

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2018-04-02

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Santos, T. & Serrão, C. (2017). Granular confidentiality and integrity of JSON messages.
International Journal of Intelligent Computing Research. 8 (2), 839-848

Further information on publisher's website:
10.20533/ijicr.2042.4655.2017.0103

Publisher's copyright statement:
This is the peer reviewed version of the following article: Santos, T. & Serrão, C. (2017). Granular
confidentiality and integrity of JSON messages. International Journal of Intelligent Computing
Research. 8 (2), 839-848, which has been published in final form at
https://dx.doi.org/10.20533/ijicr.2042.4655.2017.0103. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.20533/ijicr.2042.4655.2017.0103

Granular confidentiality and integrity of JSON
messages

Tiago Santos, Carlos Serrão
ISCTE – Instituto Universitário de Lisboa

Information Sciences, Technologies and Architecture Research Center (ISTAR-IUL)
Ed. ISCTE, Av. das Forças Armadas, 1649-026, Lisbon, Portugal

tfpss1@iscte.pt, carlos.serrao@iscte.pt

Abstract— Modern web and mobile-based applications exchange
information with each other and with other services, through
specific APIs that extend the applications multipart functionality
and enable interoperable information exchange. Currently these
mechanisms are implemented through the usage of RESTful APIs
and data interchange is performed using the JSON format over
the HTTP or HTTPS protocol. Most of the times, due to specific
security requirements, the SSL/TLS protocol is used to create a
secure authenticated channel between the two-communicating
service end-points, where all the content is encrypted. This is an
important security feature if the sender and the receptor are the
only communicating parties, however this may not be the case. In
this paper, a granular mechanism for selectively offering
confidentiality and integrity to JSON messages, through the usage
of public-key cryptography is presented. The proposed
mechanism, as take in to consideration already existing
mechanisms, such as XML security, to best fit developers’
acquaintance. In this paper, we will present the proposal of the
syntax for the secure JSON format (SecJSON) and present a
prototype implementation of that particular specification that was
created to offer developers, written in Javascript and Node.JS, the
possibility to offer this security mechanism into their own services
and applications.

Keywords- Security; Integrity; Confidentiality; API; JSON;
HTTPS; SSL/TLS

I. INTRODUCTION
Current web and mobile development follows a paradigm

where most of the software development is encapsulated into
self-contained entities, referred as services. Services expose
standardized interfaces (API), using some existing mechanisms,
to interact with other services or systems, in order to provide
specific functionalities for their users. For instance, imagine a
mobile application that uses the Facebook service to allow its
users to update their Facebook account and uses the
Weather.com service to inform its users about the weather on a
given geo-location [1]. The usage of such services involves the
definition of their internal functionality, the communication
mechanisms and the data interchange formats that are required
by the service and the service invokers. The Internet, in
particular the World Wide Web, presented the opportunity for
the development of standard communication environment that

facilitated the service-oriented software development and
deployment [2].

In modern web-based service-oriented software, one of the
main mechanisms that is used to create information exchange
interoperability between different Web-based services uses the
Javascript Object Notation (JSON), an open standard format that
uses plaintext to facilitate the transport, processing and
interoperability during information serialization and de-
serialization [3] cross multiple heterogeneous services and
applications. According to its creator, Douglas Crockford, JSON
is a natural way for representing data that can be consumed by
different programming languages and different platforms or
architectures [4]. In this service-oriented development model
there are commonly the SOAP-based and REST-based services.
SOAP relies entirely on XML to provide messaging services. It
was developed as a replacement for older technologies such as
Distributed Component Object Model (DCOM) and Common
Object Request Broker Architecture (CORBA) that were based
on binary messaging not working well over the Internet. SOAP
was standardized and is part of a set of Web Services Standards.
XML is used to make requests and receive responses in SOAP
and this can become extremely complex. An important part of
the SOAP-based web services is the Web Services Description
Language (WSDL). WSDL is used to describe how a service
works and what is the format of the messages and it expects to
receive and send. SOAP is independent of the transport protocol
and is not dependent of the HTTP protocol [5]. However, a large
number of developers found SOAP cumbersome and hard to
use, in particular due to the XML complexity and verbosity.

REST-based services are a lightweight alternative, using
simple mechanisms such as simple URLs, Really Simple
Syndication (RSS), Comma-Separated Values (CSV) or
JavaScript Object Notation (JSON) to provide the
communication and data exchange methods to use the service.
REST-based services are dependent of the HTTP protocol using
the HTTP verbs (GET, POST, PUT and DELETE) in order for
the service to perform tasks. JSON is currently one of the
common options to exchange information on REST-based
services, due to its simplicity. JavaScript Object Notation
(JSON) is a text format for the serialization of structured data
described in RFC 4627 [4]. The JSON format is often used for

serializing and transmitting structured data over a network
connection.

One of the first JSON implementations targeted the
communication between Javascript-based scripts and Java-
based servers. Although JSON was first developed having into
consideration the Javascript language, it is currently platform
and programming language independent. In the last few years
there has been a significant growth in the usage of this format to
serialize and de-serialize information on web services,
promoting the data interoperability between services running on
different platforms and written on a multiplicity of programming
languages. JSON can be seen today, together with HTTP, as the
“glue” that enables the interoperable communication between
different web-based services [6] and applications (desktop, web
or mobile centric). JSON is widely used to support the
communication between multiple REST-based service APIs
available on web. Due to the increasing adoption of this type of
REST-based web-services and JSON data interchange format,
JSON security assumes extreme significance, in particular, due
to the sensitive characteristics of the information that is JSON-

encapsulated (also known as JSON payload) and transported
between this distributed heterogeneous ecosystem.

Due to the widespread and openness of the Internet, there are
currently mechanisms that allow the protection of the
communication channels between the different applications and
services assuring the confidentiality and authentication of the
entire channel – the Secure Sockets Layer/ Transport Layer
Security protocol (SSL/TLS) [7]. SSL/TLS are cryptographic
protocols that offer communications security over a network,
ensuring that the connection is private, the identity of the
communicating parties can be authenticated and the integrity of
the exchanged messages can be established. However, SSL/TLS
blindly ciphers all the information that flows on the
communication channel, in the same similar way. This is a
limitation that makes impossible to cipher parts of message with
a key and other parts of an SSL/TLS message with a different
cryptographic key. Therefore, all the messages sent from a
specific sender, are encrypted with the appropriate
cryptographic key, in order to be decrypted by a particular
receiver – the encryption is always end-to-end.

Figure 1. Scenario of the granular security of JSON interactions

This is an SSL/TLS characteristic that is adequate for two
entities secure authenticated communication, but it is not
adequate to offer the possibility of ciphering the same message
conditionally (for instance JSON or XML data), using different
keys or using different protection mechanisms (cryptographic
algorithms), which could be required by specific applications
and by different users [8]. There may exist situations in which
the information that needs to be sent or routed to multiple
entities, even if those entities are not the final receptor of such
message. Therefore, it should exist a mechanism that would

allow the same JSON message/document to have multiple
sections of that document that are protected in a specific manner,
while others have a different protection type. With these
requirements in mind, it is possible to imagine a scenario where
the same JSON document can contain critical and non-critical
information, protected in different ways, with distinguished
ways of accessing such information (Figure 1).

In the depicted scenario, a single payload of JSON-formatted
data, contained inside the JSON structure is protected using
different protection mechanisms, that are adequate for different

applications and different users. The same message is sent to
multiple receivers however, only the receivers with the
appropriate decryption mechanisms and decryption keys are
able to access the JSON data that is intended for them.

This article intends to present a secure and granular solution
for the protection of confidentiality and integrity of JSON
documents. The major contribution of the work presented in this
article can be resumed in the presentation of the syntax and
semantics of a mechanism capable of ensuring the granular
confidentiality and integrity of JSON objects and the
implementation of the syntax necessary to support the security
mechanisms necessary. Other important contribution of this
work consists of the implementation of a software library that
will enable developers implementing web-services to be able to
use these JSON security functionalities in an easy and
straightforward manner. The article starts by providing an
introduction to the modern approach to the development of
distributed web services. After this, a more detailed presentation
of the HTTP-based RESTful services is provided, as well as
some references to the data interchange format that is currently
being used on these cases, and some problems involved in the
security of JSON. Following this part, a proposal and
specification of a secure version of JSON (SecJSON) is
provided. The following section provides a description of the
implementation that was conducted to implement a library that
would allow web-services developers to use the SecJSON
format. Finally, some conclusions from the work are presented
as well as some of its limitations.

II. JSON-BASED WEB SERVICES
Most business transactions currently depend on the existence

of Web Services. More and more developed applications are
following a service-oriented approach. This is the reason why it
has become one of the most important areas of the IT industry
[9]. The security inherent in this type of transactions is essential
to ensure the success of an organization and automate most of
their internal and external business processes. The possibility for
organizations or users to interact directly with other
organization’s systems over open networks raise security
concerns. How can organizations ensure that their own
information or the information of their users reaches the final
destination safely, preserving confidentiality and integrity,
whenever sensitive information is routed through the WWW [9].
Looking at the state of the art, it is possible to identify different
protocols and technologies to ensure the security and
confidentiality on the Internet/WWW, each one of them using
their own ways to protect information. One of the most used web
protection mechanisms is SSL/TLS. As it was previously stated,
the main functionality of the SSL/TLS protocol is to establish an
encrypted and authenticated communication channel between
two communication parties - the client, usually a web browser
and a server.

However, as previously referred, this mechanism encrypts
all information passing through the communication channel,
using pre-established cryptographic primitives and keys, in the
same way. Therefore, it is impossible, in a conditional and
granular manner, to encrypt JSON messages, or parts of
messages, with different keys or encryption schemes. This
constraint can be a problem for specific use cases. The focus of

SSL/TLS protocol consists in the protection of information
serialization between two entities. Information is immediately
deciphered on arrival at the end-point, regardless of their final
destination [10]. In the case of a channel compromise, all
information transmitted can be accessible to an attacker.
Moreover, SSL/TLS is mostly used at the server level and not
the application level – meaning that information is decrypted at
the server and not at the application. In a scenario where a server
is running multiple applications, with multiple users, and each
of them have their specific security requirements, SSL/TLS
might not be the appropriate solution to offer confidentiality and
integrity to JSON messages in this case. In addition to these
problems, in a scenario where sensitive JSON information is
forwarded by multiple parties without them to be the final
recipient of the information, if one of the parties is compromised
all the information can be exposed. In this scenario, the
protection of the JSON messages offered by SSL/TLS protocol
is insufficient.

There are already some specific technologies for providing
the security of JSON data. One of the most prominent initiatives
in this field is the Javascript Object Signing and Encryption
(JOSE). JOSE is a framework that was developed with the
intention to provide a method to securely transfer claims (such
as authorization information) between parties [11]. The JOSE
working group standardized a mechanism to offer integrity
protection (signature and MAC) and encryption as well as the
format for keys and algorithm identifiers to support
interoperability of security services for protocols that use JSON
[12]. JOSE is currently mostly used for digital identity
identification (as an alternative or a complement to OAuth) and
is composed by a set of different specifications: JSON Web
Token [13], Signature [14], Encryption [15], Key [16] and
Algorithm specifications [17]. For developers, in particular
those already involved on service-oriented software
development, this means having to use a new specification and
increase their learning curve. This way, for some cases, it would
be better to have a lightweight approach to the JSON security
problem, and to base its development on something that was
already existing and more mature, such as the XML web-
services security standards (WS-Security) [18]. Considering this
requirement and the existing WS-Security, the Secure Javascript
Object Notation (SecJSON) was developed.

III. SECURE JAVASCRIPT OBJECT NOTATION (SECJSON)
Considering the different aspects of modern JSON

documents confidentiality and integrity, and the mechanisms
that are mostly offered for security on the WWW, it is possible
to conclude that SSL/TLS is not suitable for all the security
scenarios involving JSON. Therefore, this work was conducted
to devise a security framework that could be used to offer JSON
protection, in a way that it would be easy for programmers to use
to implement security on their services. This section of the paper
presents some of the major requirements guiding the
development of SecJSON as well as the description of the
approach that was followed throughout its development. The
SecJSON syntax is also presented.

A. SecJSON requirements
The basic rational behind the specification and development

of SecJSON is to assure a security mechanism that would enable

the protection of JSON data. The specific requirements of the
solution can be resumed in the following:

• SecJSON should offer a protection mechanism that is
independent of any other existing channel encryption
mechanism – this means that SecJSON can act as a
security mechanism that can be used on top (at the
application level) of other underlying security
mechanism, such as SSL/TLS;

• SecJSON should consider the protection of JSON data
without any underlying channel encryption mechanism
(for instance, SSL/TLS). This means that even if the
communication channel is not encrypted, SecJSON
should provide the security mechanisms to offer the
appropriate protection to JSON;

• SecJSON should assume that data inside the JSON
document/message could have as destiny different
receptors with different access clearances;

• SecJSON should make possible to protect either the
entire JSON document/message or simply protect
specific parts of the JSON document/message – offer
granularity in terms of protetion;

• SecJSON should also make possible the usage of
multiple keys and multiple encryption algorithms to
protect different sections of the same JSON
document/message;

• SecJSON should be independent of any specific
programming language, or encryption algorithms;

• SecJSON should be easy to implement and used by any
third parties;

• Finally, SecJSON would be open and free to use by
anyone.

Considering the set of identified requirements, SecJSON
was specified and developed. The following sections of this
article present the SecJSON specification and the
implementation that was performed to allow developers to
integrate SecJSON into their own development lifecycle.

B. SecJSON overview
The proposed Secure JSON consists in a set of rules and

specifications for encrypting information and represent their
results in JSON format. Data to be protected can include another
JSON document, a primary type (for instance, a sequence of
characters) or a structured type (for instance, an array).

SecJSON is a mechanism that was based on the XML
Encryption standard, which specifies the method for encrypting
data and how it can be represented in XML format [19].

The result of the encryption process consists of a SecJSON
element EncryptedData, which contains encrypted information.
{
 "Case":"Case info",
 "Witness protection":[
 {
 "Name":"Igor",
 "id":123
 }]
}

The previously presented JSON object, contains sensitive

information about witnesses, that needs to be protected. In an
initial stage it should be identified where is the information that
will need to be encrypted (in this case the “Witness protection”
element):
{
 [
 "Name":"Igor",
 "id":123
]
}

After SecJSON cipher process is applied to the previously
located element, it is replaced by the appropriate EncryptedData
element. This element contains all necessary components to
allow the SecJSON decipher process. The result is similar to the
following object:
{
 "Case":"Case info",
 "Witness protection":{
 "EncryptedData":{
 (... SecJSON elements ...)
 }
 }
}

Whenever the encryption process is applied to a JSON
document/message the result is a new JSON-encrypted
document with a single EncryptedData element.
{
 "EncryptedData":{
 (... SecJSON elements ...)
 }
}

C. SecJSON proposed syntax
This section offers a detailed description of the syntax and

features of the Secure JSON (SecJSON). The syntax is defined
using the JSON-Schema in order to be similar to what occurs in
the XML security. The JSON implementation should generate a
JSON object accepted and validated by the JSON Schema
defined and available in
http://tiagomistral.github.io/SecJSON/ secjson-
schema.json.

EncryptedType element

EncryptedType is the abstract type from which
EncryptedData and EncryptedKey are derived. While these two
element types are very similar with respect to their content
models, a syntactical distinction is useful for processing these
elements.

Although JSON Schema does not support abstract elements,
a representation of this element is useful to facilitate the
interpretation of the syntax.

EncryptionMethod element

EncryptionMethod is an optional element that describes the
encryption algorithm applied to the original data to obtain the
ciphered counterpart. If the element is absent, the encryption
algorithm must be known by the recipient or the decryption will
fail.

CipherData element

CipherData is a mandatory element that provides the
encrypted data. It must either contain the encrypted octet
sequence as a Base64 encoded text of the CipherValue element,
or provide a reference to an external location containing the
encrypted octet sequence via the CipherReference element.

CipherReference element

If CipherValue is not supplied directly, the
CipherReference identifies a source which, when processed,
yields the encrypted octet sequence.

The actual value is obtained as follows. The
CipherReference URI contains an identifier that is
dereferenced. Should the CipherReference element contain an
optional sequence of Transforms, the data resulting from
dereferencing the URI is transformed so as to yield the intended
cipher value.

EncryptedData element

The EncryptedData element is the core element in the JSON
encrypted structure syntax. Not only does its CipherData child

contain the encrypted data, but it is also the element that replaces
the encrypted element, or serves as the new document root.

KeyInfo element

There are two ways that the keying material needed to
decrypt CipherData can be provided:

• The EncryptedData or EncryptedKey element specify
the associated keying material via a child of KeyInfo
element.

• The keying material can be determined by the recipient
by application context and thus need not be explicitly
mentioned in the transmitted JSON document.

EncryptedKey element

The EncryptedKey element is used to transport encryption
keys from the originator to a known recipient(s). It may be used
as a stand-alone JSON document, be placed within an
application document, or appear inside an EncryptedData
element as a child of a KeyInfo element. The key value is always
encrypted to the recipient(s). When EncryptedKey is decrypted
the resulting octets are made available to the EncryptionMethod
algorithm without any additional processing.

Figure 2. SecJSON encryption proces

D. SecJSON Processing Rules
This section describes the operations that need to be

performed as part of the encryption and decryption processing
by any implementation of the SecJSON specification. Again, in
a similar way as it occurred in the the definition of SecJSON
elements, the SecJSON processing rules are based on the same
rules that are used by XML Encryption standard [19].

The conformance requirements are specified over the
following roles:

Application: the application which makes a request of an
SecJSON implementation via the provision of data and
parameters necessary for its processing;

Encryptor: a SecJSON implementation with the role of
encrypting data;

Decryptor: a SecJSON encryption implementation with the
role of decrypting data.

For each data item to be encrypted (Figure 2) as an element
derived from EncryptedType, the encryptor must:

1. Select the algorithm (and parameters) to be used in
encrypting this data.

2. Obtain and (optionally) represent the key.

a. If the key is to be identified (via naming, URI,
or included in a child element), construct the
KeyInfo as appropriate.

b. If the key itself is to be encrypted, construct an
EncryptedKey element by recursively
applying this encryption process. The result
may then be a child of KeyInfo, or it may exist

elsewhere and may be identified in the
preceding step.

3. Encrypt the data:

a. obtain the octets by serializing the data in
UTF-8 (or other encoding choose by
application). Serialization may be done by the
encryptor. If the encryptor does not serialize,
then the application must perform the
serialization.

b. Encrypt the octets using the algorithm and key
from steps 1 and 2.

c. Unless the decryptor will implicitly know the
type of the encrypted data, the encryptor
should provide the type for representation.

4. Build the EncryptedType structure. An EncryptedType
structure represents all of the information previously
discussed including the type of the encrypted data,
encryption algorithm, parameters, key, type of the
encrypted data, etc.

a. If the encrypted octet sequence obtained in step
3 is to be stored in the CipherData element
within the EncryptedType, then the encrypted
octet sequence is base64 encoded and inserted
as the content of a CipherValue element.

b. If the encrypted octet sequence is to be stored
externally to the EncryptedType structure,

then store or return the encrypted octet
sequence, and represent the URI and
transforms (if any) required for the decryptor
to retrieve the encrypted octet sequence within
a CipherReference element.

5. Process EncryptedData

a. If the type of the encrypted data is a JSON
element, then the encryptor must be able to
return the EncryptedData element to the
application. The application may use this as a
new JSON document or insert it into an
another. The encryptor should be able to
replace the unencrypted 'element' or 'content'
with the EncryptedData element. When an
application requires an JSON element or
content to be replaced, it supplies the JSON
document context in addition to identifying the
element or content to be replaced. The
encryptor removes the identified element or
content and inserts the EncryptedData element
in its place.

b. If the type of the encrypted data is not 'element'
or element 'content', then the encryptor must
always return the EncryptedData element to
the application. The application may use this
as a new JSON document or insert it into an
another.

Figure 3. SecJSON decryption process

EncryptedType derived element to be decrypted (Figure 3),
the decryptor must:

1. Process the element to determine the algorithm,
parameters and KeyInfo element to be used. If some
information is omitted, the application is responsible for
supply it.

2. Locate the data encryption key according to the KeyInfo
element. If the data encryption key is encrypted, locate
the corresponding key to decrypt it. Or, one might

retrieve the data encryption key from a local store using
the provided attributes or implicit binding.

3. Decrypt the data contained in the CipherData element.

a. If a CipherValue child element is present, then
the associated text value is retrieved and
base64 decoded so as to obtain the encrypted
octet sequence.

b. If a CipherReference child element is present,
the URI and transforms (if any) are used to
retrieve the encrypted octet sequence.

c. The encrypted octet sequence is decrypted
using the algorithm/parameters and key value
already determined from steps 1 and 2.

4. Process decrypted data.

a. The cleartext octet sequence obtained in step 3
is interpreted as UTF-8 encoded character
data.

b. The decryptor must permit the return of
resulting data in a JSON structure with defined
encoding. The decryptor is not required to
perform validation on the serialized JSON.

c. The decryptor should support the ability to
replace the EncryptedData element with the
decrypted JSON element or simple content.
The decryptor is not required to perform
validation on the result of this replacement
operation. The application supplies the JSON
document context and identifies the
EncryptedData element being replaced. If the
document into which the replacement is
occurring is not UTF-8, the decryptor must
transcode the UTF-8 encoded characters into
the target encoding.

IV. SECJSON IMPLEMENTATION
In order to validate the SecJSON specification and usage and

in order to make it available for third party developers, an
implementation of SecJSON was built using Node.js. Node.js
(or simply Node) is an open-source platform for server-side and
web applications [20] development entirely based on JavaScript
and JSON format, which is an advantage for its adoption
throughout this article. Besides the already mentioned
advantages, Node.js also has a Node Package Manager (NPM),
which is the default package manager for Node.js [20]. This
allow that new libraries stay available to developers, making
code reutilization easy and efficient on development [21].

A. secjson.js
Throughout this section the main Node.js functions

developed according to the syntax defined in the previous
sections, are presented. The implementation of XML Encryption
for Node.js was considered as the starting point for this
implementation, and it may be accessed from
https://github.com/auth0/node-xml-encryption.

B. Encryption process
The encryption process is responsible for receiving content

and other parameters to encrypt and return a JSON object
according to the defined syntax. As required parameters, this
function requires content to encrypt, public key, PEM x509
certificate, and optionally set the element to encrypt using a
JSON path. When invoked, this operation, sequentially applies
the methods needed to encrypt the content provided:

• findKeyEncryptValue: if a JSON path is defined, the
element will be located in the JSON structure.

• generate_symmetric_key: generate a symmetric key to
encrypt the user-defined content.

• encrypt_content: encrypt the user-defined content
with the key generated in the previous point.

• encrypt_key: encrypt the symmetric key used for
encryption with public key provided by the user.

The following section of source-code represents a small
example on how to use the SecJSON library to encrypt some
JSON data (the JSONDATA part, should be replaced by the
actual JSON data to encrypt). The “encrypt” function receives a
set of options to setup the encryption process (namely the
encryption key to use) and encrypts the data.

var secjson = require('secjson');

var options = {
 rsa_pub: fs.readFileSync(__dirname + '/test-

auth0_rsa.pub'),
 pem: fs.readFileSync(__dirname + '/test-

auth0.pem'),
 encryptionAlgorithm:

'http://tiagomistral.github.io/SecJSON#aes128-cbc',
 keyEncryptionAlgorighm:

'http://tiagomistral.github.io/SecJSON#rsa-oaep-
mgf1p'

};

secjson.encrypt('<JSONDATA>', options,

function(err, result) {
 console.log(result);

});

C. Decryption process
The decryption process is responsible for obtaining the

decrypted content. As parameters this function requires a JSON
object according to SecJSON syntax and a private key.

The methods needed to decrypt the content provided, will
then be called, in sequence:

• findKeyDecryptValue: if a JSON path is defined, the
element will be located in the JSON structure.

• JSON.parse: validate JSON object provided.

• decryptKeyInfo: Decipher the element content
EncryptedData.KeyInfo.CipherData with the private
key provided, getting the symmetric key used in the
encryption process.

• switch(encryptionAlgorithm): Decipher the payload
with the symmetric key obtained in the previous point.
This process is dependent on the element
EncryptedData.EncryptionMethod, whose
information corresponds to that used cryptographic
algorithm (AES 128, AES 256 or TripleDES).

The following section of source-code represents a small
example on how to use the SecJSON library to decrypt some
previously encrypted JSON data. The “decrypt” function
receives a set of options to setup the decryption process (namely
the appropriate decryption key to use) and decrypts the data.

var decryptOptions = {
 key: fs.readFileSync(__dirname + '/test-
auth0.key')
};

secjson.decrypt(encryptResult, decryptOptions,
function(err, dec) {
 console.log(dec);
});

V. CONCLUSIONS
The distribution of services over the Internet has grown in

the past years as one of the most interesting trends in software
development [22]. A proliferation of web-based APIs has
popped up allowing developers to extend their services with the
ones developed by third parties. HTTP-based RESTful services
have become one of the most relevant ways to implement
distributed web-services and JSON has emerged has the data
interoperability standard that enables transparent data transfer
between different implementation technologies [23].

Data transfer between all of these services, includes critical
private information that requires specific protection. Most of the
times, the SSL/TLS protocol can be used to provide end-to-end
channel encryption however, some specific cases may require
more than simply channel encryption. For instance, there are
some situations in which the data contained in a JSON document
can contain sensitive information that cannot be disclosed to all
the possible entities at the same time. This information can have
different protection layers, ciphered with multiple keys and
using different encryption methods. These are some of the
questions that SSL/TLS cannot answer.

Having this into consideration, the authors propose and
describe a secure JSON approach, based on previous XML and
web services security work, that offers the required requirements
that extend the protection used by traditional end-to-end channel
encryption approaches. The goal of the presented work is not to
act as a replacement for SSL/TLS protocol but rather to
complement it while offering an additional security layer to the
security of the JSON content transmitted over secure or insecure
network connections. The implementation of this JSON security
framework consisted on three main parts: the definition of a
syntax that allows encryption and decryption of a JSON
document, implementation and delivery of a prototype of the
defined syntax and validation of implementation. The validation
of the implementation concluded that the SecJSON solution is a
complementary solution to SSL/TLS, allowing the support of
granular security solutions for JSON protection and the
development of an additional security layer on top of SSL/TLS.
Also, the similarity with other related XML security solutions,
makes SecJSON an easy to learn to solution to all the developers
that are used to use a similar approach.

One of the requirements of the work presented on this article
was the provision of an open and free SecJSON library, that
could be used by developer to implement security on their own
REST-based web services. This library was implemented as a
Node.js packages and released using NPM, which may be
accessed from https://www.npmjs.com/package/secjson.

The definition and development of SecJSON was a real
challenge but limited the time to software optimization. It would

be interesting to extend this project in order to perform
comparisons between existing alternative security solutions for
JSON and the one described here.

REFERENCES
[1] F. Müller and F. Thiesing, “Social networking APIs for
companies—An example of using the Facebook API for companies,” in
Computational Aspects of Social Networks (CASoN), 2011 International
Conference on, 2011, pp. 120–123.
[2] G Denaro, M Pezze, D Tosi, and Daniela Schilling, “Towards self-
adaptive service-oriented architectures,” in TAV-WEB ’06: Proceedings of the
2006 workshop on Testing, analysis, and verification of web services and
applications, 2006, pp. 10--16.
[3] C. Severance, “Discovering javascript object notation,” Computer
(Long. Beach. Calif)., vol. 4, no. 45, pp. 6–8, 2012.
[4] D. Crockford, “The application/json media type for javascript object
notation (json),” 2006.
[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, “Unraveling the Web services web: an introduction to SOAP,
WSDL, and UDDI,” IEEE Internet Comput., vol. 6, no. 2, p. 86, 2002.
[6] R. R. McCune, “Node. js paradigms and benchmarks,” STRIEGEL,
Gr. OS F, vol. 11, 2011.
[7] S. Thomas, SSL & TLS Essentials: Securing the Web, Pap/Cdr.
Wiley, 2000.
[8] A. A. A. El-Aziz and A. Kannan, “JSON encryption,” in Computer
Communication and Informatics (ICCCI), 2014 International Conference on,
2014, pp. 1–6.
[9] P. Ratnasingam, “The importance of technology trust in web
services security,” Inf. Manag. Comput. Secur., vol. 10, no. 5, pp. 255–260,
2002.
[10] K. Maeda, “Performance evaluation of object serialization libraries
in XML, JSON and binary formats,” in Digital Information and
Communication Technology and it’s Applications (DICTAP), 2012 Second
International Conference on, 2012, pp. 177–182.
[11] M. Miller, “Using JavaScript Object Notation (JSON) Web
Encryption (JWE) for Protecting JSON Web Key (JWK) Objects,” 2013.
[12] E. Stark, M. Hamburg, and D. Boneh, “Symmetric cryptography in
javascript,” in Computer Security Applications Conference, 2009. ACSAC’09.
Annual, 2009, pp. 373–381.
[13] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),”
2015.
[14] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature
(JWS),” 2015.
[15] M. Jones and J. Hildebrand, “Json web encryption (jwe),” 2015.
[16] M. Jones, “JSON web key (JWK),” 2015.
[17] M. Jones, “JSON Web Algorithms (JWA),” 2015.
[18] A. Nadalin, G. T. AmberPoint, P. D. BEA, H. L. BEA, S. C.
CommerceOne, T. D. ContentGuard, G. L. ContentGuard, T. J. P.
ContentGuard, S. S. C. Commerce, G. V. Documentum, and others, “Web
Services Security,” SOAP Messag. Secur. Version, vol. 1, 2002.
[19] T. Imamura, B. Dillaway, E. Simon, and others, “XML encryption
syntax and processing,” W3C Recomm., vol. 10, 2002.
[20] M. Cantelon, M. Harter, T. J. Holowaychuk, and N. Rajlich, Node.
js in Action. Manning, 2014.
[21] S. Tilkov and S. Vinoski, “Node. js: Using JavaScript to build high-
performance network programs,” IEEE Internet Comput., vol. 14, no. 6, p. 80,
2010.
[22] K. M. Dhara, M. Dharmala, and C. K. Sharma, “A Survey Paper on
Service Oriented Architecture Approach and Modern Web Services,” 2015.
[23] M. W. Khan and E. Abbasi, “Differentiating Parameters for
Selecting Simple Object Access Protocol (SOAP) vs. Representational State
Transfer (REST) Based Architecture,” J. Adv. Comput. Networks, vol. 3, no. 1,
2015.

