These systems have been con-
tinuously growing and being improved, and are widely accepted for the detection
and prediction of the behavior of the structures and are responsible for collect-
ing the measurements from the sensors that are installed within these structures
(Lynch & Loh, 2006).

GestBarragens is a software for monitoring the safety of engineering structures
like dams, which supports, among others not relevant for the scope of this research,
the process of manual and automatic data exploration from instruments located on
the structures, the process of visual inspections as well as the ability for anomaly
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detection, to ensure a good decision-making process (Silva, Galhardas, Barateiro,
& Portela, 2005).

GestBarragens also supports the generation and visualization of quantitative
interpretation models, numerical models as well as physical models. The quan-
titative interpretation models establish relations between the input values that
influence the model and the structural behavior responses, as exemplified in Fig-
ure 2.11 (Portela, Pina dos Santos, Silva, Galhardas, & Barateiro, 2005).

Figure 2.11: Example of a resulting quantitative interpretation model from
GestBarragens of a structural behavior response

Other challenges like the one proposed by (Mata & Tavares de Castro, 2015)
also have the intention of providing better and quality data to allow for a better
further analysis. The authors propose a qualitative analyses and assessment of
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paired samples of automatically and manually gathered measurements (ADAS
and MDAS, respectively). Their idea is to eliminate gross measurements resulting
from the difference in frequency of gathered records, pairing both the ADAS and
the MDAS to determine through the use of Probability Density Functions (pdf)
if they represent the same population, thus eliminating differences between the
ADAS and MDAS, to successfully analyze the ADAS measurements (Figure 2.12).

Figure 2.12: Plot of MDAS and ADAS Measurements over the years

There has been a significant amount of work done relative to monitoring the
behavior and safety of dams. For a more general perception of what has been
done in this area, several related papers have been analyzed and summarized in
Table 2.1. These papers have been characterized in several dimensions: (a) the
objective of the paper, (b) the models used, (c) the input attributes for the models
(environmental variables), (d) the error metrics for model validation and (e) the
output of the model (dam behavior).
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Table 2.1: Survey on Related work about Predicting Dam Behavior Responses

Objective Methods Attribute Error
Metrics

Output

Assessing the importance of water and
thermal temperature variations on thermal
displacements (Tatin, Briffaut, Dufour,

Simon, & Fabre, 2015)

HTT Wt, At σ Radial Dis-
placements

Assessing the delayed response analyses for
pore pressure measurements through the

effects of the water level and rainfall events
(Bonelli & Royet, 2001)

IRF Wl, Rf - Pore
Pressure

Express complex relationships between the
environmental variables and noise effects on
the monitoring data through linear and

nonlinear mapping of the variables (Cheng &
Zheng, 2013)

PCA,
SVM

Wl, Rf ,
At

- Radial Dis-
placements,

Uplift
Pressure

Determine the usefulness of a FNN
(FeedForward Neural Network) model for

assessing dam behavior (Ranković,
Novaković, Grujović, Divac, & Milivojević,

2014)

NN ,
MLR

Wl R, R2,
MSE,
MAE

Pore
Pressure

Dam behavior analyses through the use PCA
for dimensionality reduction (Yu, Wu, Bao,

& Zhang, 2010)

HST ,
PCA

H, S, t R Crack
Opening

Comparison of auto regressive models for
performing delayed analyses on air

temperature measurements with a seasonal
analysis (Bonelli & Félix, 2001)

IRF Wl, At - Radial Dis-
placements

Support Vector Regression techniques
evaluation for forecasting tangential

displacements (Ranković, Grujović, Divac, &
Milivojević, 2014)

SVM Wl R, MSE,
MAE

Tangential
Displace-
ments

Assess how effectively an HSS can estimate
the time-effect deformation on monitoring
data (Li, Wang, Liu, Fu, & Wang, 2015)

HST H, S, t σ, pdf , R2 Radial Dis-
placements

Usage of Moving PCA and Robust
Regression for extracting relevant

components and to detect possible anomalies
on the measurements (Jung, Berges, Garrett,

& Kelly, 2013)

MPCA,
RRA

Wl - Pore
Pressure
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Application of a statistical approach
accompanied with a structural identification

technique to provide a higher degree of
accuracy in predicting and monitoring the
behavior of dams (De Sortis & Paoliani,

2007)

HST H, S, t R, σ Radial Dis-
placements

Application of a Feed Forward Neural
Network to estimate and simulate the flow of

a dam (Tayfur, Swiatek, Wita, & Singh,
2005)

NN Wl RMSE,
MAE, R2

Pore
Pressure

Performance comparison between a MLR and
a NN model for assessing dam behavior

(Mata, 2011)

MLR,
NN

Wt, At MAE,
MaxAE, R

Horizontal
Displace-
ments

Increase fitting accuracy and forecasting
precision based on an Error Correction
Model by integrating the relationships

between the output and input variables (Li,
Wang, & Liu, 2013)

ECM ,
MLR

H, S, t,
error

σ, pdf , R2 Radial Dis-
placements

Identification of the effect of air temperatures
on the structural response of the dam based
on a Fourier Transform analysis (Mata, de

Castro, & da Costa, 2013)

STFT H, At σ, R2 Horizontal
Displace-
ments

Usage of modifications of the PLS model for
mitigating the collinearity between the

variables and the existence of outliers, and
the selection of informative variables (Xu,

Yue, & Deng, 2012)

SIMPLS,
GA−
PLS

H, At RMSE Crack
Opening

Assessing the performance of a MLR model
optimized by using Genetic Algorithms

(Stojanovic, Milivojevic, Ivanovic,
Milivojevic, & Divac, 2013)

MLR H, At,
Ct, Rf , t

R2, RMSE Radial Dis-
placements

Assess the performance of hybrid models for
dam deformations (Perner & Obernhuber,

2010)

MLR H, Ct, t - Radial Dis-
placements

Methods: HTT=Hydrostatic Thermal Time; IRF=Impulse Response Function;
PCA=Principal Component Analysis; SVM=Support Vector Machines; NN=Neural
Networks; MLR=Multiple Linear Regression; HST=Hydrostatic Seasonal Time;
MPCA=Moving PCA; ECM=Error Correction Method; STFT=Short Time Fourier
Transform; SIMPLS=Statistically Inspired Modification of Partial Least Squares;

GA− PLS=Hybrid Genetic Algorithm with SIMPLS.
Attributes: Wt: Water Temperature; At: Air Temperature; Wl: Water Level; Rf :

Rainfall; H: Hydrostatic; S: Season; t: time; Ct: Concrete Temperature.
Error Metrics: σ: Standard Error of Estimate; R: Correlation Coefficient; R2: Coeffi-
cient of Determination;MSE: Mean Squared Error; RMSE: Root Mean Squared Error;
MAE: Mean Absolute Error; pdf : Probability Density Function; MaxAE: Maximum

Absolute Error.
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The main contributions provided by these authors are the identification of
different models used to monitor structural damages in dams through the rela-
tionships between the environmental variables (predictors) and the behavior of the
dams (response). Depending on the problem and the case study, several objectives
have been defined but the commonality between them is the analyses of the moni-
toring data either being generated manually or by equipment within the structures
(pendulums, piezometers, etc.), and the identification of responses that explain the
behavior of these structures (pressures, displacements, etc.). Even though most
of the authors provide different alternative models for monitoring dam behavior,
most of the attributes or environmental variables that serve as inputs for these
models are the same: Hydrostatic Load, Water Level, Air Temperature, Water
Temperature, Rainfall, Time.

2.5.1 Dam Behavior variables

According to (Mata, 2011) and (Xu et al., 2012), and considering the attributes
of Table 2.1, the statistical relationship between the dependent variables and the
independent variables is given by:

Y (W,T, t) = YW + YT + Yt + ε (2.13)

where the Y (W,T, t) corresponds to the response variable, the W corresponds
to the Hydrostatic Load, the T to the Temperature variations, the t to the time
since the initial record of the structure, or in other words, the aging of the structure
and ε to the error component. Each of the effects of components that correspond
to each of the independent variables provide different influences on the behavior
of the structure.

The influence of the YW variable can be described through the use of polyno-
mials to scale this variable in order to provide more weight to these variable and
thus giving it more influence if necessary to the models, where β1...4 correspond to
the coefficients to adjust and the h = 265 − 76, where 265 is the Crest Elevation
and 76 is the Height Above Streambed, which corresponds to the water level:

YW = β1h
4 + β2h

3 + β3h
2 + β4h (2.14)
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According to (Mata, 2011) the influence of the temperature can be calculated
through the use of the age of the structure, and can be considered as a sinusoidal
function, extending over a period of a year or six months (In the context of this
dissertation, the functions have been calculated for a period of a year). This
function can be extracted in this form, especially in the case of Portugal, since the
country has a sort of predictability to its temperatures, where the temperature
tends to rise when approaching summer and decreasing when approaching winter.
And so, the influence of the temperature can be described as follows:

YT (σ) = β1cos(σ) + β2sin(σ) + β3sin
2(σ) + β4cos(σ)sin(σ) (2.15)

where β1...4 corresponds to the coefficients to be adjusted and σ = 2πd
365

, where
d equals to the days since the beginning of a year and 365 to number of days in a
year.

The influence of time or the aging of the structure is important to encompass
elements which vary over time, like deterioration for instance. And so, the influence
of time can be represented as:

Yt = β1t+ β2t
2 + β3t

3 (2.16)

where β1...3 corresponds to the coefficients to adjust and t the number of days
since the age of the structure since the analyses began.
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Design and Development

This chapter of the dissertation covers the Design and the Development of the
artifacts phase (expressed in Figure 3.1) of the DSRM.

• Section 3.1: In this section it is presented the Case Study that is going to
be used throughout the Demonstration and Evaluation phases (in Chapter
4) of this research, aiming to provide a generic and detailed approach of the
use of each of the predictive models on engineering structures (in this case,
a Dam structure);

• Section 3.2: In this section a development methodology for the artifacts is
proposed, to allow for a more comprehensible step-by-step approach of what
is going to be done throughout the Demonstration and Evaluation phase
(Chapters 4);

• Section 3.3: In this section it is presented what the Development Lan-
guage is, behind the code used to develop the applications of the different
techniques to the datasets, as well as to evaluate the resulting metrics.
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Figure 3.1: Adaptation Design Science Research Methodology - Design and
Development (extracted from (Peffers et al., 2007))

3.1 Case Study - A Portuguese Concrete Dam

For this research, it has been chosen as a case study, datasets related to different
types of instruments from a portuguese concrete dam. The dam used in this case
study is located in the Douro river basin. It is an arch type dam with a height of
more than 75m functioning as a hydroelectric plant and it started being explored
in the decade of 1970. It can retain nearly 136m3 of water and has a concrete
volume of more than 80000m3 (Figure 3.2).
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Figure 3.2: Structural Schema for the studied dam

The monitoring system currently implemented throughout the dam consists
of a combination of several instruments that exist within the different 13 blocks,
each one with the purpose of measuring different types of quantities, in most cases
even measuring more than one quantity. Table 3.1 represents the different types
of instruments existing within the structure, their number of records and if the
instrument is gathering data either manually or automatically.
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Table 3.1: Recording Instruments existing on the studied dam (instruments
names in portuguese)

Data Gathered Manually Data Gathered Automatically

Instruments Number
of

Sensors

Number
of

Records

Date First
Record

Number
of

Sensors

Number
of

Records

Date First
Record

Base de
Alongâmetro

70 50383 11-12-1975 6 171153 06-10-2006

Deslocamento
geodésico

24 630 01-04-1984 - - -

Dreno 122 82510 15-01-1977 2 22170 10-01-2006
Escala de Nível 1 85682 15-11-1976 1 28564 10-01-2006
Extensómetro
de Fundação

25 30524 01-07-1976 3 83919 10-01-2006

Extensómetro
de Resistência

68 47130 11-08-1976 - - -

Fio de Prumo
(Base)

10 17871 05-11-1976 6 171415 10-01-2006

Higrómetro - - - 1 2058 25-04-2008
Medidor de
Juntas de
Resistência

12 7535 17-01-1975 - - -

Nivelamento
geométrico de

precisão

50 953 01-04-1984 - - -

Piezómetro 61 90668 16-01-1977 4 114192 10-01-2006
Termómetro de

Máxima e
Mínima do Ar

1 13054 16-11-1976 - - -

Termómetro de
Resistência

31 25884 01-07-1976 8 197541 10-01-2006

Termómetro do
Ar

- - - 3 66811 10-01-2006

Total 475 452824 - 34 857823 -

The dam studied in this dissertation is not one of the oldest nor one of the
biggest dams present in Portugal, but despite that, the number of instruments
inside this structure reaches 509, which includes both manual and automatic data
generation instrumentation. It is noticeable the difference in growth rates for the
manual and automatic data gathering instruments. The first record of most of the
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manual instruments is from the 1970s reaching over 452824 records from 457 in-
struments against the 34 instruments for the automatic instruments where the first
record is from 2006 reaching almost double the value of manual instruments with
857823 records. The difference in these growing rates is related to the frequency
the measurements are retrieved. For the manual instruments, measurements are
only gathering data weekly while the automatic instruments are gathering data
several times a day, thus providing more records over a lower period of time. The
manual measurements are usually gathered and verified by one or more of the
area scientists, mainly through visual inspection, where the automatic measure-
ments are gathered through the use of sensors which also needs to be verified
and analyzed, thus the need for predictive analysis to automatically monitor these
structures.

The main data sources used in the context of this research have all been pro-
vided by LNEC and are organized in the traditional form of a table within a .txt
file and they all correspond to instruments that are taking manual measurements
and so, for each of the datasets are included the measurements taken by one sensor
which corresponds to one instrument. There are several sensors taking the same
measurements that are placed in different locations within the structure, not only
for redundancy but for providing the most accurate information of what is happen-
ing in the entire structure. As seen in Table 3.1 there are 12 different sensors that
are taking measurements manually, hence it is quite difficult and time consuming
to analyze them all.

To analyze and provide a realistic approach to the identified problem there
were chosen three different types of instruments (sensors): BaseDeAlongametro,
ExtensometroDeFundacao and FioDePrumo(Base).

• For the BaseDeAlongametro instrument there were provided 70 sensors, each
one of them reading measurements relative to the Opening and the Slippage
structural responses from the dam.

• For the ExtensometroDeFundacao instrument there were provided 7 sensors,
each reading measurements relative to the Displacement structural response
from the dam.

• And finally, for the FioDePrumo(Base) instrument there were provided 10
sensors, each reading measurements relative to the Radial Displacements and
the Tangential Displacements structural responses from the dam.
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The datasets were exported from a platform developed by LNEC, called Gest-
Barragens, and since it was already being used in a production and predictive
setting, through the use of a MLR model, there was no real need to check the con-
sistency of the data or the existence of a high number of outliers, though they could
still exist. For determining and cleaning the existence of outliers, GestBarragens is
already applying a method, through the use of standard deviation which removes
the values that are above or under a certain threshold (parameterizable from 1 to
3 times the value of the standard deviation). Although this process of cleaning
the data has been approved by engineering specialists, there could be valuable
information on these values that are being removed that could prove beneficial for
better understanding of the structures safety and also for their monitoring.

The datasets used consist of data gathered with a daily periodicity and range
from the beginning of the exploration of the structure until the 19th of Septem-
ber, 2016. Table 3.2 illustrates the dependent variables that are representative of
the structural responses (dam behavior) for the different datasets that have been
provided and are going to be the focus of this research.

Table 3.2: Provided dependent variables

Name Data Type Data Source Units Measurement
Frequency

Opening Numerical GestBarragens (mm) Weekly
Slippage Numerical GestBarragens (mm) Weekly

Displacement Numerical GestBarragens (mm) Weekly
Radial Displacement Numerical GestBarragens (mm) Weekly

Tangential Displacement Numerical GestBarragens (mm) Weekly

For this analyses, the independent variables retrieved from the GestBarragens
software are the:

• dateRef , that corresponds to the day the record was taken;

• h, that corresponds to the Water Level present at that time.

The following independent variables have been determined considering the pre-
viously mentioned functions (2.5.1) and dam engineering practice, with the intent
to add more relevant information and to increase the accuracy of the models:
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• h2, h3, h4, correspond to the scaling done to the h variable to give more
weight to this variable;

• t, t2, t3, where t corresponds to the age of the structure;

• cos(d), sin(d), sin2(d), cos(d)sin(d), where the combination of the cos(d) and
the sin(d) variables represent the variations in temperature and sin2 and
cos(d)sin(d) represent transformations of those variables.

The dependent variables (see Table 3.2) from the datasets are usually char-
acterized by temporal series where the date in which measurements are taken is
uniform and successive over time. From the independent variables generated by
GestBarragens and those considered through the equations on 2.5.1, the effect of
the Water Level is predominant and is a significantly impacting variable. The
effect of the temperature is also considered as one of the impacting variables in
structural dam behavior.
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3.2 Design and Development Methodology

Figure 3.3: Design and Development Methodology Diagram

Figure 3.3 represents the overall diagram for the design and development method-
ology that is going to be followed throughout the demonstration and evaluation
phase of the dissertation. This diagram represent the different steps followed as
well as the order at which they were used. This methodology, adopted in order to
develop the artifacts, is comprised of three distinct steps in order to allow for the
assessment of the results provided and to allow for their comparison.

And so, the first of this methodology is the selection of which datasets to
use for each of the corresponding response variables as well as the preparation
of the corresponding data and selection of the combination of input variables to
use (the predictors). As previously mentioned, the number of datasets for any of
the response variables is varied and their corresponding sensors are often placed
in different locations within the structure and can present different characteristics
and so, in order to develop a viable and unambiguous comparison and evaluation

42



Chapter 3. Design and Development

of the performance for each of the different predictive models, a first iteration on
the datasets is done, where the MLR model is applied to the datasets with the
cos(d) + sin(d) + h4 combination of variables, which was chosen, due to being the
combination that is currently being used by LNEC for their predictive analyses.
The datasets that return the highest value for the R2

adj metric for each of the re-
sponse variables are then those that are going to be selected. It was chosen the R2

adj

metric for this "evaluation" due to its ability to provide a higher confidence of the
model as explained in 2.4.1.2. This first step of the methodology is demonstrated
in Figure 3.4.

Figure 3.4: Development Methodology Diagram (step one)

The second step of the methodology is the separation of each of the previously
selected datasets into training and testing sets using the Hold-Out re-sampling
method (refer to 2.4.2.1). Each of these subsets is comprised of the combination
of input variables for the model as well as the output variable to be predicted.
Depending on the response variable and dataset, the number of elements contained
in the training and testing sets can also be varied, either due to how long the
instrument has been in use or due to the frequency of its measurements which is
also different depending on the reachability of the instrument within the structure.
For this comparative analysis and evaluation, the training sets include the first
80% of the records and the testing sets, the last 20%. This second step of the
methodology is demonstrated in Figure 3.5.
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Figure 3.5: Development Methodology Diagram (step two)

The third step of the methodology is the analysis of predictive models. Each of
the models is trained using the training sets referred in the previous step. To ob-
tain the corresponding results, the models are then tested using the corresponding
testing sets containing the data that has not yet been introduced to the model to
estimate their accuracy. This step is subdivided into two phases where the first is
the analyses of the Baseline model as well as the other predictive models, and the
second is a comparative analysis between all of the predictive models considered
(MLR, RR, PCR and NN). An analysis is done for each of the following combina-
tion of predictors variables: h4, cos(d) + sin(d), h4 + t, cos(d) + sin(d) + h4 and
cos(d) + sin(d) + h4 + t. The variable t alone was not considered for the analysis
due to its ever-increasing nature which is represented by the number of days since
the structure started functioning. The cos(d)+sin(d) variables are always consid-
ered in combination because of their representation of how temperature behaves,
as explained in 2.5.1, in this case considering the geographical location of our case
study, Portugal, which nearly follows the sinusoidal shape over the years. To eval-
uate the results of the models the following metrics are considered, that have been
defined and presented in Chapter 2 (refer to 2.4.1): MSE, RMSE, MAE, R2,
R2
adj and R. After the comparison and evaluation of the different predictive mod-

els it is assessed if the improvement of the predictive models that have presented
results. These results demonstrate how the models are behaving and which are
able of being improved further, mainly using other re-sampling methods like the
K-Fold CV or the Rolling-Origin CV rather than the Hold-Out method for the
separation of the dataset. This third step of the methodology is demonstrated on
Figure 3.6.
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Figure 3.6: Development Methodology Diagram (step three)

For a better visualization and interpretation of the results, the data has been
standardized to fit the plot and for the representation of the resulting metrics.
This has been done, mainly due to the difference of scales in some variables, where
they can either go from -15 to 15 (mm) in Radial Displacements as well as from
-0,05 to 0,15 (mm) in Slippages for instance. This sort of standardization is done
only for the visualization and error metrics, because if done to the prediction, the
importance of the variables that are being weighted to have a higher correlation
effect like the h4 variable would be lost. This is not the case for NN were the data
had to be standardized from the beginning before being used in the model.

3.3 Development Language

To analyze the different predictive models, a development language must be se-
lected. According to the specifications that LNEC provided, the only restriction
that has been imposed is that the language or platform must be open-source or in
other words, not proprietary. LNEC is currently using R to do their data analyses
and is considered to be a useful language to use in a data analysis setting. One
other language that would be equally capable to deal with these types of problems
would be Python. In comparison to Python, R functionality is developed with
statistics and graphical models in mind while Python is a general-purpose type
solution. R has several advantages over other languages, like greater features for
data visualization which are a great help when dealing with predictive models,
a huge user contributed documentation adopted more and more by and towards
scientist, researchers and statisticians, and others.
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Demonstration and Evaluation

In this Chapter of the dissertation is presented the Demonstration and Evaluation
phases of the DSRM as expressed in Figure 4.1, the different predictive methods
where applied to the different artifacts that have been proposed in the Design and
Development phase. To conclusively evaluate and define the success of the results,
the metrics expressed in section 2.4.1 were used. This Chapter is structured as
follows:

• Section 4.1: In this section it is demonstrated and evaluated the instanti-
ation artifact for the Baseline model;

• Section 4.2: In this section it is demonstrated and evaluated the perfor-
mance of the model artifact for the Predictive methods apart from the MLR,
and the method artifact for comparing the different predictive methods with
the baseline as well as among each other;

• Section 4.3: In this section it is demonstrated and evaluated the hypotheses
of applying other re-sampling methods to the datasets, to evaluate if the
accuracy of the models improve;

• Section 4.4: In this section is summarized the application of the different
predictive methods to the case study of a real portuguese dam.
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Figure 4.1: Adaptation Design Science Research Methodology - Demonstration
and Evaluation (extracted from (Peffers et al., 2007))

4.1 Baseline

LNEC is currently applying MLR models for predicting the structural behavior
(responses) of several structures, especially concrete dams. After using their tech-
nology for a few years LNEC has two prominent and different goals when using
their data on analyzing and monitoring their structures or for investigation pur-
poses:

1. To apply a predictive analysis, through MLR, to determine the accuracy of
the models in order to estimate the structural responses of their dams;

2. To provide comparisons between the data being gathered manually and the
data being gathered automatically by the embedded sensors to monitor and
detect errors in their measurements in order to ensure that data is being
gathered according to dam engineering practices and that there are no prob-
lems with the structure.

The application of the Baseline models to the datasets as well as the analysis of
its performance, is used to prove the usefulness in understanding what is currently
being done, in this case, on a predictive setting. With this analysis it will be clear
what are the existing bottlenecks and possible flaws with the current implemen-
tation, as well as improvements needed to be made. The use of different input
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predictor variable combinations on the same datasets provides an understanding
about the correlation between each of the predictors to the response variables be-
ing analyzed as well as the effect they have on the structure. This analyses is done
through the use of the evaluation metrics which will provide the resulting accuracy
and confidence of each prediction.

Figure 4.2: Opening variable for the cos(d)+sin(d)+h4 predictors combination

Table 4.1: Metrics for the Opening Response

Response Predictors MSE RMSE MAE R2 R2
Adj R

Opening

h4 0,06005 0,24506 0,21123 0,00198 -0,00781 0,04449
cos(d) +

sin(d) + h4
0,01376 0,11731 0,08496 0,81119 0,80934 0,90066

cos(d) +

sin(d) + t

0,01765 0,13284 0,10573 0,76521 0,76291 0,87476

h4 + t 0,06135 0,24769 0,21545 0,0000 -0,00980 -0,00168
cos(d) + sin(d) 0,01627 0,12755 0,09517 0,77095 0,76870 0,87804

cos(d) +

sin(d) + h4 + t

0,01601 0,12654 0,10131 0,80655 0,80465 0,89808

From Table 4.1 it is noticeable the differences in the correlation coefficient
(R) metric between the h4 and the h4 + t predictors, where the negative value
of h4 + t shows that this combination of variables impacts the model negatively,
thus not presenting any sort of relationship or dependency whatsoever to the
Opening variable. The h4 variable alone presents little to no relationship to the
Opening variable. These two predictors combinations lack the presence of the
variations in temperature (cos(d) + sin(d)) which for the Opening variable seem
to represent most of its correlation, of nearly 88%. Just by using the cos(d)+sin(d)
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combination, the model shows nearly 77% of goodness of fit as the R2
Adj metric

implies, where both the h4 and h4 + t impair the results. It is also noticeable that
the combination of the variations in temperature and the water level (cos(d) +
sin(d)+h4) presents a small increase of the goodness of fit (81%), where by adding
the effect of time (cos(d)+sin(d)+h4+t) it decreases, to 80%, which means that the
variable t also impacts the model in a negative way, as the predictors combination
of h4+t also demonstrated. Even though these variations of 1% in the R2

Adj metric
are not that significant in terms of confidence in the model, when comparing the
MSE metric, the combination of predictors that gave a lower error rate estimate
was the cos(d) + sin(d) + h4. In summary, the best combination of predictors for
the Opening variable that provide a higher goodness of fit based on the overall
metrics for the MLR model is the cos(d) + sin(d) + h4, presented in Figure 4.2.

Figure 4.3: Slippage variable for the cos(d)+sin(d)+h4 predictors combination

Table 4.2: Metrics for the Slippage Response

Response Predictors MSE RMSE MAE R2 R2
Adj R

Slippage

h4 0,07004 0,26466 0,23804 0,36335 0,36068 0,60270
cos(d) +

sin(d) + h4
0,04701 0,21681 0,19493 0,85914 0,85857 0,92690

cos(d) +

sin(d) + t

0,16625 0,40774 0,35515 0,69319 0,69196 0,83258

h4 + t 0,19139 0,43748 0,37229 0,11571 0,11215 0,34016
cos(d) + sin(d) 0,04819 0,21953 0,19702 0,83617 0,83551 0,91442

cos(d) +

sin(d) + h4 + t

0,16577 0,40715 0,35441 0,69827 0,69705 0,83562
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The analysis of Table 4.2 is done in a similar way to that of Table 4.1 where
the h4 and h4 + t predictors show the least correlation to the Slippage variable,
but for this response variable, the correlation of the h4 variable to the model
represents a 64% correlation, whereas for the Opening variable it represented only
4%. Even though it correlates 64% to the model, the h4 variable alone only
represents 36% of the variability of the model which means that alone is not a good
variable for predicting future outcomes. The effect of the variations in temperature
(cos(d) + sin(d)) represent an even higher correlation (R) than for the Opening
variable with a 91% correlation with nearly 84% of the variability of the model.
This means that the Slippage response is strongly dependent of the variations of
temperature. The combination of the cos(d)+sin(d)+h4 seems to account for the
most part of the variability of the model with 86%, where the effect of time seems
to have a negative impact on the goodness of fit of the model reducing the R2

Adj

by nearly 20%. And so, for this response variable, the combination of predictors
that shows a higher R2

Adj is cos(d) + sin(d) + h4, as presented in Figure 4.3.

Figure 4.4: Displacement variable for the cos(d)+ sin(d)+h4 predictors com-
bination
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Table 4.3: Metrics for the Displacement Response

Response Predictors MSE RMSE MAE R2 R2
Adj R

Displacement

h4 0,02473 0,15726 0,13740 0,80219 0,80055 0,89565
cos(d) +

sin(d) + h4
0,01455 0,12061 0,09773 0,95225 0,95186 0,97583

cos(d) +

sin(d) + t

0,04184 0,20455 0,17746 0,56504 0,56144 0,75169

h4 + t 0,03324 0,18233 0,14693 0,79796 0,79629 0,89329
cos(d) + sin(d) 0,04325 0,20797 0,17857 0,49175 0,48755 0,70125

cos(d) +

sin(d) + h4 + t

0,02169 0,14727 0,12605 0,95469 0,95431 0,97708

The analysis of Table 4.3, to predict the Displacement response, it is noticeable
that in this setting, the effect of time (t) has a smaller impact in the model when
comparing the values from the previously seen on Table 4.1 and 4.2. The effect
of the water level (h4) variable has a correlation of nearly 90% for the response
where the cos(d) + sin(d) variable only has 70% which means that this response
variable is strongly dependent of the H4 variable. And so, because the impact on
the model by the effect of time is not that significant, the combination of variables
that represent the highest confidence of the model is the cos(d) + sin(d) + h4 + t,
but by looking at the MSE metric this combination gives a higher error rate than
the cos(d) + sin(d) + h4 which means that, in this setting, the combination of
predictors that have the best goodness of fit is the cos(d) + sin(d) + h4, presented
in Figure 4.4, where its R2

Adj is 95% and its MSE is 0,015.

Figure 4.5: Radial Displacement variable for the cos(d)+sin(d)+h4 predictors
combination
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Table 4.4: Metrics for the Radial Displacement Response

Response Predictors MSE RMSE MAE R2 R2
Adj R

Radial
Displacement

h4 0,03567 0,18885 0,16755 0,52233 0,52106 0,72272
cos(d) +

sin(d) + h4
0,00448 0,06690 0,05553 0,96996 0,96988 0,98486

cos(d) +

sin(d) + t

0,03255 0,18042 0,15725 0,80699 0,80645 0,89832

h4 + t 0,04774 0,21849 0,18195 0,51029 0,50899 0,71434
cos(d) + sin(d) 0,01561 0,12496 0,10459 0,80279 0,80226 0,89598

cos(d) +

sin(d) + h4 + t

0,01626 0,12753 0,10816 0,96547 0,96538 0,98258

From the analysis of Table 4.4, the base combination that presents the most
correlation with the response variable, the predictors with the higher correlation, is
the variations in temperature (cos(d)+sin(d)) of nearly 90%, where the variations
in the water level account for 72%. Through the comparison of the h4 and h4 + t

combination we can see that the effect of time impacts the model negatively. The
variables combinations of cos(d)+ sin(d)+h4 and cos(d)+ sin(d)+h4+ t present
similar correlation to the model of approximately 98% and similar variability, of
nearly 97% but the combination that presents the lowest MSE is the cos(d) +
sin(d) + h4 variable, presented in Figure 4.5.

Figure 4.6: Tangential Displacement variable for the cos(d) + sin(d) + h4

predictors combination
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Table 4.5: Metrics for the Tangential Displacement Response

Response Predictors MSE RMSE MAE R2 R2
Adj R

Tangential
Displacement

h4 0,01778 0,13335 0,10916 0,86445 0,86410 0,92976
cos(d) +

sin(d) + h4
0,01709 0,13072 0,10702 0,87232 0,87199 0,93398

cos(d) +

sin(d) + t

0,03624 0,19037 0,16537 0,33169 0,32992 0,57593

h4 + t 0,01847 0,13592 0,11453 0,85654 0,85616 0,92549
cos(d) + sin(d) 0,03482 0,18659 0,15596 0,32082 0,31902 0,56641

cos(d) +

sin(d) + h4 + t

0,01782 0,13347 0,11298 0,86675 0,86640 0,93100

From the analysis of Table 4.5 it is noticeable from the R metric that the h4

predictor alone accounts for nearly 93% of the correlation with the model. For
the Tangential Displacement response variable, the effect of time does not appear
to have significant impact as it did on others. The combination of the h4 variable
with the effects of the temperature, the cos(d) + sin(d), accounts for slightly over
than 93% of the correlation with over 87% of variability. Taking also into account
that this combination presents the lowest MSE value of 0,017, then the variable
that provides the best goodness of fit of the model is the cos(d) + sin(d) + h4

predictors combination, as presented in Figure 4.6.

4.2 Predictive Methods

For the new predictive methods that have been considered and explained in 2.3,
the RR, PCR and the NN, the applied methodology was the same as the one
applied to the Baseline model as well as the considered datasets.

To allow for a better comparison between all of the obtained results. For
these new considered predictive methods the following Tables will only include
the best combination of predictors and their comparison with the Baseline’s best
combination as well for the corresponding response variable.
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4.2.1 Ridge Regression

The RR model is nearly the same regression model as the MLR but, as explained
before, where the difference lies in applying a λ variable that penalizes the coeffi-
cients, allowing for a controlled shrinkage of the model (refer to 2.3.2). The focus
of using RR in this type of environment is to increase the accuracy of the MLR
model in datasets that present a great number of outliers where, because of the
penalty, the intent is to smooth the model to overcome these outliers.

Since RR is almost an identical model to MLR and since the datasets that
have been chosen were those that presented the highest confidence for each of
the response variables, unless there are very correlated variables or outliers, it is
plausible that the results that are presented in the MLR setting are identical to
the results presented in the RR setting. The λ variable is calculated automatically
for each of the coefficients, thus presenting the best results for each of the response
variables.

Table 4.6: Metrics for the Response Variables for comparing MLR and RR

Response Model Predictors MSE RMSE MAE R2 R2
Adj R

Opening
MLR cos(d) +

sin(d) + h4
0,01376 0,11731 0,08496 0,81119 0,80934 0,90066

RR cos(d) +

sin(d) + h4
0,01382 0,11758 0,08522 0,81107 0,80922 0,90006

Slippage
MLR cos(d) +

sin(d) + h4
0,04701 0,21681 0,19493 0,85914 0,85857 0,92690

RR cos(d) +

sin(d) + h4
0,04743 0,21778 0,19583 0,85869 0,85812 0,92666

Displacement
MLR cos(d) +

sin(d) + h4
0,01455 0,12061 0,09773 0,95225 0,95186 0,97583

RR cos(d) +

sin(d) + h4
0,01463 0,12096 0,09804 0,95232 0,95193 0,97587

Radial
Displacement

MLR cos(d) +

sin(d) + h4
0,00448 0,06690 0,05553 0,96996 0,96988 0,98486

RR cos(d) +

sin(d) + h4
0,00448 0,06693 0,05555 0,96995 0,96988 0,98486

Tangential
Displacement

MLR cos(d) +

sin(d) + h4
0,01709 0,13072 0,10702 0,87232 0,87199 0,93398

RR cos(d) +

sin(d) + h4
0,01711 0,13080 0,10709 0,87242 0,87208 0,93403
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In Table 4.6, as expected, the values appear to be identical since the datasets
that have been chosen presented the highest R2

Adj for MLR, where the best com-
bination of predictors remained the same, the cos(d) + sin(d) + h4. It appears
that RR did not clearly outperform MLR for any of the response variables, and
what it can be taken from these results is that these combinations of variables
are not correlated and the datasets did not contained much outliers. Despite RR
worsening the models, it remains the fact that the results are practically identical
which gives us the possibility to rely on a “smoothed” model (RR) rather in one
that does not provide the possibility to penalize abnormalities. Figures 4.7 to
4.11 demonstrate the similarities of the each of the models using RR with their
counterpart using MLR.

Figure 4.7: Opening variable comparison from MLR (on the left) and RR (on
the right)

Figure 4.8: Slippage variable comparison from MLR (on the left) and RR (on
the right)
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Figure 4.9: Displacement variable comparison from MLR (on the left) and RR
(on the right)

Figure 4.10: Radial Displacement variable comparison from MLR (on the left)
and RR (on the right)

Figure 4.11: Tangential Displacement variable comparison from MLR (on the
left) and RR (on the right)
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4.2.2 Principal Component Regression

PCR, unlike the RR or the MLR model, applies dimensionality reduction using
the PCA (see 2.2.1.4), where the RR only applies a penalty on the coefficients.
PCR, as mentioned before (refer to 2.3.3), applies the resulting PC from the PCA
to the model, thus preventing any redundant or non-important information to
be predicted. The technique of applying the dimensionality reduction ability of
the PCA before the model is a very common practice especially if the amount
of input variables is high, which, in this setting, are mainly the combinations
of cos(d) + sin(d) + h4 and cos(d) + sin(d) + h4 + t. And so, it is expected
that single variable combinations would give nearly the same results as without
the use of PCA. And so, it should be visible which variables are really going to
have an impact on the models, in other words, which variables will give the most
information about the model.

Table 4.7: Metrics for the Response Variables for comparing MLR and PCR

Response Model Predictors MSE RMSE MAE R2 R2
Adj R

Opening
MLR cos(d) +

sin(d) + h4
0,01376 0,11731 0,08496 0,81119 0,80934 0,90066

PCR cos(d) + sin(d) 0,05496 0,23444 0,19827 0,10163 0,09282 0,31880

Slippage
MLR cos(d) +

sin(d) + h4
0,04701 0,21681 0,19493 0,85914 0,85857 0,92690

PCR cos(d) + sin(d) 0,05762 0,24003 0,21621 0,59819 0,59657 0,77343

Displacement
MLR cos(d) +

sin(d) + h4
0,01455 0,12061 0,09773 0,95225 0,95186 0,97583

PCR cos(d) +

sin(d) + h4
0,02473 0,15726 0,13740 0,80219 0,80055 0,89565

Radial
Displacement

MLR cos(d) +

sin(d) + h4
0,00448 0,06690 0,05553 0,96996 0,96988 0,98486

PCR cos(d) +

sin(d) + h4
0,03567 0,18885 0,16755 0,52233 0,52106 0,72272

Tangential
Displacement

MLR cos(d) +

sin(d) + h4
0,01709 0,13072 0,10702 0,87232 0,87199 0,93398

PCR cos(d) + sin(d) 0,01778 0,13335 0,10916 0,86445 0,86410 0,92976

In Table 4.7, it seems that for the Opening, Slippage and Tangential Displace-
ment response variables, the combination that got the best goodness of fit was the
cos(d) + sin(d) predictors combination, which entails that the variation of tem-
perature is the variable that gives the most correlation and most information to
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the model. For the Displacement and Radial Displacement responses the combi-
nation of predictors that gave the best goodness of fit was the cos(d)+ sin(d)+h4

combination. We can see that for every response variable tested, the PCR model
gave a worst result than the MLR model. Figures 4.12 to 4.16 demonstrate the
similarities of the each of the models using PCR with their counterpart using MLR.

Figure 4.12: Opening variable comparison from MLR (on the left) and PCR
(on the right)

Figure 4.13: Slippage variable comparison from MLR (on the left) and PCR
(on the right)

59



Chapter 4. Demonstration and Evaluation

Figure 4.14: Displacement variable comparison from MLR (on the left) and
PCR (on the right)

Figure 4.15: Radial Displacement variable comparison from MLR (on the left)
and PCR (on the right)

Figure 4.16: Tangential Displacement variable comparison from MLR (on the
left) and PCR (on the right)
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4.2.3 Neural Networks

The NN model, contrarily to the previously applied Regression models, needs the
input data to be normalized in order to obtain appropriate results that are within
the domain or context of the prediction. For this analysis, the NN model was
parameterized with: N number of nodes for the input layer and N * 2 – 1 number
of nodes for the hidden layer and 1 node for the output layer, where N is equal to
the number of elements of the combination of predictors variables. The output of
this model needs to be a linear output, because the input values are unbounded.

Table 4.8: Metrics for the Response Variables for comparing MLR and NN

Response Model Predictors MSE RMSE MAE R2 R2
Adj R

Opening
MLR cos(d) +

sin(d) + h4
0,01376 0,11731 0,08496 0,81119 0,80934 0,90066

NN cos(d) + sin(d) 0,01517 0,12316 0,09532 0,79066 0,78861 0,88919

Slippage
MLR cos(d) +

sin(d) + h4
0,04701 0,21681 0,19493 0,85914 0,85857 0,92690

NN cos(d) +

sin(d) + h4 + t

0,02697 0,16422 0,13070 0,74544 0,74442 0,86339

Displacement
MLR cos(d) +

sin(d) + h4
0,01455 0,12061 0,09773 0,95225 0,95186 0,97583

NN h4 0,02440 0,15621 0,13436 0,81396 0,81240 0,90218
Radial

Displacement
MLR cos(d) +

sin(d) + h4
0,00448 0,06690 0,05553 0,96996 0,96988 0,98486

NN cos(d) +

sin(d) + h4 + t

0,02750 0,16583 0,13698 0,89137 0,89109 0,94413

Tangential
Displacement

MLR cos(d) +

sin(d) + h4
0,01709 0,13072 0,10702 0,87232 0,87199 0,93398

NN h4 0,01844 0,13579 0,11055 0,85404 0,85366 0,92414

In Table 4.8 the NN showed similar results to the MLR, even improving by
half, the results for the MSE metric for the Slippage response variable. Consid-
ering that these datasets were chosen as the best datasets (with the highest R2

Adj)
where MLR had been applied, it is expected that with other datasets where the
MLR presents bad results, NN could provide improvements to the model. It is
also noticeable, from the values of the R2

Adj metric, that even though MSE pro-
vided better results, it did not improve the confidence on the model. This could
probably be due to the randomness applied by the NN model, thus giving better
error measurements but worse confidence. Figures 4.17 to 4.21 demonstrate the
similarities of the each of the models using NN with their counterpart using MLR.

61



Chapter 4. Demonstration and Evaluation

Figure 4.17: Opening variable comparison from MLR (on the left) and NN
(on the right)

Figure 4.18: Slippage variable comparison from MLR (on the left) and NN
(on the right)

Figure 4.19: Displacement variable comparison from MLR (on the left) and
NN (on the right)
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Figure 4.20: Radial Displacement variable comparison from MLR (on the left)
and NN (on the right)

Figure 4.21: Tangential Displacement variable comparison from MLR (on the
left) and NN (on the right)

4.3 Re-sampling Methods

To summarize, the predictive models that have shown promise for improvement
are the MLR and the NN. The PCR model did not provide better results than
MLR or NN due to the lack of input variables and lack of collinearity between
them, but it did demonstrate which predictors are more correlated with each of
the responses. The RR model also did not provide better results, but it could
provide better results than the MLR if there were a greater number of outliers
within the dataset. The usage of these models (RR and PCR) on engineering
structures could prove beneficial depending on the structure they are used in, the
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number of variables being gathered and the amount of discrepancies, i.e., outliers,
existing on the data associated with those structures.

4.3.1 K-Fold Cross-Validation

K-Fold Cross-Validation, as previously mentioned in Chapter 2 (refer to 2.4.2.2),
is a re-sampling method where the dataset is divided in N number of samples,
where N - 1 of these samples are considered a part of the training set and the
other single sample is considered a part of the testing set.

In the K-Fold Cross-Validation setting, for each of the datasets corresponding
to each of the response variables, both the MLR and the NN models where tested
using different number of samples (or “Folds”). The number of samples chosen
were 5, 10 and 20. Since the samples are being generated with random elements,
in other words, they are not being generated in a sequential order, these tests
were repeated five times and the mean of the resulting metrics was calculated.
The LOOCV variation was not considered due to the elevated number of records
on each of the datasets and the number of models that would need to be generated.
To demonstrate the number of models being generated, namely with the NN, which
is more time consuming than MLR, for a number of samples of 20, five repetitions
and a number of variable combinations of 5 (h4, cos(d)+sin(d), cos(d)+sin(d)+h4,
h4+ t and cos(d)+sin(d)+h4+ t) we would get: 20*5*5 = 500 NN models. If the
LOOCV were to be applied, considering a number of 1986 records for one response
variable dataset, with the same parameters as before we would get: 1986*5*5 =
49650 NN models. Table 4.9 shows the best number of samples and the best
combination of input variables for each of the MLR and NN models, for each of
the response variables.
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Table 4.9: Metrics for the Response Variables for comparing MLR and NN
using the K-Fold Cross-Validation Re-Sampling method

Response Model Predictors Samples MSE MAE R2
Adj

Opening
MLR cos(d)+sin(d)+h4 10 0,01166 0,07636 0,73480
NN cos(d) + sin(d) +

h4 + t

10 0,00948 0,06665 0,78168

Slippage
MLR cos(d) + sin(d) +

h4 + t

10 0,00696 0,06731 0,81843

NN cos(d) + sin(d) +

h4 + t

10 0,00208 0,03130 0,94590

Displacement
MLR cos(d) + sin(d) +

h4 + t

20 0,01283 0,07243 0,77290

NN cos(d) + sin(d) +

h4 + t

10 0,00796 0,05829 0,84895

Radial
Displacement

MLR cos(d) + sin(d) +

h4 + t

5 0,00213 0,03386 0,96422

NN cos(d) + sin(d) +

h4 + t

10 0,00159 0,03051 0,97035

Tangential
Displacement

MLR cos(d)+sin(d)+h4 20 0,00583 0,04054 0,65093
NN cos(d) + sin(d) +

h4 + t

10 0,00418 0,03311 0,73548

From Table 4.9, we can see that K-Fold CV behaved better than expected
for either the NN and the MLR settings when comparing the MSE metric with
the previously results of the Baseline model (refer to Table 4.8). On the other
hand, the confidence values of the R2

Adj metric shown a steep decrease mainly due
to K-Fold CV using random sampling for splitting the data where order is an
important factor, but despite that, it seems that NN shown improvements on all
of the response variables even with unordered data.

4.3.2 Rolling-Origin Cross-Validation

K-Fold CV does not take into consideration the ordered historical values presented
on the datasets, which are important to determine future outcomes or behavioral
responses from the structure. And so, to overcome this issue, especially for MLR
methods, a Rolling-Origin CV (ROCV) method was developed. The logic behind
Rolling-Origin is presented in Chapter 2 (refer to 2.4.2.3) but to implement it, the
following procedure has been developed:
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1. The first step is to divide the datasets into years to find the maximum
amount of years, excepting the final year, to use for the training set in order
to minimize the error when using the last year as the testing set;

2. The second step is to implement the ROCV across the different datasets
for each of the response variables with the number of years discovered, to
obtain the mean of the resulting variables, thus providing for a more realistic
approach of the use of this method from prediction.

To provide a viable evaluation the first and the last years were removed from the
datasets because they could either begin or end in the middle of the year and so
could provide false results, or since the case study is a Dam structure, the first year
could refer to the filling of said structure and thus it could impair the results. The
combination of predictors used for this analysis was the cos(d)+sin(d)+h4 for the
MLR method that, as seen so far, represents the best combinations of variables
for this method. For the NN there was made a comparison to determine which
of the combinations of variables and number of years would result in the lowest
error, which resulted in the cos(d) + sin(d) + h4 + t combination of variables for
each of the response variables.

Table 4.10: Metrics for the Response Variables using Rolling-Origin Cross-
Validation

Response Model Predictors Years used
in Training

MSE MAE R2
Adj

Opening
MLR cos(d)+sin(d)+h4 3 0,03701 0,13735 0,77230
NN cos(d) + sin(d) +

h4 + t

13 0,05285 0,16047 0,76268

Slippage
MLR cos(d)+sin(d)+h4 5 0,04058 0,14009 0,78064
NN cos(d) + sin(d) +

h4 + t

10 0,08340 0,24568 0,71573

Displacement
MLR cos(d)+sin(d)+h4 9 0,03224 0,14207 0,93401
NN cos(d) + sin(d) +

h4 + t

3 0,06155 0,17257 0,73977

Radial
Displacement

MLR cos(d)+sin(d)+h4 11 0,01271 0,08730 0,97008
NN cos(d) + sin(d) +

h4 + t

4 0,01239 0,08595 0,96585

Tangential
Displacement

MLR cos(d)+sin(d)+h4 12 0,02956 0,13839 0,90884
NN cos(d) + sin(d) +

h4 + t

2 0,06356 0,18120 0,80196
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The analysis of Table 4.10 demonstrates similarities of what has been seen so
far, namely on the number of years used for training. For the MLR model it is seen
that this model behaved better for the Opening and Slippage responses where the
number of years was lower on these responses and quite a bit higher on the others,
due to the low variability these response variables present. The metrics however
demonstrated lower results over using K-Fold Cross Validation as a re-sampling
technique. On the other hand, for the NN model, the number of years used in
training were mostly contrary to those of the MLR. The metrics were also lower
when compared to the K-Fold Cross Validation. These results were to be expected
not to give higher results than other re-sampling methods due to the non existent
randomness that the KFCV provided. However, it showed that, for each of the
response variables, the amount of data needed for a good analysis of these types
of structured can vary depending on the erratic measurements gathered by the
instruments.

4.4 Summary

This Chapter intents to provide different perspectives of what could be done by
applying different predictive models to the datasets and so, it has been purposed an
Instantiation Artifact for the analysis of the Baseline model (MLR) and a Method
Artifact corresponding to the New Predictive Methods applied to the Dataset.

The new predictive models that have been proposed to accomplish this where
the RR, the PCR and the NN and were compared throughout. For the RR model,
the results have enabled a higher understanding of the impact outliers pose in the
datasets as well as for limiting possible existing collinearity between the predictor
variables combinations using the penalty parameter (explained in 2.3.2). And so,
taking this information into account it is clear that, by the comparison made in
4.2.1 as well as in Table 4.6, the combination of predictor variables served as input
are not collinear between themselves nor are the datasets used outlier intensive.
However, this is not always the case when predicting data from datasets that are
mainly composed of measurements gathered manually which have a high chance
of being of an outlier prone nature.

For the PCR model, the results allowed for the perception of understanding
which were the PC, i.e., variables, that had the most impact, or correlation, with
the response variables. The results on the other hand did not show improvements
to the model which is due to the application of PCA before the application of
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the predictive model which removes the clutter variables that do not present any
correlation with the output but could still provide insights on the behavior of the
response. The results on Table 4.7 could be expected because even though they
do not present a high correlation to the output they still present a slow indication
of what can be used to predict the responses.

For the NN model, the results in Table 4.8 showed some improvements where
the randomness of this model was a key component. This model, by not taking
into account the nature of the dataset, which is based on historical data, allowed
for a different perspective on the application of random models on these types of
structures and datasets.

By applying different re-sampling methods to the datasets as seen in Table
4.9, it was shown that the application of the K-Fold Cross Validation showed
improvements for the NN model and not so much for the MLR, which again, the
randomness of the model was key, where the MLR did not take well the changes
provoked by the separation into folds and random attribution.

The ROCV method, presented in Table 4.10 showed worse results than either
the Hold-Out method and the K-Fold Cross Validation but it demonstrated that,
the bigger the datasets training size, the better the results, even though it showed
promise for a few number of years, mainly due to the balanced gathering of the
measurements and the nonexistence of outliers in the dataset.
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Conclusions and Future Work

Structural safety and monitoring has been and will continue to be a high study fo-
cused area in order to determine and achieve the most accurate and efficient ways
of providing a near real-time approach to the analysis of the behavioral responses
of engineering structures. Since their introduction, Machine Learning algorithms
have been in the heart of the advancements made throughout these areas, but
with the emergence and availability of sensors within these structures, the ability
to gather more information grows exponentially higher than manual gatherings.
And so, new implementations of Big Data Analytics, especially from the Predic-
tive Analytics branch, are growing faster and more successful as knowledge keeps
growing on these areas of study. However, despite this recent successful growth
there is still a lot of work to be done in order to fully understand the capabilities
of these methods as well as hidden value that could be retrieved from using them.

This research started by introducing the need for safety management and mo-
torization of engineering structures as well as the theoretical background behind
these concepts to investigate the proposed problem that arose. And so, in order
to provide a useful response to this problems, the following Research Questions
emerged:

1. Can there be a better alternate method and combination of input variables
for improving the predictive accuracy of each of the different structural be-
havior responses of dams?

2. Can the representation of results be improved to provide new insights and
help decision-makers improve their business decisions?
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3. Can the application of the methodology developed for demonstrating the
created artifacts be applied to other generic engineering structures, and not
only for the application on dams?

In order to answer these questions, the purpose of this research has been to
determine, through the use of predictive methodologies, what would be, for a
certain response variable of a given engineering structure, the best combination of
input variables that would provide the highest confidence for monitoring the safety
of these structures. And so, to accomplish this, it was applied different predictive
methods like MLR, RR, PCR and NN as well as different methods of re-sampling
the data into training and testing sets to test and see if the predictive methods
could be improved.

To answer RQ1, as previously seen on chapter 4, the analysis made provided
us with insights on how well the models behaved when used for each of the com-
binations of the input variables. MLR, or the baseline model, provided the most
accurate results based on the combination of the R2

Adj and the RMSE metrics.
Though, NN provided the most accurate results for the RMSE results which
showed that the randomness of these types of models are effective on the predic-
tion of these patterns, i.e. behaviors. The RR model, even though it did not
presented any real improvements, showed that in more correlated or outlier full
environment, this technique could be more useful. The PCR model showed the
capabilities of applying the PCA which in turn showed the possibilities of only
using only the needed information which in this case was not useful due to some
of the variables, like the temperature which are being generated automatically.

To answer RQ2, by combining some of the techniques the hypotheses of pro-
viding a more thoughtful and thorough representation of the resulting graphics.
Though not fully implemented in this dissertation, the development of the method-
ologies applied to the development of a generic software for the monitoring of the
structures behavior. Through the comparison of Figures 4.2 to 4.6 and Figures 4.7
to 4.21, the representation of the models could be further improved the unneces-
sary data, i.e. years, is removed from the graphics models.

To answer RQ3, and taking what has been stated in RQ2, the application of
a development could improve the visualization techniques of the institution that
uses it. The development methodology does not present any dependencies to any
of the models used throughout the dissertation and so it could be derived that
other models could also be applied to these methodologies without constraints.
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The analysis and treatment done is also a generic approach which removes the
outliers, as explained in SECTION Y, as well as it structures the data accordingly
in order to be able to combine into the same datasets the input variables and the
output behavior.

To test the developed methodology, described in Chapter 3, the case study
followed in this research has been the study of a real portuguese concrete dam,
due to the availability of the datasets provided by LNEC, as well as the possibility
to communicate with Dam engineering specialist that would be able to provide a
more comprehensive analysis on the variables being tested as well as the resulting
behavioral responses given by the structure.

Furthermore, it has been concluded that the application of the Baseline model,
expressed in Chapter 4, outperformed both the RR and PCR in terms of accu-
racy and confidence. On the other hand, both PCR and RR showed interesting
responses. The PCR model allowed for the inference of which were the input vari-
ables that had the most correlation with the response variable and the RR would
have given better results if the amount of outliers existent within datasets were
higher or the measurements were more erratic, which was not the case due to the
data treatment done to datasets prior to being given.

5.1 Evaluation of the Artifacts

(Von Alan et al., 2004) proposes four principles to help evaluate a DSRM artifacts,
that have been considered through the entirety of the Design and Development
(Chapter 3) and Demonstration and Evaluation (Chapter 4) phases of the DSRM.
These principles are as follows:

• Abstraction: Each of the proposed artifacts must be applicable to other
situations than the proposed problem.

• Originality: The artifacts must contribute an evolution of the body of
knowledge.

• Justification: The artifacts must be justified comprehensibly and capable
of being validated.

• Benefit: Each artifact must provide benefits, either immediately or in the
future to the respective stakeholders.
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To correlate what has been done in the context of this research with the au-
thors proposal for evaluating the artifacts, the Design and Development phase of
the DSRM methodology provided a diagram for the development of the artifacts.
The main objective was to generalize the process for predicting the responses of
engineering structures, rather than just to Dams, as expressed in the case study.
The application of other methods than just the MLR to the datasets to Dam
structures, like the RR, PCR and NN and other Re-Sampling methods, there was
found that they provided a new perspective on tackling the identified problem as
well as valuable contributions to the existing knowledge on the area of this re-
search. Through the Demonstration and Evaluation phases of the methodology
the models were applied in order to test the researches hypotheses, thus allowing
for the gathering of conclusions about their usage on these types of structures.
And so, these models have been justified, as well as their validity in being applied
to these types of structures. The developed artifacts provided benefits in terms
of identifying problems with the current technique and the new techniques being
applied, as well as innovations on the application of different predictive models.
These new models paved a way for the development of a generic way to monitor
the behavior and safety of other types of engineering structures.

5.2 Future Work

Throughout the research a couple of bottlenecks were discovered where some of
the predictive models were not as useful as they could be, thus several improve-
ments that could be done in future work were discovered, like the need to improve
the accuracy and efficiency of the current methods being applied on structural
engineering monitoring and safety. Using the generic methodology for the appli-
cation of the artifacts that has been developed in this research, there could be
further development like a software prototype to use this methodology applying
it to other engineering structures like bridges for instance. It was found that de-
spite the previous data treatment applied to data, some further analysis on other
methodologies for improving the quality of this data could be assessed like the use
of other outlier detection methods, instead of that being applied in order to di-
minish the amount of outliers, thus allowing for more confidence on the predicting
results of the models being applied. There could also be applied real temperature
measurements, instead of using those being automatically generated based on the
"normal" temperature fluctuations of the country in study, not only would this
variable could provide a much more truthful monitoring and prediction but it could
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also be applied to detect abnormalities that could be caused by this variable. An
example of this abnormalities could be seen this year, 2017, where the variations
in climate experienced throughout the year in Portugal have clearly been quite
significant.
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