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Summary 

The delay is a crucial performance indicator of any transportation system, and flight delays 

cause financial and economic consequences to passengers and airlines. Hence, recognizing 

them through prediction may improve marketing decisions. The goal is to use machine learning 

techniques to predict an aviation challenge: flight delay above 15 minutes on departure of a 

private airline. Business and data understanding of this particular segment of aviation are 

revised against literature revision, and data preparation, modelling and evaluation are addressed 

to lead towards a model that may contribute as support for decision-making in a private aviation 

environment. The results show us which algorithms performed better and what variables 

contribute the most for the model, thereafter delay on departure. 

Air transportation delays | Machine learning | Private aviation | Prediction 

Resumo 

O atraso de voo é um indicador fulcral em toda a indútria de transporte aéreo e esses atrasos 

têm consequências económicas e financeiras para passageiros e companhias aéras. Reconhecê-

los através de predição poderá melhorar decisões estratégicas e operacionais. O objectivo é 

utilizar técnicas de aprendizagem de máquina (machine learning) para prever um eterno desafio 

da aviação: atraso de voo à partida, utilizando dados de uma companhia aérea privada. O 

conhecimento do contexto do negócio e dos dados adquiridos, num segmento singular da 

aviação, são revistos à luz das literatura vigente e a preparação dos dados, a modelização e 

respectiva avaliação são conduzidos de modo a contribuir para uma ferramenta de apoio à 

decisão no contexto da aviação privada. Os resultados obtidos revelam quais dos algoritmos 

utilizados demonstra uma melhor performance e quais as variáveis dos dados obtidos que mais 

contribuem para o modelo e consequentemente para o atraso à partida. 

Atrasos de voo | Aprendizagem de máquina | Aviação privada | Predição 

JEL classification system: 

C53 Forecasting and Prediction Methods, Simulation Methods 

L93 Air Transportation  
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Executive summary 

This study aims to evaluate the accuracy of machine learning (ML) techniques in forecasting 

air transportation delay, using data of flights between 2014 and 2017 from a private airline 

company based in Europe. 

The first part aims to act as a connecting thread of different contributions from the literature in 

order to lead the reader to a better understanding of machine learning possibilities. Hence 

providing guidelines of possible procedures towards reasonable results, thus helping business 

analysts and managers, ML enthusiasts, to get a first grip hands on ML options using Python 

through Jupyter mask. 

The second part will compare the accuracy of different algorithms for predicting if a flight is 

delayed or not, and a sensitivity analysis to explicit the relevance of the features used and their 

contribution. Moreover, then understand how the referred models, their accuracy and 

limitations can provide a better analysis, predictions and support for decision-making tasks. 

The results show us that: 

 With knowledge of the Private Airline’s business model and access to valid variables 

and proper data, business analysts have the opportunity to gain a competitive advantage 

by analysing and predicting flight delays and improve the efficiency of operations. A 

broad insight of all the relevant variables despite dealing with operational issues flight 

by flight, in a reactionary way, machine learning process can be used to prevent 

forecasted operation disruptions; 

 Artificial neural networks and logistic regression models prove to work better, and 

better predictive accuracy for the available extracted and computed variables; 

 Through sensitivity analysis, features such as previous flight delay or time of the day of 

departure are found relevant to the referred algorithms and are contributors to the private 

airline’s delays on departure. 
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1. Introduction 

1.1 Context and motivation 

Change is swift at any given moment in the business world. Nowadays, all companies from all 

industries can create new products and services rooted on data analytics (Davenport, 2013).  

Thus, analysing a historical business data may prove to be an enhancement opportunity to 

improve any company (Hazen et al., 2014) and gain a competitive advantage over other 

competitors - a blue ocean oriented strategy (Kim and Mauborgne, 2004). 

As the world changes to Analytics 3.0 (Davenport, 2013), the key consumer of analytics is the 

business user, a person whose job is not directly related to analytics, but who typically must use 

analytical tools to improve business processes. Data mining, analytics and business intelligence 

systems are now improving, bringing close operations and analyses that allows data to be 

analysed faster and with results quickly reflected in the business course of actions. Mined 

information is being deployed to broader business areas, which are taking advantage of business 

analytics in everyday activities in several industries (Kohavi et al., 2002). 

Machine learning algorithms tend to be nowadays technically easy to access. One can choose 

from different platforms and languages to different packages/libraries. Nevertheless, this also 

raises the risk that they are applied naively, or their output is misinterpreted. The present study 

aims at converging some of the most common models and present them in a practical way, 

highlighting the benefits and respective limitations. 

 On the 261/2004 European regulation (European Parliament, n.d.), it defines rules for 

compensating passengers in the event of denied boarding, delayed or cancelled flights. In the 

legislation, it is defined the exact compensation amount independently of the actual ticket price. 

Whenever one of the referred events are an airline’s fault, e.g. technical problems or 

organizational errors, the airline has to compensate the passenger. In case of an external factor, 

e.g. bad weather or bird strikes, the airline does not have to pay to the passenger. The referred 

regulation aims to raise the standards of protection both by strengthening the rights of 

passengers and to ensure that air carriers operate under equally fair conditions in a liberalised 

market (Kreibich, 2017). 
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A delay at departure is defined as when actual time of departure (ATD) is beyond the estimated 

time of departure (STD). For commercial purposes, there is often a margin of 15 minutes. This 

is a standard applied throw-out all air transportation airlines and airports. Hence, carriers tend 

to have an impact on their financial costs when their flight starts to be delayed beyond those 15 

minutes, and other operational procedures follow which can overload the management of the 

flight and with a potential to have an adverse impact on company’s brand and client/passenger 

satisfaction. Kreibich (2017) analyses that the European market size for dealing with denied 

boarding, delay and cancellation is estimated to be an 11.7 billion Euro market, which considers 

an annual 26 million eligible passengers, multiplied by an average compensation of 450 Euro. 

Based on the prevailing provision of 25% per case, the European market is worth approximately 

2.9 billion Euro. Further internal surveys in that study showed that the market is by far not 

exploited as only around 1% of all passengers know about their rights and according (IATA, 

2016) with air passenger traffic volume will increase in the near future. 

The delay is, therefore, a crucial performance indicator of any transportation system and flight 

delays cause economic consequences to passengers and airlines; recognizing them through 

prediction may improve marketing decisions (Boswell and Evans, 1997; Sternberg et al., 2017) 

as they may influence costs to customers and operational costs to airlines. Hence, delay 

prediction is of the utmost importance during the decision-making process for every player in 

the air transportation business. 

The Private Airline Company that provides the dataset is a European one, which operates 

mostly with its wide-body aircraft, for other airlines or travel agencies. One day they can be 

departing in one of the busiest and important airports in the world and the following day in a 

third country airport with limited conditions and resources. Their product tends to focus on 

medium to long-term wet lease or charter contracts worldwide, for long-haul flights. The aim 

is to supply aircraft with crew, maintenance and insurance (ACMI). In practical terms, the lease 

can fit the schedule and planning of the client or can be non-schedule flights.  In every option, 

several players influence the preparation and operation of a flight: financial decisions, operating 

crew, staff availability, airports management, its characteristics and services (ground 

operations, ATC, etc.), Regulators such as EASA and Civil Aviation Authorities directives, 

SAFA/SACA Inspections’ outcomes, manufacturers, client's requests, hotels booked for crews, 

transport services from and to the airport, etc. One of the current challenges that every airline 

faces, and in a private airline the exposure is augmented, is planning and operating under 
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uncertainty, whether in the context of schedule disruptions and variety of routes flown (Ahmed 

and Poojari, 2008; Salunke and Deshpande, 2015), and keep a tight control over its operations 

to ensure compliance with European and any local applicable regulation. The advantages, from 

the operator’s perspective, is that allows a client to avoid an upfront large capital expenditure, 

thus the residual value risk lies with the operator, a lease can provide flexibility for adjusting 

capacity and demanding, and the possibility of acquiring an aircraft on short notice via 

operating lease.  

1.2 Objectives 

The Private Aviation business model is a unique one, where successful operations come from 

learning how to operate daily with change. An error in one-step of the chain of events in the 

preparation of a flight may lead to delays, and subsequent financial expenses and a brand 

negative impact. Despite noticing the existing absence of works dealing in depth with the 

overall flight delays analysis of Private Aviation, but aviation, in general, considering features 

rooted on schedule flight performance, an analysis is carried merging machine learning methods 

to an aviation challenge:  

 Predict flight delay on departure of a private airline (delayed or not delayed more than 

15 minutes) where a comparison of nine models is achieved by testing their accuracy; 

 As a second objective, a sensitivity analysis is conducted to scrutinize the relevance of 

the chosen features has on the classification prediction for a flight to be delayed or not 

more than 15 minutes. 

1.3 Methodology 

The current approach is intended to serve as a source of information to challenges of business 

management and application of machine learning techniques on a daily basis can be achieved. 

Focus meetings were conducted with several stakeholders in the flight preparation process of 

the Private Airline, to extract, compute and select the best features available so the best fit of 

the techniques could be possible. Through the modelling stage according to with CRISP for 

data mining purposes, a cross-validation, run 20 times, is implemented with a stratified k-fold, 

where both possible outcomes are made equally representative, for the learning training phase, 

to avoid bias results. When evaluating individually the two best algorithms for the 

classification, the same cross-validation method was applied, and the several indicators are 
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retrieved such as accuracy, true positive rate, false negative rate, specificity, sensitivity, 

ROC/AUC and precision. An exploratory analysis is conducted so the reader may understand 

better the nature and context of delays and their characteristics, in a singular business segment 

such as private aviation. For the sensitivity analysis, the best model, logistic regression, and a 

decision tree based algorithm which provides better insight into its variables are used to retrieve 

the top rank features that best contribute to the respective model to predict if a flight is delayed 

or not more than 15 minutes. The results obtained from models’ accuracy comparison, 

individual algorithm evaluation, exploratory and sensitivity analysis are then compared with 

applicable literature in the discussions chapter. In recent academic dissertations on this subject 

in the area of business management studies, the code and the techniques are often left aside, 

focusing more on the steps towards a big data comprehension and organizational need to 

achieve Analytics 3.0 (Davenport, 2013). For knowledge extraction following CRISP-DM 

stages, comparison and sensitivity analysis purposes, the python language is used. As a platform 

the Jupyter Notebook, and python libraries such as spicy, pandas, matplotlib, numpy, scikit-

learn and stastmodel. Intentionally, some of the implementation will be along the text or in the 

annexe as a means to provide a wider guideline of the techniques applied and other try-outs. 

1.4 Contribution 

Delays are a sensitive subject in the air transportation business, as all the intervening players 

prior, during and after transporting something or someone by air tend to focus on their 

respective performance (IATA, n.d.). In practical terms, the main contribution of the present 

study are as follows: 

 Analyse a private airline’s operational delays, which are often not the focus of delay 

analysis throw-out general aviation on-time performance research; 

 Expose that machine learning techniques can be accessible to respond to business 

request and prove valid competitive advantage and a benefit for the sector; 

 Using a set of features, methods of pre-processing and nine algorithms, as presented in 

the subsequent paragraphs, compare the accuracy of predicting the dependent variable 

of flight delay on departure above 15 minutes of a private airline; 

 Using the above set, apply the top individual algorithm with the best accuracy and 

evaluate them accordingly, employing other relevant performance indicators; 
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 Run a sensitivity analysis and exhibit the relevant features that may lead to a flight delay 

in the referred sector. 

1.5 Structure 

In this dissertation, and to achieve the pre-set objectives, its structure is divided as follows: 

 Introduction, with an initial context and motivation of this dissertation, along with its 

desired goals, the methodology to achieve them and how they can contribute to the 

related literature and private aviation; 

 Review of the applicable literature, with regards to the aviation and business context of 

flight delays, and to predictive machine learning methods and techniques relevant to 

this dissertation; 

 Methodology in detail with the steps taken. Features used for the model, and how they 

were selected is explained; how the data is transformed to be readable by the model, and 

how the comparison is achieved by using data mining standards; 

 Results of the comparison and sensitivity analysis of the selected features and models; 

 Discussion where the results are put in context of the carrier whose data is being used 

and compared with previous studies; 

 Conclusion and acknowledgement on how the objectives are achieved, what limitations 

were faced, and aspects of future research. 
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2. Literature Review 

As performance is linked to any business model, flight delay is a major key performance 

indicator in any airline. On-time performance is for some time a competitive advantage in any 

company working on air transportation, moreover on airlines (Yimga, 2017).  

2.1 Private aviation, delay context and analysis 

In a disruptive alike operation such as this one, flight delays are more likely to occur due to a 

high number of ad-hoc flight request from clients. It is the nature of the business, and the goal 

is to satisfy clients, its customers and transport safely from a point A to B. As discussed in Laws 

(1997) mass market destinations to attract sufficient visitors to sustain a developed tourism and 

visitors need regular access to ACMI flights. Thus most of the high peaks of operational demand 

are linked to leisure travel market (Buck and Lei, 2004) and during those peak seasons, 

operations may be working intensively up to 24 hours a day (Williams, 2001).  

Ymiga (2017) draws the connection between the recurrent known flight delay of an airline and 

market choice, where passengers tend to avoid airlines which are associated with delays. On 

the other end, Deshpande and Arıkan (2012) prove that market share of airlines has a significant 

impact on the flight schedule and on time probability. This factor comes to a challenge with 

Private Airline companies when preparing for a flight where often are not a top priority for 

airport services. 

As stated in the 261/2004 regulation, some directives are directly applied to the context of the 

private carriers whose flight information is being used: 

 “Since the distinction between scheduled and non-scheduled air services is weakening, 

such protection should apply to passengers not only on scheduled but also on non-

scheduled flights, including those forming part of package tours” 

 “In order to ensure the effective application of this Regulation, the obligations that it 

creates should rest with the operating air carrier who performs or intends to perform a 

flight, whether with owned aircraft, under dry or wet lease or on any other basis.” 

In a rough summary, the referred legislation states that when an operating air carrier is  delayed 

or reasonably expects a flight to be delayed beyond its scheduled time of departure, passengers 
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shall be offered by the operating air carrier the appropriate assistance according with the 

regulation, and receive the applicable compensation. 

Forbes (2008) suggests airline prices tend to fall in response to a longer flight delay. Thus, a 

decrease in quality has a strong negative effect on the market price. Despite this impact being 

lower in competitive markets where there is more competition rather than in low levels of 

competition markets, delays always have the potential to injure an airline financially. 

A better understanding of delay mechanisms may lead to a better efficiency and robustness of 

operations and costs. Ionescu et al. (2016) defend that delays are inherently hard to predict in 

the long-term on a macroscopic level, and delay recording underlies constraints that may lead 

to underestimation, for example, when predictable delay may have been already prevented by 

scheduling decisions of an airline. Thus, it is desired to check to which extent the findings of 

delay analysis may be generalized. Nevertheless, they emphasize that a robust resource 

scheduling should be achieved through the use of historical information for data-driven 

detection of delay trends depending on specific relevant spatiotemporal attributes. 

As flight delays incur in great costs to airlines (Ferguson et al., 2013; Hansen et al., 2001), 

trying to validate root causes for them through data analytics and predicting delays is a chance 

to improve the airline performance and improve data support for future decision-making, and a 

valid competitive advantage. Sternberg et al. (2017) studied the flight delay problem in different 

points of view: delay propagation, delay innovation and cancellation analysis. In delay 

propagation, one studies how delay propagates through the network of the transportation 

system. On the other hand, considering that new problems may happen eventually, it is also 

important to predict new delays and understand their causes. Such occurrences fit as delay 

innovation problems. Finally, under specific situations, delays can lead to cancellations, forcing 

airlines and passengers to reschedule their itineraries. In this category, researchers focused on 

cancellation analysis try to figure out which conditions result in cancellations. Hence, the focus 

of this study is to follow the delay innovation approach, where a classification problem will be 

answered by supervised learning algorithms, and importance of the features is analysed as its 

influence on the classification outcome, flight delayed or not delayed more than 15 minutes. 

Taylor (1994) states “waiting is a pervasive element of many purchase situations” and assesses 

the delay experience modelling related delay duration, reason and the degree to which it affects 

service evaluation. In an empirical examination in an airline service, its results imply that: the 
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delay affects feelings of anger and uncertainty in passengers and the longer the delay, the more 

anger and uncertainty. Thus the emotional reactions in turn negatively distress the service 

evaluation and acceptance for unpunctuality decreases. The relationship between time 

reliability and the overall evaluation of a service (in this case, a flight) is significant. Another 

fact withdraw from the referred study is that when passengers were inquired for the reason for 

the delay, they were most of the time wrong. This may be due to a lack of information presented 

to them. If delay is not announced by an airline agent, many passengers tend to infer their own. 

For strategic recommendations, it was conveyed that as delays can affect service evaluations in 

negatively, organizational management has two kinds of actions: reduce or eliminate delays by 

operations controlling, or change the consumer's wait experience by perceptions management 

resulting in less uncertainty and anger. Both options regard a timeless indicator of any industry, 

i.e. managing expectation (Kotler and Keller, 2011). In this particular context of private 

aviation, expectations come from both of internal (e.g. managers, crews, etc.) and external 

sources (clients, passengers, service providers) with an integral influence in their behaviour, 

satisfaction and loyalty. 

On dwelling with a performance indicator of an air transportation company, beyond the process 

of analysing and forecasting delay, it is essential to occur an applicability of that process along 

the organizational structure, thus a strategic alignment to identify the value of prediction in 

order to supply information to answer a decision problem, and deploy specific actions to 

mitigate it (Poleto et al., 2015). Further than technical tools and methodologies, the overall 

process should align both the subjective characteristics linked to the decision-makers’ 

perceptions and experiences and the actual context of the problem, removing step by step 

intuition and increasing data based decisions. Forecast model building is most likely succeed  

when it is regarded in a broader system context, where constraints, interactions (between 

company and client) and market plans (between operational manager, client and manufacturer) 

all have an impact on the final prediction (Fildes et al., 2008). By adopting a wider system 

attitude, forecasting performance should not only be evaluated by standard error measures but 

connected to organizational performance measures. Vincent Granville (2015) when addressing 

the use of historical data, advocates that real-time factor impact any forecasting model, hence 

those factor should be included in combination with historical data and patterns. Nevertheless, 

issues arise when there is a need for implementation. Fildes et al. (2008) details further that 

algorithms which are demanding of data and computation are difficult to put in practice. The 

processing it needs when applying them to a complex system, sometimes daily within a limited 
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time window, proves to be intensive. Methods such as support vector machines and artificial 

neural networks face challenges when trying to be implemented. 

Organizational learning and analytics are, therefore, a way to help optimize key processes, 

function and roles of an airline. And in the private aviation segment, it can be used as a leverage 

when combining internal and external data, and allow achieve stakeholders’ demands, create 

market advantages and, ultimately, enhance organizational performance by turning information 

into intelligence(“Big opportunities, big challenges,” 2014) . 

2.2 Machine learning models and algorithms 

According with Twagilimana (2006), from the point of view of the majority of data miners, the 

main data mining tasks are grouped into the following categories: 

 Prediction, which consists of building a learning function that predicts based on inputs. 

If the prediction is a discrete variable with a few values, is called classification; if the 

prediction is a continuous variable, the task is called regression. 

 Clustering where a heterogeneous population is segmented into more homogeneous 

categories or clusters. Clustering is often done as a prelude to some other form of data 

mining. For example, in healthcare data, patients with similar diagnoses are grouped 

together to allow for the detection of deviation in their treatment. 

 Summarization is about finding parsimonious summaries of subsets of data. 

 Dependency Modelling consists of finding a model that describes significant 

dependencies between variables. 

 Change and Deviation Detection focuses on discovering the most significant variations 

in the data from previously measured values. 

The called “learning” can be categorized as supervised or unsupervised, and sometimes using 

both for the same objective. Different methods may have different inductive bias, different 

search strategies, different guiding factors, and different needs regarding the availability of a 

domain theory. Learning can result in either knowledge augmentation or knowledge 

(re)compilation (Kelleher et al., 2015). 

In a supervised learning method, we have a dataset sample with associated labels (Webb, 2002). 

In unsupervised learning method, the dataset is not labelled, and we seek to find groups in the 
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data and the features that distinguish one group from another (Webb, 2002). Unsupervised 

learning, such as clustering, is where there is only input data (X) and no corresponding output 

variables. The unsupervised learning goal is to model the data distribution in order to learn 

more about the data. These are called unsupervised learning because unlike supervised learning 

there are no correct answers and there is no teacher. Algorithms are left to their own devices to 

discover and present the interesting structure in the data.  

Supervised learning can be further grouped into regression and classification problems (Zhou 

and Li, 2010): 

 Classification - a classification problem is when the output variable is a category, such 

as “red” or “blue” or “disease” and “no disease”; 

 Regression - a regression problem is when the output variable is a real value, such as 

“euros” or “weight”; 

Hence, due to the nature and characteristics of the data provided the method supervised learning 

is used, where it is predicted a classification output: delayed or not delayed more than 15 

minutes. For future reference, there is distinction between a classification learning algorithm 

and a classifier. A classification learning algorithm is a general methodology that can be used 

in a supervised classification problem too, given a specific dataset, learn a specific classifier. 

Thus, this classifier is the one used to classify new samples with the unknown class assignment 

(Santafe et al., 2015). 

As previously mentioned, supervised learning is the branch of machine learning that is 

concerned with algorithms that can learn concepts from labelled examples. As an input, the 

algorithm requires a training set composed of a number of instances that represent the problem 

being studied, each characterized by a list of relevant features. The task of the algorithm is to 

build a model that will generate accurate predictions of the labels of future examples (Foulds 

and Frank, 2010). In practical terms, it uses input variables (x) and an output variable (Y) and 

an algorithm to learn the mapping function from the input to the output. The goal is when you 

have new input data (x) that you can predict the output (Y) most close to the actual outcome. It 

is titled supervised because the process of an algorithm learning from the training dataset can 

be thought of as a teacher supervising the learning process. It knows the correct answers as the 

algorithm iteratively makes predictions on the training data and is continuously amended by the 

teacher. The process stops when the algorithm achieves an, sometimes already pre-defined, 
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acceptable level of performance. In common supervised learning, hypotheses are learned from 

a large number of training instances. Each training set has a label which indicates the desired 

output of the event described by the instance. In classification, the label indicates the category 

into which the corresponding example falls into; in regression, the label is a real-valued output 

such as temperature, height, price, etc. (Zhou and Li, 2010). 

As announced before, the overall objective is to gauge prediction models for flight delays of a 

Private Aviation company through a focus on supervised classification machine learning 

algorithms. Therefore, to have a better structure for data discovery and avoid blind applications 

of methods to input data, different methods are defined that help organizations to understand  

and discover data mining processes (Dunham, 2002; Marbán et al., 2009). This model, help 

deliver results in time and with cost savings, and in better understanding for the related users. 

CRISP-DM is considered the popular, meeting both research and industrial needs (Kurgan and 

Musilek, 2006). Cross-Industry Standard Process for Data Mining is a hierarchical process 

model where standards for data mining processes are defined. The process is divided into 6 

stages: business understanding, data understanding, data preparation, modelling, evaluation and 

deployment (the latter is a stage not applicable to the current study). The steps were first 

proposed in early 1996 by a consortium of four companies: SPSS (a provider of commercial 

DM solutions), NCR (a database vendor), Daimler Chrysler, and OHRA (an insurance 

company). The last two companies functioned as sources of data and benchmarking studies. 

The model was officially released, version 1.0, in 2000 (Shearer, 2000; Wirth and Hipp, 2000). 

As in the research and survey of Kurgan and Musilek (2006), there are plenty of advantages of 

following the referred standards, resulting in a better reliability of projects and performance of 

data mining for business decision-making support. In the same survey, from the 6 stages 

referred, the data preparation is the phase with the most effort and time demand with between 

50 and 70% of time spent. Hence, in the previous and subsequent chapters of revision of 

literature, the information gathering and the steps followed to implement and achieve results 

encompasses the CRISP-DM stages. 

2.2.1 Pre-processing and modelling 

Whenever applying machine learning to solving any real-world problem some steps should be 

taken care of. Data collection and preparation for the learning process is decisive. The quality 

and the quantity of the data needed is dependent on the selected learning method. Therefore, 
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data may require, and for performance reasons always is, to be pre-processed before they can 

be used in the learning process (Zhang and Tsai, 2003). Data pre-processing has become an 

essential technique in current knowledge discovery scenarios. In a survey by Munson (2012), 

around 60% rated critically important the preparations of data. Raw data usually comes with 

many imperfections such as inconsistencies, missing values, noise and/or redundancies. 

Performance of subsequent learning algorithms will thus be undermined if they are presented 

with low-quality data (Ramírez-Gallego et al., 2017). 

In the present study, the data set will contain different types of variables. It is often a challenge 

of figuring out how to turn its attributes into distinct values for further processing, using data  

reduction or projection (Bilalli et al., 2017; Gürbüz et al., 2011), alter the dataset by whether 

feature is selecting,  mapping values to categorical ones, or nominal encoding attributes. Python 

tools of pandas and scikit-learn (Buitinck et al., 2013) offered several approaches that can be 

applied to alter the categorical data into appropriate numeric values. Linked to hereby literature 

revisions, those tools were used to achieve the set goals. 

Before implementing classification algorithms, it is recommended that incomplete, noisy, or 

inconsistent datasets are pre-processed to make the knowledge discovery process easier and 

more qualified. The most well-known steps for this process are summarization, cleaning, 

integration and transformations, data and dimensionality reduction, and discretisation (Hsu et 

al., 2006). 

Howley et al. (2006) studied the effects of data pre-processing steps on classifier accuracies 

and compared the results of classifiers where no pre-processing step was applied and then 

applied additional techniques, such as normalization or PCA, which lead to better performance, 

whether on the time of processing and further help the accuracy of the model. 

Principal component analysis  (PCA), Jolliffe (1986), is applied to reduce the number of 

variables to a small number of factors that are uncorrelated, removing collinearity characteristic 

from the dataset (Constantin, 2014). PCA (Jolliffe, 1986; Tipping and Bishop, 1999a, 1999b), 

although being a well-known dimensionality reduction technique, suffers from the 

disadvantages of not handling well with high dimensional data and scaling up to large dataset 

due to its excessive computational complexity. 
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It is then common sense that complex data often involves a prediction pre-processing step, 

which at times may be faced as an empirical tuning, avoiding over-fitting model and training 

dataset(s). The essential problem of over-fitting (Domingos, 2012) is that we would like the 

prediction task to do well out of sample, but we only fit in-sample. In empirical fine-tuning, we 

should create an out-of-sample testing inside the original sample. We fit on one part of the data 

and query which level of regularization leads to the best performance on the other part of the 

data. For this it’s possible to increase the efficiency of this procedure through cross-validation 

(Kelleher et al., 2015; Refaeilzadeh et al., 2009): where the sample is randomly partitioned into 

equally sized subsamples (folds). The estimation process then comprises successively holding 

out one of the folds for evaluation while fitting the prediction function for a range of 

regularization parameters on all continuing folds. At the end, the parameter with the best 

estimated average performance is chosen (Mullainathan and Spiess, 2017). 

2.2.2 Supervised classification algorithms 

Following is presented a summary of the common algorithms that are going to be used for the 

supervised classification problem and how they work, based on the relevant literature and 

python library. 

2.2.2.1 Logistic Regression (LR) 

A logistic regression analysis is a class of conditional probability models used to estimate a 

relationship between a set of variables (features) describing an entity and the probability that 

the entity will be in a given final state (Storey et al., 2016). The logistic regression 

acknowledged as the regression with a twofolded dependent variable is used in a similar way 

with the Discriminant analysis, however in this case, the independent variable could also be 

nominal ones (binary or categorical). Logistic regression is commonly used in social sciences 

as an substitute technique to ordinary least scores (OLS) used in traditional regression models 

due to often the researchers regarding people behaviours use dichotomous variables instead of 

continuous variables (Constantin, 2015). 

The logistic regression is based on the mathematical notion of “logit”, which is the natural 

logarithm of an odds ratio, where the odds is the ratio of probability of a certain occurrence Y 

happening (p) to probability of Y not happening (1-p) (Constantin, 2015). The dependent 

variable can be binary or multinomial. In the latter, the categories of these variables are 
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transformed into binary ones. Thus, the binary regression models can put into relationship a 

future specific occurrence with certain current behaviours. A logistic regression also allows its 

users to determine the relative contribution of each variable on the actual classification. 

2.2.2.2 Linear Discriminant Analysis (LDA) 

Fisher (Fisher, 1936; Duda et al., 2012; Li et al., 2006) first introduced LDA for two classes 

and its notion is to convert the multivariate observations x to univariate observations y such 

that the y’s derived from the two classes are parted as much as possible. If the number of classes 

is more than two, then a natural extension of Fisher linear discriminant exists using multiple 

discriminant analysis. 

LDA and PCA are a technique for classification of data and dimensionality reduction 

(Balakrishnama and Ganapathiraju, 1998). LDA differs from PCA from being more towards 

data classification, and PCA leans on feature classification, hence the latter is used to pre-

processing purposes. 

Linear discriminant analysis frequently achieves good performances in the tasks of face and 

object recognition (Li et al., 2006). The basic idea of LDA is to find a linear transformation that 

best discriminates among classes, and the classification is then performed in the transformed 

space based on some metric such as Euclidean distance. Mathematically a typical LDA 

implementation is carried out via scatter matrix analysis (Li et al., 2006). LDA can complete a 

specification of which is achieved by prescribing the weight vector and a threshold weight. The 

value x is a measure of the perpendicular distance from the hyperplane  (Webb, 2002). In  a 

discriminant analysis of statistics, within-class, between-class, and mixture scatter matrices are 

used to formulate criteria of class separability (Fukunaga, 2013). Thus, the coefficients of the 

linear discriminant function are given by the correlation between the desired output and the 

input X 

LDA is basically a tool for classification. It determines the discriminant dimension in response 

pattern space, on which the ratio of between-class over within-class variance of the data is 

maximized (Duda et al., 2012). After projection of the data on this linear discriminant 

dimension, a classification threshold is placed at the midpoint between the two class means. 

This is equivalent to placing a decision hyperplane orthogonal to the discriminant dimension in 

response pattern space. 
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The region and separator line are the defined by linear discriminant function. For a discriminant 

function of the form of a two-category classifier, it implements the following decision rule: x 

can ordinarily be assigned to either class or can be left undefined, and an equation is defined as 

decision surface (hyperplane) that separates points (Duda et al., 2012). 

2.2.2.3 Classification and Regression Tree (CART) 

The CART model represents a typical binary decision tree. Each root node denotes a single 

input variable (x) and a split point on that variable (numeric ones). The leaf nodes of the tree 

comprehend an output variable (y) which is used for prediction purposes. The algorithm is 

based on Classification and Regression Trees by Breiman et al (1984). A CART tree is a binary 

decision tree that is constructed by splitting a node into two child nodes repeatedly, beginning 

with the root node that contains the whole learning sample.  CART, also known as Automatic 

Interaction Detection, is a regression tree approach to identify subgroups with different 

probabilities. Tree models use a sequential process, as Rosenfeld and Lewis (2005) explain, to 

recognise the predictor variables that best discern groups along the outcome variable of interest. 

The sample is then divided into two or more branches based on this predictor. Subsequent 

phases identify the best predictor within each of these branches and this process is repeated 

until no more variance can be explained with the remaining variables, or some other criterion, 

has been reached. The culmination point of these branches (nodes) represent subgroups of the 

original sample that diverge in terms of the probability of the outcome variable. Because the 

same variables are not necessarily optimal for each branch of the tree, this process concedes 

interaction effects within the predictor variables that would typically be masked or 

incomprehensible in a traditional regression approach, deriving a series of decision rules that 

optimize the discrimination between, for example, flight delay or not delayed. 

Trees are a completely different way of partitioning (Breiman, 1984). What is required is that 

the partition can be attained by consecutive binary partitions based on the different predictors. 

Once we have a partition in this condition, our prediction is based on the average of the Y’s in 

each partition. We can use this for both classification and regression. Each terminal node gets 

assigned to one of the classes. A disadvantage in tree creation is how to use the training data to 

determine the binary splits of X into smaller pieces. The idea is to select each split of a subset 

so that the data in each of the descendant subsets are more intrinsic to the objective than the 

data in the parent subset. Decision trees are very “natural” constructs, in particular when the 
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explanatory variables are categorical (and even better, when they are binary). As disadvantage 

(Breiman, 1984), when the tree-space is huge we may need a lot of data and we might not be 

able to find the “best” model at all. 

2.2.2.4 K-Nearest Neighbour (kNN) Classifier 

K-Nearest Neighbour (K-NN) is a common technique for classifying and clustering data. K-

NN is effective, however is often criticised for its run-time growth as k-NN computes the 

distance to every other record in the data set for each record in turn. Standard k-nearest 

neighbour (K-NN) is a widely applicable clustering, outlier detection and classification 

technique that demonstrates high recall accuracy. For classification, K-NN examines those 

points in a particular data space lying nearest to a query point. K-NN then uses the respective 

classifications of these nearest neighbours to determine the class of the query point (Hodge and 

Austin, 2005). This model can provide functionality for unsupervised and supervised 

neighbours-based learning methods. Supervised neighbours-based learning comes in two 

options: classification for data with discrete labels, and regression for data with continuous 

labels. Each unclassified object, a k-nearest neighbour query on the set of classified objects is 

evaluated (k is a parameter of the algorithm). The object is assigned to the class label of the 

majority of the resulting objects of the query. For each unclassified object, a K-NN query on 

the set of classified objects is evaluated, this corresponds again to a k-nearest neighbour join 

(Böhm and Krebs, 2004). 

2.2.2.5 Support Vector Machine (SVM) 

The SVM builds a classifier by creating a decision surface, an optimal separating hyper-plane, 

to screen different categories of data points in the vector space. SVM has been shown to be a 

very powerful tool for supervised classification (Carrizosa et al., 2010; Lee, 2010). Support 

Vector Machine requires that each data instance is characterized as a vector of real numbers. 

Hence, if there are categorical attributes, they have to be converted into numeric data, usually 

by binarization as dummy value. Scaling before applying SVM  is also very important to avoid 

attributes in greater numeric ranges dominating those in smaller numeric ranges and  to avoid 

numerical difficulties during the calculation (Hsu et al., 2006). 
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The prediction dataset time of new instances also increases significantly when the quantity of 

classes increases. Hence, the training/prediction time requirements and scaling are often a 

difficult to deal with (Li et al., 2006). 

2.2.2.6 Gaussian Naïve Bayes (Gaussian NB) 

The Gaussian Naive Bayes model performs a Naive Bayes algorithm with likelihood of the 

features assumed to be Gaussian. 

The Gaussian distribution function (Tan et al., 2005) is a bell shaped function having the centre 

representing the mean value. One of the drawbacks of using such estimation is that the data 

distribution may not concur with the Gaussian distribution function, as a result, the accuracy of 

the model may be reduced. 

Naive Bayes, applied to classification (Tan and Gilbert, 2003) is a probabilistic classifier based 

on applying Bayes theorem. Naive Bayes assumes that all the attributes which will be used for 

classification are independent of each other (Jishan et al., 2015) applying Bayes' theorem with 

strong (naive) independence assumptions between the features. If some of the features are 

dependent on each other (in case of a large feature space) the prediction may prove to be poor. 

2.2.2.7 Stochastic Gradient Descent (SGD) classifier 

Stochastic Gradient Descent (SGD) is an efficient approach to discriminative learning of linear 

classifiers. SGD is been successfully applied to large-scale and difficult machine learning 

problems often faced in text classification and natural language processing (Needell et al., 

2016). Given that the data is sparse, the classifiers in this module easily scale to problems large 

number of training examples and features.  

In a linear regression, our goal is to find the line (or hyperplane) that minimizes the vertical 

offsets. Then again, in other words, one defines the best-fitting line as the line that minimizes 

the mean squared error (MSE) between target variable and predicted output over all samples in 

the dataset.  In the algorithm SGD, it is implemented a linear regression model for performing 

ordinary least squares regression using a Gradient Descent optimization algorithm.  

Essentially, GD optimization can be visualised as a hiker (Raschka, 2017), the weight 

coefficient, who wants to climb down a mountain, cost function, into a valley, cost minimum, 
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and each step is determined by the steepness of the slope (gradient) and the leg length of the 

hiker (learning rate). Using the Gradient Decent (GD) optimization algorithm, the weights are 

updated incrementally after each epoch (a pass over the training dataset).  

In case of very large datasets, using GD can be costly since we are only taking a single step for 

one pass over the training set thus, the larger the training set, the slower hte algorithm updates 

the weights and the longer it takes to converges to the least cost. 

In Stochastic Gradient Descent (SGD, sometimes also referred to as iterative or on-line GD) 

update of the weights is done after each training sample, and it is called “stochastic” because 

the gradient based on a training sample is a stochastic approximation of the actual cost gradient. 

Due to its stochastic nature, the route towards the global cost minimum can be direct or in zig 

zag if we are visualizing the cost surface in a 2D space (Raschka, 2017). 

In general, the model evaluates and updates the coefficients every iteration called stochastic 

gradient descent to lessen the error of a model on the training data. The mode this optimization 

algorithm works is that each training instance is exposed to the model once at a time. The model 

makes a prediction for a training instance, the error is computed and the model is updated in 

order to decrease the error for the succeeding prediction. This process is repeated for a pre-

defined number of iterations. This technique can be used to discover the set of coefficients in a 

model that cause the smallest error for the model on the training data. 

The advantages of Stochastic Gradient Descent are (Needell et al., 2016): efficiency and ease 

in implementation (opportunities for code tuning). The disadvantages of Stochastic Gradient 

Descent include (Needell et al., 2016): SGD requires a number of hyper parameters such as the 

regularization parameter and the number of iterations and SGD is sensitive to feature scaling. 

Hence, for better performance, the dataset should be regularised to values between 0 and 1 as 

each attribute has different units and in turn unalike scales. 

2.2.2.8 Artificial Neural Networks (ANN) 

In the 1940s mathematician, Pitts and psychologist McCulloch (Ding et al., 2015; Yadav et al., 

2006) have put forward neurons mathematical model from the mathematical logic view which 

opened the prelude of artificial neural network research. Neural network with parallel and 

distributed information processing network structure has a strong nonlinear mapping ability and 
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adaptive self-learning, robustness and fault tolerance characteristics. For artificial neural 

networks (ANN) data preparations are well defined (Coakley and Brown, 2000):  data should 

be scaled to match the input side of the selected transfer function, while the specified target 

values should be scaled to match the output side. Most software packages will perform scaling 

of the input data, and will automatically generate the initial training weights. To avoid over-

fitting cross-validation showed to be an effective technique (Coakley and Brown, 2000) to 

achieve proper results. 

When applying an ANN algorithm determining the number of hidden layers is still part of the 

“art” of neural networks. Although the details of the literature proposals vary, the most common 

models of ANN, as explain by Rumelhart (1994) and Widrow et al. (1994), take the neuron as 

the basic processing unit. Each processing unit is characterized by an activity level, an output 

value, a set of input connections, a bias value and a set of output connections (Roberto, 2015). 

Hidden layer works as a layer of perception units where original input pattern is augmented, 

then a recodification of the input patterns is processed and then support mapping the input to 

the output units. The aim is to have right connections from input to hidden layer, so we can find 

representation that will perform the mapping from input to output through the hidden layers. In 

practical applications, the number of the hidden layer can be identified through iteration as too 

few/many hidden nodes employed would lead to under-fitting/over-fitting issues in pattern 

classification (Ding et al., 2015). 

ANNs are ideal for processing nonlinear data, making it the perfect candidate for information 

forecasting and classification (Moro et al., 2015). In an attempt to mimic the biological brain, 

the neural network comprises a network of interconnected nodes (also referred to as neurons or 

processing units) which adjust their memory via weights, which link nodes together. Nodes are 

the most elementary units of any ANNs. 

The great advantage of ANNs is contained within its inherent ability to generalize. Having been 

trained, the network is able to produce an optimum output on previously unseen data (Rooij et 

al., 1996). Moreover, when compared to traditional statistical predictive techniques, NNs have 

shown promising results. The training process of ANN generally involves five steps (Lee, 

2010): 

• Choose representative training samples and fit them into the input layer as the 

input value. 
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• Estimate the predictive value of the network. 

• Compare the target value with the predictive one to find the error value. 

• Realign the weights in each layer of the network based on the error value. 

• Replicate the procedure above up until the error value of each training sample is 

reduced to a minimum, meaning that the training is completed. 

Furthermore, Youn and Gu (2010) notes that provided sufficient nodes exist, one hidden layer 

can overcome any problems. They continue advocating ANN as an attractive alternative 

because they are robust and do not require a priori specification of the functional relationship 

between the variables. In addition, ANNs models are expected to produce higher classification 

accuracy rates than logistic regression models, because the primary purpose of ANNs is to 

provide satisfactory results in prediction tests rather than parameter estimation or hypotheses 

testing (Youn and Gu, 2010). Nevertheless, the findings of the above-referred study indicate 

that while the NNs model performed reasonably well (in their study), it did not outperform the 

conventional logistic regression model. The ANNs model, however, has its disadvantage of 

being unable to clearly ascertain how each input variable has contributed to actual classification 

of the sample (Palmer et al., 2008; Youn and Gu, 2010). 

2.2.2.9 Other algorithms 

Some other common algorithms like linear regression were not highlighted because for example 

on OLS algorithms limitation regarding not be properly handle binary and continuous variables 

part of the dataset used. The one's mention was chosen based on literature researched as being 

common in real case scenarios and business practices. 

2.2.3 Evaluation and sensitivity analysis of models 

As in every prediction method, it is almost unthinkable to carry out an experimental section 

where the performance is not mentioned and used as a reference. Japkowicz et al. (2006) 

suggest that the evaluation process for supervised classification algorithms should acknowledge 

some important steps: 

 Choose an evaluation metric according to the properties of the classifier we want to 

measure; 

 Decide the estimation method to be used; 
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 Revise that the assumptions made by the evaluation metric and the estimation method 

are fulfilled; 

 Run the evaluation method with the chosen metric and estimation method; 

 Interpret the results with respect to the domain. 

In general, a score is a quality measure to quantify how a classifier behaves when solving a 

classification problem, and can be obtained through the confusion matrix (Prati et al., 2011; 

Santafe et al., 2015).  

Below, table 1, it is shown the basic terms of the confusion matrix obtained when the algorithm 

is tested (using the delay scenario) for two possible outcomes delay (1) or not delay (0) more 

than 15 minutes. 

Table 1 - Confusion Matrix (Provost et al., 1998) 

 Negative Prediction Positive Prediction  

Negative 
Class 

True Negative TN False Positive FP 

Total 
Negative 
Classes 

N- 

Positive 
Class 

False Negative FN True Positive TP 

Total 
Positive 
Classes 

N+ 

 Negative Predictions Ñ- Positive Predictions Ñ+ 
 

The interpretation of the confusion matrix follows: 

 True Positive (TP): These are cases in which it was predicted delay, and in fact, there 

was a delay; 

 True Negative (TN): The algorithm predicted no delay, and in fact, there was no delay; 

 False Positive (FP): The algorithm predicted delay, but in reality, the flight was on time 

(also known as a "Type I error"); 

 False Negative (FN): The algorithm predicted no delay, but in fact, a delay occurred 

(also known as a "Type II error"). 

Therefore, from the results withdrawn in the confusion matrix, there may be many scores 

according to how we aim to quantify the behaviour of a model. List of scores in supervised 

classification may be extensive, including standard scores and those designed ad-hoc for 
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specific classification problems. In table 2 it is only presented some of the most common scores 

(Santafe et al., 2015), as seen in table 2. 

Table 2 - Confusion Matrix derived indicators 

Indicator Description 

Accuracy (TP+TN)/(N++N-) 

False positive rate 1-(specificity) 

False negative rate 1-(recall) 

Specificity TN/ N- 

Precision TP/ Ñ+ 

Sensitivity, recall, hit rate, or true positive 

rate 
TP/ N+ 

Accuracy or the percentage of instances that are correctly classified by the model is the most 

commonly used decision criteria for most model assessments (Han et al., 2011). 

On the other hand, the use of scalar measures is also criticized by some authors in favour of 

graphical methods (Japkowicz et al., 2006; Prati et al., 2011) which are seen as a better choice 

to capture the complexity of the evaluation process. 

Sometimes, classification error (and accuracy) is selected without considering in depth whether 

it is the most appropriate score to measure the quality of a classifier for the classification 

problem at hand (Provost and Kolluri, 1999), especially valuable in domains where one class 

(the positive class) is more relevant than the other or when there are only a few positive samples. 

Thus, one may be interested in measuring the proportion of positive instances that have been 

retrieved by the classification model. By contrast, the specificity can be a valuable measure 

when the negative class is more relevant or when a minority negative class exists (Sayeh and 

Annie, 2014). The precision is a popular score in information retrieval and medical domains 

(Rezaeinasab and Rad, 2008; Twagilimana, 2006). In general, precision may be valuable to 

evaluate classifiers when a false positive classification is especially costly or when the interest 

lies, for instance, on measuring the reliability of a detection obtained by an automatic detection 

system.  

Recall and specificity trade-off The most popular approach to balance recall and specificity is 

the ROC analysis (Fawcett, 2006; Provost et al., 1998), which involves a graphical 
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representation of recall versus false positive rate (ROC curves). When the classification method 

under study is discrete, the associated ROC curve has a single point. The information about 

classification performance in the ROC curve can be summarized into a score known as AUC, 

the area under the ROC curve) (Bradley, 1997; Cortes and Mohri, 2004). Although the score 

does not capture all the information from the ROC curve, it is more insensitive to skewness in 

class distribution than non-balanced scores since it is a trade-off between recall and specificity. 

With statistical tests (Sts) one aims to obtain enough statistical evidence to know if the 

algorithms of interest have a different performance with respect to the selected score or not. 

Therefore, we assume the existence of two complementary hypothesis: H0 (null hypothesis) 

and H1 (alternative hypothesis). H0 states that both algorithms have the same performance on 

the basis of the selected score and, a priori, it is assumed to be true. By contrast, H1 states that 

the two algorithms behave differently. 

Table 3 - Statistical test 

 Decision 
  Do not reject H0 Reject H0 

Reality 
H0 is true Correct 

False Positive FP 

Reject H0, H is true 

H0 is dales, 
H1 is true 

False Negative FN 

Do not reject H0, 
Correct 

 

Thus, the Sts does not conclude whether H0 is true or false; it is the researcher who, speculating 

on the fact that a small p-value is caused by a wrong initial assumption, decides to reject H0. 

Demšar (2006) and Japkowicz et al. (2006) review some of the most relevant objections to the 

use of Sts when comparing supervised learning algorithms. They stance, however, that 

statistical tests only measure the improbability of the obtained experimental result if the null 

hypothesis was correct, and statistical tests only provide certain reassurance about the validity 

and non-randomness of the published results. 

Barboza et al. (2017) that sensitivity has values close to 1 when type I error is low and 

specificity is close to 1 when type II error is also low. For their study predicting bankruptcy, 

there is a preference for higher sensitivity because this translates into losses for lenders, whereas 

specificity is the threshold for gain. Perhaps, the same logic could apply the private aviation in 
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the first steps of using machine learning models to support decisions and allocation of resources 

in the planning, control and oversight of flight-related daily operations. 

Regarding Sensitivity Analysis, there are numerous statistical and probabilistic tools 

(regression, smoothing, tests, statistical learning, Monte Carlo, etc.) that aim at determining the 

model input variables which mostly contribute to an interesting quantity depending on model 

output (Hamby, 1993; Iooss and Lemaître, 2015).  Iooss and Lemaître (2015) stance three 

methods are to follow: the screening (harsh sorting of the most significant inputs among a large 

number), the measures of importance (quantitative sensitivity indices) and the deep exploration 

of the model behaviour (gauging the effects of inputs on their all variation range). Summing 

up, the referred study defends that the goal is to learn “how the uncertainty in the output of a 

model can be apportioned to different sources of uncertainty in the model input” (Iooss and 

Lemaître, 2015). Further, in their investigation, they state that based on the characteristics of 

the different methods, some authors have proposed decision trees to help choose the most 

appropriate method for its problem and respective model. Shen and Tan's (2005) recursive 

feature elimination was used to choose 16 variables from a large dataset for a classification 

prediction problem. Recursive feature elimination (RFE) is a method which performs backward 

feature elimination: starts with all features, and then removes some irrelevant features according 

to a ranking criterion until satisfied with a stop criterion. Xie et al. (2006) applied the same 

method and managed to reduce the number of features, but also keep the classification accuracy 

using an SVM algorithm. In the present study, the sensitivity analysis method mention is going 

to be used to evaluate and compare the top rank variables with literature flight delays analysis 

and prediction studies. This happens due to the fact that the dataset available lacks in relevant 

features, something already accepted from the beginning and corroborated during interviews 

with experts and managers of the private airline company. Despite the numerous iterations 

done, the fact-finding characteristic of this dissertation in the application of machine learning 

techniques in the private aviation scope justifies the use of this process in the aftermath of 

comparing accuracies. 

2.3 Machine learning predictions and aviation 

Machine learning studies are found across a wide range of research fields, and their 

performance compared in numerous studies. 
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Dogan and Tanrikulu (2013) apply classification models on several datasets in three phases: 

first, applying the algorithms on original datasets; second, applying the algorithms on the same 

datasets where continuous variables are discretised; and third, implementing the algorithms on 

those same datasets where principal component analysis (PCA) is applied. Overall the best 

classifiers out of all the trials were k-nearest Neighbours, decision tree (called C4.5), MLP and 

Logistics also predicted well. In summary, all dataset characteristics and PCA applications were 

found to affect the success rate significantly, but not the discretisation. 

Liu et al. (2017) using twelve data subsets measures the classification accuracies five machine 

learning algorithms that were ranked in the following decreasing order: support vector machine, 

artificial neural network, naïve bayes, decision tree and k-nearest neighbour. Before applying 

the methods, feature selection techniques are used to pre-select variables and improve their 

accuracy (Domingos, 2012). The automatic feature selection was proved to increase accuracy 

in ANN and SVM, and the mean average percentage error after the feature selection is lower. 

Caruana and Niculescu-Mizil (2006) presents an empirical comparison between ten supervised 

learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, 

random forests, decision trees, bagged trees, boosted trees, and boosted stumps. The learning 

methods such as boosting, random forests, bagging, and SVMs attain an excellent performance. 

The models that performed poorest were naive bayes, logistic regression, decision trees, and 

boosted stumps. Nevertheless, they warn that even the best models sometimes perform poorly, 

and models with poor average performance occasionally perform exceptionally well. 

2.3.1 Prediction studies across industries  

Silva (2017) stresses the multidisciplinary character of supervised classification problems. Its 

benefits come from being used by multiple perspectives and should not only be considered 

under the tapered perspective of any particular scientific area. Hence, machine learning it stated 

as a field of computer science that deals with answering problems through learning from 

examples applicable to a multitude of industries. 

Schumacher et al. (2010) test accuracy of Logistic Regression, Neural Networks, and 

Classification Trees with similar datasets. One has missing data; the other had its instances with 

missing data removed. The results show that accuracy of all three algorithms in the completed 

dataset is higher than in the dataset with missing values. The accuracies are 74%, 85% and 84% 
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respectively for Logistic Regression, Neural Networks, and Classification Trees for predicting 

the success of students of the given database with no missing data. 

Barboza et al. (2017) analysed more than 10.000 firm-year financial observations and compared 

the best algorithms when predicting bankruptcy. The machine learning techniques that best 

performs are a random forest (a process of multiple decision trees predicting different samples 

and random variables of the datasets) that led to 87% accuracy, contrasting with logistic 

regression and linear discriminant analysis that obtained 69% and 50% accuracy, respectively, 

in the testing sample. In respect to the algorithms chosen for the present dissertation, while the 

ANN model had a lower type I error of 6.8%, type II error is higher than that of other machine 

learning models, having 27.2%. Random forest returns the lowest type II error, with 12.9%, and 

the best total accuracy rate of 87.1%, as previously mentioned. In the context of their study for 

bankruptcy predictions, accuracy should not be the only performance metric, but also adjusting 

classification models by considering different impacts of type I and type II errors. They also 

encourage decision makers to test and consider the use of machine learning models in their 

databases. When the goal of the decision maker is to predict and not necessarily explain, then 

the use of algorithms for prediction purposes should be the focus, and relative contribution of 

predictors would not be a matter of concern. Thus, results show that machine learning could be 

a powerful ally to make decisions about corporate operational resolutions, instead of study 

performance. 

Youn and Gu (2010) compare restaurant firm failure prediction models using logistic regression 

and artificial neural networks. The results show that although many studies have reported 

ANNs’ better prediction accuracy versus traditional techniques, including the logistic 

regression, the ANNs model does not always show superior performance. The results achieve 

were 95% to 88% of accuracy for logistic regression and artificial neural network respectively. 

Moro et al. (2014) present an approach to predict the success of bank telemarketing. A semi-

automatic feature selection was explored, first based on intuitive business familiarity, and then 

through an automated selection technique. Then four algorithms were compared: logistic 

regression, decision trees, neural network and support vector machine. Although two metrics 

were used, the focus is on the AUC results. The neural network presented the best results with 

an AUC near 0.8. In an increasing order of AUC results are the following: 0.715, 0.757, 0.767, 

and 0.794 for logistic regression, decision trees, support vector machine and neural network, 
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respectively. They also advocate that a good model should offer the best compromise between 

a desirable high true positive rate (TPR) and low false positive rate (FPR). In their best model, 

the neural network, TPR was 0.71 and FPR 0.24. 

Sayeh and Annie (2014) compares ANN with logistic regression (LR) to predict credit rationing 

decisions. Use leave-one-out cross validation to ensure the robustness of the two classifiers. 

Based on data from a survey overall classification rate of LR is 74.80% while ANN allowed a 

proper classification of 71.14%. Findings also suggest that the two classifiers perform poorly 

when predicting the rare class (least common). The prediction of the two models is more likely 

to be majority leaning than towards the non-majority. This could be attributed to the fact that 

least common class may be under-represented and the results could be biased toward the second 

class (the majority class). They recommend applying a resampling technique to balance data 

and improve the classification performance. 

2.3.2 Prediction studies in the aviation industry and flight delays 

When preparing a flight, planning usually focus on solving in a sequential manner where the 

output of one stage is the input of the next (Papadakos, 2009). Initially, planning solves fleet 

assignment, where it is decided the appropriate and available aircraft to fly each leg and 

maximizing revenue. Secondly, maintenance routing where it is assured that required periodic 

maintenance schedule is complied with. Then crew pairing where the crew is assigned to the 

legs while following labour rules and legislation, and minimize crew costs. Around this 

planning features such as client (or broker) demands, ground operations, airport operations, and 

head office routines pace themselves to achieve better performance (safety wise too) and assure 

business continuity and support to operating flights. 

For a private carrier, the departure can have different contexts. It can be the first flight for a 

Client, or rotation from one Client to another, or a “simple” operational aircraft rotation, or a 

first flight out of a schedule maintenance, etc. Wu (2006) sees the rotation process was seen as 

a whole process, and a sequential optimization algorithm is proposed to improve operational 

reliability of schedules. In that article, it is defended that the use of a simulation model provides 

immediate feedback on alternatives and visualization of possible results to the schedule. It was 

also defended that the use of the optimization model can define buffer times to better cope with 

operational demands, and moreover, allocate more time to critical flights, and propagate 

punctuality and less pre-flight times in later legs of the same rotation (Rosenberger et al., 2002). 
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Cook et al. (2012) estimate that in Europe the average delay experienced by a passenger can be 

up to 90% higher than the actual delay of the flight. This reinforces that a delay in a stage of 

flight preparation can lead to passengers (and cargo) poor connectivity along with 

compensation cost to the airline or the client contracting the Private Airline company. 

The trend in the airline delay management literature has been to integrate the management of 

multiple resources (aircraft, crew and passengers, etc.) in the same system. Santos et al. (2017) 

analyses how their linear programme approach may deal with operational delays and to help on 

deciding if subsequent flights should be delayed as well. In their programme function, they take 

into account airport restraints, such as taxiway capacity and runway separation, and fuel costs 

and passenger costs. They concluded that their proposal might lead to cost reductions to the 

airline. 

Usually, in a regular flights carrier, disruption to schedule mainly come from crew absences, 

mechanical failures and bad weather. Despite the data used was based on regular flights, Bratu 

and Barnhart (2006) present how real-time  decision-making algorithms and optimization 

models may help when recovering from different levels of disruption, help identify departure 

postponing and/or cancelation (whether current or subsequent flight), help an airline to increase 

customer retention and a long-term profitability. 

Bai (2006) uses neural networks and logistic regression to detect the pattern of airport arrival 

delay in Orlando Airport. Its outcome shows that arrival delay is highly related to the originate 

delay. The airport arrival delay is found to show seasonal and weekly patterns, which is related 

to the schedule performance of the carriers. The precipitation and wind speed were also found 

to be contributors of airport arrival delay. The capacity of the airport and its constraints were 

not found to be significant contributor. In addition, the precipitation, flight distance, season, 

weekday, arrival time and the space between two successive arriving flights were found to 

contribute to arrival delay of flights. However, flight delay is not necessarily during a peak 

period but depends on the impacts generated on subsequent flights during that time, and the use 

of a predictive model can give indications for the appropriate recovery actions to recover/avoid 

those delays. 

Dimopoulos et al. (2017a) analysed delays using data from the United States Department of 

Transportation to predict flight delays. They could predict with 85.5% accuracy if the flight is 

going to be delayed and with 56.0% the delay time interval. To gain a more robust measure of 
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the accuracy over the dataset, a k-fold cross-validation with 3 random shuffled folds was 

implemented. For the classification problem, the highest accuracy belonged to Logistics 

regression algorithm and lowest to Gaussian naive Bayes with 64.2%. Going further in the 

analysis, by observing the average delay, they noticed that: days with most delayed flights are 

those before or after each holiday and during each holiday; the delay during the afternoon seems 

always to be affected by earlier delays, which force flights to leave later; and week days and 

days of month seems to affect the average delay, being Summer months significantly with more 

delays. 

Martinez (2012) uses a dataset composed of records of all USA domestic flights of major 

airlines, from 1995 to 2010, and accuracies are compared against literature and an online 

forecasting engine. The goal of the study was to estimate the probability of any flight to be 

more than x minutes late. Despite being a regression problem and not using an algorithm similar 

to the ones in the literature revision, it should be highlighted, as accuracy achieved may 

contribute to accuracy benchmarking and it was a project for a master thesis in computer science 

in collaboration with Amadeus IT Group SA, a provider for the global travel and tourism 

industry. The best prediction method achieved was the most specific one, which takes into 

account all the combination of categorical features and a condition on the arrival hour, with a 

measured AUC around 0.68. 
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3. Method 

Data mining is a process that allows a deductive learning to find hidden information in a 

database, fit that same data to a model and carry proper data analysis, and discovery of 

descriptive and predictive tasks for business purposes (Dunham, 2002). The method for the 

present study is the CRISP-DM, as approached previously in the literature revision: business 

understanding, data understanding, data preparation, modelling and evaluation.  

3.1 Business and data understanding 

The business understanding and data understanding was done via revision of the literature that 

encompasses as aggregate or in aviation-specific challenges, private airlines market, flight 

delays, machine learning, its goals and practical case studies.  At the same time, meetings with 

managers and experts from the Private airline were conducted in order to assess the best 

available features to be used for the following steps. 

3.2 Data collection and preparation 

Before applying the algorithms to compare their accuracy for prediction purposes, an 

understanding of the different variables and its characteristics and context is mandatory 

(Dunham, 2002). 

For the objectives set, it is used the above-mentioned Private company flight data from 2014 to 

2017 (first quarter). It includes a mix of types of data from categorical as well as continuous 

features. Before going any further it can acknowledged the challenge with the variables at hand 

to achieve a perfect performance of the algorithms as the complexity of this sector is vast, and 

there are still variables that even key players on the market are yet to put them into numbers or 

even transform them into measurable data. The aim of this analysis with the learning methods 

is to predict flight delays over15 minutes on departure, based on the available parameters Table 

4. 

Table 4 - List of features 

# Description Scale Variable Code Origin Data Type 

1 Month 1-12 MONTH Extracted Categorical 

2 Day 1-31 DAY Extracted Categorical 

3 Week day 1(Monday)-7(Sunday) WEEK Computed Categorical 
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# Description Scale Variable Code Origin Data Type 

4 Season time Spring, Summer, Autumn, 

Winter: 1, 2, 3 and 4 

respectively 

SEASON Computed Categorical 

5 Private airline 

flight? 

If a own flight (1) or for a 

client (0) 

Private Carrier Computed Categorical 

6 Engine numbers Two (2) or four (4) engines 

aircraft 

ENG_NUMBER Computed Categorical 

7 Aircraft 

registration 

The aircraft registration 

XX-ABC 

Tail_No Extracted Categorical 

8 Internal code of 

flight category 

(C)Charter, (D) general 

aviation, (J) normal service, 

(K) training,(N) business 

aviation, (P)  positioning, 

(T) technical test and (W) 

military 

STC Extracted Categorical 

9 Departure airport 

with IATA code 

XXX (three capital letters) Dep Extracted Categorical 

10 Departure hour of 

the day in UTC 

Departure hour (0-23) DEP_HOUR Computed Categorical 

11 Arrival hour of the 

day in UTC 

Arrival hour (0-23) ARR_HOUR Computed Categorical 

12 Flight time from 

ATD to ATA 

Flight time converted in 

minutes 

Flight_time Computed Integer 

13 Departure delay? If STD was delayed (1) or 

not (0) 

DEP_DELAY Extracted Categorical 

14 Arrival delay? If STA was delayed (1) or 

not (0) 

ARR_DELAY Extracted Categorical 

15 Client IATA code XX two capital letters Client_ID Extracted Categorical 

16 Flight more than 10 

hours? From ATD 

to ATA. 

Yes (1), No (0) Flight_more10hrs Computed Categorical 

17 Flight departure 

occurred during 

local night office 

hours) 

Yes (1), No (0) If_Dep_night_OF

FICE 

Computed Categorical 

18 Year of the flight Year from 2014 to 2017 YEAR Extracted Categorical 
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# Description Scale Variable Code Origin Data Type 

19 Flight during 

weekend? 

If weekend (1) or not (0) Weekend Computed Categorical 

20 Flight arrival 

occurred during 

local night office 

hours? 

Yes (1), No (0) If_Arrival_night_

OFFICE 

Computed Categorical 

21 Flight 

encompassed 

totally during local 

night office hours? 

Yes (1), No (0) flight_during_OF

FICENIGHT 

Computed Categorical 

22 Aircraft age in 

years 

XX for years AC_age Computed Integer 

23 Previous flight 

arrived with delay? 

Yes (1), No (0) If_previous_flight

_delayed 

Computed Categorical 

24 Previous flight 

delay at arrival in 

minutes 

XX in minutes Previous_flight_d

elay 

Computed Integer 

25 Delay IATA code 

of the previous 

flight 

XX with numerical code Previous_flight_d

elay_reason 

Computed Categorical 

The dataset is characterized by having 6907 entries and 25 initial features. 

In: X.shape 

Out: (6907, 25) 

Figure 1 - Shape of the dataset extracted 

For the data preparation stage, a thorough collection of the data was made to remove from the 

dataset any possible data that could have a negative impact on the model’s performance. Data 

from real-world sources are often erroneous, incomplete, and inconsistent, perhaps due to 

operational error or system implementation flaws. Such low-quality data need to be cleaned 

prior to data mining (Gürbüz et al., 2011). When working on this stage, several issues were 

taken into consideration such as error of instances, outliers, missing and irrelevant data and 

human interaction (as personnel inputs most of the data extracted from the company’s 

database). Thus, data reduction was performed by means of instance and/or feature selection. 

First, missing data were removed from the dataset by removing instances that did not have all 

the features with inherit value. Unnecessary space characters or other spelling mistakes were 
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also cleaned (see annexe A).  Feature selection was done manually by identifying the most 

relevant, explanatory input variables within a dataset (Abdallah and de La Iglesia, 2015; 

Chandrashekar and Sahin, 2014; Yang and Olafsson, 2006) and the chosen variables are shown 

in the feature table. The selection was empirical from Private Aviation experience, meetings 

with experts and managers from the private carrier and literature. In an iterative process, the 

selection of the features was also achieved in a way to be compatible with the algorithms ahead. 

In the present study, one has access to a very limited number of variables. In particular, even 

though we use a considerable number of observations, the database supplied a limited number 

of variables. Therefore, the impact of feature selection is not prominent detailed. 

Before transforming the dataset, data projection (Crone et al., 2006) was applied to the original 

dataset by transforming raw data into a possible data processing, as being beneficial for the 

classification algorithm. It comprises techniques of value transformation, e.g. mapping of 

categorical variables and discretization or scaling of continuous ones. Working with large 

attribute sets of mixed scale, data mining routinely encounters mixtures of categorical 

attributes. As some of our categorical variables contained multiple categories, we applied a 

dummy variable various categorical features (see annexe A). 

Further, in the data preparation stage, optimizing pre-processing steps were taken and two 

transforming options were tested: PCA and MaxAbsScaler (scikit-learn library). The latter 

scales and translates each feature individually such that the maximal absolute value of each 

feature in the training set is transformed to be 1,0 (one).  The PCA produces orthogonal (i.e. 

perfectly uncorrelated) axes as output, so without clustering, the PC axes may be used directly 

in subsequent analyses in place of the original variables, and assures non-collinearity. 

In: 

max_abs_scaler = pre-processing.MaxAbsScaler() 

Abs = max_abs_scaler.fit_transform(X) 

In: 

pca = PCA(n_components=50) 

X_PCA = pca.fit(X).transform(X) 

Figure 2 - Data transformation 
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Both PCA and MaxAbsScaler were found to have similar results and being better than other 

pre-processing steps optimizations. PCA stands out for a slightest better performance and 

accuracy, and better at dealing with correlated features. 

For a better application and performance to set objectives, the mathematical aspects of each 

algorithm are not the focus, but their application in a real-valued challenge using python 

language, python libraries and Jupyter as the interface. Hence, for this stage of the present 

methodology a relationship was iteratively explored on how features, algorithms and respective 

outputs can vary and produce potential valid insights and future business directives. 

3.3 Modelling 

One of the main objectives of the study is to compare algorithms that may predict flight delays. 

Hence, several issues were taken into consideration: overfitting, dataset dimension, high 

dimensionality and integration. Thus, a knowledge extraction procedure was conveyed to assess 

the accuracy of the algorithms.  

As per the revision of literature algorithms, now follows a brief resume of the related supervised 

learning scikit-learn library algorithms (Pedregosa et al., 2011) being used (see Table 6): 

Logistic Regression (LR) - applies ordinary least squares linear regression. It is a multiclass 

classification problem and logistic regression produces predictions between 0 and 1, a one 

versus all scheme is used (one model per class) where the algorithm relates every class with all 

the remaining classes, structuring a model for every class. 

Linear Discriminant Analysis (LDA) - a classifier with a linear decision margin, produced by 

fitting class conditional densities to the data and using Bayes’ regulation. The model fits a 

Gaussian density to each class, assuming that all classes share the same covariance matrix. The 

fitted model can also be used to reduce the dimensionality of the input by projecting it to the 

most discriminative directions. 

Decision Tree Classifier (CART) - where a non-parametric supervised learning method is used 

for classification. The goal is to generate a model that predicts the value of a target variable by 

learning simple decision rules inferred from the features. Decision Tree Classifier is capable of 

performing multi-class classification on a dataset, and capable of both binary classification and 

multiclass classification. 
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K-Neighbours-Classifier (KNN) – the classifier implements the k-nearest neighbours vote. 

Here, scikit-learn implements nearest neighbours’ classifiers: by learning based on the K 

nearest neighbours of each query point, where   k is an integer value pre-specified. 

SVC (SVM) – a C-Support Vector Machine Classification and takes as input two arrays: an 

array X of size n_samples, n_features holding the training samples, and an array Y of class 

labels (strings or integers) with size n_samples. After being fitted, the model can then be used 

to predict new values, and the decision function depends on some subset of the training data, 

called the support vectors. 

GaussianNB  (NB) - implements the Gaussian Naive Bayes  (Chan et al., 1982) algorithm for 

classification, where as previously said assumes that features follow a normal distribution. 

SGDClassifier (SGD) - this estimator implements regularized linear models with stochastic 

gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and 

the model is updated with a decreasing strength schedule (the learning rate). 

MLPClassifier –  this classifier trains on two arrays: array X of size (n_samples, n_features), 

which holds the training samples represented as floating point feature vectors; and array Y of 

size (n_samples), which holds the target values (class labels) for the training samples. After 

fitting (training), the model can predict labels for new samples. Values larger or equal to 0.5 

are rounded to 1, otherwise to 0. Multilayer perceptron (MLP) represent a prominent class of 

NN (Bigus, 1996; Krycha and Wagner, 1999), implementing a paradigm of supervised learning 

methods which is routinely used in academic and empirical classification and data mining tasks. 

Being universal approximators, NN should theoretically be capable of processing any 

continuous input data or categorical attributes of ordinal, nominal, binary or unary scale. 
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In: 

# prepare models 

models = [] 

models.append(('MLPC', MLPClassifier())) 

models.append(('LR', LogisticRegression())) 

models.append(('LDA', LinearDiscriminantAnalysis())) 

models.append(('KNN', KNeighborsClassifier())) 

models.append(('CART', DecisionTreeClassifier())) 

models.append(('NB', GaussianNB())) 

models.append(('SVM', SVC())) 

models.append(('SGD', SGDClassifier())) 

Figure 3 - Supervised Classification Algorithms to evaluate 

The evaluation is made through a stratified k-fold cross-validation technique (Kelleher et al., 

2015; Refaeilzadeh et al., 2009). Through a leave-one-out cross-validation classification 

algorithm, the dataset is grouped into 10 equal stratified folds from the dataset to train and test 

the algorithms (Kohavi, 1995; Silva, 2017). This means that the model will train and test the 

data 10 times different parts of the dataset. These train and test executions are run 20 times, and 

the score is measured through the average and standard deviation of accuracy of those 20 

executions (see table 6).  
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In: 

seed = 20 

# evaluate each model in turn 

models = [] 

results = [] 

names = [] 

scoring = 'accuracy' 

for name, model in models: 

kfold = cross_validation. StratifiedKFold(6907, n_folds=10, 
shuffle=True, random_state=seed) 

cv_results = cross_validation.cross_val_score(model, X_PCA, Y15, 
cv=kfold, scoring=scoring) 

results.append(cv_results) 

names.append(name) 

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 

print(msg) 

Figure 4 - Modelling the data with PCA transformation and applying the referred algorithms 

3.4 Evaluation and sensitivity analysis 

The evaluation process for supervised classification algorithms encompasses two steps: 

comparison of the accuracy of the algorithms chosen, along with the two best accuracies’ 

algorithm in detail (Logistic Regression and MLP Classification) regarding other performance 

indicators by analysing its confusion matrix. The sensitivity analysis makes use of the recursive 

feature elimination (RFE) technique. In this scenario, logistic regression and CART are chosen 

to display the features’ rank contribution to the predictive outcome of flight delayed or not 

delayed (more than 15 minutes) on departure. Despite not having the highest accuracy, the 

Decision Tree Classifier algorithm was also used to extract the percentage of relevance of each 

individual feature to the model and therefore to the predictive outcome. Based on this, an 
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exploratory analysis of the dataset will be drilled-down, along with a sensitivity analysis of the 

top 5 features in each model used (Logistic Regression and Decision Tree Classifier). On the 

discussions chapter, the results and other evaluation indicators addressed in the literature 

revision are with other similar predictive related studies. 
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4. Results 

4.1 For Supervised Classification algorithms accuracy comparison 

An empirical comparison of nine supervised learning algorithms using accuracy as performance 

criteria now follow. The pre-processing methods, besides the cleaning ones, two are chosen to 

achieve best accuracies, and both outcomes are explored. Through leave-one-out cross-

validation classification algorithms were evaluated using 10-fold cross-validation (Kohavi and 

others, 1995) conducted 20 times. Hence, with a specific python code, it was possible to 

evaluate the referred nine algorithms (see tables 5 and 6). 

Delay at departure leads to delay at arrival? 

On dwelling into flight analysis, when delays restrain us from getting on time where we want 

to go, we first need to look at where exactly we need our focus on. On the variables prior time 

of departure? Or variables of flight data between departure and arrival? Extracted from the 

flight's dataset, from 2014 to 2017 77% (see table 7) of the flights with delay at arrival was 

followed by a delay at the departure airport. This fact is also acknowledged as a trend in other 

studies (Cao and Fang, 2012), hence the focus on predicting flight delay at the origin airport 

and their contributors. 

Table 5 - Crossing number of arrival delays with departure delays. 

 Arrival not delayed Arrival with delay 

Departure with no 
delay 

1899 1084 

Departure with delay 335 3593 

From the flights that were a delay at arrival did not root from the delay at departure, it may be 

due variables such as aircraft performance indicators, traffic at both departure and arrival 

airports, etc. As previously discussed, delays have a major weight on financial expenditures, as 

most of them root from the delay at the departure airport. The next step is to use the referred 

dataset, which is composed of the best available variables that may explain a departure delay 

15 minutes, and compare their accuracies (see annexe C). 

First, PCA pre-processing was applied to the dataset. Using the method and estimators referred 

to achieve the classification prediction of a delay at departure, the results are: 
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Table 6 - Results of the modelling with PCA pre-processing (average and standard deviation of the accuracy) 

MLPC: 0,7055 (0,0172) LR: 0,7063 (0,0143) 

LDA: 0,7086 (0,0154) KNN: 0,6611 (0,0138) 

CART: 0,6534 (0,0164) NB: 0,6269 (0,0197) 

SVM: 0,7011 (0,0171) SGD: 0,6096 (0,0405) 

LDA, LR and MLPC are the top scorers. This can be explained by the three of them make use 

of the PCA transformation of the raw data to better achieve higher performance and avoid 

collinearity. Collinearity on the data set is intrinsic, as many variables were created by 

condition-based on other variables, and in a Private Aviation environment, a small deviation 

from the standard process may initiate a chain of events that can easily lead to a delay. 

Secondly, MaxAbsScaler pre-processing was used to transform the data. Using the same 

methods and estimators above referred to predict delay at departure, the results are: 

Table 7 - Results of the modelling with MaxAbsScaler pre-processing (average and standard deviation of the accuracy) 

MLPC: 0,6996 (0,0173) CART: 0,6743 (0,0116) 

LR: 0,7089 (0,0154) NB: 0,4608 (0,0190) 

LDA: 0,7019 (0,0142)* SVM: 0,6681 (0,0170) 

KNN: 0,6998 (0,0171) SGD: 0,5950 (0,0651) 

In this case, LR and LDA were the top scorers. The MaxAbsScaler was used to standardize the 

raw data and avoid variables with higher amplitude of values could affect its actual importance 

on explaining the independent variable. The LDA, although reaching a reasonable scorer, the 

scikit-learn identifies the already expected collinearity as a problem, and interpretation on the 

result and upstream stages of processing should be revised. 

Following the two best accuracies, an individual evaluation of Logistic Regression and MLP 

Classifier is presented. To evaluate the both algorithms several evaluation indicators can be 

used. In the Confusion Matrix table, we achieve the results in table 10. 
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Table 8 - Confusion Matrix for Logistic Regression and MLP Classifier 

 

 

 

In the Figures 1 and 2, it is possible to visualize the ROC and the achieved area under the curve 

(AUC) for each algorithm. The dashed lines define the threshold below which the prediction is  

 

considered to the prediction close to random. 

The neural network (MLP Classifier) predicts with 2283 errors, whereas the Logistic regression 

gets 2313. The AUC of both algorithms are very similar, hence accuracy of both classifiers 

achieves analogous results. 

In the next table its summarize the performance indicators of both MLP Classifier and Logistic 

Regression run once each. 

Table 9 - Algorithms performance indicators 

Performance Indicators MLP Classifier Logistic regression 

Accuracy 0,66 0,67 

False positive rate 0,27 0,36 

False negative rate 0,43 0,36 

Specificity 0,73 0,64 

Precision 0,61 0,58 

 Logistic Regression MLP Classifier 

 0 1 0 1 

0 2556 1419 2928 1047 

1 894 2038 1236 1696 

Figure 6 - ROC for Logistic Regression Figure 5 - ROC for MLP Classifier 
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Performance Indicators MLP Classifier Logistic regression 

Sensitivity, recall, hit rate, or true 

positive rate 
0,57 0,69 

ROC/AUC 0,66 0,67 

4.2 For Exploratory and Sensitivity Analysis 

Fulfilling the second major objective of the present dissertation, an exploratory and sensitivity 

analysis is conducted (see annex C). As seen in the histogram Figure 3, the delay difference 

distribution is vast. Which is something likely to occur. If two flights were chosen to check in 

detail their delay root cause, over several iterations one would come to the conclusion that a 

specific delay reason can have different impacts, in minutes, in the actual delay of the flight, 

according to with other circumstances not always possible to measure and to transform into 

data. In Table 12, it is possible to visualize the average of the time difference in minutes of 

flights delayed (1) and not delayed (0), and in Figure 4 its behaviour over the years. As this 

variable proved to be too scattered and the tested prediction regression got low accuracies (see 

annex D), the prediction objective of this study was veered to classification from the beginning. 

Table 10 - Average on time performance per delay status 

Departure Difference 

DEP_DELAY Average in minutes 

0.0 (no delay) -93 

1.0 (delayed) 58 

Figure 7 - Delay in minutes histogram 
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In the Table 13 it was possible to, through a feature selection function called Recursive feature 

elimination (scikit learn package), identify the rank and relevance of the variables at hand, for 

logistic regression and CART, respectively. Concerning the top 5 relevance features using a 

Decision Tree Classifier (CART) algorithm, it is possible to convey that continuous features 

received higher relevance to the model, in contrast with the Logistic Regression, where binary 

features were ranked first. 

Table 11 - RFE for Logistic Regression 

Logistic Regression Top 5 ranking Decision Tree Classifier Top 5 relevance 

If_previous_flight_delayed 1 Previous_flight_delay 21,31% 

If_Dep_night_OFFICE 2 DAY 14,85% 

A Private Airline flight 3 Flight_time 13,34% 

Weekend 4 DEP_HOUR 9,26% 

Flight_more10hrs 5 ARR_HOUR 8,38% 

After using the already specified dataset, one of the features was set aside. The reason of delay 

from the previous flight was isolated, turned into a dummy variable, and a Logistic regression 

was applied, hence deeper information can be extracted. In the following Table 14, it is 

Figure 8 - Delay status' average in minutes along the years 
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presented the top 5 reasons for the delay of the previous flight in the IATA code (a standard in 

the aviation system) that most influence the delay on departure of the consecutive flight. 

Table 12 - RFE for Logistic Regression using the feature IATA code delay of the previous flight 

Logistic Regression with IATA delay codes Top 5 ranking 

Reason-67: CABIN CREW SHORTAGE, 
sickness, awaiting standby, flight time limitations, 
crew meals, valid visa, health documents, etc. 

1 

Reason-46: AIRCRAFT CHANGE, for technical 

reasons. 
2 

Reason-96: OPERATIONS CONTROL, re-
routing, diversion, consolidation, aircraft change for 
reasons other than technical. 

3 

Reason-75: DE-ICING OF AIRCRAFT, removal 
of ice and/or snow, frost prevention excluding 
unserviceability of equipment. 

4 

Reason-34: SERVICING EQUIPMENT, lack of or 

breakdown, lack of staff, e.g. steps. 
5 
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5. Discussion 

5.1 From Supervised Classification algorithms accuracies 

Examination of the comparison outputs may aid in model validation and provide guidance to 

choose the best available path that applies to real case scenarios and possibly go even further 

in the analysis of flight delays. 

As seen in the previous chapter, after discretising  some of the features, selecting the best one 

available, and transform them into components (PCA technique), it was seen that this procedure 

proved to help and improve only slightly the accuracy of all the models as previous studies 

corroborate with this contribution, e.g. Dogan and Tanrikulu (2013) and Howley et al. (2006). 

Regarding the models’ comparison, artificial neural network and logistic regression were found 

to be the bet to fit algorithms. Both have an accuracy around 0.70, which may be low in 

comparison with other studies applying the same type of algorithms, e.g. Youn and Gu (2010), 

Bai (2006) and Moro et al. (2014). This is due to features availability. Although a manual, 

interactive and iterative process of creating and selecting features was carried, it’s possible to 

improve the accuracy from an initial 0.5 accuracy on all the models (almost a random 

probability, where were used the features extracted directly from the database) to around 0.7. 

The lack of certain relevant private aviation known inputs transformed into representative 

dataset variables lead to such results, however not far from similar literature. 

When running the models individually, both MLP and logistic regression showed slight lower 

values, as expected, since the repetitions on the comparison for producing the accuracy were 

higher thus outputting a higher average. As acknowledge Barboza et al. (2017), accuracy should 

not be the only performance metric, but also adjusting classification models by considering 

different impacts of type I and type II errors. 

Table 13 - Type errors from MLP Classifier and Logistic Regression 

Statistical test MLP Classifier Logistic Regression 

Type error I 1047 1419 

Type error II 1236 894 

From the Table 10 and are calculated the performance results shown in Table 15 based on the 

confusion matrix. Following Barboza et al. (2017) interpretation of type errors, there is a 
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preference for higher sensitivity because may translate into extra focusing on flights that are 

predictably delayed, whereas specificity is the threshold predictable on time performance. 

5.2 Exploratory and Sensitivity Analysis 

In a multiparty system, elements can potentially interact in different ways each time because 

they are interdependent. Take the airline control system—the outcomes it delivers vary 

tremendously by weather, equipment availability, time of day, etc. So being able to predict how 

increasingly complex systems interact with each other is alluring (McGrath, 2014).  

Over the years, the delay indicator of the Private Airline got better, and percentage of delay on 

departure decreased (see annex C). 

 

Figure 9 - Average probability of flight delay above 15 minutes along the years 

However, it is still vital to understand why delays occur, and in a specific operation like in a 

private airline, where nature and circumstances of the flights are volatile, it comes as a business 

priority.  Sternberg et al. (2016) observe that Brazilian flight system has difficulties to recover 

from previous delays especially when operating under adverse meteorological conditions, 

delays occurrences may increase. Although the weather variable is not a feature, its related 

range can be interpreted from the present dataset in the IATA code for the delay, specifically 
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number 75 (Table 14). Nevertheless, previous delays are a major relevant influence on 

departure delay, and analysis such as Wu (2006) can optimize the operational reliability. Thus, 

difficulties in recovering from a previous delay scenario, or in other words, delay propagation, 

is a key performance indicator. 

Time-related features increase the chances of delay. If departure at head office night hours or 

during the weekend in the present study is ranked between the top five, Sternberg et al. (2016) 

specifies even more in detail, and sees that scheduled departures during late evening and night 

have around 24% more chances of being delayed. From a temporal perspective, we also find 

out that Brazilian flight delays are linked to the day of the week and the time of the day, a scope 

tangible when applying RFE to a CART algorithm. 

Rebollo and Balakrishnan (2014) argue that the level of significance of the explanatory 

variables is expected to vary depending on the desired output of the prediction model 

(regression vs classification), as well as the forecast horizon. It was, however, assumed that if 

an explanatory variable is significant for the regression problem, it will also be significant in 

the classification problem. From the present study point of view, this assumption was not 

fulfilled on the opposite direction. Using the same features, a test was made by applying the 

same comparison exercise for a regression problem where the prediction was a flight delay in 

minutes. Here, the R2 indicator was 0.29, and the mean absolute error in predicting the delay 

was around 98 minutes (see annexe D), values that if applied could lead to greats costs whether 

by error whether by potentially allocating resources to avoid a delay what is inexistence. Further 

inspection of the test error obtained in the referred study of classification problem reveals that 

the False Negative Rate (FNR) clearly dominates the False Positive Rate (FPR), a similar 

behaviour occurs in the MLP Classifier’s FNR and FPR values. This happens in both situation 

because both proposed prediction models focus on the delay state, but does not capture localized 

delays, an integral part of delay analysis for private aviation as seen in the literature revisions 

chapter.  

A logistic regression ranking using Recursive feature elimination (RFE) was applied only to 

IATA code as delay reason of the previous flight, and it was obtained the results shown in Table 

14. The first ranked reason is “cabin crew shortage, sickness, awaiting standby, flight time 

limitations, crew meals, valid visa, health documents, etc.”. As exposed in  Papadakos (2009) 

the planning phase addressed the allocation of the crew (pilots and cabin crew), and as numbers 
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of cabin crew are dictated by European legislation, and last notice shortage of an element in the 

cabin crew team, immediately renders a flight not to depart until that vacancy is fulfilled. In 

Bineid and Fielding (2003) the highest ATA chapter feature that influences actual delay rates 

for long-haul flights is 71-80 – Power Plant and Engine related –  usually an item of no-go or 

demanding specific maintenance procedures that may lead to further delays and likely to deploy 

the allocation of a new available aircraft. Thus, corroborating with the second item ranked in 

Table 14 (reason 46 as aircraft change for technical reasons). The remainder three reasons that 

contribute to the delay model are related to factors not controlled by the operator, in this the 

private airline. Weather related difficulties are often hard to control proactively, and airport 

restrictions come with the business context of both: flying to a different kind of airport 

(sometimes in third world country), and as seen in Deshpande and Arıkan (2012) due to private 

aviation’s low market share it represents a significant impact on the flight schedule and on time 

probability. This latter explanation is also reflected in the logistic regression RFE rank, wherein 

third place appears the parameter Private Airline flight as a contributing factor to the delay 

mode. 
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6. Conclusions 

The challenges of artificial intelligence have vexed researchers for decades (Mullainathan and 

Spiess, 2017). Even simple tasks such as digit recognition - challenges that we as humans 

overcome so effortlessly - proved extremely difficult to program. Introspection into how our 

mind solves these problems failed to translate into procedures. The real breakthrough comes 

once we stopped trying to deduce these rules. Instead, the problem is turned into an inductive 

one: rather than hand-curating the rules, we simply let the data tell us which rules work best. 

The world of machine learning is vast, as a consequence, to use related model or models’ 

different tweaks and enhancements are possible, and their mastering is a long process of 

empirical and literature based iterations. Hence, the current dissertation is backed up by current 

literature revision on defending the initial expectation of overcoming empirical analysis by 

extracting supports to decision on historical computing data. Knowledge arising from this 

exploratory application in private aviation is relevant both to the producer of the contents as to 

the end user (the company). A highlight should be done to the relevancy on how accuracy and 

sensitivity analysis are related. Despite the low accuracy, the respective variables (and their 

importance to the model) of the dataset are in line with the aviation delay literature. Thus, it is 

far clear that the results achieved are the highest possible by considering the singularity of this 

segment of air transportation. Based on that, well-identified stages from the CRISP-DM method 

are mandatory whenever one indulges into apply a supervised machine classifier algorithm. 

Choose want you want to predict; choose the best dependent variables; turn them into a dataset; 

pre-process it for optimizing purposes (quality and quantity wise); choose the model(s); apply 

the best iteration process to achieve the best results without over-fitting (getting a bias outcome 

with irrelevant and potentially dangerous for business purposes). 

6.1 Supervised Classification algorithms accuracy comparison 

Predictive analytics increasingly allow us to expand the range of interrelationships we can 

understand. This in turn gives us a better vantage point into the behaviour of the whole system, 

in turn enabling better strategic decision-making (McGrath, 2014). Comparing the nine 

algorithms, the Artificial Neural Network (MLP Classifier), Logistic Regression and Logistic 

Regression got better performances, around 0,70.  
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6.2 Exploratory and Sensitivity Analysis 

Although not with a high accuracy, it was possible to reach a set of variables that influence in 

the delay on the departure of the private airline. The delay on the previous flight is by far the 

feature that most influences the following flights on-time performance. This is already a fact 

that appears in the literature of delay analytics, and the various algorithm can be used to deal 

with delay propagation and aircraft rotation efficiency. Along with the previous delay, time 

relates features also influence the delay. Departure during office night hours and weekends tend 

to delay more often than outside those periods. The remaining variables are linked with the 

resource allocation the company may provide. Flights where the Private Airline is the carrier 

and flight time over 10 hours of block times are likely to contribute to delay on departure. 

6.3 Machine Learning techniques 

Along almost one year for the present dissertation, it was possible to reach an acceptable level 

of proficiency on how to deal with machine learning techniques, and apply them to the business 

model. In this particular case, to a private airline study of flight delays and respective data. The 

implementation codes are, at the far possible extent, shown in the text or in the annex, so future 

researchers and ML enthusiast take the lessons learnt. Thus, despite the brief, but intended, way 

to explain the models used, it is possible to current, and future data analytics enthusiasts apply 

in a quick and proper manner machine learning tasks to their intended business goals. Thus, the 

main limitations are both the lack of even more relevant feature in the dataset and lack of similar 

studies focusing on private aviation. 

6.4 Contributions to Business Management 

An expression such as big data and business intelligence are currently in vogue, and a thirst to 

analyse company’s data is challenging and alluring. Combining the world of private aviation 

and Machine Learning techniques is not common to find, and there is, with no doubt, a great 

margin to improve. The overall contribution of this dissertation is to add another step in 

combining the industry of aviation, in particular, the segment of charters and wet leases, and 

big data applications. Hence, Private Aviation, although far from other industries in the business 

analytics world, has currently enough resources and possibilities (Cook et al., 2012) to achieve 

higher performance learning and inuring from flight-related generated data, and use it as a 

competitive advantage. The referred processes of Machine Learning and the gain of a 
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competitive advantage with these tools are very well applicable to every industry that by 

defining their precise challenges requiring resolutions or better management, may built unique 

models adequate to the respective singularities, learn from their own specific historical data, 

and provide better support to their decision makers who may increase thereafter their efficiency 

and/or effectiveness on business related operations. 

6.5 Limitations and future researches 

Issues such as data collection, storage, and processing specific to analytics are increasingly 

considered important issues in overall system design, and data analytic methods are only as 

good as the data on which they are based (Hazen et al., 2014). In efforts to broaden the 

effectiveness of analytics in the business process (Kohavi et al., 2002), solutions are emerging 

that go beyond the customer-facing applications, reaching “behind the scenes” to applications 

in commercial relationships, marketing actions, supply chain visibility, price optimizations, and 

workforce analysis. 

Along with operational features, maintenance had a major contributing factor for the on-time 

performance of an aircraft. Therefore, as maintenance data not easily reachable, the ageing fleet 

is a constant challenge. The problem with component faults is significantly observed in the 

ageing aircraft. It is, therefore, necessary to anticipate delays so that proper maintenance 

processes can be initiated before an actual delay occurs. The health of the aircraft is monitored 

through the fault and alert messages, which are relayed from the different subsystems, during 

its journey. These faults and alerts are leading indicators of the health of the aircraft (Dattaram 

and Madhusudanan, 2016). In a Private company, combining maintenance data with operational 

data and insights to predict possible future constraints/delays may improve the accuracy of 

models only based on historical data but adhere and compare predictions to future operational 

limitations. Besides the maintenance issues, from the meetings with managers and experts from 

the private airline and revision of the literature, it was agreed that features are withdrawn from 

airport processes and authorization during preparation to depart and take off, including traffic 

management and procedures, deep impact on the on-time performance of any airline. Hence, a 

structured dataset with a feature coming from the referred entities connected with the related 

flight could increase the number of relevant features when constructing a predictive model with 

ML techniques. Related to an improved dataset and respective variables a more thorough study 
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is recommended to identify what kind of behaviours one wants when applying a supervised 

classification model to predict flight delay, and what indicators should get the higher relevance. 
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8. Annexes 

A - Data collection and preparation 

[]: 

#Data preparation 

import sys 

import random 

import numpy as np 

import pandas as pd 

# Data 

df = pd.read_csv('FLIGHT2014-2017.csv', header = 0)  

#  Delete instances with empty values 

df = df[pd.notnull(df['Date'])] 

df = df[pd.notnull(df['ATD'])] 

# Delete columns not relevant 

df.drop(df.columns[[0, 5, 8, 13, 14, 16, 17, 19, 23, 25, 30]], axis=1, inplace=True) 

df.drop(df.columns[[5]], axis=1, inplace=True) 

# Delete instances not relevant 

df[df.Tail_No.str.contains("ACMI1") == False] 

df[df.Tail_No.str.contains("ACMI2") == False] 

df[df.Tail_No.str.contains("CS--TQP") == False] 

 

df.shape 

#Shape after initial transformation (6907, 34) 

#Create a new csv file 

df.to_csv('flights_DF.csv', index=False, header=True) 

In []: 

# from reportlab.pdfgen import canvas 
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from reportlab.lib.units import inch, cm 

c = canvas.Canvas('ex.pdf') 

c.drawImage('ar.jpg', 0, 0, 10*cm, 10*cm) 

c.showPage() 

c.save() 

 

 

  



67 

 

B - Modelling 

In [1]: 

url = "flights_REGRE.csv" 

X = pd.read_csv(url) 

In [2]: 

X.shape 

Out[273]: 

(6907, 25) 

In [3]: 

X.describe() 

In [4]: 

list(X) 

Out[5]: 

['MONTH', 

'DAY', 

'WEEK', 

'SEASON', 

'ENG_NUMBER', 

'Tail_No', 

'Private_Carrier', 

'STC', 

'Dep', 

'DEP_HOUR', 

'ARR_HOUR', 

'Flight_time', 
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'DEP_DELAY', 

'ARR_DELAY', 

'Client_ID', 

'Flight_more10hrs', 

'If_Dep_night_OFFICE', 

'YEAR', 

'Weekend', 

'If_Arrival_night_OFFICE', 

'flight_during_OFFICENIGHT', 

'AC_age', 

'If_previous_flight_delayed', 

'Previous_flight_delay', 

'Previous_flight_delay_reason'] 

In [6]: 

X_1 = X[['Previous_flight_delay', 'Flight_time']] 

In [7]: 

MONTH_1 = X[['MONTH']] # Categorical features 

MONTH = pd.get_dummies(MONTH_1, columns=["MONTH"], prefix=["MONTH-"]) 

In [8]: 

WEEK_1 = X[['WEEK']] # Categorical features 

WEEK = pd.get_dummies(WEEK_1, columns=["WEEK"], prefix=["WEEK-"]) 

In [9]: 

SEASON_1 = X[['SEASON']] # Categorical features 

SEASON = pd.get_dummies(SEASON_1, columns=["SEASON"], prefix=["SEASON-"]) 

In [10]: 
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Tail_No_1 = X[['Tail_No']] # Categorical features 

Tail_No = pd.get_dummies(Tail_No_1, columns=["Tail_No"], prefix=["Tail_No-"]) 

In [11]: 

Flight_more10hrs_1 = X[['Flight_more10hrs']] # Categorical features 

Flight_more10hrs = pd.get_dummies(Flight_more10hrs_1, columns=["Flight_more10hrs"], 
prefix=["Flight_more10hrs-"]) 

In [12]: 

Weekend_1 = X[['Weekend']] # Categorical features 

Weekend = pd.get_dummies(Weekend_1, columns=["Weekend"], prefix=["Weekend-"]) 

In [13]: 

If_Dep_night_OFFICE_1 = X[['If_Dep_night_OFFICE']] # Categorical features 

If_Dep_night_OFFICE = pd.get_dummies(If_Dep_night_OFFICE_1, columns=["If_Dep_night_O
FFICE"], prefix=["If_Dep_night_OFFICE-"]) 

In [14]: 

DEP_HOUR_1 = X[['DEP_HOUR']] # Categorical features 

DEP_HOUR = pd.get_dummies(DEP_HOUR_1, columns=["DEP_HOUR"], prefix=["DEP_HOUR-"]) 

In [15]: 

Private_Carrier_1 = X[[' Private_Carrier ']] # Categorical features 

Private_Carrier = pd.get_dummies(Private_Carrier _1, columns=[" Private_Carrier "], 
prefix=[" Private_Carrier -"]) 

In [16]: 

Reason_1 = X[['Previous_flight_delay_reason']] # Categorical features 

Reason = pd.get_dummies(Reason_1, columns=['Previous_flight_delay_reason'], prefix=[
"Reason-"]) 
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In [17]: 

STC_1 = X[['STC']] # Categorical features 

In [18]: 

STC = pd.get_dummies(STC_1, columns=["STC"], prefix=["STC-"]) 

In [19]: 

Client_ID_1 = X[['Client_ID']] 

In [20]: 

Client_ID = pd.get_dummies(Client_ID_1, columns=["Client_ID"], prefix=["Client_ID-"]
) 

In [21]: 

#X = pd.concat([X_1, STC, Client_ID, A_C], axis=1) 

In [22]: 

DEP_1 = X[['Dep']] #Categorical features 

In [23]: 

DEP = pd.get_dummies(DEP_1, columns=["Dep"], prefix=["Dep-"]) 

In [24]: 

X_big = pd.concat([X_1, STC, Client_ID, DEP, MONTH, WEEK, SEASON, Flight_more10hrs, 
Tail_No, Weekend, If_Dep_night_OFFICE, DEP_HOUR, PRIVATE_CARRIER, Reason], axis=1) 

In [25]: 

#print (X.dtypes) 

In [26]: 

encoder = OneHotEncoder() # Create encoder object X needs to contain only non-negati
ve integers. 
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#X_1_encoded = encoder.fit_transform(X_1).toarray() 

In [27]: 

#scaler = StandardScaler().fit(X_1) 

#scalerX = scaler.transform(X_1) 

In [28]: 

#from sklearn.preprocessing import MinMaxScaler 

#scaler_2 = MinMaxScaler(feature_range=(0, 1)) 

#MinMaxX = scaler_2.fit_transform(X_1) 

In [29]: 

#from sklearn import preprocessing 

#max_abs_scaler = preprocessing.MaxAbsScaler() 

#X_abs = max_abs_scaler.fit_transform(X) 

In [30]: 

from sklearn.decomposition import PCA #Best Solution - used to offline colinearity 

pca = PCA(n_components=53) 

Xbig_PCA = pca.fit(X_big).transform(X_big) 

In [31]: 

Y15 = X['DEP_DELAY'].astype('category') 

In [32]: 

print(X_PCA) 

In [33]: 

#comparing models with variables from flight planning program 

# prepare configuration for cross validation test harness 
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# prepare models 

seed = 20 

models = [] 

models.append(('MLPC', MLPClassifier())) 

models.append(('LinReg', LinearRegression())) #Can't handle mix of binary and contin
uous 

models.append(('LR', LogisticRegression())) 

models.append(('LDA', LinearDiscriminantAnalysis())) #warnings.warn("Variables are c
ollinear 

models.append(('KNN', KNeighborsClassifier())) 

models.append(('CART', DecisionTreeClassifier())) 

models.append(('NB', GaussianNB())) 

models.append(('SVM', SVC())) 

models.append(('SGD', SGDClassifier())) 

# evaluate each model in turn 

results = [] 

names = [] 

scoring = 'accuracy' 

for name, model in models: 

# kfold = cross_validation.KFold(6907, n_folds=2, shuffle=True, random_state=
seed) 

 kfold = cross_validation.StratifiedKFold(Y15, n_folds=10, shuffle= True, ra
ndom_state= seed) 

 cv_results = cross_validation.cross_val_score(model, Xbig_PCA, Y15, cv=kfol
d, scoring=scoring) 

 results.append(cv_results) 

 names.append(name) 

 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 

 print(msg) 

# boxplot algorithm comparison 

fig = plt.figure() 
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fig.suptitle('Algorithm Comparison') 

ax = fig.add_subplot(111) 

plt.boxplot(results) 

ax.set_xticklabels(names) 
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C - Evaluation 

C.1 - Supervised Classification algorithms accuracy comparison 

In []: 

#comparing models with variables from flight planning program 

In []: 

# prepare configuration for cross validation test harness 

seed = 20 

# prepare models 

models = [] 

models.append(('MLPC', MLPClassifier())) 

models.append(('LinReg', LinearRegression())) #Can't handle mix of binary and contin
uous 

models.append(('LR', LogisticRegression())) 

models.append(('LDA', LinearDiscriminantAnalysis())) #warnings.warn("Variables are c
ollinear 

models.append(('KNN', KNeighborsClassifier())) 

models.append(('CART', DecisionTreeClassifier())) 

models.append(('NB', GaussianNB())) 

models.append(('SVM', SVC())) 

models.append(('SGD', SGDClassifier())) 

# evaluate each model in turn 

results = [] 

names = [] 

scoring = 'accuracy' 

for name, model in models: 

# kfold = cross_validation.KFold(6907, n_folds=2, shuffle=True, random_state=
seed) 

 kfold = cross_validation.StratifiedKFold(Y15, n_folds=10, shuffle= True, ra
ndom_state= seed) 
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 cv_results = cross_validation.cross_val_score(model, Xbig_PCA, Y15, cv=kfol
d, scoring=scoring) 

 results.append(cv_results) 

 names.append(name) 

 msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 

 print(msg) 

# boxplot algorithm comparison 

fig = plt.figure() 

fig.suptitle('Algorithm Comparison') 

ax = fig.add_subplot(111) 

plt.boxplot(results) 

ax.set_xticklabels(names) 

plt.show() 

MLPC: 0.672941 (0.020490) 

LR: 0.676266 (0.013507) 

LDA: 0.676121 (0.014639) 

KNN: 0.674664 (0.021118) 

CART: 0.634709 (0.016296) 

NB: 0.656717 (0.013825) 

SVM: 0.682343 (0.014549) 

SGD: 0.564809 (0.057683) 

 

In []: 

#using neural network 

In []: 

predict_ml = MLPClassifier() 

predPCA = predict_ml.fit(Xbig_PCA, Y15) 
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In []: 

kfold = cross_validation.KFold(6907, n_folds=5, shuffle=True, random_state=seed) 

scores = cross_val_score(predPCA, Xbig_PCA, Y15, cv=kfold) 

In []: 

print("mean: {:.3f} (std: {:.3f})".format(scores.mean(),scores.std()),end="\n\n" ) 

mean: 0.671 (std: 0.020) 

In []: 

predicted_MLPC = cross_validation.cross_val_predict(MLPClassifier(), Xbig_PCA, Y15, 
cv=kfold) 

In []: 

from sklearn.metrics import accuracy_score 

#print (accuracy_score(Y, predicted_MLPC)) 

In []: 

from sklearn.metrics import classification_report,confusion_matrix 

print (classification_report(Y15, predicted_MLPC)) 

             precision    recall  f1-score   support 

        0.0       0.70      0.74      0.72      3975 

        1.0       0.62      0.58      0.60      2932 

avg / total       0.67      0.67      0.67      6907 

In []: 

print(confusion_matrix(Y15, predicted_MLPC)) 

[[2928 1047] 

 [1236 1696]] 

In []: 
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errors = predicted_MLPC != Y15 

print("Nb errors=%i, error rate=%.2f" % (errors.sum(), errors.sum() / len(predicted_
MLPC))) 

Nb errors=2283, error rate=0.33 

In []: 

from sklearn.metrics import roc_curve, auc 

from sklearn import metrics 

fpr, tpr, thresholds = roc_curve(Y15, predicted_MLPC) 

roc_auc = metrics.auc(fpr, tpr) 

plt.title('Receiver Operating Characteristic') 

plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) 

plt.legend(loc = 'lower right') 

plt.plot([0, 1], [0, 1],'r--') 

plt.xlim([0, 1]) 

plt.ylim([0, 1]) 

plt.ylabel('True Positive Rate') 

plt.xlabel('False Positive Rate') 

plt.show() 

 

In [ ]: 

#using logistic regression 

In []: 

predicted = cross_validation.cross_val_predict(LogisticRegression(fit_intercept = Fa
lse, C = 1e9), Xbig_PCA, Y15, cv=kfold) 

In []: 

from sklearn.model_selection import cross_val_score 
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print(cross_val_score(LogisticRegression(fit_intercept = False, C = 1e9), Xbig_PCA, 
Y, cv=kfold))   

[ 0.66208394  0.67004342  0.6705286   0.69225199  0.67342505] 

In []: 

#scores  

In []: 

from sklearn.metrics import accuracy_score 

print (accuracy_score(Y15, predicted)) 

0.665122339655 

In []: 

from sklearn.metrics import classification_report,confusion_matrix 

print (classification_report(Y15, predicted)) 

             precision    recall  f1-score   support 

        0.0       0.74      0.64      0.69      3975 

        1.0       0.59      0.70      0.64      2932 

avg / total       0.68      0.67      0.67      6907 

In []: 

print(confusion_matrix(Y15, predicted)) 

[[2556 1419] 

 [ 894 2038]] 

In []: 

errors = predicted != Y15 

print("Nb errors=%i, error rate=%.2f" % (errors.sum(), errors.sum() / len(predicted)
)) 

Nb errors=2313, error rate=0.33 
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In []: 

from sklearn.metrics import roc_curve, auc 

from sklearn import metrics 

fpr, tpr, thresholds = roc_curve(Y, predicted) 

roc_auc = metrics.auc(fpr, tpr) 

plt.title('Receiver Operating Characteristic') 

plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) 

plt.legend(loc = 'lower right') 

plt.plot([0, 1], [0, 1],'r--') 

plt.xlim([0, 1]) 

plt.ylim([0, 1]) 

plt.ylabel('True Positive Rate') 

plt.xlabel('False Positive Rate') 

plt.show() 

C.2 - Exploratory and Sensitivity Analysis 

In [109]: 

import warnings 

warnings.filterwarnings('ignore') 

import sys 

import numpy as np 

from scipy import stats, integrate 

import pandas as pd 

import matplotlib.pyplot as plt 

import matplotlib as mpl 

#import plotly.plotly as py 

%matplotlib inline 
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import seaborn as sns 

In [268]: 

# Compute average number of delayed flights per month 

grouped = X[['Dep_Diff', 'DEP_HOUR']].groupby('DEP_HOUR').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

Out[268]: 

 

In [269]: 

# Compute average number of delayed flights per month 

grouped = X[['DEP_DELAY', 'DEP_HOUR']].groupby('DEP_HOUR').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 
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Out[269]: 

 

 

In [234]: 

grouped = X[['DEP_DELAY', 'WEEK']].groupby('WEEK').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

Out[234]: 

 

In [236]: 

grouped = X[['Dep_Diff', 'PRIVATE_CARRIER']].groupby('PRIVATE_CARRIER').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 
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Out[236]: 

 

In [286]: 

grouped = X[['DEP_DELAY', 'Flight_more10hrs']].groupby('Flight_more10hrs').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

Out[286]: 

 

In [238]: 

grouped = X[['DEP_DELAY', 'If_Dep_night_OFFICE']].groupby('If_Dep_night_OFFICE').mea
n() 

# plot average delays by month 

grouped.plot(kind='bar') 
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Out[238]: 

 

In [239]: 

grouped = X[['DEP_DELAY', 'SEASON']].groupby('SEASON').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

Out[239]: 

 

In [287]: 

grouped = X[['DEP_DELAY', 'AC_age']].groupby('AC_age').mean() 

# plot average delays by month 

grouped.plot() 

X[['DEP_DELAY', 'AC_age']].groupby('AC_age').mean() 
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Out[287]: 
DEP_DELAY

AC_age 

6 0.582164 
7 0.592834 
8 0.518519 
12 0.679012 
15 0.425159 
16 0.462572 
17 0.539866 
18 0.600421 
19 0.643854 
20 0.516129 
21 1.000000 
25 0.594203 
26 0.727273 

 

In [288]: 

X[['AC_age', 'DEP_DELAY']].groupby('DEP_DELAY').mean() 

Out[288]: 
AC_age 

DEP_DELAY 

0.0 15.647434
1.0 15.781202

In [244]: 

grouped = X[['Dep_Diff', 'YEAR']].groupby('YEAR').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

X[['Dep_Diff', 'YEAR']].groupby('YEAR').mean() 

Out[244]: 
Dep_Diff 

YEAR  

2014.0-2.833333 
2015.0-20.045806
2016.0-13.836334
2017.03.961039 
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In [212]: 

grouped = X[['DEP_DELAY', 'YEAR']].groupby('YEAR').mean() 

grouped.plot(kind='bar') 

X[['DEP_DELAY', 'YEAR']].groupby('YEAR').size() 

Out[212]: 

YEAR 

2014.0    4596 

2015.0    1550 

2016.0     611 

2017.0     154 

 

In [289]: 

grouped = X[['DEP_DELAY', 'YEAR']].groupby('YEAR').size() 

grouped.plot(kind='bar') 

X[['DEP_DELAY', 'YEAR']].groupby('YEAR').size() 

Out[289]: 

YEAR 

2014.0    4590 

2015.0    1551 

2016.0     612 

2017.0     154 
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In [292]: 

X[['YEAR', 'DEP_DELAY']].groupby('DEP_DELAY').size() 

Out[292]: 

DEP_DELAY 

0.0    2981 

1.0    3926 

dtype: int64 

In [297]: 

X[['Dep_Diff', 'YEAR']].groupby('YEAR').mean() 

Out[297]: 
Dep_Diff 

YEAR  

2014.0-2.864270 
2015.0-19.965184
2016.0-13.184641
2017.03.961039 

In [248]: 

grouped = X[['Dep_Diff', 'MONTH']].groupby('MONTH').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

X[['Dep_Diff', 'MONTH']].groupby('MONTH').mean() 

Out[248]: 
Dep_Diff 

MONTH 

1.0 -23.423462
2.0 -26.302655
3.0 -27.564263
4.0 -1.814450 
5.0 -19.049206
6.0 -5.810169 
7.0 -13.363803
8.0 4.153322 
9.0 15.117566 
10.0 14.312409 
11.0 3.305195 
12.0 -10.493939
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In [232]: 

grouped = X[['DEP_DELAY', 'MONTH']].groupby('MONTH').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

X[['DEP_DELAY', 'MONTH']].groupby('MONTH').mean() 

 Out[232]: 

 

 

 

 

 

 

In [249]: 

grouped = X[['DEP_DELAY', 'ENG_NUMBER']].groupby('ENG_NUMBER').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

X[['DEP_DELAY', 'ENG_NUMBER']].groupby('ENG_NUMBER').mean() 

Out[249]: 
DEP_DELAY 

ENG_NUMBER 

2.0 0.560682 
4.0 0.581840 

 

 

 

 

DEP_DELAY 
MONTH 

1.0 0.579399 
2.0 0.474336 
3.0 0.532915 
4.0 0.523810 
5.0 0.520635 
6.0 0.642373 
7.0 0.643510 
8.0 0.679727 
9.0 0.598893 
10.0 0.566423 
11.0 0.461039 
12.0 0.530303 



89 

 

In [216]: 

grouped = X[['Dep_Diff', 'DEP_DELAY']].groupby('DEP_DELAY').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

X[['Dep_Diff', 'DEP_DELAY']].groupby('DEP_DELAY').mean() 

Out[216]: 
Dep_Diff 

DEP_DELAY 

0.0 -93.84948
1.0 58.04888 

 

 

 

 

 

In [217]: 

X_1.shape 

Out[217]: 

(6911, 16) 

In [252]: 

X.groupby(['Client_ID','DEP_DELAY']).size().unstack() 

Out[252]: 
DEP_DELAY0.0 1.0 
Client_ID   

1I 1.0 4.0 
5H 249.0314.0
5A NaN 10.0 
6B 2.0 13.0 
AB NaN 4.0 
AF 6.0 13.0 
AH 69.0 464.0
AS 364.0162.0
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DEP_DELAY0.0 1.0 
Client_ID   

AT 5.0 10.0 
B0 1.0 5.0 
BA 615.0283.0
CU 50.0 99.0 
DE 8.0 36.0 
DK 2.0 14.0 
DR 1.0 3.0 
DT 7.0 16.0 
DY 46.0 223.0
E9 1.0 2.0 
EI 1.0 5.0 
GL 13.0 25.0 
GW 1.0 2.0 
HQ NaN 4.0 
IG 1.0 3.0 
JN 17.0 16.0 
MD 1.0 12.0 
ML 1.0 3.0 
MT 4.0 56.0 
N3 22.0 39.0 
N9 1.0 2.0 
OR NaN 4.0 
PV 3.0 3.0 
PY 1.0 2.0 
S4 4.0 6.0 
SE 9.0 111.0
SK 2.0 4.0 
SN 6.0 17.0 
SS 12.0 34.0 
ST NaN 3.0 
SV 674.0658.0
TB 3.0 16.0 
TO 1.0 5.0 
TP 21.0 77.0 
TX 2.0 14.0 
V0 7.0 10.0 
W3 390.0288.0
WI 1.0 6.0 
XY 355.0826.0
ZB 2.0 2.0 
ZT 1.0 NaN 

In [219]: 

X.groupby(['A/C','DEP_DELAY']).size().unstack() 

Out[219]: 
DEP_DEUAY 0.0 1.0 
A/C   

MA-VEA 52.0 110.0
MA-VUN NaN 4.0 
MA-UQM 1.0 10.0 
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DEP_DEUAY 0.0 1.0 
A/C   

HI-UEX 143.0213.0
HI-UFW 184.0154.0
HI-UFX 223.0154.0
HI-UFZ 148.0469.0
HI-UMU 297.0431.0
HI-UQM 98.0 521.0
HI-UQP 158.0266.0
HI-UQW 474.0445.0
HI-UQY 151.0153.0
HI-UQZ 341.0355.0
HI-URI 142.0381.0
HI-URJ 547.0219.0

In [220]: 

X.groupby(['DEP_DELAY','SEASON']).size().unstack() 

Out[220]: 
SEASON 1.0 2.0 3.0 4.0 
DEP_DELAY    

0.0 890594 587912
1.0 9871130 821990

In [276]: 

grouped = X[['Previous_flight_delay','DEP_DELAY']].groupby('DEP_DELAY').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

X[['Previous_flight_delay','DEP_DELAY']].groupby('DEP_DELAY').mean() 

Out[276]: 
Previous_flight
_delay 

DEP_DELAY 

0.0 -32.195236 
1.0 -24.768467 

 

 

 

 

In [284]: 
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#'Previous_flight_delay_reason' 

grouped_delayIataReason = X[['DEP_DELAY','Previous_flight_delay_reason']].groupby('P
revious_flight_delay_reason').mean() 

# plot average delays by month 

grouped_delayIataReason.plot(kind='bar') 

delayIataReason = X[['DEP_DELAY','Previous_flight_delay_reason']].groupby('Previous_
flight_delay_reason').mean() 

print(delayIataReason) 

DEP_DELAY Previous_flight
_delay_reason 

  

0  0.479691 55 0.666667 
3 0.000000 57 0.000000 
9 0.666667 61 0.533333 
11 0.454545 62 0.800000 
12 0.718750 63 0.566038 
13 0.777778 64 0.833333 
14 0.666667 65 0.533333 
15 0.715054 66 0.428571 
16 0.695652 67 0.888889 
17 0.923077 68 0.875000 
18 0.777778 71 0.000000 
21 0.555556 72 0.500000 
22 0.545455 75 0.166667 
23 0.500000 76 1.000000 
24 0.500000 77 0.600000 
27 1.000000 81 0.725806 
29 1.000000 83 0.692308 
31 0.746032 84 0.600000 
32 0.700787 85 0.609756 
33 0.625000 86 0.625000 
34 0.640000 87 0.615385 
35 0.923077 88 0.200000 
36 0.527778 89 0.618182 
37 0.769231 91 0.529412 
38 0.666667 93 0.710394 
39 0.888889 94 0.000000 
41 0.555556 95 1.000000 
42 1.000000 96 1.000000 
43 0.636364 98 0.750000 

...     ... 99 0.717949 

[64 rows x 1 columns] 
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In [281]: 

delayIataReason.to_HIv('delayIataReason.HIv', index=False, header=True) 

In [221]: 

X.groupby(['DEP_DELAY','ARR_DELAY']).size().unstack() 

Out[221]: 
ARR_DELAY 0.0 1.0 
DEP_DELAY   

0.0 18991084
1.0 335 3593

In [222]: 

grouped = X[['DEP_DELAY','ARR_DELAY']].groupby('ARR_DELAY').mean() 

# plot average delays by month 

grouped.plot(kind='bar') 

X[['DEP_DELAY','ARR_DELAY']].groupby('ARR_DELAY').mean() 

 

Out[222]: 



94 

 

DEP_DELAY
ARR_DELAY  

0.0 0.149955 
1.0 0.768227 

 

In [223]: 

X["Dep_Diff"].mean() 

Out[223]: 

-7.515120821878165 

In [224]: 

X[['Dep_Diff', 'DEP_DELAY']].groupby('DEP_DELAY').mean() 

Out[224]: 
Dep_Diff 

DEP_DELAY 

0.0 -93.84948
1.0 58.04888 

In [225]: 

X[['Dep_Diff', 'DEP_DELAY']].groupby('DEP_DELAY').std() 

Out[225]: 
Dep_Diff 

DEP_DELAY 

0.0 316.177782
1.0 84.365745 

In [226]: 
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sns.set(style="whitegrid") 

sns.barplot(x="DEP_DELAY", y="Dep_Diff", hue="YEAR", data=X, color="b") 

Out[226]: 

 

In [227]: 

bin_values = np.arange(start=-100, stop=300, step=5) 

print(bin_values) 

[-100  -95  -90  -85  -80  -75  -70  -65  -60  -55  -50  -45  -40  -35  -30 

  -25  -20  -15  -10   -5    0    5   10   15   20   25   30   35   40   45 

   50   55   60   65   70   75   80   85   90   95  100  105  110  115  120 

  125  130  135  140  145  150  155  160  165  170  175  180  185  190  195 

  200  205  210  215  220  225  230  235  240  245  250  255  260  265  270 

  275  280  285  290  295] 

In [228]: 

'''Say you’re interested in analyzing length of delays  

and you want to put these lengths into bins that represent every 10 minute period.  

You can use the numpy method .arange() to create a list of numbers that define those 
bins.  

The bins of ten minute intervals will range from 50 minutes early (-50) to 200 minut
es late (200).  

The first bin will hold a count of flights that arrived between 50 and 40 minutes ea
rly, then 40 and 30 minutes, and so on.''' 
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X['Dep_Diff'].hist(bins=bin_values, figsize=[14,6]) 

Out[228]: 

 

In [229]: 

X['Flight_time'].plot(kind='box', figsize=[14,6]) 

Out[229]: 

 

In [230]: 

X['Dep_Diff'].plot(kind='box', figsize=[14,6]) 

plt.ylim(-100, 200) 
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Out[230]: 

(-100, 200) 

 

In [231]: 

sns.boxplot(x="YEAR", y="Dep_Diff", data=X) 

plt.ylim(-100, 200) 

Out[231]: 

(-100, 200) 
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In [1009]: 

List(X_1) 

 

['MONTH', 

 'DAY', 

 'WEEK', 

 'SEASON', 

 'PRIVATE_CARRIER', 

 'ENG_NUMBER', 

 'DEP_HOUR', 

 'ARR_HOUR', 

 'Flight_time', 

 'Flight_more10hrs', 

 'If_Dep_night_OFFICE', 

 'YEAR', 

 'Weekend', 

 'AC_age', 

 'Previous_flight_delay', 

 'Previous_flight_delay_reason', 

 'If_previous_flight_delayed'] 

In [319]: 

#from sklearn.feature_selection import RFE 

#only numerical variables of X were used = X_1 

In [628]: 

model = LogisticRegression() 

rfe = RFE(model,20) 
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rfe = rfe.fit(X, Y15) 

In [629]: 

print(rfe.ranking_) 

 [11 12  9  7  3  6 10  8 15  5  2 16  4 14 17 13  1] 

In [1006]: 

model_tree = DecisionTreeClassifier() 

model_tree.fit(X, Y15) 

Out[1006]: 

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, 

            max_features=None, max_leaf_nodes=None, 

            min_impurity_split=1e-07, min_samples_leaf=1, 

            min_samples_split=2, min_weight_fraction_leaf=0.0, 

            presort=False, random_state=None, splitter='best') 

In [1009]: 

print(model_tree.feature_importances_) 

[ 0.07145886  0.1485054   0.05584348  0.03044306  0.01005948  0.01777502 

  0.09258624  0.08376543  0.13336745  0.00352178  0.00920474  0.03078244 

  0.00953454  0.04811518  0.21309227  0.03706698  0.00487764] 
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D – Supervised regression prediction 

In []: 

from sklearn.preprocessing import OneHotEncoder 

encoder = OneHotEncoder() 

X_categDF_encoded = encoder.fit_transform(X) 

In []: 

from sklearn.decomposition import PCA 

pca = PCA(n_components=50) 

X_X_PCA = pca.fit(X).transform(X) 

In []: 

from sklearn.decomposition import PCA 

pca = PCA(n_components=50) 

X_X_conc = pca.fit(X_conc).transform(X_conc) 

In []: 

from sklearn.preprocessing import OneHotEncoder 

encoder = OneHotEncoder() 

#categDF_encoded = encoder.fit_transform(X_1) X needs to contai
n only non-negative integers. 

In []: 

from sklearn.decomposition import PCA 

pca = PCA(n_components=12) 

X_PCA = pca.fit(X_1).transform(X_1) 
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In []: 

  

In []: 

# Now we need to combine our features together to make our feat
ure matrix. 

#x_final = sparse.hstack((scalingDF_sparse, categDF_encoded)) 

In []: 

# Let’s also get our target values, which are the delay time. 

y_final = dataframe['Dep_Diff'] 

In []: 

# Finally, we need to split into test/train samples so we can s
ee how well our regressor is doing. 

from sklearn.cross_validation import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(X_PCA,y_fin
al,test_size = 0.2,random_state = 0) # Do 80/20 split 

In []: 

print(x_train) 

[[  2.38503429e+01  -4.39649472e+01  -1.27451001e+01 ...,   1.0
1615937e+00 

    5.08433988e-01  -3.49115769e-01] 

 [  7.03003163e+01   7.39708369e+01   5.33097082e+01 ...,   1.7
2036013e-01 

   -7.26654503e-01   8.05240095e-02] 

 [  1.39125353e+01  -4.02055861e+01  -1.41548122e+01 ...,  -3.8
9993937e-01 

   -5.04093753e-01  -4.12076906e-01] 
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 ...,  

 [  1.24690206e+02   2.86876899e+01   4.53151849e+00 ...,  -6.9
5584187e-01 

    8.94234339e-01  -2.41991257e-01] 

 [  6.45221451e+01   2.02696467e+01  -3.35584873e+01 ...,  -4.2
0767783e-01 

    1.42095967e+00  -5.89346104e-01] 

 [  2.95467475e+01   2.16224661e+01  -3.38550276e+01 ...,  -5.6
7723282e-01 

   -4.72461150e-01  -9.78060277e-02]] 

In []: 

# Training The Model 

In []: 

from sklearn.linear_model import SGDRegressor 

from sklearn.grid_search import GridSearchCV 

import numpy as np 

SGD_params = {'alpha': 10.0**-np.arange(1,7)} # Suggested range 
we try 

SGD_model = GridSearchCV(SGDRegressor(random_state = 0), SGD_pa
rams, scoring = 'neg_mean_absolute_error', cv = 5) # Use 5-fold 
CV  

SGD_model.fit(x_train, y_train) # Fit the model 

Out[]: 

GridSearchCV(cv=5, error_score='raise', 

       estimator=SGDRegressor(alpha=0.0001, average=False, epsi
lon=0.1, eta0=0.01, 

       fit_intercept=True, l1_ratio=0.15, learning_rate='invsca
ling', 
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       loss='squared_loss', n_iter=5, penalty='l2', power_t=0.2
5, 

       random_state=0, shuffle=True, verbose=0, warm_start=Fals
e), 

       fit_params={}, iid=True, n_jobs=1, 

       param_grid={'alpha': array([  1.00000e-01,   1.00000e-02
,   1.00000e-03,   1.00000e-04, 

         1.00000e-05,   1.00000e-06])}, 

       pre_dispatch='2*n_jobs', refit=True, 

       scoring='neg_mean_absolute_error', verbose=0) 

In []: 

from sklearn.metriHI import mean_absolute_error 

y_true, y_pred = y_test, SGD_model.predict(x_test) # Predict on 
our test set 

'Mean absolute error of SGD regression was:' 

print(mean_absolute_error(y_true, y_pred)) 

4.37627623845e+12 

In []: 

from sklearn.metriHI import r2_score 

y_true, y_pred = y_test, SGD_model.predict(x_test) # Predict on 
our test set 

print(r2_score(y_true, y_pred)) 

-1.59529458442e+21 

In []: 

seed = 20 
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In []: 

kfold = cross_validation.StratifiedKFold(y_final, n_folds=10, s
huffle= True, random_state= seed) 

In []: 

from sklearn.linear_model import SGDRegressor 

from sklearn.grid_search import GridSearchCV 

import numpy as np 

     

SGD_params_2 = {'alpha': 10.0**-np.arange(1,7)} # Suggested ran
ge we try 

SGD_model_2 = GridSearchCV(SGDRegressor(random_state = 0), SGD_
params_2, scoring = 'neg_mean_absolute_error', cv = kfold) # Us
e 5-fold CV  

SGD_model_2.fit(X_categDF_encoded, y_final) # Fit the model 

Out[]: 

GridSearchCV(cv=sklearn.cross_validation.StratifiedKFold(label
s=[   -5     0 ..., -1240  -125], n_folds=10, shuffle=True, ran
dom_state=20), 

       error_score='raise', 

       estimator=SGDRegressor(alpha=0.0001, average=False, epsi
lon=0.1, eta0=0.01, 

       fit_intercept=True, l1_ratio=0.15, learning_rate='invsca
ling', 

       loss='squared_loss', n_iter=5, penalty='l2', power_t=0.2
5, 

       random_state=0, shuffle=True, verbose=0, warm_start=Fals
e), 

       fit_params={}, iid=True, n_jobs=1, 

       param_grid={'alpha': array([  1.00000e-01,   1.00000e-02
,   1.00000e-03,   1.00000e-04, 
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         1.00000e-05,   1.00000e-06])}, 

       pre_dispatch='2*n_jobs', refit=True, 

       scoring='neg_mean_absolute_error', verbose=0) 

In [90]: 

from sklearn.metriHI import mean_absolute_error 

     

y_true, y_pred = y_final, SGD_model_2.predict(X_categDF_encoded
) # Predict on our test set 

     

'Mean absolute error of SGD regression was:' 

print(mean_absolute_error(y_true, y_pred)) 

103.72483445 

In [91]: 

from sklearn.metriHI import r2_score 

     

y_true, y_pred = y_final, SGD_model_2.predict(X_categDF_encoded
) # Predict on our test set 

     

print(r2_score(y_true, y_pred)) 

0.131251355032 

In []: 

MLPC_params_2 = {'alpha': 10.0**-np.arange(1,6)} # Suggested ra
nge we try 

MLPC_model_2 = GridSearchCV(MLPRegressor(), MLPC_params_2, scor
ing = 'neg_mean_absolute_error', cv = kfold) 

MLPC_model_2.fit(X_PCA, y_final) # Fit the model 



107 

 

Out[]: 

GridSearchCV(cv=sklearn.cross_validation.StratifiedKFold(label
s=[   -5     0 ..., -1240  -125], n_folds=10, shuffle=True, ran
dom_state=20), 

       error_score='raise', 

       estimator=MLPRegressor(activation='relu', alpha=0.0001, 
batch_size='auto', beta_1=0.9, 

       beta_2=0.999, early_stopping=False, epsilon=1e-08, 

       hidden_layer_sizes=(100,), learning_rate='constant', 

       learning_rate_init=0.001, max_iter=200, momentum=0.9, 

       nesterovs_momentum=True, power_t=0.5, random_state=None, 

       shuffle=True, solver='adam', tol=0.0001, validation_frac
tion=0.1, 

       verbose=False, warm_start=False), 

       fit_params={}, iid=True, n_jobs=1, 

       param_grid={'alpha': array([  1.00000e-01,   1.00000e-02
,   1.00000e-03,   1.00000e-04, 

         1.00000e-05])}, 

       pre_dispatch='2*n_jobs', refit=True, 

       scoring='neg_mean_absolute_error', verbose=0) 

In []: 

from sklearn.metriHI import mean_absolute_error 

y_true, y_pred = y_final, MLPC_model_2.predict(X_PCA) # Predict 
on our test set 

'Mean absolute error of SGD regression was:' 

print(mean_absolute_error(y_true, y_pred)) 

98.709094708 
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In []: 

from sklearn.metriHI import r2_score 

y_true, y_pred = y_final, MLPC_model_2.predict(X_PCA) # Predict 
on our test set 

print(r2_score(y_true, y_pred)) 

0.29436397037 

In []: 

from sklearn.metriHI import mean_squared_error 

     

y_true, y_pred = y_final, MLPC_model_2.predict(X_PCA) # Predict 
on our test set 

     

'Mean absolute error of SGD regression was:' 

print(mean_squared_error(y_true, y_pred)) 

40614.3373643 

In []: 

 seed3 = 2 

In []: 

kfold3 = cross_validation.StratifiedKFold(y_final, n_folds=3, s
huffle= True, random_state= seed3) 

In []: 

LogisticRegression_params_3 = {'C': [0.1, 1]} # Suggested range 
we try 

LogisticRegression_model_3 = GridSearchCV(LogisticRegression(), 
LogisticRegression_params_3, scoring = 'neg_mean_absolute_error
', cv = kfold3) 
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LogisticRegression_model_3.fit(X_PCA, y_final) # Fit the model 

Out[]: 

GridSearchCV(cv=sklearn.cross_validation.StratifiedKFold(label
s=[ -5.   0. ...,  35. -17.], n_folds=3, shuffle=True, random_s
tate=2), 

       error_score='raise', 

       estimator=LogisticRegression(C=1.0, class_weight=None, d
ual=False, fit_intercept=True, 

          intercept_scaling=1, max_iter=100, multi_class='ovr', 
n_jobs=1, 

          penalty='l2', random_state=None, solver='liblinear', 
tol=0.0001, 

          verbose=0, warm_start=False), 

       fit_params={}, iid=True, n_jobs=1, param_grid={'C': [0.1
, 1]}, 

       pre_dispatch='2*n_jobs', refit=True, 

       scoring='neg_mean_absolute_error', verbose=0) 

In []: 

from sklearn.metriHI import mean_absolute_error 

y_true, y_pred = y_final, LogisticRegression_model_3.predict(X_
PCA) # Predict on our test set 

'Mean absolute error of SGD regression was:' 

print(mean_absolute_error(y_true, y_pred)) 

73.5943245982 

In []: 

from sklearn.metriHI import r2_score 

y_true, y_pred = y_final, LogisticRegression_model_3.predict(X_
PCA) # Predict on our test set 
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print(r2_score(y_true, y_pred)) 

-0.0010525370733 

In []: 

from sklearn.metriHI import mean_squared_error 

     

y_true, y_pred = y_final, LogisticRegression_model_3.predict(X_
PCA) # Predict on our test set 

     

'Mean absolute error of SGD regression was:' 

print(mean_squared_error(y_true, y_pred)) 

52949.1565079 

In []: 

from sklearn.pipeline import Pipeline 

from sklearn.pipeline import FeatureUnion 

from sklearn.decomposition import PCA 

from sklearn.feature_selection import SelectKBest 

In []: 

# create feature union 

features = [] 

features.append(('pca', PCA(n_components=12))) 

 

feature_union = FeatureUnion(features) 

In []: 
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estimators = [] 

estimators.append(('feature_union', feature_union)) 

estimators.append(('logistic', LogisticRegression())) 

model = Pipeline(estimators) 

In []: 

results = cross_validation.cross_val_score(model, X_1, y_final, 
cv=5, scoring='neg_mean_absolute_error') 

In []: 

print(results.mean()) 

-40.6375510554 

seed = 2 

In []: 

kfold = cross_validation.StratifiedKFold(y_final, n_folds=2, sh
uffle= True, random_state= seed) 

 

 

In []: 

predicted = cross_validation.cross_val_predict(LogisticRegressi
on(fit_intercept = False, C = 1e9), X_X_PCA, y_final, cv=kfold) 

In []: 

from sklearn.model_selection import cross_val_score 

print(cross_val_score(LogisticRegression(fit_intercept = False, 
C = 1e9), X_X_PCA, y_final, cv=kfold))   

[ 0.0950495   0.09867452] 
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In []: 

from sklearn.metriHI import accuracy_score 

print (accuracy_score(y_final, predicted)) 

0.0968253968254 

In []: 

from sklearn import linear_model 

regr = linear_model.LinearRegression() 

In []: 

regr.fit(x_train, y_train) 

Out[]: 

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, nor
malize=False) 

In []: 

# The coefficients 

print('Coefficients: \n', regr.coef_) 

Coefficients:  

 [ -0.46440218  -0.5569041    0.41619785  -1.12888167  -1.64731
246 

  -0.33191602   2.25288273 -13.49839745  10.64817207  15.933860
39 

   7.22574878   7.89312132] 

 

In []: 

print("Mean squared error: %.2f" 
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      % np.mean((regr.predict(x_test) - y_test) ** 2)) 

Mean squared error: 6995.98 

In []: 

# Explained variance score: 1 is perfect prediction 

print('Variance score: %.2f' % regr.score(x_test, y_test)) 

Variance score: 0.03 

In []: 

from sklearn.metriHI import explained_variance_score 

y_true, y_pred = y_test, regr.predict(x_test) # Evaluate test s
et 

explained_variance_score(y_true, y_pred) 

Out[]: 

0.031186035887383778 

In []: 

from sklearn.metriHI import r2_score 

y_true, y_pred = y_test, regr.predict(x_test) # Evaluate test s
et 

print(r2_score(y_true, y_pred)) 

0.0311169663911 

In []: 

def delay_prediction(MONTH=1, 

 DAY=1, 

 WEEK=6, 

 SEASON=2, 
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 PRIVATE_CARRIER=0, 

 ENG_NUMBER=4, 

 DEP_HOUR=15, 

 ARR_HOUR=18, 

 Flight_more10hrs=0, 

 If_Dep_night_OFFICE=0, 

 YEAR=2015, 

 Weekend=0): 

    categorical_values = np.zeros(12) 

    categorical_values[0] = int(MONTH) 

    categorical_values[1] = int(DAY) 

    categorical_values[2] = int(WEEK) 

    categorical_values[3] = int(SEASON) 

    categorical_values[4] = int(PRIVATE_CARRIER) 

    categorical_values[5] = int(ENG_NUMBER) 

    categorical_values[6] = int(DEP_HOUR) 

    categorical_values[7] = int(ARR_HOUR) 

    categorical_values[8] = int(Flight_more10hrs) 

    categorical_values[9] = int(If_Dep_night_OFFICE) 

    categorical_values[10] = int(YEAR) 

    categorical_values[11] = int(Weekend) 

    

    categorical_values_encoded = encoder.transform([categorical
_values]).toarray()  #works 

    final_test_example = np.c_[categorical_values_encoded] 
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    #pca = PCA(n_components=12) 

    #X1_PCA = pca.fit(categorical_values).transform(categorical
_values) 

    #np.asarray(X1_PCA) 

    #X_scenario = pd.categorical_values_encoded 

    #X_PCA = pca.fit(X_1).transform(X_1) 

    #Combine these into the final test example that goes into t
he model 

    # Now predict this with the model 

    pred_delay = SGD_model_2.predict(final_test_example) 

    print ('Your predicted delay is', int(pred_delay[0]), 'minu
tes.') 

    return # End of function 

In []: 

delay_prediction(MONTH=1, 

 DAY=1, 

 WEEK=6, 

 SEASON=2, 

 PRIVATE_CARRIER=0, 

 ENG_NUMBER=4, 

 DEP_HOUR=15, 

 ARR_HOUR=18, 

 Flight_more10hrs=0, 

 If_Dep_night_OFFICE=0, 

 YEAR=2015, 

 Weekend=0) 
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Your predicted delay is 40 minutes. 

In []: 

X.to_HIv('X.HIv', index=False, header=True) 

In []: 

def delay_prediction(pred = pd.read_HIv('X_pred.HIv')): 

    pca = PCA(n_components=50) 

    X_pred = pca.fit(pred).transform(pred) 

    # Combine these into the final test example that goes into 
the model 

    # Now predict this with the model 

    pred_delay = MLPC_model_2.predict(X_pred) 

    print ('Your predicted delay is', int(pred_delay[0]), 'minu
tes.') 

    return # End of function 

In []: 

delay_prediction(pred = pd.read_HIv('X.HIv')) 

Your predicted delay is 7 minutes. 

 


