
University Institute of Lisbon

Department of Information Science and Technology

Gaze-Directed Gameplay in First
Person Computer Games

João Eiras Antunes

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Computer Science

Supervisor

Prof. Pedro Santana, Assistant Professor
ISCTE-IUL

October 2017

"90% of what is considered "impossible" is, in fact, possible.
The other 10% will become possible with the passage of time and technology"

Hideo Kojima

Resumo

A utilização de sistemas de rastreamento ocular em jogos de computador ainda
se encontra numa fase embrionária. Aparelhos de rastreamento ocular comerciais
e pesquisas na área têm-se focado em jogabilidade à base da atenção visual como
uma alternativa a métodos de entrada tradicionais. Esta dissertação propõe-se
a investigar as vantages e desvantagens do uso destes sistemas em jogos de com-
putador. Para isso, invés de se usar rastreamento ocular apenas como um método
directo de entrada, é proposto usá-lo para controlar a atenção do personagem do
jogo (e.g., se o jogador reparar num obstáculo, a personagem também repara e
desvia-se do mesmo) assim como afectar a geração procedimental do jogo (e.g.,
gerar obstáculos no lado oposto ao qual o jogador tem a sua atenção focada).
Para demonstrar o valor desta proposta, foi desenvolvido e aqui apresentado o
jogo de tiros em primeira pessoa Zombie Runner. Os testes demonstraram que a
implementação cumpre os requisitos técnicos estipulados e que, apesar de ainda
carecer de melhorias em termos de precisão e robustez, a tecnologia para rastrea-
mento ocular pode ser utilizada com sucesso para tornar a experiência do jogador
mais imersiva e desafiante.

Palavras-chave: jogos de computador, rastreamento ocular, jogabilidade à
base da atenção visual.

v

Abstract

The use of eye tracking systems in computer games is still at an early stage.
Commercial eye trackers and researches have been focusing in gaze-oriented game-
play as an alternative to traditional input devices. This dissertation proposes to
investigate the advantages and disadvantages of the use of these systems in com-
puter games. For it, instead of using eye tracking as a simple direct control input,
it is proposed to use it in order to control the attention of the player’s avatar
(e.g., if the player notices an obstacle in the way, the avatar will notice it too
and avoid it) and the game’s procedural content generation (e.g., spawn obstacles
in the opposite side of the screen to where the player’s attention is focused). To
demonstrate the value of this proposal, it was developed and is herein presented
the first-person shooter Zombie Runner. Tests showed that the implementation
meets the stipulated technical requirements and that, although it still needs im-
provements in terms of precision and robustness, eye tracking technology can be
successfully used to to make the player experience more immersive and challenging.

Keywords: computer games; eye tracking; gaze-oriented gameplay.

vii

Acknowledgements

I would like to acknowledge my parents, Zé and Maria João, for all the support
they gave me throughout this endeavour. To my supervisor, Professor Pedro
Santana, for his unmeasurable help in the conclusion of this thesis. To my sister
Sofia, who hopelessly tried to explain me how to use Excel by (re)teaching me
statistics. To Karolina, for the daily words of support, for making everything
seem easier and for listening to all my complaints about late nights spent working.
To Sebastian Nowak, for showing me that game development was what I wanted
to do with my life. To Miniclip, for their comprehension and support which was
vital in this moment of my life. To all my family and friends, for all the times
they asked how this thesis was going along and made me feel I wasn’t alone in it.

"Thank you, thank you very much." - Elvis Presley

ix

Contents

Resumo v

Abstract vii

Acknowledgements ix

List of Figures xiii

Abbreviations xv

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Research Questions . 4
1.4 Objectives . 5
1.5 Research Method . 5
1.6 Document Structure . 6

2 Literature Survey 7
2.1 Visual Attention . 7

2.1.1 Mechanisms: Bottom-Up vs. Top-Down 8
2.2 Eye Tracking . 10

2.2.1 Eye Tracking in Video Games 12
2.3 Procedural Content Generation . 14
2.4 Player Experience Tests . 19

3 System Overview 23
3.1 The Game . 23
3.2 Setup . 27

4 Development and Implementation 31
4.1 Game Logic . 31

4.1.1 Design Decisions . 32
4.1.2 Rules and Mechanics . 33
4.1.3 Flow . 34
4.1.4 Verbs and actions . 37

xi

Contents

4.2 Development in Unreal Engine . 38
4.2.1 C++, Blueprints and Algorithms 38
4.2.2 Ray casting, gaze detection logic and bounding boxes 41
4.2.3 User Interface . 44

4.3 Game art . 45
4.3.1 Enemy animations . 46
4.3.2 Procedurally generated game world 47
4.3.3 The noticed effect . 48

4.4 Eye Tracker Integration . 49

5 Evaluation and Discussion 53
5.1 Evaluation Method . 53

5.1.1 Setup . 54
5.1.2 Test Sessions . 55

5.2 Results . 58
5.2.1 Eye Tracker Calibration Process 58
5.2.2 Play Sessions . 60
5.2.3 Informal Questions . 64

6 Conclusions and Future Work 69
6.1 Conclusions . 69
6.2 Future Work . 71
6.3 Dissemination . 71

Appendices 75

A Test session questionnaire 75

Bibliography 83

xii xii

List of Figures

1.1 Tobii’s 4 focal points . 3

2.1 Appliances of the study of visual attention 9
2.2 Bottom-up Mechanism . 10
2.3 Yarbus’ The Unexpected Visitor . 11
2.4 Early PCG Games . 15
2.5 No Man’s Sky’s Procedurally Generated Fauna 16
2.6 Spelunky’s Procedurally Generated Levels 17
2.7 Experience-Driven Procedural Content Generation 17
2.8 Super Mario Bros levels generated through EDPCG 18
2.9 Mean GEQ ratings for the two types of input 20

3.1 Game Menus . 24
3.2 Enemy getting killed . 25
3.3 Behaviour when approaching an obstacle 26
3.4 Death Screen . 27
3.5 Hardware Setup . 28

4.1 Main game flow diagram . 35
4.2 Game flow interactions diagrams 36
4.3 Storyboards for obstacle interaction 37
4.4 Tile generation flow chart . 40
4.5 Screen division for player attention tracking on obstacle generation 41
4.6 Enemy and obstacle spawning flow chart 42
4.7 Sideview of obstacles and their bounding boxes 43
4.8 Sideview of enemy and its bounding box 44
4.9 Zombie Runner ’s Main Menu . 46
4.10 Enemy’s Animation Blueprint . 47
4.11 Procedurally generated tiles . 48
4.12 3D assets spawned with a tile . 49
4.13 Material evolution of a rock being noticed 49
4.14 Gazepoint Control Interface . 50

5.1 The setup for the test sessions . 54
5.2 The age distribution of the test group 55
5.3 Histogram relative to the testers’ perception of their experience with

video games . 56

xiii

List of Figures

5.4 Histogram relative to the testers’ experience with eye tracking tech-
nology . 56

5.5 Histogram relative to the testers’ experience with gamepads in FPS
games . 57

5.6 Gazepoint Control’s screen to test the calibration results. 59
5.7 Gaze movement of a tester during a play-through of Zombie Runner 60
5.8 Histogram relative to the amount of eye tracker calibration tries per

tester . 60
5.9 Graph relative to the ratio between enemies killed with the total

amount of enemies during the three play sessions 61
5.10 Graph relative to the ratio between enemies and objects noticed

with the total amount of enemies and objects during the three play
sessions . 62

5.11 Graph relative to the amount of deaths experienced by the player
during the three play sessions . 62

5.12 Graph relative to the testers openness to eye tracking technology
adoption . 66

xiv xiv

Abbreviations

FPS First Person Shooter (see page 3)

VR Virtual Reality (see page 7)

GEQ Game Experience Questionnaire (see page 19)

UI User Interface (see page 44)

xv

Chapter 1

Introduction

1.1 Context

With eye tracking dating back from the XVIII century [1], many have been the ap-

plications for this technology, like medicine (eg. to analyse perceptual dysfunction

in schizophrenia [2]), robotics (eg. to aid in the control of a robotic prosthetic [3]),

advertising (eg. to measure the attendance of adolescents to warnings in cigarette

advertising [4]) and, most recently, video games [5].

In the past decade, studies in video game research tried to compare traditional

input (mouse and keyboard or controller) vs. eye tracking input in terms of perfor-

mance with mixed results, with some studies claiming that the use of eye tracking

contributed to better task completion [6] while others claiming that traditional

input devices still provided better overall results [7]. Most publicly available stud-

ies focus on asking for players to compete against each other using different input

methods, or ask of a user to complete a task using one method and then the other,

trying to pinpoint which input method wins in different parameters like accuracy

or responsiveness.

Commercially, Tobii is currently among the most recognized eye tracker man-

ufacturers among gamers, having recently sponsored Global Game Jam 2017, the

world’s biggest on-site game jam, where more than 7000 games were produced in

1

Chapter 1. Introduction

48 hours, some with eye tracker support. Tobii, besides producing hardware, does

not position its technology as a substitute of traditional input forms but rather as

a complement to them [8]. This approach may explain the 57% market share that

Tobii held in 2013 [9] and suggests that gamers prefer this kind of philosophy when

it gets to eye tracking integration. Currently, more than 75 titles support Tobii’s

hardware [10], integrating Tobii’s 4 focal points [8] (Figure 1.1) : (1) Immersive

Graphics, that provide directional sound, dynamic depth of field and dynamic light

exposure according to the player’s attention; (2) Natural Targeting, that offers a

range of possibilities related to aim assistance; (3) Gaze Awareness, where objects

and other characters interact with the player if attention is focused on them; and

(4) Infinite Screen that follows the player’s gaze and head to shift the game camera

in the desired direction.

1.2 Motivation

Despite the many studies and papers [11] [5] [12] [7] [6] written about eye tracking

integration in video games, we found a lack of studies that approached the mea-

surement of enjoyability and adaptability of the end user to this integration or

lack thereof in the same game, instead focusing on comparing these parameters in

a scenario where traditional input is used vs. a scenario where eye tracker input

is used.

The discrepant results found in different studies, as described in Section 1.1

of this dissertation, suggest that the kind of game and the tasks generated by the

eye tracking usage have to be taken into account when wanting to create a good

overall experience to the player. To spark a serious discussion about the impact of

this technology in a game, lessons from both academic studies and Tobii’s success

story have to be taken into account, mainly: (1) Do not just replace traditional

input for eye tracking input; and (2) think about meaningful ways about how eye

tracking can make a game better. With these lessons in mind, we think one can

2 2

Chapter 1. Introduction

Figure 1.1: Implemented examples of Tobii’s 4 focal points [8]. (1) Immersive
Graphics – the light dims to adjust to the focused light source; (2) Natural
Targeting – when pressing the aim button, the avatar will aim at the player’s
attention point; (3) Gaze Awareness – the door opens when the player’s gaze
interacts with the switch; and (4) Infinite Screen – the camera shifts up when

the player’s visual attention shifts to the top of the screen.

go one step further and actually include eye tracking in a core game mechanic,

coexisting with traditional input, towards providing a more enriching experience.

The game here presented, Zombie Runner, is an endless runner First-Person

Shooter (FPS) that utilizes visual attention as one of the game’s core mechanics.

It tries to encapsulate all these lessons in order to create what we believe is a

3

Chapter 1. Introduction

meaningful experience while keeping eye tracking at the centre of gameplay. We

propose to use eye tracking in order to control the attention of the player’s avatar

and the game’s procedural content generation. This use of eye tracking is focused

in mapping the mental state of the player and her/his avatar, which we believe

to be much more natural and useful than controlling a pointer with the eyes,

which has no mapping to real life. With Zombie Runner, we aim to integrate gaze

tracking in a natural, not forced manner, expecting the player to smoothly interact

with the system - as what happens with most of Tobii’s supported games.

1.3 Research Questions

Given the fact that eye trackers are still not widely adopted by the video game

industry and taking into account the mixed results presented in the past and

what kind of games and mechanics were used in those tests, Zombie Runner was

developed in an attempt to answer the following research questions:

1. Is eye tracking integration more or less satisfying to the player?

2. Is eye tracking integration more or less comfortable for the player?

3. Does controlling the game’s environment generation through eye tracking

integration result in a more challenging experience?

4. Is the approach of using the player’s gaze in a core mechanic a positive

contribution for a more immersive game experience?

These questions shaped the development process in a way that the player’s

overall experience had to be taken into account at all times. The decisions on

game mechanics, flow and test cases were affected by these questions too.

4 4

Chapter 1. Introduction

1.4 Objectives

The main objective of this project is to elaborate and develop a game that aims

to achieve a gaze tracking integration solution in a video game that is engaging

and at the same time comfortable for the player. This integration shall result

in a core gameplay mechanic, in contrast to approaches that generate auxiliary

interactions [8] or that simply swap traditional input methods by vision guided

ones [6]. This core gameplay mechanic shall be representative of how to success-

fully integrate eye trackers as video game input with the technology’s strengths

and weaknesses in mind. Along with the extensive use of procedural generated

content, the game aims to better represent the player’s actions in the game, thus

contributing to a more immersive experience.

The final game shall be able to be played by anyone owning a computer, a

gamepad and any low-end eye tracker camera, as it represents the easiest attainable

technology by the common player.

1.5 Research Method

For the purpose of this project, the Design Science Research (DSR) [13] method-

ology was used. This method is divided in the steps: (1) Awareness of Problem;

(2) Suggestion; (3) Development; (4) Evaluation; and (5) Conclusion.

Sections 1.1 and 1.2 of this document explain the problem at hands regarding

eye tracking in video game in both research and commercial fields and are the

result of applying the first step of DSR methodology. The second step of the

methodology is answered by section 1.4, which documents the game that is going

to serve as the proposed solution. Chapters 3 and 4 describe the features of the

implemented system so as to meet the third step of the methodology. The fourth

step is covered by Chapter 5, which details the evaluation process and its results.

Finally, Chapter 6 discusses the conclusions of this project, according to the last

last step of the methodology.

5

Chapter 1. Introduction

1.6 Document Structure

This document presents all aspects of the implemented project, from the initial

system concept to the implementation and evaluation. It is structured by chapters

as follows:

• Chapter 2 reviews the efforts made through time in previous projects that

use eye tracking as an input form in video games, as well as progress made

in the fields that make this kind of integration possible.

• Chapter 3 describes the proposed system, its principles, features and design,

while also overviewing the hardware and software used to implement it.

• Chapter 4 explains how the system was actually implemented.

• Chapter 5 details the evaluation process that was used to validate the project

and the results obtained from tests with target users.

• Chapter 6 presents the conclusions of this project and pinpoints some fea-

tures that could be implemented at a later time.

6 6

Chapter 2

Literature Survey

The study of visual attention has branched into a lot of different areas since its

early steps. While the initial applications had in mind more serious fields like

psychology and advertising, nowadays we see a growth in the adoption of this

kind of technology in the entertainment field. The main industry that is driving

this technology adoption is video games, through the use of eye tracker cameras

or gaze tracking within Virtual Reality (VR) systems.

To better understand the inner workings of this technology and its relevance in

video games, one must first understand how the human eye works and how visual

attention is driven according to the scene that is presented to an individual. The

following subsection explains this thematics in finer detail.

2.1 Visual Attention

Visual attention is the coordinated action between the voluntary and involuntary

processes in the brain that allow the human being, in a fast and efficient manner,

to find and focus in relevant information [14].

The work of A.M. Treisman and G. Gelade, “Feature Integration Theory of

Attention” [15], is in the basis of most visual attention models. In it, Treisman and

7

Chapter 2. Literature Survey

Gelade identified the important visual features of a scene and how these features

combine between them to get the human eye visual attention in search tasks. When

an object or region highlights itself from its neighbours in a scene, we can say that

that object is characterized with saliency. This concept is generally associated to

bottom-up approaches [16] [17], a visual selection mechanism described in Section

2.1.1. Since then, a considerable number of visual models, each with their strengths

and weaknesses, were proposed. The main goal of any visual attention model is

to identify the how, when, and why of relevant area selection in an image [18].

There are many applications to the study of visual attention. Figure 2.1, taken

from the paper [18], illustrates some of the appliances in different areas like vision

and graphics, robotics, marketing, and medicine.

One can also state that visual attention is the general concept that covers all

factors that influence the different visual selection mechanisms. These mecha-

nisms, that determine the focus of the visual attention, are further analysed in the

following Section.

2.1.1 Mechanisms: Bottom-Up vs. Top-Down

Visual attention mechanisms divide themselves in two categories: bottom-up and

top-down [19]. For this study, we will focus on a top-down approach. Still, it is

important to understand both mechanisms and their differences.

Bottom-up mechanisms are classified as scene-driven. This means that the user

behaviour is affected by the image itself and the different stimuli it transmits [20].

A simple example of the use of a bottom-up mechanism in a testing environment

would be to ask the subject to memorize an image, take it away from the subject

and then ask questions about it. The attention in this mechanism is classified

as fast and involuntary [21]. For it to happen, it is necessary that the regions of

interest in the scene are sufficiently distinguishable in relation to their neighbours.

A good example that shows this kind of attention in action is a scene consisting

8 8

Chapter 2. Literature Survey

Figure 2.1: Table with the many appliances of the study of visual attention
in different areas [18].

of several vertical bars and only one horizontal bar, where one’s visual attention

will immediately shift to the horizontal bar [15], as illustrated in Figure 2.2.

Top-down mechanisms are classified as expectation-driven. This means that

the user behaviour is affected by a previously defined goal or previously acquired

knowledge. A simple example of the use of a top-down mechanism in a testing

environment would be to ask the subject to search for a certain object in an image

while the image is available to the subject. The attention in this mechanism is

classified as slow and voluntary [22]. One of the most famous and most studied

examples of the use of this kind of mechanism is an experiment by Yarbus in

1967 [23]. Yarbus asked different individuals to watch the same video (consisting

9

Chapter 2. Literature Survey

Figure 2.2: As the more horizontal bar is clearly distinct from the rest, which
results in it having more saliency in the scene, the visual attention will be im-

mediately focused in it.

in a room with a family, with an outside character arriving later) with different

goals, such as: telling the age of the people in the room; memorizing the clothes

worn by the people; memorizing the positions of people and objects in the scene;

or even to analyse the scene freely. The results of each experience were completely

different, with the individuals gaze drawing different paths across the scene, as

Fig 2.3 shows.

Yarbus concluded that the task given to a subject largely affects the gaze

movement, establishing a direct connection between eye focus and the subject’s

interest in the scene.

2.2 Eye Tracking

Eye tracking is the process of estimating one’s gaze direction, identifying the object

in which the visual attention is focused [24] [25]. The eye tracking technique dates

from the XVIII century. In 1792, Wells used persistent images to describe the

human eye movements [26]. In the following century, Javal introduces the concept

of saccades, jumps that the human eye performs between points of interest [1].

Lamar, in 1892, describes a method of counting the number of saccades during the

process of reading, through an intrusive apparatus that allowed the listening of the

10 10

Chapter 2. Literature Survey

Figure 2.3: Yarbus gave 7 different tasks to test subjects before showing them a
short movie [23]. These tasks were: (1) Free examination; (2) Estimate material
circumstances of the family; (3) Estimate the ages of the people; (4) Describe
what the family was doing before the arrival of the visitor; (5) Remember the
clothes worn by the people; (6) Remember positions of people and objects in the
room; and (7) Estimate how long the visitor had been away from the family.

sounds produced by the muscles of the human eye [27]. In the XX century, Dodge

and Cline performed the first eye movement measures through a non-intrusive

method using photographs and light reflections [28]. This method, however, was

only capable of registering horizontal eye movements.

We would have to wait till 1939 to be introduced to a method that could mea-

sure both horizontal and vertical movements. Jung used electrodes applied near

the eyes that were capable of measuring the electric fields of the eyeball [29]. This

method, called ElectroOculoGraphy, presented the first possibility for real-time eye

tracking. In the 80s, with the evolution of computing capacity, it became possible

11

Chapter 2. Literature Survey

to perform real-time eye tracking with access to video, what opened the possibil-

ity of human-machine interaction [30]. This method, called Video-OculoGraphy,

is the same that is still used today in commercial eye trackers. With increasingly

more accessible prices [31] [32], the use of eye trackers increased, for study pur-

poses, in areas like marketing [4] and psychology [2], and for ludic purposes, like

eye tracking integration in video games [5].

2.2.1 Eye Tracking in Video Games

There are studies that explore the use of eye tracking in video games as an alter-

native to traditional input methods, like mouse or keyboard [11] [5]. These studies

are relevant because they present a viable alternative for physically handicapped

players where the use of eye tracking can facilitate the input control. Per David

Smith and Nicholas Graham [5], the use of eye tracking has many benefits, such

as: being a highly natural, quick and effortless form of input; the sense of vision

giving context to other forms of interaction; the technology being mature and well

developed; and the low price of components.

By testing gaze input vs. mouse input in three different games, Smith and

Graham [5] concluded that the use of eye tracking can provide a more immersive

experience to the player. Table 2.1 shows which subjective measures led to this

conclusion while also showing that the game that was chosen affects different pa-

rameters like enjoyability, adaptability and usability, with test subjects preferring

eye tracking in the games where its integration felt more natural and easier to

learn.

Isokoski and Martin [12] conducted a preliminary study on the use of eye tracker

in First Person Shooters. Each participant player in the test was asked to play the

same game using three different input method schemes: mouse, keyboard and eye

tracker; only mouse and keyboard; or an Xbox 360 controller. The conclusions were

not exactly encouraging, suggesting that the performance with the eye tracker was

quite inferior to the other two. Still, Isokoski and Martin attributed these results

12 12

Chapter 2. Literature Survey

Question
Quake 2 Neverwinter Nights Lunar Command

Eyes (%) Mouse (%) Eyes (%) Mouse (%) Eyes (%) Mouse (%)

Which did you enjoy playing with more? 42 58 83 17 42 58

Which was easier to learn? 33 67 67 33 33 67

Which was easier to use? 8 92 50 50 8 92

With which did you feel more immersed in the gaming world? 83 17 83 17 92 8

For which did the controls feel more natural? 25 75 67 33 42 58

Which would you prefer to use in the future? 33 67 67 33 42 58

Table 2.1: Subjective measures analysis by Smith and Graham [5]. The test
subjects were asked to indicate which input method they preferred for 6 different

criteria.

to the players’ greater knowledge and contact with the traditional input methods,

suggesting that this scenario could change with more training and getting used to

the eye tracker by the players.

Other studies achieved similar conclusions. Leyba and Malcolm [7] created a

simple test that asked the player to eliminate twenty-five balls that moved around

the screen with different velocities. The player would move the pointer using the

mouse or the eye tracker and would eliminate the balls by clicking on them with

the mouse. This test could have a time limit or not. The results showed that

precision and time to complete the task without a time limit, and percentage of

balls eliminated with a time limit were worse while using the eye tracker than

when using a mouse.

Michael Dorr et al. [6] achieve totally opposite results. After creating and

adaptation of a clone of the classic game Breakout [33], it was asked of twenty

players to participate in a tournament. Players were separated in pairs. The

two players of the pair would then play against each other: one controlling with

the mouse and the other controlling with the eye tracker. Each pair would play

two rounds against each other, switching the input methods in each round. The

results showed that the players who used the eye tracker achieved higher scores and

won more rounds. The players also stated that using the eye tracker was highly

enjoyable. These discrepant results suggest that the type of game and development

method of the same game are really important to achieve a satisfying final result.

Perreira da Silva et. al used eye tracking in a system that reacts dynamically

13

Chapter 2. Literature Survey

through the observation and analysis of the player’s gaze [34]. For instance, when-

ever a player looked away from the screen, a game action would occur to refocus

the player’s attention. This approach proved positive in increasing the player’s

immersion on the game.

In commercial terms, it is safe to state that there is not yet a serious push

for the use of eye trackers in games. In its website, Tobii, the most well know

commercial eye tracker manufacturer, only has close to 75 games supporting its

eye trackers and software. Still, the development of new applications goes on, with

support for more recent games like Deus Ex: Mankind Divided [35], Watch Dogs

2 [36] or Steep [37].

Bearing the limitations of using eye tracking as a simple direct control input in

mind, we propose to use it in order to control the attention of the player’s avatar

and the game’s procedural content generation. This use of eye tracking is focused

in mapping the mental state of the player and her/his avatar, which we believe to

be much more natural and useful than controlling a pointer with the eyes, which

has no mapping to real life.

2.3 Procedural Content Generation

Procedural Content Generation (PCG) concerns all creation of game content

(sounds, levels, objects, characters, textures, etc.) through an algorithm, with

limited or indirect stimuli from the user [38]. These algorithms often generate

completely random results. However, these results must be validated. Validation

guarantees that these random results are sufficiently interesting for the solution.

To get these interesting results, restrictions are applied to the initial results. This

way, the end results appear to be completely random but are in fact random within

a strict set of rules and restrictions.

The use of PCG in games dates from the beginning of the 80’s, being integral

part of game development almost since its infancy [39]. The use of this method

14 14

Chapter 2. Literature Survey

appeared as a necessity due to the memory limitations at the time [40]. The first

game that is considered as the first successful case of good PCG use was Rogue [41]

from 1980. In Rogue, a dungeon crawler, every dungeon is randomly generated

through algorithms. Other examples of notable games that made use of PCG while

in its infancy are Elite [42], that generates entire galaxies in a procedural way, and

Tetris [43], which picks the next piece randomly. The appearance of these three

games can be seen in Figure 2.4

Figure 2.4: From left to right: Rogue [41], Elite [42] and Tetris [43] were
pioneers in the implementation of PCG and are still considered landmarks in

video game history.

With the advance of technology, this memory limitations became inexistent.

The use of PCG became a way of improving the player experience and expand

the overall value of a game, improving its replay value. Diablo [44], that besides

generating all the dungeons in the game in a procedural way also generates the

features of every item in the moment of its creation, was the game that popularized

PCG and that best showed its capacities.

In the notable examples from the last decade are included Dwarf Fortress [45],

considered by many the most complex game ever and the prime example of the use

of PCG, Minecraft [46], with more than 24 million copies sold only for PC/Mac,

that generates its entire game world through procedural algorithms, and No Man’s

Sky [47], the most recent example of a big game with PCG at its core, being capable

of generating 18,4 quintillion different planets, each with their unique fauna and

flora, targeting to create a unique experience to each player. For an example of

how PCG works in this game, see Figure 2.5.

An excellent example of the use of PCG can be found in the game Spelunky [48].

Through the generation of a solution path, it guarantees that the player can finish

15

Chapter 2. Literature Survey

Figure 2.5: Examples of different species generated by the PCG algorithm of
No Man’s Sky [47].

the level. In the areas of the level that do not belong to this path, it generates

new areas that can (but do not have to) be interesting in the context of the level.

Besides all this, the areas that are generated affect the placement and type of

objects and enemies in the level [49]. This ultimately contributes to the creation of

uniquely different levels in each play session, which makes each experience different

and challenging.

Figure 2.6 shows three possible levels that can be generated by Spelunky’s

PCG algorithm. Each area is identified with a number that describes its type: 0 –

it’s an area that is not part of the solution path; 1 to 3 – areas that are part of the

solution path, with 1 being an area that is guaranteed to have a left and a right

exit, 2 an area that is guaranteed to have as many exits as 1 with the addition of

a bottom exit, and 3 a room that has as many exits as 1 plus one exit on the top;

and 7 to 9 – areas that constitute a snake pit, a pit full of enemies in the form of

snakes and treasures, being that 7 marks the beginning of the pit, 9 the end and

8 the space in between.

Besides the more traditional use of PCG, some investigators proposed that,

through the analysis of the interaction between player and game, PCG could be

16 16

Chapter 2. Literature Survey

Figure 2.6: Examples of distinct levels generated by Spelunky [50].

used to create a playing experience that adapts itself to the player [51] [52] [53].

This way, future interaction could be modelled in accordance to inputs and actions

from the player in the present time.

Yannakakis and Togelius [54] proposed a new approach to PCG called Experience-

Driven Procedural Content Generation (EDPCG) that considers four main com-

ponents. The Player Experience Module, which consists on modelling the game

experience as a result of the game content and the player, which is characterized

by playing style, and responses to gameplay, both cognitive and affective. The

Content Quality, which is an assessment made on the quality of the generated

content which is linked to the Player Experience Module. The Content Represen-

tation aims to maximize efficacy, performance and robustness of the procedural

algorithm. Finally the Content Generator, tries to generate content that opti-

mizes the overall player experience. Figure 2.7 illustrates how these components

are linked with one another.

Figure 2.7: The main components of EDPCG [54].

17

Chapter 2. Literature Survey

Through this framework, it is possible to generate levels that are adapted

to the strengths and limitations of the player, in an attempt to maximize the

fun factor. Many studies propose that the fun and challenge factors are directly

linked [55] [56] [57] [58] [59] [60] [61], which means that to tweak the fun factor

one often has to tweak the challenge factor. Yannakakis and Togelius used this

framework to personalize level creation in Super Mario Bros, gathering information

from hundreds of players, through questionnaires asking to compare two levels

to metrics that accounted for the number of jumps, and running and shooting

frequencies. The model was then used to generate different levels optimized for

particular players. Two of these levels can be seen in Figure 2.8., where (a) presents

a more unpredictable placing of gaps to optimize the fun value for the human,

whereas (b) presents larger and more challenging gaps in order to optimize the

same value but for the Super Mario AI Champion of the time.

Figure 2.8: Levels generated in Super Mario Bros for two different players
through the use of EDPCG [54].

We aim to integrate PGC with gaze tracking. This way, we can deliver an

experience tailored to the individual user and their form of playing. We believe this

will contribute for augmenting the immersion feeling by stimulating the player’s

vision, having multiple elements on the scene competing for its attention. In order

to compare the impact of this integration (and of the use of eye tracking in itself),

we need a way to measure the player experience. An overview on the previous

work done in this subject is presented on the following section.

18 18

Chapter 2. Literature Survey

2.4 Player Experience Tests

Ijsselteijn et al. tried to find a standard way to evaluate the player’s experience

through the "applicability of traditional usability metrics to user-centred game

design, and highlight two prominent concepts, flow and immersion, as potential

candidates for evaluating gameplay" [62]. From this discussion, the Game Expe-

rience Questionnaire (GEQ) was spawned.

GEQ consists of three modules: (1) The core questionnaire, which aims to

assess game experience; (2) The Social Presence Module, which examines the

player’s psychological and behavioural relationships with other social entities; and

(3) The Post-game module, which examines how the player felt after the game

session is over [63]. All these modules should be filled by the player right after

the game session is over and consist of a series of items that focus on the player’s

feelings that have to be rated on a scale of 5 levels, starting from 0 ("not at all")

to 4 ("extremely"). After all items are given a score, the component scores are

then retrieved from averaging two or more item scores. As there is no social side

to this dissertation, we will disregard the optional Social Presence Module in our

tests.

The core questionnaire evaluates a total of 7 components: (1) Competence,

which is the ability of the players to successfully and efficiently fulfill the tasks

the game asks of them; (2) Sensory and Imaginative Immersion, which is sensory

and imaginative involvement of the players with the game; (3) Flow, which is

the balance between difficulty and the players’ abilities; (4) Tension/Annoyance,

which is how tense and/or annoyed the players’ feel when playing a game, which

can either arise from high difficulty levels or game design decisions; (5) Challenge,

which measures the challenge the game provides to the players; (6) Negative affect,

which measures how negatively the game behaviour affects the player experience;

and (7) Positive affect, which measures how positively the game behaviour affects

the player experience.

19

Chapter 2. Literature Survey

The Post-game module evaluates a total of 4 components: (1) Positive expe-

rience, which evaluates the degree in which the experience was positive or not;

(2) Negative experience, which evaluates the degree in which the experience was

negative or not; (3) Tiredness, which measures how tired and weary the player felt

after playing the game; and (4) Returning to Reality, which measures how difficult

it was for the players to turn themselves away form the game world and return to

the real one.

In regards to the impact of controllers in the player experience, Gerling et

al. [64] conducted a study that aimed to address if there was any reported difference

in the overall player experience of the player when playing a FPS game with mouse

and keyboard vs. a gamepad. GEQ was used in this study to try and answer the

aforementioned problem, with players playing the game while using the platform

they were most comfortable in as well as the one that was most unfamiliar to

them. The results showed that there were no differences in terms of user experience

and that the more usability issues appeared when players were forced to use an

unfamiliar platform, as seen in Figure 2.9.

Figure 2.9: The mean GEQ ratings for each platform suggest higher usability
problems for players adapting to new platforms [64].

Drachen drew a direct connection between heart rate, electrodermal activ-

ity and player experience in FPS games [65]. Also making use of GEQ, players

20 20

Chapter 2. Literature Survey

were asked to play 3 different FPS games in random order, while their heart rate

and electrodermal activity were monitored. The results showed that the player’s

gameplay experience correlates with the physiological measures attained in that

gameplay run.

Perreira da Silva et. al used GEQ to evaluate the gameplay experience on

a gaze tracking based game [34]. They concluded that this new kind of interac-

tion improved the player’s immersion into the virtual world, increasing the player

interest as it provided for a richer and more fun gameplay.

By using GEQ, we intend to evaluate if the use of eye tracker and its integration

with our game are enjoyable and confortable for the player. We intend to pinpoint

possible advantages and disadvantages of the technology in the way it impacts the

overall experience of the player and its relationship with the game, comparing the

player experience with and without eye tracking.

21

Chapter 3

System Overview

Identifying the lack of studies that try to pinpoint the advantages and disad-

vantages of eye tracking integration in games, as well as the discrepant results

obtained in different studies regarding eye tracking as a form of input, we propose

a game which removes the main focus from the eye tracking input and uses it in a

more natural way, thinking and designing from the ground up a form of interaction

with the game using the player’s gaze attention instead of using this attention to

replace another input form. The objective of this approach is trying to assert if

the integration of eye tracking as a gameplay mechanic in a traditional video game

genre, like FPS, is beneficial or not for the final user in terms of enjoyability and

comfort. This section gives an overview of the system and all its components.

3.1 The Game

The system implemented in this project is constituted by a game made in Unreal

Engine 4, which was named Zombie Runner, an Xbox 360 controller, and also

an eye tracking camera. The eye tracker captures all the player’s eye movements

which are read by the game to identify where the player’s overt attention is focused

on. The controller is used to control the player’s avatar aim and to shoot.

23

Chapter 3. System Overview

Zombie Runner is an endless runner first person shooter game, that uses pro-

cedural algorithms to generate part of its content (e.g., obstacle placement). The

game asks the player to survive for as long as possible, by killing enemies and

avoiding obstacles. The player attention is taken into consideration to assert if

both enemies and obstacles are noticed, and different in-game actions result of it

(e.g., aiming accuracy adjustment and obstacle avoidance). When an enemy or

obstacle is noticed, a visual effect is played which renders the object blue.

The main menu gives access to the game and various options. These options are

both concerned with technical performance (e.g., game resolution and graphical

quality), so the game can run with systems with various specifications, as well

as gameplay options (e.g., disable visual effects when obstacles and enemies are

noticed, automatically avoid all obstacles), used mainly for testing purposes. The

overall look and different options available can be seen in Figure 3.1.

Figure 3.1: On the left, the main menu provides the navigation to the other
important areas of the game, like the Display Options menu presented on the

center and the Game Options menu shown on the right.

By choosing to play the game, the player is presented with their own avatar

running down an endless corridor where both enemies and obstacles will be proce-

durally generated. A bar on the screen’s top left corner presents the current state

of the player’s health.

As stated before, two things are asked of the player: to kill as many enemies

as possible and to avoid as many obstacles as possible. All this will contribute to

the player surviving for a longer period.

In regards to enemy killing, the player is required to aim at an enemy and

shoot it in order to kill it. Enemies can either walk or run at a higher speed

24 24

Chapter 3. System Overview

towards the player. When an enemy is hit, it either dies instantly if it was noticed

by the player before - in more technical terms, if the player’s gaze was focused on

the enemy for long enough time - or dies only after two hits in case it was not.

This aims to simulate the better aim capability that results from a more detailed

perception. If an enemy manages to reach the player without dying, the player

will either suffer damage if the enemy was noticed before or die instantly in case

it was not. When the enemy is killed, a blood splatter effect informs the player of

this occurrence, as demonstrated in Figure 3.2.

Figure 3.2: An enemy getting killed by the player. Enemies have various dead
animations according to their movement speed. A blood splatter tells the player

that the zombie is dead and constitutes no threat.

For obstacles, the player is required to notice them in order to avoid them.

This mechanic tries to mimic the real-world where a threat needs to first be ac-

knowledged for a reaction to take place, given that in this case this reaction is

automatic. In case a player notices an obstacle, the player’s avatar will automat-

ically avoid it once it gets close enough to it. If an obstacle is not noticed, the

player sustains some damage. This behaviour can be seen in Figure 3.3.

25

Chapter 3. System Overview

Figure 3.3: In (1), we see that the player is approaching an obstacle, in this
case a tree. In case the player notices the obstacle, he ducks under the tree,
effectively avoiding the obstacle and suffering no damage, as shown in (2). If the
player did not notice the obstacle in time, they crash into the obstacle, blood
splatters appear on the screen along with an audio cue and the health bar is

depleted as demonstrated in (3).

In order for a game run to end, the player health has to be depleted to zero.

In Zombie Runner, the player can either instantly die or sustain damage in the

value of one third of its maximum health. This damage value was decided upon

the basis that instantly being killed at every single blow would be too frustrating

for the player and that having to be hit three times in order to die gives space for

the player to learn what he did wrong in two previous occasions, thus reducing

frustration and promoting the system’s learning. When the player suffers damage,

a visual effect is played along with an audio cue, and the health bar is depleted.

In case the player dies, a final message with different playthrough stats like time

survived, enemies killed and obstacles avoided is presented, as seen in Figure 3.4.

26 26

Chapter 3. System Overview

Figure 3.4: The death screen shows playthrough information both relevant to
the player and for test purposes like the amount of enemies killed, the number
of obstacles avoided and the total time survived, which represents the total

playthrough time.

3.2 Setup

In order to track the player’s input, a traditional controller and a capable way

of registering the player’s gaze movements were required by the solution. Zombie

Runner is designed to accept any eye tracker that can convert the gaze focus point

into the computer’s mouse position. Regardings controllers, the game accepts any

XInput compatible controller.

For this project, a Xbox 360 controller was used as it is a widely owned con-

troller among PC users. Regarding the eye tracker, the Gazepoint GP3 was used

as it is a commercially available product with a lower cost than higher-end eye

trackers usually used in human-computer interaction, which we believe is more

representative of the kind of eye tracker that will be more adopted in the future.

A system’s hardware setup schematic can be seen in Figure 3.5.

27

Chapter 3. System Overview

Figure 3.5: Typical hardware setup for the system. The player’s stance is
close to this one, directly facing the eye tracker while holding the controller.
Alternatively, a laptop can be used to run Zombie Runner instead of the screen

and computer.

Given that the software developed is in fact a game, a decision was made to use

a game engine for its implementation. After some research, we were split between

the use of two game engines:

• Unity Developed by Unity Technologies

Languages supported: C# and Javascript

• Unreal Engine Developed by Epic Games

Languages supported: C++

The characteristics of both engines are presented side-by-side in Table 3.1.

28 28

Chapter 3. System Overview

Unity Unreal Engine

C# and Javascript C++

No visual scripting system Blueprint visual scripting system

Best option for mobile games Best option for AAA PC and Console games

Less used for photorealistic projects Widely used with photorealism in mind

Easier to find free assets Free assets are few and hard to find

Is used more for 2D development Is used more for 3D development

Table 3.1: Comparison between Unity and Unreal Engine features

With this comparison in mind, we decided that Unreal Engine would better

suit the project, as the game had to be in 3D and with photorealism in mind to

achieve better testing results.

Besides the game engine used to support and develop the game, a software

had to be used to actually convert the captured data from the eye tracker into

something the game could understand. For this, Gazepoint Control [55] that was

bundled with the Gazepoint GP3 was used to transform the captured data into a

position in the screen and control the computer’s mouse through it.

29

Chapter 4

Development and Implementation

The process of developing Zombie Runner can be divided in three major steps: (1)

the definition of the game logic, which comprises concepts such as rules, game flow

and mechanics; (2) the actual technical implementation using Unreal Engine; and,

finally, (3) the integration of the eye tracker hardware into the game. Although

this integration is the last step presented in this section, all the other steps were

shaped from the ground up with in in mind so as to facilitate this final step whilst

producing a competent solution.

4.1 Game Logic

Before starting any technical production of Zombie Runner, an initial set of rules,

mechanics, and overall feeling of the game had to be defined. This initial set

ended up shaping across time (to meet ideas that we deemed were better or to

circumvent technical limitations) and ended up on what is going to be presented

in the following subsections.

31

Chapter 4. Development and Implementation

4.1.1 Design Decisions

Very early on we knew that the game we were going to produce had to integrate

gaze tracking in the implementation of a core mechanic. It was also decided that

this integration should produce a more interesting end solution if it was concurring

with another more traditional input device. With this decision, we wanted to

produce what we believe could be a superior way of integrating this technology

in video games. At the same time, having two input methods concurring for

the player’s attention was something we felt was not explored enough in previous

works [11] [5] [12] [7] [6]. Having this initial scenario, we had to envision a system

with this two forms of interaction in mind.

With eye tracking, we wanted to diverge from previous integrations [11] [12]

and try and produce a 1:1 relation between the real-world action of the player

looking around and the in-game action of the avatar looking around - wherever

the player was looking at in the screen, that is where the avatar was looking at

too. This decision came from the belief that to integrate this kind of technology

one needs to create new forms of interaction instead of trying to interact in the

same way the player did before but using other input methods.

Regarding the traditional input form, the choice reclined on a gamepad instead

of mouse and keyboard for the fact that the integration of the eye tracker would

be much facilitated if the mouse pointer was free to be controlled by the player’s

gaze. This decision did not limit the end solution in any way, instead producing a

more focused approach to the further decisions made in regards to the integration

of the gamepad. We wanted to limit the amount of different inputs the player

could provide through the gamepad so as to minimize the amount of adaptation

time and any frustration that could arise from complicated control schemes that

could taint the test results. These limitations are further explained in the following

subsections.

To better analyse the advantages and disadvantages of the use of eye tracking

in games, we should focus ourselves in game genres where the player’s visual

32 32

Chapter 4. Development and Implementation

attention has to be shared between different elements in the scene under tight

temporal restrictions, where the eye tracking use is more central and challenging.

With all the above considerations in mind and looking for a common game

genre (of high impact), we opted for a FPS game. We then decided to add to it

the endless runner component in order to automatize the movement inputs, thus

reducing the number of actions the player had to memorize and control.

4.1.2 Rules and Mechanics

A game is defined by its rules and mechanics, and Zombie Runner is no exception.

The rules herein presented represent the final rules set in the game. The defini-

tion of this rules was shaped by the design decisions presented in the previous

subsection, by the technical development process and by informal tests carried

throughout this process. The gameplay in Zombie Runner is shaped by eight core

mechanics:

• Noticing objects - The object is tagged as noticed by the player;

• Noticing enemies - The enemy is tagged as noticed by the player;

• Aiming - The gun aim is moved around;

• Shooting - A bullet is fired from the gun;

• Hurting enemies - An enemy loses half its overall health;

• Killing enemies - An enemy dies collapsing on the floor;

• Losing health - The player loses one third of the overall health;

• Dying - The player dies.

These mechanics interact with each other in the set of rules defined by the

game. These rules can be divided and listed as follows, highlighting the mechanics

in play in each rule:

33

Chapter 4. Development and Implementation

• The main objective of the game is to survive for as long as possible. This

can be achieved by killing enemies and noticing obstacles.

• The player is required to look around the scene and notice obstacles and

enemies by looking at them for a sufficient amount of time.

• If the player’s avatar approaches a previously noticed obstacle, it will avoid

said obstacle. If this obstalce was not noticed before, the player’s avatar will

crash onto it losing health.

• The player is asked to aim and shoot enemies in order to kill them.

• When the player shoots an enemy, it will die instantly if it was noticed before

or if it was already hurt. If not, it will be hurt instead.

• If an enemy approaches the player’s avatar, it will attack, causing the player

to lose health if this enemy was previously noticed. If it was not previously

noticed, it will cause the instant death of the player.

• If the player loses health enough times to deplete the overall health, the

player dies

• When the player dies the game is over.

This set of rules and mechanics are the basis to define the flow of the game,

the array of possible interactions from the beginning till the end of a play session.

4.1.3 Flow

An ideal game flow is when the balance between the player’s abilities and the

challenges set by the game is such that the game provides an experience that

is not hard enough to cause anxiety on the player, nor easy enough to cause

boredom. This balance is dictated by the sequence of actions in the game. Due

to the procedural nature (check Section 4.2) of Zombie Runner an absolute game

flow is hard to define for this game. However, an approximation can be extracted

34 34

Chapter 4. Development and Implementation

when approached with a higher level of abstraction. Fig. 4.1 shows the expected

game flow for any Zombie Runner play session. In the initial scene generation,

no obstacles or enemies are generated, so that the player can enter the game

without immediately being requested for input, which could result in undesired

interactions that could cause frustration. Whenever the player dies, a game over

screen is presented and the player can choose to play again or quit the game.

Figure 4.1: The high level diagram for Zombie Runner ’s game flow. The
arrows indicate state transitions and the text in them the conditions for the

transition to occur.

The harder part to define is the game loop, due to its unexpected player-game

interactions. The game loop of Zombie Runner works as an array of short-term

interactions. These short-term interactions can be of three kinds: (1) the player

shooting an enemy, (2) the player approaching an obstacle, and (3) the player

getting hit by an enemy. Whenever these interactions result in the player’s death,

the game loop ends. The flow charts for this interactions are directly related to

the rules of the game. Fig. 4.2 shows the state diagrams for the three mentioned

interactions. When the player shoots an enemy, it will instantly die if it was

previously noticed. If not, the enemy will get hurt, losing health, which can also

result in its death if its health is fully depleted. When the player approaches an

obstacle, it will be avoided if it was previously noticed. If not, the player will

lose health. If the player’s health is fully depleted, the player will die. Finally,

when the player approaches an enemy, it will instantly kill the player if it wasn’t

previously noticed, only hurting the player otherwise. This can also result in the

player’s death like before, as the player loses health when hurt and the player’s

health can be fully depleted.

35

Chapter 4. Development and Implementation

Figure 4.2: State diagrams for when a player shoots and enemy (A); when a
player approaches an obstacle (B); and when an enemy approaches the player
(C). The arrows indicate state transitions and the text in them are the conditions

necessary to trigger another state of the interaction.

In addition to the flow chart definition, some initial storyboards were drawn

to better illustrate some details of gameplay as well as general look of the game.

These storyboards were valuable in the technical implementation of the game as

they draw a much clear picture of the same information contained in the flow

charts. Fig. 4.3 shows the storyboards for the player approaching two types of

obstacles, a rock and a tree branch.

36 36

Chapter 4. Development and Implementation

Figure 4.3: Storyboards for the interaction with obstacles; a rock on top and
a tree branch on the bottom.

4.1.4 Verbs and actions

Before introducing the verbs and actions of Zombie Runner, it is important to

explain what these two concepts mean in video game design.

Verbs are the player’s physical interactions with a physical input component,

such as pressing a button on a gamepad or dragging the player’s finger on a phone’s

touch screen. On the other hand, actions are the game-world consequences to the

aforementioned verbs, such as the player’s avatar jumping or running. This way,

we can say that a verb, or a sequence of verbs, in the real world will translate

into an in-game action. These two terms differ from the previously mentioned

game mechanics in the sense that they are more objective and are not concerned

with the game’s inner workings but rather with what is absolutely apparent that

occurs.

In Zombie Runner, all verbs except for one have a 1:1 ratio with in-game

actions, meaning one verb produces one action. The only verb that produces

multiple actions is the verb of "looking". The position of the player’s gaze spawns

a large array of actions, as Table 4.1 shows, along with the other pairs of verbs

37

Chapter 4. Development and Implementation

and actions in the game. These actions and their reasoning are further explained

in Section 4.2.

Verb Action

Pressing shooting button Shoot

Moving the right thumbstick Move the aim around

Looking at obstacle or enemy Change the material of the obstacle or enemy

Looking at obstacle or enemy for a combined time of 0.5 seconds or more Tag the obstacle or enemy as noticed

Looking at the same side of the screen for two consecutive tile spawns Spawn obstacles or enemies on the opposite side

Table 4.1: Verbs and corresponding actions of Zombie Runner

4.2 Development in Unreal Engine

After the game logic definition was stabilized after the initial iteration, the tech-

nical implementation started. As mentioned in previous sections, Unreal Engine

was chosen to develop Zombie Runner. In the following subsections, the imple-

mentation process will be described in detail, spanning from the programming in

C++ to more art oriented tasks.

4.2.1 C++, Blueprints and Algorithms

The programming of Zombie Runner was split between C++ and Blueprints,

Unreal’s visual scripting language. C++ was used for bigger algorithms while

Blueprints was used to program actor behaviour, like enemies and obstacles. The

game is based on Unreal’s FPS template, which already implements the expected

behaviour for a generic game of the genre, like shooting, walking, and aiming

mechanisms.

In Unreal, Blueprints can extend C++ classes, allowing the definition of entity

properties to be done in a C++ class, allowing tasks like collision triggering and

interaction with other Blueprint actors to be greatly facilitated by doing their

implementation with the use of Blueprints. While a game can be fully implemented

in Blueprints, the use of C++ is still recommended as it lowers the computation

38 38

Chapter 4. Development and Implementation

time for more complex tasks. In Zombie Runner, all classes were defined first in

C++, with most being extended in Blueprints later.

The most challenging task, and the biggest one of using C++, was to code

a procedural generation algorithm to take care of the generation of the path,

obstacles and enemies. The general idea followed was that this algorithm had

to generate tiles in succession in order to create a path. These tiles should be

destroyed after the player had passed by them while at the same time spawning a

new tile in to extend the path. This logic would all be concentrated in the Spawn

Volume class, with tiles calling its methods upon destruction.

According to the logic specified in the previous section, 15 tiles are initially

generated by the Spawn Volume. After the 8th tile is spawned1, obstacles or

enemies can start being spawned with them. After this initial generation, which

happens when the game starts, all tile generation is handled by the tiles themselves.

Fig. 4.4 shows the flow from the moment a tile is generated till its destruction.

A new tile is spawned with the rotation and location of a transform variable

held by the Spawn Volume, which then has its location updated by adding the

size of the tile, now representing the spawn point for the next tile. If the tile

count of the Spawn Volume is above 8, methods for checking the player’s visual

attention and to spawn an obstacle or enemy will be called. The first method

registers the player’s attention on the screen in the moment of the tile spawning

and can shape the outcome of the second. The screen is divided in three zones,

one for each possible position for obstacle and enemy spawning (left, centre and

right) and each with the dimension of one third of the total screen size. If the

player’s attention happens to fall in the same third of the screen for two tile

spawns in a row, the algorithm will force the obstacle or enemy spawning to occur

in a different third of the screen. This decision was made to force the gameplay

to provide the player with a challenging outcome, forcing the attention to be in

constant movement. Fig. 4.5 shows how the screen is split and which areas are

tracked in this algorithm.
1This value was achieved by trial and error and produces an initial tile generation that gives

enough time for the player to settle in and prepare for the incoming obstacles and enemies.

39

Chapter 4. Development and Implementation

Figure 4.4: The tile generation flow. The arrows indicate state transitions and
the text in them the conditions for the transition to occur.

Obstacle or enemy spawning has a one-third chance of occurring. If it does

occur, there’s a 50-50 chance for either spawning an obstacle or an enemy. The

obstacle or enemy can be spawned in three different positions in the tile: centre,

left, or right. If the previous spawned obstacle or enemy was spawned in either

left or right, the new one will be spawned in the centre to add variety to the game

and avoid same type objects too close to each other. Otherwise, the outcome of

the method which tracks the player’s attention will be taken into account. Lastly,

this position can be decided randomly if none of the previous conditions occur.

A spawned enemy has a 20% probability of being spawned as a runner, which

has double the speed of a walker, the default behaviour of an enemy. At every

frame, the enemy’s position is shifted towards the player’s position, resulting in

the distance between both getting reduced. Fig. 4.6 shows the explained behaviour

for enemy or obstacle spawning in a diagram.

40 40

Chapter 4. Development and Implementation

Figure 4.5: How the screen is split to track the player’s gaze towards generating
a more varied set of obstacles and enemies

The final step on a tile’s life cycle is its destruction, which is handled with

Blueprints. Every tile possesses a trigger box at its ending point that when in

collision with the player sets the tile’s destruction to happen in 2 seconds2. When

the tile is destroyed, it calls Spawn Volume to generate a new one and so the path

is procedurally and continually generated till the gameplay session is over. This

behaviour stops whenever the enemy gets killed by the player.

To make the player’s avatar run across the path, movement input had to be

disabled. Instead, a constant forward movement is applied to make the avatar run

forward in line. Other tweaks on the default avatar behaviour were the aiming

sensitivity and the bullet speed, both to give a better feeling to the game.

4.2.2 Ray casting, gaze detection logic and bounding boxes

In order to track the player’s gaze, it was deemed convenient and effective to

allow it to control the mouse pointer. This way, ray casting3 between the player’s

vision and interactive objects in the scene could be done using the Blueprint
2This value was decided to safely assure that no tile would be destroyed without the player

fully escaping it.
3Ray casting is done by tracing a ray (an unbounded linear component) and checking inter-

sections between it and other objects of the environment. It is often used for line-of-sight tests
and for artificial intelligent decision-making.

41

Chapter 4. Development and Implementation

Figure 4.6: The flow chart for the spawning of obstacles and enemies. This
behaviour has a one-third chance of occurring each time a tile is generated. The
arrows indicate state transitions and the text in them the conditions for the

transition to occur.

events OnBeginCursorOver and OnEndCursorOver. As their names imply, the

first method is called whenever the mouse cursor is moved over an object and the

second one when it is removed from that object.

The objects that have the OnBeginCursorOver and OnEndCursorOver events

enabled are the obstacles and the enemy. Both events call the same methods in

42 42

Chapter 4. Development and Implementation

all objects. OnBeginCursorOver will call a method on the object that starts (or

resumes if already started) a timer that when reaching 0.5 seconds4 marks the

object as noticed, while OnEndCursorOver will pause this timer.

Obstacles contain a bounding box, the Noticed Box, in front of them that

captures the player’s gaze, triggering the aforementioned events. Besides this

bounding box, obstacles also contain two other bounding boxes. The Interaction

Box is right before the 3D model of the obstacle and is used to trigger interactions

with the player, such as making the player’s avatar avoid said obstacle. The De-

struction Box sits behind the same 3D model and is used to trigger the destruction

of the obstacle after 2 seconds, in order to destroy it at the same time as the tile

that contains it. Fig. 4.7 portrays the disposition of these three boxes for each

type of obstacle.

Figure 4.7: The two types of obstacles with their bounding boxes. (A) The
Noticed Box is the box that captures the player’s sight, (B) the Interaction Box
is the box that triggers the interaction with the avatar, and (C) the Destruction

Box is the box that sets the obstacle to be destroyed.

In order to interact with the Interaction Box, the player has a Ray Caster

component. At every frame, Ray Caster will trace a line and see if any actor is

hit. If this actor is an obstacle that has not been interacted with before, the player

will interact with it, by either avoiding the obstacle if it was previously marked as

noticed, or by crashing onto it which will cause the player to get hurt.
4This value was achieved through informal tests that showed that it produced no false positives

or situations where the player felt he had noticed an obstacle and the system did not.

43

Chapter 4. Development and Implementation

The enemy also contains three bounding boxes, but the only it has in common

with the obstacle is the Destruction Box. The other two boxes are the Attack

Box and the Hit Box. The first one is a trigger that fires an attack event when

the player enters it and if the enemy has been previously noticed. The second

one is the collision box that collides with the shots fired by the player, while also

handling the player’s attention like the obstacle’s Noticed Box. Fig. 4.8 shows the

box setup for the enemy with the three mentioned bounding boxes.

Figure 4.8: The enemy with its bounding boxes. (A) The Attack Box is the
box that triggers the attack on the player, (B) the Hit Box is the box that
handles both the player’s sight and the bullets, and (C) the Destruction Box

that sets the enemy to be destroyed.

4.2.3 User Interface

The User Interface of Zombie Runner has its functionality based on the use of

a Game Instance Blueprint. A Game Instance Blueprint is a persistent glob-

ally available object that is not destroyed between levels and can hold whatever

information needed, making it also persistent. This facilitated greatly the com-

munication between Zombie Runner ’s two levels: the Main Menu5 and the actual

game level.
5Although the Main Menu is nothing more than a menu without actual gameplay, it resides in

a different level within the Unreal project, which greatly facilitates the UI flow and the transitions
between the Main Menu and the game.

44 44

Chapter 4. Development and Implementation

On the Main Menu, one can access the Options Menu where it is possible to set

different game variables, like spawning probabilities and game modes. Whenever

a value is changed on this menu, this change is carried on to the Game Instance,

where its data will be accessed when the game is started in order to alter the

overall behaviour of the play session.

The Options Menu was the initial solution to provide the player with a cen-

tralised dashboard in which to alter the game’s feeling. This menu was envisioned

as a central piece in order to do the test sessions. However, we realised that

it would be extremely hard to access and properly use this menu when the eye

tracking was already on and mouse control was handed over to the player’s gaze.

Furthermore, an attempt at shifting the gamepad’s focus to the menu in order to

be able to use it to navigate around did not prove successful, as this focus would

be lost whenever the player’s gaze crossed one of the buttons. This problem was

mitigated by already providing a series of game modes (which are no more than a

conjugation of different game variables) in the Main Menu, binding to each one of

them a button of the gamepad. This way, the player only needs to press a button

to start the game in the desired mode. This implementation facilitated the testing

sessions as it allowed the control of the game to be totally handed over to the test

subject, which was guided by us with button prompts in order to follow the testing

guide. The end result of this decision on the Main Menu can be seen in Fig. 4.9.

This solution was later extended to the actual game, with the player being able

to reset and return to the menu with only a button press.

4.3 Game art

The game art of Zombie Runner is comprised of 3D models, animations, effects,

and materials. Most of the art is royalty-free art available online, with a few

exceptions.

The assets used on the tiles and obstacles, as well as the particle effect used

for the noticed effect, all come from the Unreal’s dedicated store and are made

45

Chapter 4. Development and Implementation

Figure 4.9: The Main Menu contains several different game modes that can be
started with a press of a button indicated within brackets next to their names.

LT, RT, LB and RB are all buttons present in Xbox controllers.

available by Epic Games6 to use freely within Unreal based products. These

assets are of high quality with high polygon counts, so modifications on the assets

settings had to be made for performance reasons. These modifications, all done

within Unreal’s object settings, were mainly concerned with forcing a lower level

of detail to reduce the polygon count as well as disabling shadows.

4.3.1 Enemy animations

For the enemy, a rigged7 3D model and animations from Mixamo [66] were used.

Mixamo has many 3D models available for free use on their website, but the choice

reclined on a Zombie so as to fit the theme. To import the animations onto the

game, an Animation Blueprint had to be created within Unreal and associated

with the 3D model. This Animation Blueprint is a state machine where one can
6Epic Games, Inc. is an video game company based in America responsible for the develop-

ment of Unreal Engine.
7A rig is made up of joints and bones and acts essentially as a digital skeleton for a given 3D

model. Rigging is essential for character animation in both games and movies

46 46

Chapter 4. Development and Implementation

define the different animation states and transitions between them. Fig. 4.10

shows the logic behind the animations of the enemies in the game. Each state is

conditionally accessed according to events in the game.

Figure 4.10: The enemy’s animation blueprint. The death animation that
is triggered from the Walking state is randomly selected to bring variety to
the game. The arrows indicate state transitions and the text in them are the

conditions necessary to trigger another animation state.

4.3.2 Procedurally generated game world

As stated before, Zombie Runner’s game world consists on an endless path com-

prised of tiles. These tiles spawned to create the endless path for the player were

assembled in Unreal’s Blueprint Editor. They are comprised of one plane for the

floor, two planes for the side walls, an array of marker points distributed randomly

on the sides of the floor and an array of tree models. Every time one of this tiles

is spawned, the array of marker points is traversed. For each marker, there’s a

two-third chance of spawning a tree in its position. This tree will be spawned

with a random rotation around its base that goes from 0 to 90 degrees. The tree’s

height will also be randomly set on a value between its original height and the

double of it. Lastly, a random offset on both axis is added to the position of the

tree (which is now the position of the marker). This contributes to the generation

47

Chapter 4. Development and Implementation

of sufficiently different tiles that when placed in succession give the feeling of a

dense and varied forest on each side of the player’s sight. Fig. 4.11 shows three

different results of this algorithm applied to the tile generation.

Figure 4.11: Some possibilities for vegetation on the procedurally generated
tiles of the game.

As explained in the previous subsection, an obstacle or enemy can be spawned

along with the tile. The obstacle asset changes along with its position on the tile,

while the enemy asset is always the same. When the obstacle is spawned in the

centre, its asset is a rock, being a tree when it is spawned on one of the sides.

Fig. 4.12 showcases the different assets that can be spawned along with a tile.

4.3.3 The noticed effect

For the noticed effect, two types of materials were created. The first one is applied

to the obstacle or enemy whenever it is first seen. This material renders the object

in wireframe8 in shades of purple. The second material is applied when the object

is flagged as noticed, turning the object light blue. In conjunction with this change

of material, a particle effect9 representing a blue shock wave is drawn around the
8A wireframe is a visual representation of a 3D model that only shows its edges.
9A particle effect is produced by a particle system, which is a technique that uses a consid-

erable amount of graphic objects to produce effects that would be hard to produce with other
more conventional techniques. It is often used to produce explosions, magic spells and other
kinds of similar effects.

48 48

Chapter 4. Development and Implementation

Figure 4.12: The different assets for the different entities that can be spawned
with a tile. For right and left obstacles, the same tree is used but flipped so that

its biggest branch is spreading across the tile.

object. Fig. 4.13 shows the evolution of the materials and effects used on a rock

obstacle through the process of being noticed.

Figure 4.13: The material evolution of a rock obstacle being noticed.

4.4 Eye Tracker Integration

The last but most vital step of the development process, the integration with the

previous developed solution, was achieved smoothly. This was possible due to

the careful study of the hardware’s limitations and possibilities which drove the

implementation since the beginning.

49

Chapter 4. Development and Implementation

Since the player’s gaze was read by the game as the mouse cursor’s position, a

solution to translate the player’s gaze into this form of input was needed. Gaze-

point Control [67] is a software distributed along with the eye tracker hardware

used and allows for the intended behaviour. After an initial calibration, the con-

trol over the mouse can be turned on and the player’s attention will dictate its

behaviour instead. Fig. 4.14 shows how Gazepoint Control looks like, along with

its functionalities.

Figure 4.14: In Gazepoint Control, the player can calibrate (first button on
the left) the eye tracker and then use it to control the mouse pointer (second
button on the left) which opens a lot of possibilities for interaction. The green
squares mark the area identified as the player’s eyes, while the ellipses mark the

eyes’ pupils.

Adjustments had to be made on the bounding boxes to adjust to the impreci-

sion of the hardware (further explored in Chapter 5). These adjustments resulted

mainly in the enlargement of the boxes’ volumes. These enlargements were done

incrementally till the intended behaviour of the game was achieved, with the player

50 50

Chapter 4. Development and Implementation

being able to notice all obstacles and enemies. Finally, with eye tracker integration

complete, Zombie Runner was ready for the testing phase.

51

Chapter 5

Evaluation and Discussion

In this section, the evaluation method for our work will be presented along with a

discussion of its results.

Zombie Runner was tested with ten people that considered themselves gamers1,

the target audience for this game. The goal of these tests was to assess how

enjoyable the game is, how well the eye tracker technology was integrated, and to

evaluate the relationship between the overall enjoyment of the game with possible

problems that might arise due to possible limitations with gaze tracking hardware.

These ten tests were conducted at the end of the development process in order to

validate the implemented solution.

5.1 Evaluation Method

To test Zombie Runner, different test sessions were conducted where the test

subject was asked to play the game with different modifiers that alter the overall

experience. After each session, different questions were asked to assess how the

player felt in each play-through.
1A gamer is a person that plays video games.

53

Chapter 5. Evaluation and Discussion

5.1.1 Setup

We managed to guarantee the access to a room with enough space to setup the

hardware required for the tests. This hardware consisted on a laptop computer

which ran the game, with a Gazepoint GP3 eye tracker, a Microsoft Xbox gamepad

and a 32 inch television screen connected to it. This screen was outputting the

same image as the laptop computer’s screen, which allowed us to configure the

game experience while monitoring the test session and what the test subject was

seeing on screen. Fig. 5.1 shows this testing room configuration.

Figure 5.1: The setup for the test sessions. The tester would sit in front of the
television screen, with the gamepad in hand. The eye tracker would sit bellow
the television screen. Behind it, the laptop running the game would be open
and the person responsible for the testing session could monitor and guide the

session from it, while taking the necessary notes.

The ages of the ten testers spanned from 25 to 49 years old (which distribution

can be seen in Fig. 5.2), with different occupations such as software developer,

quality assurance tester, and student. All testers were male, with no female sub-

jects volunteering for the experience. They all considered themselves gamers and

had some degree of familiarity with gamepads. All test sessions occurred without

the presence of any other person inside the room, apart from ourselves. The test

session was private and there was no previous knowledge about its details or the

game by the tester.

54 54

Chapter 5. Evaluation and Discussion

Figure 5.2: The age distribution of the test group.

5.1.2 Test Sessions

Each test session started with a brief questionnaire the tester had to fill in, regard-

ing personal details, such as age and occupation, if the player had some degree

of visual imparity, as well as classifying their experience as video game players,

with the use of eye trackers and with the use of gamepads in FPS games. The

initial questionnaire allowed us to better understand our test group. As Fig-

ures 5.3, 5.4, and 5.5 show, our average test subject had a considerable amount

of gaming experience, little to no previous exposition to eye tracking technology,

and was moderately experienced using gamepads in FPS games. On the top of

this questionnaire, a brief paragraph explained the purpose of the test session. We

felt this was important so that the tester was aware that the main focus was the

eye tracker and its integration. This was done to minimize influence in the end

results, as the tester could be focusing too much on the game itself, not paying

enough attention to the interactions with the eye tracking hardware. This was

further reinforced after the questionnaire was concluded, while a brief explanation

of the game’s rules and objectives was given.

The tester was then briefed on the eye tracker calibration process. This process

was ran as many times as deemed necessary till the calibration was acceptable and

the eye tracker was capturing correctly the player’s gaze. When this acceptable

55

Chapter 5. Evaluation and Discussion

Figure 5.3: Histogram relative to the testers’ perception of their experience
with video games.

Figure 5.4: Histogram relative to the testers’ experience with eye tracking
technology.

calibration was achieved, the testers were asked to state their feelings towards the

process and if they would imagine themselves doing it at home before playing a

game.

In order to get the tester acquainted with the game, two separate runs were

done, with each one only having an input form enabled. This runs had no time

limit and did not count for the test result. On the first run, only the eye tracker

was enabled and no enemies were spawned. The result was a play session with only

obstacles being spawned. This allowed the testers to freely use their eyes to notice

56 56

Chapter 5. Evaluation and Discussion

Figure 5.5: Histogram relative to the testers’ experience with gamepads in
FPS games.

the obstacles in front of them and get used to this mechanic, without having to

worry about the gamepad. The testers were also asked to state any false positives

or obstacles that they had noticed but were not tagged as such by the game. On

the second run, no obstacles or enemies were spawned. This allowed the testers

to get acquainted with the gamepad, adapt to its sensibility and button scheme.

The main objective was for the test user to feel comfortable with the different

inputs and the test session would only advance when the testers confirmed they

felt acquainted with the controls.

The tester was then asked to play the game in its original form for three

sessions of 2 minutes each. For each session, the ratio between enemies killed

and spawned, the ratio between overall (enemies and obstacles) noticed count

and overall spawned count, as well as the number of deaths experienced by the

player, were registered. After these three sessions, the player as asked to fill a

Game Experience Questionnaire (GEQ), mainly the core and post-game modules

(explained in detail in Section 2.4). Afterwards, the tester was asked to play

another set of three sessions of 2 minutes, but this time with eye tracking disabled,

which means that all attention-based interactions happened automatically, with

the tester only being required to shoot the enemies. With these three sessions over,

another GEQ, with same modules, was filled by the player. Then, the calibration

57

Chapter 5. Evaluation and Discussion

process was performed again and the player was asked to play one 2 minute session

of the game but this time with the visual effects, that occur when the obstacle or

enemy is noticed, disabled.

An end questionnaire was then performed. This questionnaire was more sub-

jective and consisted on three questions:

• What do you think of the visual effects used on the first sessions, comparing

with the last session you played?

• How was the overall experience of playing the game?

• Would you consider an eye tracker as part of your gaming setup? Why?

The test results, both from the questionnaires and from our observation of the

test sessions, allowed us to understand the impact of the eye tracker use in the

overall game experience and comfort of the player, as well as possible flaws in the

implementation of Zombie Runner.

5.2 Results

All test sessions were concluded with success, in the sense that all test subjects

being able to perform the tasks required from them.

5.2.1 Eye Tracker Calibration Process

The calibration process revealed itself as the most challenging step of the testing

session. Fig. 5.8 shows the distribution of the amount of calibration tries per tester

before attaining a good enough calibration. An area of the screen is considered well

calibrated if the error between where the player is looking at the screen and where

the eye tracker computes the player is looking does not surpass a certain threshold.

Fig. 5.6 shows the threshold for the calibration software used, which is the distance

58 58

Chapter 5. Evaluation and Discussion

that goes from the centre of a circle to its edge. A calibration was deemed good

enough if the areas where the player mostly interacts with Zombie Runner (the

whole screen except the top corners, as can be observed in Fig. 5.7) were well

calibrated. This measure was necessary as the Gazepoint GP3 performance proved

itself to be different according to the user, working exceptionally well with some

users and never fully working for others (which did not happen in this test session).

Besides this limitation, two testers had to remove their glasses so their gaze could

be detected.

Figure 5.6: The Gazepoint Control’s [67] screen to test the calibration results.
The tester was asked to look at each circle to confirm the eye tracker calibration.
This calibration is fully successful if the gaze pointer, in green, never lands

outside of a circle while the tester is looking to its centre.

After achieving a calibration deemed successful, the testers were asked about

their feelings towards it and if they would see themselves repeating this process at

home before playing a game. From all the testers, 80% said that they would see

themselves doing it, stating that a calibration process also had to be performed

with other controllers. Three of these testers reported that the process was easy

and fast, while others stated that it should be easier, but it is still acceptable. The

other 20% that did not see themselves calibrating an eye tracker each time they

wanted to play expressed that they wished the process was easier like it is with

commercially available motion tracker controllers, stating that in its current state

is a nuisance.

59

Chapter 5. Evaluation and Discussion

Figure 5.7: Gaze movement of a tester during a play-through of Zombie Run-
ner. The main area where the tester concentrates the gaze is on the centre of the
screen, with occasional shifts to the centre top and lower corners of the screen.

The circled dots signal areas where the tester’s gaze was static.

Figure 5.8: Histogram relative to the amount of eye tracker calibration tries
per tester.

5.2.2 Play Sessions

The three 2 minute play sessions produced results that suggest an approximation

to the ideal game flow2, with the tester being able to learn how to use the game

systems and get used to the eye tracker. Figures 5.9, 5.10, and 5.11 show how
2An ideal game flow is when the balance between the player’s abilities and the challenges

set by the game is such that the game provides an experience that is not hard enough to cause
anxiety on the player, nor easy enough to cause boredom

60 60

Chapter 5. Evaluation and Discussion

the averages of all testers for the ratio of enemies killed and noticed obstacles and

enemies, along with the number of deaths, evolved along the sessions. The two

ratios evolved positively, with the player being able to perform the tasks of killing

enemies and noticing them, along with obstacles, with a greater success rate. The

number of deaths went down abruptly from the first to the second session and

then went up slightly on the third one, but to a value close to the lowest one

obtained in the second session. We suspect this slight increase in deaths can be

explained by the better results achieved by the testers in terms of killing enemies

and noticing both enemies and obstacles. In order to do it, testers had to perform

more tasks at the same time and better coordinate the two input forms, which

leads to a greater risk of being killed.

Figure 5.9: Graph relative to the ratio between enemies killed with the total
amount of enemies during the three play sessions. The error bars indicate the

standard error of the mean.

The GEQ was filled out by the tester after these three play sessions, as well

as after other three play sessions played without the eye tracker. For each module

of GEQ, a set of components with respective values can be obtained (explained in

detail in Section 2.4). Table 5.1 shows these values for each component and type

of play-through.

For the core module, the average of these component values for all test users

were used for comparison between the play-troughs with and without eye tracker.

61

Chapter 5. Evaluation and Discussion

Figure 5.10: Graph relative to the ratio between enemies and objects noticed
with the total amount of enemies and objects during the three play sessions.

The error bars indicate the standard error of the mean.

Figure 5.11: Graph relative to the amount of deaths experienced by the player
during the three play sessions. The error bars indicate the standard error of the

mean.

In the Competence component, the testers felt more competent and able to com-

plete tasks without the eye tracker than with it, which can be explained by the

higher degree of difficulty Zombie Runner presents when both input forms are

working. With only the enemies to kill without having to worry about avoiding

obstacles, the game became easier to master. In the Sensory and imaginative im-

mersion component, the testers reported a 43% higher value with the eye tracker,

which means the feeling of immersion was felt at a greater level with the full game

62 62

Chapter 5. Evaluation and Discussion

Component With eye tracker Without eye tracker

Competence 2.22± 0.27 2.8± 0.25

Sensory and imaginative immersion 1.33± 0.3 0.93± 0.3

Flow 2.08± 0.24 1.68± 0.26

Tension / annoyance 1.06± 0.28 0.3± 0.14

Challenge 1.56± 0.2 0.58± 0.19

Negative affect 0.675± 0.2 0.445± 0.21

Positive affect 2.477± 0.26 2.26± 0.22

Table 5.1: Average values for the different components on the GEQ core mod-
ule for the play sessions with and without eye tracker. The values are presented
in the form of AV G± STE, with AVG meaning average and STE the standard

error of the mean.

experience. The Flow component was 24% higher with the eye tracker, which

reveals the testers felt a stronger feeling of game flow, a better balance within

the game’s Challenge, another component better graded with the eye tracker.

Testers reported higher levels on the component of Tension/annoyance with the

eye tracker in use, which reveals the full game experience can lead to greater levels

of frustration (as it is more challenging), which leads the player to become more

concentrated on the game. Positive and negative affects were also higher with

the eye tracker, which shows that the testers were more emotionally invested. In

both cases, the positive affect is more than three and a half times greater than the

negative one, which suggests the game provides an overall positive experience.

For the post-game module, the same treatment of results was applied. We

could extract that both levels of positive and negative experience were greater

without the use of the eye tracker, with players reporting a greater level of tiredness

(which is directly related to the Challenge and Tension components from the core

module) and higher difficulty to return to reality (which is directely connect with

the Sensory and imaginative immersion component of the core module) with the

use of the eye tracker. The positive experience has a greater value without the

eye tracker, which suggests players had a better experience and would prefer the

game without it.

63

Chapter 5. Evaluation and Discussion

Component With eye tracker Without eye tracker

Positive experience 1.27± 0.31 1.33± 0.28

Negative experience 0.134± 0.06 0.15± 0.1

Tiredness 0.5± 0.35 0.234± 0.12

Returning to reality 0.7± 0.26 0.5± 0.18

Table 5.2: Average values for the different components on the GEQ post-
game module for the play sessions with and without eye tracker. The values are
presented in the form of AV G±STE, with AVG meaning average and STE the

standard error of the mean.

If we look at both the negative and positive affects and experience components,

we can see that the positive levels are considerably higher than the negative ones,

which lets us conclude that the overall experience was positive. The similar values

obtained with and without the eye tracker suggest that the tester’s perception

of the overall experience was more shaped by the game itself than by the use or

lack of the eye tracker. Still, these results become more meaningful and easier to

understand when compared with the answers the test subjects gave to the last set

of informal questions. The main goal of these questions was to extract from the

testers more subjective perceptions they had from the game, which could help us

understand the GEQ values.

5.2.3 Informal Questions

To the first question that asked the test subjects to state their opinion about

the use of visual effects, 90% of the test subjects stated the importance of the

effects as a means to give feedback to the player, with some pointing out that

without effects the player may be forced to look more than needed as the player

never knows if the obstacle or enemy was actually tagged as noticed. The use

of effects was also pointed out as more rewarding to the players actions. From

all the testers, 70% reported that without the visual effects, the game was more

immersive and the experience more realistic, making the way the player looks at

things more natural. This suggests that being more immersive does not mean that

64 64

Chapter 5. Evaluation and Discussion

a game is necessarily more rewarding for the player’s actions. In order for it to

be both rewarding and immersive, a different, more subtle feedback mechanism

should be implemented as to avoid breaking the suspension of disbelief3. Some

testers, to whom the eye tracker calibration was not fully successful, stated that

the effects induced frustration on them as they could see the discrepancy between

where the eye tracker thought they were looking at and where they were actually

looking at. This suggests that for this kind of implementation in a video game to

be successful, we need better eye trackers, capable of finer calibration. Half of the

testers also stated that they would prefer if there was only one crosshair on the

screen, thus removing the crosshair for the player vision which caused confusion

and tired vision. This change should be considered in a future version of the game.

To the second question about the overall experience of playing the game, 30%

of the test subjects complained about having to be as static as possible to avoid

the eye tracking decalibration. From all the testers, 20% reported problems with

the game registering when they looked at enemies and rock obstacles. Some testers

complained about hardware problems and the frustration of going to the process

of calibration and then the technology still not working right. A tester that had

problems with getting the eye tracker to work while wearing glasses wished that the

technology was more prepared for people with glasses. Three other testers wished

there was some way to calibrate the gamepad, as they were used to other levels

of joystick sensitivity or inverted joystick controls. Regarding the game, a tester

stated that it was well designed, also expressing appreciation for the feedback given

when the player loses life. Another tester said that the mechanic of noticing things

was fun, but that the game lacked progression, having nothing new after the first

minute. This suggests that a more complex game could have been a better fit for

this test session, as it would avoid frustration resulting from lack of novelty. One

tester felt that the time to set an obstacle or enemy as noticed was too long. The

experience was classified as immersive by three testers, with one of them stating

enthusiastically that eye tracking was amazing.
3A willingness to suspend one’s critical faculties and believe the unbelievable; sacrifice of

realism and logic for the sake of enjoyment.

65

Chapter 5. Evaluation and Discussion

To the last question regarding if the testers would consider the inclusion of

an eye tracking camera in their gaming setup, the responses were mixed. From

the entire group, 20% of the testers said they would not do it, with reasons such

as it being another piece of hardware that has little application and would be

quickly abandoned after the novelty effect wore off. Other 30% stated that they

would not in the current state but that they could try it in the future, stating that

depending on the game it could facilitate precision tasks such as aiming in FPS

games or passing the ball to another player in a football game. The reasons these

testers presented as to holding off in the adoption of the technology regarded

its poor performance while wearing glasses, and the fact that it was not stable

or precise, which allied with the calibration process ruined the experience. The

other 50% said they would adopt the technology, stating that it was a new form of

interaction, that opened new possibilities and created more immersive experiences.

This distribution can be seen in Fig. 5.12.

Figure 5.12: Graph relative to the testers openness to eye tracking technology
adoption.

These answers showed, along with the previous questionnaires, that the use of

eye tracking in games has both pros and cons. On the positive side, the use of

gaze-oriented gameplay provided a more immersive and rich experience, providing

a better game flow. On the negative side, the technology’s limitations raised

feelings on the testers that were not desired. The calibration process and its

results, along with some disbelief that eye tracking could have an important role

66 66

Chapter 5. Evaluation and Discussion

in a video game, are the main culprits for the testers being adamant about adopting

the technology.

67

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The game here presented, Zombie Runner, is an endless runner FPS game which

produces gaze-directed gameplay in a way that aims to produce a positive player

experience.

The literature survey revealed there was a lack in the current eye tracking

implementations in games, which was the use of gaze tracking in a core mechanic,

developed specifically with this technology in mind. The survey also revealed

a gap on existing studies on the impact of procedural generation in eye tracking

powered games to the player experience. We also could not find any studies tracing

direct relationships between the possible frustrations of the player due to the

eye tracker technology limitations, and what impact this limitations have on the

overall experience. Therefore, Zombie Runner was developed in order to extract

better conclusions on these subjects. The game utilizes eye tracking to control the

attention of the player’s avatar and the game’s procedural generation, all while

including the technology in a game’s core mechanic.

Based on the testing sessions performed, we could conclude that the use of

eye tracking provides a more challenging and immersive experience to the player.

Testers reported better levels of satisfaction while playing Zombie Runner with

69

Chapter 6. Conclusions and Future Work

the gaze tracking turned on. Testers also reported they felt the game was well

designed and looked visually impressive.

Each test session started an initial questionnaire to assess the tester experience

with eye tracking, video games and gamepads in FPS games. This questionnaire

was followed by plays sessions with and without the eye tracker and finished with

a set of informal questions to better understand the overall results. During the

tests, a direct connection between problems that surfaced with the eye tracker

calibration and the player’s overall experience was observed. Testers for whom the

hardware worked without major flaws reported better levels of satisfaction when

contrasting with testers for whom the calibration process was not perfect or took

a longer time. Among the testers’ complaints about the eye tracking technology,

many were related with comfort such as the need to have the head mostly static

during the play session or the calibration process success rate, which many times

required the tester to repeat it countless times till a good result was achieved.

Testers also complained a lot about the eye tracker’s lack of precision, which led

to frustration and to the feeling of getting tired as they felt their attention had

to be forced. For their private gaming sessions, half the testers said they would

consider using an eye tracker in the current state of technology.

The experimental procedure worked positively, with the results being objective

and meaningful in order to draw the necessary conclusions. The choice of using

an FPS game for this dissertation proved itself right, as it is a highly disseminated

genre and, along with a more direct translation between the player’s gaze and the

player avatar’s gaze, helped in the explanation of the objectives of the test session.

After the tests, we can conclude the technology still has to grow and develop

till it is in a state that can be accepted by the whole population. For the many

advantages and potential it offers, problems with calibration seem to obfuscate

whatever positive experience the technology could provide to the player. Yet,

when the calibration is good, the impact on the player’s experience is greatly

positive. In the future, when this limitations are surpassed, eye tracking will be

ready to be enjoyed by anyone.

70 70

Chapter 6. Conclusions and Future Work

6.2 Future Work

Although the test results highlighted important and relevant elements for dis-

cussion about the impact of the advantages and disadvantages of the use of eye

trackers in games have on the player experience, we believe Zombie Runner is but

the beginning.

As future work, we intend to validate the use of eye tracking in other types of

video games, implement more complex environments, and allow for free avatar’s

movement. We also intend to extend this testing framework, including the philos-

ophy behind the way the player’s attention was integrated in the core gameplay,

to games with other types of camera perspective, such as third-person games. We

pretend to perform a more intensive set of tests, enlarging the tester population,

in order to obtain more robust statistics.

We also believe that the advance of eye tracking technology will further uncover

the value of gaze-oriented gameplay, and that the possibilities for different kinds of

implementation will open doors to new ways of positively stimulating the player’s

experience, resulting in a better acceptance of the technology and, perhaps, of its

widespread use across the video games industry.

6.3 Dissemination

A part of this dissertation was published in an article named "Gaze-Oriented

Gameplay in First-Person Shooter Games" [68].

71

Appendices

73

Appendix A

Test session questionnaire

75

Initial Questionnaire

“Com o advento da tecnologia de eye tracking alguns developers estão a incluir

essa tecnologia nos jogos. Contudo, não existe ainda qualquer validação

científica das vantagens e desvantagens dessa inclusão em termos de

jogabilidade e conforto para o utilizador. Este estudo visa verificar se essas

vantagens existem e, se sim, quais são elas”

Age:

Gender:

Professional Occupation:

Visual Imparity (glasses, correction surgery)? Which?:

Please indicate how you classify yourself in the following subjects, on the following scale:

None at all Few Moderate Fair A lot

0 1 2 3 4

< > < > < > < > < >

Experience as a video-game player

Experience with eye-trackers

Experience with gamepads in FPS

Play session questionnaires

Fill 1 and 2 after playing with the eye tracker, and 3 and 4 after playing without it

1. Core Module

Please indicate how you felt while playing the game for each of the items,

on the following scale:

not at all slightly moderately fairly extremely

0 1 2 3 4

< > < > < > < > < >

1. I felt content

2. I felt skilful

3. I was interested in the game's
story

4. I thought it was fun

5. I was fully occupied with the
game

6. I felt happy

7. It gave me a bad mood

8. I thought about other things

9. I found it tiresome

10. I felt competent

11. I thought it was hard

12. It was aesthetically pleasing

13. I forgot everything around me

14. I felt good

15. I was good at it

16. I felt bored

17. I felt successful

18. I felt imaginative

19. I felt that I could explore things

20. I enjoyed it

21. I was fast at reaching the game's
targets

22. I felt annoyed

23. I felt pressured

24. I felt irritable

25. I lost track of time

26. I felt challenged

27. I found it impressive

28. I was deeply concentrated in the
game

29. I felt frustrated

30. It felt like a rich experience

31. I lost connection with the outside
world

32. I felt time pressure

33. I had to put a lot of effort into it

2. Post-game module

Please indicate how you felt after you finished playing the game for each of the items,

on the following scale:

not at all slightly moderately fairly Extremely

0 1 2 3 4

< > < > < > < > < >

1. I felt revived

2. I felt bad

3. I found it hard to get back to reality

4. I felt guilty

5. It felt like a victory

6. I found it a waste of time

7. I felt energised

8. I felt satisfied

9. I felt disoriented

10. I felt exhausted

11. I felt that I could have done more useful
things

12. I felt powerful

13. I felt weary

14. I felt regret

15. I felt ashamed

16. I felt proud

17. I had a sense that I had returned from a
journey

3. Core Module

Please indicate how you felt while playing the game for each of the items,

on the following scale:

not at all slightly moderately fairly extremely

0 1 2 3 4

< > < > < > < > < >

1. I felt content

2. I felt skilful

3. I was interested in the game's
story

4. I thought it was fun

5. I was fully occupied with the
game

6. I felt happy

7. It gave me a bad mood

8. I thought about other things

9. I found it tiresome

10. I felt competent

11. I thought it was hard

12. It was aesthetically pleasing

13. I forgot everything around me

14. I felt good

15. I was good at it

16. I felt bored

17. I felt successful

18. I felt imaginative

19. I felt that I could explore things

20. I enjoyed it

21. I was fast at reaching the game's
targets

22. I felt annoyed

23. I felt pressured

24. I felt irritable

25. I lost track of time

26. I felt challenged

27. I found it impressive

28. I was deeply concentrated in the
game

29. I felt frustrated

30. It felt like a rich experience

31. I lost connection with the outside
world

32. I felt time pressure

33. I had to put a lot of effort into it

4. Post-game module

Please indicate how you felt after you finished playing the game for each of the items,

on the following scale:

not at all slightly moderately fairly Extremely

0 1 2 3 4

< > < > < > < > < >

1. I felt revived

2. I felt bad

3. I found it hard to get back to reality

4. I felt guilty

5. It felt like a victory

6. I found it a waste of time

7. I felt energised

8. I felt satisfied

9. I felt disoriented

10. I felt exhausted

11. I felt that I could have done more useful
things

12. I felt powerful

13. I felt weary

14. I felt regret

15. I felt ashamed

16. I felt proud

17. I had a sense that I had returned from a
journey

To be filled by us

Would you see yourself doing this calibration process at home? What are your
feelings towards it?

Think-aloud remarks when experiencing the game with the eye tracker only -
failed notices and player remarks

Performance of the player on the play sessions with eye trackers

Eye tracking – 2 min x 3 sessions
1.
 Ratio kills

 Ratio Noticed

 Num of Deaths

2.
 Ratio kills

 Ratio Noticed

 Num of Deaths

3.
 Ratio kills

 Ratio Noticed

 Num of Deaths

Informal questions

Now that you played without effects, what do you think of the use of the effects?
Negative or positive?

How was the overall experience of this play test?

Would you consider eye trackers as part of your gaming setup? Why?

Bibliography

[1] L. Javal, “Essai sur la physiologie de la lecture,” Annales d’Oculistique, vol. 82,

p. 242–253, 1879.

[2] P. S. Holzman, L. R. Proctor, and D. W. Hughes, “Eye-tracking patterns in

schizophrenia,” Science, vol. 181, no. 4095, p. 179–181, 1973.

[3] D. P. Mcmullen, G. Hotson, K. D. Katyal, B. A. Wester, M. S. Fifer, T. G.

Mcgee, A. Harris, M. S. Johannes, R. J. Vogelstein, A. D. Ravitz, and et al.,

“Demonstration of a semi-autonomous hybrid brain-machine interface using

human intracranial eeg, eye tracking, and computer vision to control a robotic

upper limb prosthetic,” IEEE Transactions on Neural Systems and Rehabili-

tation Engineering, vol. 22, no. 4, p. 784–796, 2014.

[4] D. M. Krugman, R. J. Fox, J. E. Fletcher, P. M. Fischer, and T. H. Rojas,

“Do adolescents attend to warnings in cigarette advertising?: An eye-tracking

approach,” Journal of advertising research, vol. 34, p. 39–39, 1994.

[5] J. D. Smith and T. C. N. Graham, “Use of eye movements for video game

control,” in Proceedings of the 2006 ACM SIGCHI international conference

on Advances in computer entertainment technology - ACE ’06, 2006.

[6] M. Dorr, L. Pomarjanschi, and E. Barth, “Gaze beats mouse: a case study,”

PsychNology Journal, vol. 7, no. 2, p. 197–211, 2009.

[7] J. Leyba and J. Malcolm, “Eye tracking as an aiming device in a computer

game,” Course work (CPSC 412/612 Eye tracking Methodology and Applica-

tions by A.Duchowski), 2004.

83

References

[8] “Eye tracking in gaming, how does it work?” [Accessed Oct. 19, 2017].

[Online]. Available: https://help.tobii.com/hc/en-us/articles/115003295025-

Eye-tracking-in-gaming-how-does-it-work-

[9] “Tobii publishes its prospectus and announces the price range for its initial

public offering and listing on nasdaq stockholm,” Apr 2015, [Accessed Oct.

19, 2017]. [Online]. Available: https://www.tobii.com/group/news-media/

press-releases/tobii-publishes-its-prospectus-and-announces-the-price-range-

for-its-initial-public-offering-and-listing-on-nasdaq-stockholm/

[10] “E3 2017: Tobii announces 15 new game titles with eye tracking

integrations,” Jun 2017, [Accessed Oct. 19, 2017]. [Online]. Avail-

able: https://www.tobii.com/group/news-media/press-releases/2017/6/e3-

2017-tobii-announces-15-new-game-titles-with-eye-tracking-integrations/

[11] P. Isokoski, M. Joos, O. Spakov, and B. Martin, “Gaze controlled games,”

Universal Access in the Information Society, vol. 8, no. 4, p. 323–337, May

2009.

[12] P. Isokoski and B. Martin, “Eye tracker input in first person shooter games,”

in Proceedings of COGAIN 2006: Gazing into the Future, 2006, p. 78–81.

[13] V. K. Vaishnavi and W. J. Kuechler, Design science research methods and

patterns innovating information and communication technology. CRC Press,

2015.

[14] K. Cater, A. Chalmers, and G. Ward, “Detail to attention: Exploiting visual

tasks for selective rendering,” in Proceedings of the 2003 EUROGRAPHICS

Symposium on Rendering, 2003, p. 270–280.

[15] A. M. Treisman and G. Gelade, “A feature-integration theory of attention,”

Cognitive Psychology, vol. 12, no. 1, p. 97–136, 1980.

[16] C. Koch and S. Ullman, “Shifts in selective visual attention: Towards the

underlying neural circuitry,” Matters of Intelligence, p. 115–141, 1987.

84 84

https://help.tobii.com/hc/en-us/articles/115003295025-Eye-tracking-in-gaming-how-does-it-work-
https://help.tobii.com/hc/en-us/articles/115003295025-Eye-tracking-in-gaming-how-does-it-work-
https://www.tobii.com/group/news-media/press-releases/tobii-publishes-its-prospectus-and-announces-the-price-range-for-its-initial-public-offering-and-listing-on-nasdaq-stockholm/
https://www.tobii.com/group/news-media/press-releases/tobii-publishes-its-prospectus-and-announces-the-price-range-for-its-initial-public-offering-and-listing-on-nasdaq-stockholm/
https://www.tobii.com/group/news-media/press-releases/tobii-publishes-its-prospectus-and-announces-the-price-range-for-its-initial-public-offering-and-listing-on-nasdaq-stockholm/
https://www.tobii.com/group/news-media/press-releases/2017/6/e3-2017-tobii-announces-15-new-game-titles-with-eye-tracking-integrations/
https://www.tobii.com/group/news-media/press-releases/2017/6/e3-2017-tobii-announces-15-new-game-titles-with-eye-tracking-integrations/

References

[17] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for

rapid scene analysis,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 11, p. 1254–1259, 1998.

[18] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, p.

185–207, 2013.

[19] L. Itti and C. Koch, “A saliency-based search mechanism for overt and covert

shifts of visual attention,” Vision Research, vol. 40, no. 10-12, p. 1489–1506,

2000.

[20] H.-C. Nothdurft, “Salience of feature contrast,” Neurobiology of Attention, p.

233–239, 2005.

[21] H. E. Egeth and S. Yantis, “Visual attention: Control, representation, and

time course,” Annual Review of Psychology, vol. 48, no. 1, p. 269–297, 1997.

[22] L. Itti and C. Koch, “Computational modeling of visual attention,” Natural

Rev. Neuroscience, vol. 2, no. 3, p. 194–203, 2001.

[23] A. L. Yarbus, “Eye movements and vision,” 1967.

[24] K. Arai and R. Mardiyanto, “Eye-based hci with full specification of mouse

and keyboard using pupil knowledge in the gaze estimation,” 2011 Eighth

International Conference on Information Technology: New Generations, 2011.

[25] K. Lukander, “Measuring gaze point on handheld mobile devices,” Extended

abstracts of the 2004 conference on Human factors and computing systems -

CHI ’04, 2004.

[26] W. C. Wells, “An essay upon single vision with two eyes together with exper-

iments and observations on several other subjects in optics,” 1792.

[27] M. Lamare, “Des mouvements des yeux dans la lecture,” Bulletins et Mémoires

de la Société Française d’Ophthalmologie, vol. 10, p. 354–364, 1892.

85

References

[28] R. Dodge and T. S. Cline, “The angle velocity of eye movements.” Psycholog-

ical Review, vol. 8, no. 2, p. 145–157, 1901.

[29] H. Drewes, “Eye gaze tracking for human computer interaction,” A Disserta-

tion submitted in the partial fulfilment of the Ph. D. Degree, 2010.

[30] H. Singh and J. Singh, “Human eye tracking and related issues: A review,”

International Journal of Scientific and Research Publications (IJSRP), vol. 2,

no. 9, Sep 2012.

[31] J. S. Shell, R. Vertegaal, D. Cheng, A. W. Skaburskis, C. Sohn, A. J. Stewart,

O. Aoudeh, and C. Dickie, “Ecsglasses and eyepliances,” in Proceedings of the

Eye tracking research and applications symposium on Eye tracking research

and applications - ETRA’2004, 2004.

[32] J. D. Smith, R. Vertegaal, and C. Sohn, “Viewpointer,” in Proceedings of the

18th annual ACM symposium on User interface software and technology -

UIST ’05, 2005.

[33] Atari, Inc., “Breakout,” 1976.

[34] M. Perreira da Silva, V. Courboulay, and A. Prigent, “Gameplay experience

based on a gaze tracking system,” in Proceedings of COGAIN 2007, 2007.

[35] Square Enix, “Deus ex: Mankind divided,” 2016.

[36] Ubisoft Montreal, “Watch dogs 2,” 2016.

[37] Ubisoft Annecy, “Steep,” 2016.

[38] N. Shaker, J. Togelius, and M. Nelson, “Procedural content generation in

games: A textbook and an overview of current research,” Springer, 2014.

[39] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural content

generation for games,” ACM Transactions on Multimedia Computing, Com-

munications, and Applications, vol. 9, no. 1, p. 1–22, Jan 2013.

[40] N. Barreto, A. Cardoso, and L. Roque, “Computational creativity in proce-

dural content generation: A state of the art survey,” 2014.

86 86

References

[41] M. Toy, G. Wichman, and K. Arnold, “Rogue,” 1980.

[42] I. Bell and D. Braben, “Elite,” 1984.

[43] A. Paszitnov, V. Gerasimov, and E. Jap, “Tetris,” 1987.

[44] Blizzard Entertainment, “Diablo,” 1996.

[45] T. Adams and Z. Adams, “Dwarf fortress,” 2006.

[46] Mojang, “Minecraft,” 2011.

[47] Hello Games, “No man’s sky,” 2016.

[48] Mossmouth, “Spelunky,” 2012.

[49] D. Yu, Spelunky. Boss Fight Books, 2016.

[50] D. Kazemi, “Spelunky generator lessons,” [Accessed Oct. 19, 2017]. [Online].

Available: http://tinysubversions.com/spelunkyGen/

[51] C. Browne, G. N. Yannakakis, and S. Colton, “Guest editorial: Special issue

on computational aesthetics in games,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 4, no. 3, p. 149–151, 2012.

[52] G. N. Yannakakis, “Game ai revisited,” in Proceedings of the 9th conference

on Computing Frontiers - CF ’12, 2012.

[53] J. Gow, R. Baumgarten, P. Cairns, S. Colton, and P. Miller, “Unsupervised

modeling of player style with lda,” IEEE Transactions on Computational In-

telligence and AI in Games, vol. 4, no. 3, p. 152–166, 2012.

[54] G. N. Yannakakis and J. Togelius, “Experience-driven procedural content gen-

eration,” IEEE Transactions on Affective Computing, vol. 2, no. 3, p. 147–161,

2011.

[55] G. N. Yannakakis and J. Hallam, “Towards optimizing entertainment in com-

puter games,” Applied Artificial Intelligence, vol. 21, no. 10, p. 933–971, May

2007.

87

http://tinysubversions.com/spelunkyGen/

References

[56] H. Iida, N. Takeshita, and J. Yoshimura, “A metric for entertainment of

boardgames: Its implication for evolution of chess variants,” Entertainment

Computing, p. 65–72, 2003.

[57] J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time challenge bal-

ance in an rts game using rtneat,” 2008 IEEE Symposium On Computational

Intelligence and Games, 2008.

[58] G. V. Lankveld, P. Spronck, H. J. V. D. Herik, and M. Rauterberg,

“Incongruity-based adaptive game balancing,” Lecture Notes in Computer Sci-

ence Advances in Computer Games, p. 208–220, 2010.

[59] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma, “Difficulty scaling of

game ai,” in Proceedings of the 5th International Conference on Intelligent

Games and Simulation (GAME-ON 2004), 2004, p. 33–37.

[60] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Automatic computer

game balancing,” in Proceedings of the fourth international joint conference

on Autonomous agents and multiagent systems - AAMAS ’05, 2005.

[61] N. Sorenson and P. Pasquier, “Towards a generic framework for automated

video game level creation,” Applications of Evolutionary Computation Lecture

Notes in Computer Science, p. 131–140, 2010.

[62] W. IJsselsteijn, Y. de Kort, and K. Poels, “Characterising and measuring

user experiences in digital games,” International Conference on Advances in

Computer Entertainment Technology, 2007.

[63] W. A. IJsselsteijn, Y. A. de Kort, and K. Poels, “The game experience ques-

tionnaire,” Jan 2013.

[64] K. M. Gerling, M. Klauser, and J. Niesenhaus, “Measuring the impact of

game controllers on player experience in fps games,” in Proceedings of the 15th

International Academic MindTrek Conference on Envisioning Future Media

Environments - MindTrek ’11, 2011.

88 88

References

[65] A. Drachen, L. E. Nacke, G. Yannakakis, and A. L. Pedersen, “Correlation be-

tween heart rate, electrodermal activity and player experience in first-person

shooter games,” in Proceedings of the 5th ACM SIGGRAPH Symposium on

Video Games - Sandbox ’10, 2010.

[66] “Mixamo,” [Accessed Oct. 19, 2017]. [Online]. Available: https://

www.mixamo.com/

[67] “Gazepoint control,” [Accessed Oct. 19, 2017]. [Online]. Available:

https://www.gazept.com

[68] J. Antunes and P. Santana, “Gaze-oriented gameplay in first-person shooter

games,” in Proceedings of Encontro Português de Computação Gráfica e In-

teração 2017 - EPCGI 2017, 2017.

89

https://www.mixamo.com/
https://www.mixamo.com/
https://www.gazept.com

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Research Questions
	1.4 Objectives
	1.5 Research Method
	1.6 Document Structure

	2 Literature Survey
	2.1 Visual Attention
	2.1.1 Mechanisms: Bottom-Up vs. Top-Down

	2.2 Eye Tracking
	2.2.1 Eye Tracking in Video Games

	2.3 Procedural Content Generation
	2.4 Player Experience Tests

	3 System Overview
	3.1 The Game
	3.2 Setup

	4 Development and Implementation
	4.1 Game Logic
	4.1.1 Design Decisions
	4.1.2 Rules and Mechanics
	4.1.3 Flow
	4.1.4 Verbs and actions

	4.2 Development in Unreal Engine
	4.2.1 C++, Blueprints and Algorithms
	4.2.2 Ray casting, gaze detection logic and bounding boxes
	4.2.3 User Interface

	4.3 Game art
	4.3.1 Enemy animations
	4.3.2 Procedurally generated game world
	4.3.3 The noticed effect

	4.4 Eye Tracker Integration

	5 Evaluation and Discussion
	5.1 Evaluation Method
	5.1.1 Setup
	5.1.2 Test Sessions

	5.2 Results
	5.2.1 Eye Tracker Calibration Process
	5.2.2 Play Sessions
	5.2.3 Informal Questions

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work
	6.3 Dissemination

	Appendices
	A Test session questionnaire
	Bibliography

