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Abstract

This thesis is dedicated to interest rate risk immunization. Several widely known

immunization strategies, like the naïve and duration-matching bullet and barbell, will

be implemented and tested empirically. Furthermore, the M-Absolute, M-Squared and

M-Vector strategies will also be implemented and tested empirically in order to eval-

uate if their additional complexity adds any value to the immunization process, while

bearing in mind that these strategies immunize portfolios against both non-parallel and

parallel shocks in the term structure of interest rates. A common methodology will be

applied to di¤erent bond datasets in order to infer what is the best and most consensual

immunization strategy.

Firstly, the aforementioned strategies will be empirically tested with German bunds,

in order to assess if they cover the future payment of a single known liability. The

results show a good performance of the naïve and barbell strategies that are mainly

explained by the decreasing interest rate environment. The M-Absolute strategy also

produces good results, while showing low transaction costs. This is due to the cash-�ow

clustering around the date when the liability is due to be paid and explains the lesser

need to rebalance the portfolios.

Afterwards, the same strategies will be empirically tested with two bond datasets

from the U.S.: Treasuries and Treasury Protected In�ation Bonds (TIPS). The strategies

are applied independently to both bond datasets, once again with the aim of covering

the future payment of a single known liability. Hence, for U.S. TIPS, only the real

component is considered at this stage. The results obtained mimic the results from

the previous Chapter: a good performance of the naïve and barbell strategies, mainly

explained by the decreasing interest rate environment, and of the M-Absolute strategy,

with low transaction costs. It is also noted that transaction costs for U.S. TIPS are very

high due to the lack of market liquidity of these securities that, consequently, a¤ects

negatively the absolute and risk-based excess return of these portfolios.
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Taking into account the previous results for the three datasets, a multiple liability

immunization portfolio, where the future liability grows with in�ation, is constructed.

In this sense, the applied strategy was the M-Absolute because it was the most coherent

strategy in the previous empirical tests presented. Once again, the datasets used were

the U.S. Treasuries and U.S. TIPS, that were further adjusted to take into account

that the liability pro�le has changed. The in�ation accrual has been included in the

immunization procedures of the U.S. TIPS, calculated using the U.S. Consumer Price

Index for all Urban Consumers. Future liabilities have also been recalculated to account

for in�ation growth. The process was developed while considering the relationship among

nominal and real interest rates and the in�ation rate, as portrayed by Fisher (1930). It

is possible to infer that the best bond dataset to immunize this type of liability is

U.S. TIPS, not only because their cash �ow pro�le resembles the cash �ow pro�le of

the future liabilities, but also because the in�ation accrual leverages signi�cantly the

portfolio returns, namely in the 3-year immunization horizon. This is due to the high

in�ation rates that are compounding into the payable cash-�ows (namely between 2004

and 2006), associated with the decreasing real interest rate environment.

JEL Classi�cation: E31, E43, G11

Keywords: Interest rate risk, Immunization, Duration, M-Absolute, M-Squared, M-

Vector, Term Structure of Interest Rates, In�ation
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Resumo

Esta tese de doutoramento é dedicada à imunização de risco de taxa de juro e explora

a implementação empírica de múltiplas estratégias de imunização de carteiras. Serão im-

plementadas estratégias comuns, como a estratégia de maturidade naïve e as estratégias

bullet e barbell que assentam na premissa de equivalência entre a duração das carteiras

de ativos e da responsabilidade futura a imunizar. As estratégiasM-Absolute,M-Squared

e M-Vector serão também implementadas, de modo a aferir se a sua complexidade adi-

cional se justi�ca, dada a necessidade de acomodar a possibilidade de movimentos não

paralelos da estrutura por prazos de taxas de juro durante o processo de imunização

de carteiras. Para aferir qual a estratégia de imunização de carteiras mais consensual

foi desenvolvida uma metodologia comum a aplicar aos três conjuntos de obrigações

considerados nesta dissertação.

Numa primeira fase, as estratégias mencionadas acima são testadas empiricamente

com um conjunto de obrigações da Alemanha (bunds), para cobrir o pagamento de uma

responsabilidade única e conhecida no início do período de imunização. Os resultados

obtidos mostram uma boa performance das estratégias naïve e barbell, esta última muito

assente na conjuntura de descida signi�cativa de taxas de juro. A estratégia M-Absolute

também atinge bons resultados com custos de transação baixos, o que pode dever-se ao

efeito de diversi�cação associado a um investimento num conjunto de obrigações cujos

cash-�ows se encontram próximos da data de pagamento da responsabilidade, o que

implica uma menor necessidade de ajustamentos nas carteiras nas datas de rebalancea-

mento.

O mesmo racional é aplicado a testes empiricos efetuados com recurso a dois conjun-

tos de obrigações dos E.U.A, obrigações de taxa �xa e obrigações indexadas à in�ação.

As estratégias de imunização mencionadas acima são aplicadas de forma independente

a �m de cobrir o pagamento de uma responsabilidade única e conhecida no início do

período de imunização. Assim, neste capítulo e no caso das obrigações indexadas à in-

�ação, só é considerada a componente real e deterministica desta classe de ativos. Os
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resultados obtidos são muito similares aos do primeiro capítulo, com uma boa perfor-

mance das estratégias naïve e barbell, que deriva novamente da conjuntura de descida

signi�cativa de taxas de juro. A estratégia M-Absolute volta a atingir bons resultados

com custos de transação baixos. Os custos de transação associados às obrigações in-

dexadas à in�ação são elevados, pelo que a falta de liquidez destes títulos leva a que

a sua rentabilidade, quer em termos absolutos, quer em termos relativos, seja afetada

negativamente.

Por �m, os resultados dos testes anteriores são aplicados num teste de imunização

de carteiras multiperíodo a �m de imunizar um conjunto de responsabilidades anuais

futuras, cujo valor varia de acordo com a taxa de in�ação. Para este efeito foi tes-

tada empiricamente a estratégia M-Absolute, por ter sido a estratégia mais consensual

nos capítulos anteriores. Foram novamente usados os dois conjuntos de obrigações dos

E.U.A, tendo, no entanto, sido aplicados ajustamentos adicionais necessários devido à

mudança do per�l das responsabilidades a imunizar. Foi integrada a componente de cor-

reção monetária nas obrigações indexadas à in�ação (utilizando o Índice de Preços no

Comsumidor dos E.U.A.) e nas responsabilidades, de acordo com a relação demonstrada

pela equação de Fisher (1930) entre taxas de juro nominais, reais e taxa de in�ação.

Veri�ca-se que as obrigações indexadas à in�ação são o melhor instrumento a utilizar

nestes casos, não só por o seu per�l se aproximar mais do per�l das responsabilidades

a imunizar, mas também porque o juro decorrido associado à componente de in�ação

traz retornos muito signi�cativos às carteiras, nomeadamente no período de imunização

mais curto (3 anos), devido ao nível elevado de in�ação durante o período em análise

(nomeadamente entre 2004 e 2006), associado a um decréscimo signi�cativo do valor das

taxas de juro.

Classi�cação JEL: E31, E43, G11

Palavras-chave: Risco de taxa de Juro, Imunização, Duração, M-absolute, M-squared,

M-vector, Estrutura por Prazos de Taxas de Juro, In�ação.
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Sumário Executivo

O tema desta tese de doutoramento consiste em testar empiricamente múltiplas es-

tratégias de imunização de risco de taxa de juro, tendo por base a mesma metodologia

mas usando diferentes amostras de títulos de dívida pública alemã e americana. O obje-

tivo é apresentar uma metodologia que possa ser facilmente replicada em contexto real

numa sala de mercados ou em fundos de gestão de ativos cujo objetivo seja imunizar

responsabilidades futuras em contexto de uma gestão de Asset and Liability Manage-

ment (num fundo de pensões, por exemplo) ou de pagamento de rendas futuras, como é

o caso de seguros de capitalização e planos de poupança reforma.

Serão implementadas estratégias comuns, como as estratégias naïve, bullet e barbell.

A estratégia naïve visa simplesmente replicar a responsabilidade a imunizar, ao comprar

a obrigação cuja maturidade se encontra mais próxima da data de liquidação desta. As

estratégias bullet e barbell assentam na equivalência entre a duração destas carteiras

e da responsabilidade a imunizar, usando duas obrigações cuja maturidade poderá ser

próxima (bullet) ou distante (barbell) da data de liquidação da responsabilidade. Outras

estratégias, como a M-Absolute, M-Squared e M-Vector, são também implementadas,

com recurso a carteiras compostas por 8 ou 10 obrigações, atendendo aos dois horizontes

temporais a aplicar (3 e 5 anos). A complexidade destas estratégias é acrescida face às

mencionadas anteriormente, mas com a vantagem de ter em consideração a possibilidade

de movimentos não paralelos da estrutura por prazos de taxas de juro, de segunda ordem

(ou ordem superior), enquanto as estratégias de imunização assentes na equivalência

entre a duração da carteira e da responsabilidade somente levam em consideração o

efeito de primeira ordem de deslocamento paralelo da estrutura por prazos de taxas de

juro. O teste empirico destas estratégias visa aferir a sua aplicabilidade e praticalidade

em contexto real.

Para todos os testes apresentados é considerada a existência de custos de transação

(traduzidos na diferença entre preços de compra e de venda dos títulos) e vedada a
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possibilidade de efetuar vendas a descoberto. As carteiras são rebalanceadas trimestral-

mente e os cupões pagos durante o período de imunização serão reinvestidos na carteira

em todas as estratégias. Deste modo, pretende-se replicar um processo de imunização

de acordo com as condições normais de mercado e atendendo às restrições que um in-

vestidor institucional costuma enfrentar, aproximando assim o teste da realidade diária

de um gestor de carteiras de investimento. Para avaliar a performance das estratégias

é calculado o nível de cobertura da responsabilidade bem como a performance relativa

face à estratégia naïve, a mais básica de todas as estratégias implementadas. São ainda

medidos os custos de transacção e o turnover das carteiras bem como a rentabilidade

das mesmas, não só em termos absolutos mas também por unidade de risco incorrido,

através do Reward-to-Risk Ratio. Serão usados três conjuntos diferenciados de obri-

gações soberanas, da Alemanha e dos E.U.A., compostos por obrigações de taxa �xa e

obrigações indexadas à in�ação, de modo a testar empiricamente a imunização de uma

única responsabilidade ou de um conjunto de responsabilidades, cujo valor poderá (ou

não) ser conhecido no início do período de imunização.

Nos Capítulos 2 e 3 é apresentada a revisão de literatura e a metodologia de seleção

de obrigações e implementação das estratégias de imunização, respetivamente. Assim,

é feita a priori uma caracterização dos elementos comuns a todos os testes empíricos

que serão apresentados nesta dissertação. O Capítulo 4 apresenta os resultados da apli-

cação empírica das estratégias de imunização a um conjunto de obrigações da Alemanha

(bunds), entre 2001 e 2014. Este período foi caracterizado por uma descida signi�cativa

das taxas de juro na Europa, com uma maior proeminência na zona curta da estru-

tura por prazos de taxas de juro (maturidades residuais até 5 anos), que no �nal do

período em análise chega a registar taxas de juro negativas. O objetivo é aplicar as

estratégias de imunização mencionadas acima de modo a cobrir o pagamento de uma

responsabilidade única e cujo valor é conhecido no início do período de imunização. Os

resultados obtidos mostram uma boa performance das estratégias naïve e barbell, esta

última muito assente na conjuntura de descida signi�cativa de taxas de juro. Assim,
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veri�ca-se uma valorização substancial, explicada pela descida das taxas de juro e tam-

bém pelo efeito de reinvestimento de cupões de valor elevado, recebidos de obrigações

com maturidade residual mais elevada, que suplanta o efeito da valorização do preço das

obrigações associado à descida das taxas de juro. Relativamente ao conjunto de estraté-

gias M, a estratégia M-Absolute também atinge bons resultados devido aos custos de

transação baixos. Como esta estratégia assenta na criação de um cluster de obrigações

cuja maturidade esteja próxima da data de liquidação da responsabilidade a imunizar,

o efeito de diversi�cação associado a um investimento num conjunto de obrigações leva

a uma menor necessidade de ajustamentos nas carteiras nas datas de rebalanceamento.

Além disso, esta estratégia leva em consideração choques não paralelos na estrutura por

prazos de taxas de juro, ainda que não descurando os choques paralelos, o que também

explica a sua boa performance. As estratégiasM-Squared eM-Vector não atingem resul-

tados tão bons quanto a estratégia M-Absolute, sendo que nos horizontes de imunização

mais longos apresentam performances negativas, ainda que cubram sempre o valor da

responsabilidade a imunizar.

A análise empírica é novamente replicada no Capítulo 5 tendo por base dois conjun-

tos de obrigações dos E.U.A, obrigações de taxa �xa e obrigações indexadas à in�ação,

entre 2000 e 2014. Tal como na Europa, este período foi caracterizado por uma descida

signi�cativa das taxas de juro. No entanto os comportamentos das estruturas de taxa

de juro nominal (usada para as obrigações de taxa �xa) e real (usada para as obrigações

indexadas à in�ação) são diferenciados, pois entre 2004 e 2006 veri�cou-se uma descida

das taxas de juro reais que não se veri�ca nas taxas de juro nominais, devido ao au-

mento da in�ação. A estrutura por prazos de taxas de juro reais também apresenta uma

inversão no curto prazo no �nal de 2014, que não se veri�ca na estrutura por prazos de

taxas de juro nominais. As estratégias de imunização mencionadas acima são aplicadas

aos dois conjuntos de obrigações de forma independente a �m de cobrir o pagamento de

uma responsabilidade única e cujo valor é conhecido no início do período de imunização.

Neste contexto, as obrigações indexadas à in�ação são modelizadas atendendo somente
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à sua componente real e deterministica, não levando em conta o juro decorrido associado

à variação do Índice de Preços no Consumidor. Esta modelização é possível atendendo

a que o preço de mercado e respetivos cash-�ows futuros são deterministicos e expressos

em termos reais. O objetivo da utilização deste conjunto prende-se com a possibilidade

de testar empiricamente estratégias de imunização num conjunto de obrigações com o

mesmo emitente (logo padrão de risco de crédito semelhante) mas com menor liquidez.

Os resultados obtidos são muito similares aos do capítulo anterior, com uma boa per-

formance das estratégias naïve e barbell, esta última muito assente na conjuntura de

descida signi�cativa de taxas de juro. Relativamente ao conjunto de estratégias M, a es-

tratégia M-Absolute volta a atingir bons resultados com custos de transação baixos. As

estratégias M-Squared e M-Vector não atingem resultados tão bons quanto a estratégia

M-Absolute. É ainda importante notar que, devido à sua menor liquidez, os custos de

transação associados às obrigações indexadas à in�ação são bastante maiores, pelo que

a falta de liquidez destes títulos leva a que a sua rentabilidade, quer em termos abso-

lutos, quer em termos relativos, seja afetada negativamente. Deste modo, tratando-se

de uma responsabilidade �xa, o melhor ativo a utilizar para a imunizar serão as obri-

gações de taxa �xa, cuja liquidez é bastante superior e cujo per�l mais se assemelha

à responsabilidade a imunizar, pois não existem incerteza nos cash-�ows a receber no

futuro.

No Capítulo 6 é feita uma extensão das análises empíricas anteriores à imunização

multiperíodo. Assim, com base nos resultados obtidos, são construídas carteiras de

modo a imunizar um conjunto de responsabilidades anuais futuras cujo valor varia de

acordo com a taxa de in�ação, o que implica que o valor da responsabilidade a imunizar

só seja conhecido no �nal do horizonte temporal de imunização. Para este efeito, foi

testada empiricamente a estratégiaM-Absolute pois, de todas as estratégias testadas nos

capítulos anteriores, foi a que, de uma forma consistente, obteve melhores resultados.

Foram novamente usados os dois conjuntos de obrigações dos E.U.A, obrigações de taxa

�xa e obrigações indexadas à in�ação, entre 2000 e 2014. No entanto, como o per�l
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das responsabilidades a imunizar muda, neste capítulo foi integrada a componente de

in�ação nas obrigações indexadas à in�ação e nas responsabilidades, atendendo à relação

demonstrada entre taxas de juro nominais, reais e in�ação através da equação de Fisher

(1930) e utilizando o Índice de Preços no Consumidor dos E.U.A.. Assim, quer as

responsabilidades, quer o preço e cash-�ows futuros das obrigações indexadas à in�ação

irão ser ajustados com a estimativa de in�ação futura em cada momento de imunização.

Esta estimativa é calculada atendendo à evolução do Índice de Preços no Consumidor

dos E.U.A., conforme explicitado no Index Ratio destes títulos. Veri�ca-se que o melhor

conjunto de obrigações a utilizar para este �m são as obrigações indexadas à in�ação,

não só por o seu per�l se aproximar mais do per�l das responsabilidades a imunizar,

mas também porque o juro decorrido associado à componente de in�ação traz retornos

muito signi�cativos às carteiras, nomeadamente no período de imunização mais curto

(3 anos). Isto sucede devido ao nível elevado de in�ação durante o período em análise

(nomeadamente entre 2004 e 2006), associado a um decréscimo signi�cativo do valor

das taxas de juro. Este efeito será anómalo e não será expectável que se veri�que numa

conjuntura de subida de taxas de juro e baixa in�ação. No entanto, não invalida os

resultados principais dos testes empiricos apresentados: que quando estamos perante

uma responsabilidade cujo valor é conhecido a priori o ativo mais indicado para a

imunizar serão obrigações de taxa �xa; no entanto, se a responsabilidade cresce a uma

taxa variável e semelhante à taxa de in�ação, a melhor classe de ativos a utilizar serão

obrigações indexadas à in�ação.

As conclusões e sugestões para análises futuras são apresentadas no Capítulo 7.
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CHAPTER 1

Introduction

This dissertation�s main theme is interest rate immunization and its transposition to

market applications in asset management. In this sense, several portfolio strategies will

be applied empirically to this end, relying not only in the most common portfolios tech-

niques, based on duration matching strategies, but also in more complex techniques such

as the M-derived immunization measures. The tests carried out were quite extensive,

as they were applied to sovereign bond datasets from di¤erent countries (Germany and

the U.S.) and also to di¤erent bonds designs (nominal treasury bonds and real in�ation

linked-bonds). The main goal was to test empirically the immunization abilities of these

instruments and see if any kind of immunization strategy stood out as clearly preferable,

regardless of the country or bond type chosen. To do so, a common methodology was

developed and implemented for all the datasets considered, in order to eliminate any

kind of methodological bias that could induce di¤erent results for each bond dataset.

This was done for term structure estimation, immunization procedures and measures

applied to infer the results, with the aim of minimizing methodological risk that could

be held accountable for di¤erent results in each dataset. If not, the results obtained

would be less robust, since they could be due to other factors than the immunization

strategy applied. Consequently, the portfolio immunization strategies have been imple-

mented in the same way while also replicating the normal constraints an investor faces

while buying bonds, such as the disallowance of short selling and transaction costs. In

this sense, we are able to obtain our ultimate goal that is to set up a straightforward

procedure that can be applied by asset and investment managers that need to immunize

their future liabilities (for insurance or pension funds, for instance).
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The �rst dataset refers to the German bund market, the most liquid market in Eu-

rope. The objective was to test empirically immunization strategies for a single known

liability in a decreasing interest rate environment, where we even have negative values

in the short sector of the term structure of interest rates in the end of the sample period.

This way, the main purpose was to see if the more complex M-derived immunization

measures proved to be more e¢ cient, in both excess return (absolute and risk adjusted)

and implementation cost, than the more straightforward duration techniques such as

naïve maturity bond, bullet and barbell strategies. When one normally addresses im-

munization, is to gain protection from interest rate volatility, that can erode the future

value of an asset. The decreasing interest rate environment was challenging because it

was not clear beforehand what immunization techniques would be preferable, given that

most of the time (if not all the time), shifts in the term structure of interest rates are

not parallel.

The same framework and methodology is also applied to the U.S. bond market. Here

we take a step forward regarding the universe of bonds chosen by applying the single

liability immunization strategies to two independent datasets of bonds: U.S. nominal

Treasury bonds, whose issuance and liquidity is very high (higher than the German

bunds) and U.S. real Treasury In�ation Protected Securities (TIPS), whose liquidity

and issuance is quite low, as these securities are used by a very speci�c subset of in-

stitutional investors, like insurance companies and pension funds. Bear in mind that

for this empirical test the bond datasets were treated independently. Hence, for U.S.

TIPS only the real deterministic part is modelled at this stage. This is possible due

to the security design of these bonds. Their market quotes and cash-�ows are depicted

in real terms, while the in�ation component added to market information (i.e. clean

market price and real accrued interest) and future cash-�ows through the computation

of the Index Ratio, is determined by the non-seasonally adjusted U.S. Consumer Price

Index for all urban consumers. The typical investment pro�le of these companies is

characterized by buy-and-hold strategies (they are not active traders), hence the lower
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liquidity of these instruments. Both nominal and real term structures of interest rates

underlying tendency is decreasing throughout the sample period, even considering that

during some years the interest rates were diverging due to increasing in�ation. Hence,

the aim of the tests carried out for these datasets was not only an attempt to replicate

the results obtained in the previous Chapter with a di¤erent dataset of bonds but also

to see to what extent illiquidity plays a role in the implementation of these strategies,

by inducing higher transaction costs to the portfolios.

The results from the aforementioned empirical tests are also extended taking into

account the U.S. subset of bonds, by applying the most consensual immunization strat-

egy while introducing two innovations. The �rst one is to the liability pro�le. We build

portfolios that immunize multiple annual liabilities throughout the considered invest-

ment horizon, whose �nal value is unknown in the beginning of the implementation of

the immunization strategies. The growth rate applied to the payable liability is the

annual in�ation rate. The second innovation is taking into account the in�ation accrual

of U.S. TIPS in order to allow a direct comparison between the immunization results

obtained for the Treasury and the TIPS portfolios, while recalling Fisher (1930) equation

that explains the relation between nominal and real interest rates and the in�ation rate

that has to hold in order to eliminate the emergence of arbitrage opportunities between

these two instruments. This way, the U.S. TIPS cash-�ows and market quotes (clean

price and accrued interest) were adjusted taking into account the embedded in�ation

expectation in the non-seasonally adjusted U.S. Consumer Price Index for all urban con-

sumers in order to allow for the comparison of both datasets. The main contribution of

this empirical test is to outline that the immunization strategy implemented should be

adjusted to the type of liability we wish to immunize. This way, for known future lia-

bilities the best securities to immunize against interest rate shocks are �xed rate bonds

while for unknown future liabilities one should build a portfolio composed of variable

rate bonds whose coupon and principal index rate growth is close to the growth rate of

the liability we wish to immunize.
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CHAPTER 2

Literature Review

As the common theme for the Chapters presented in this thesis is portfolio immuniza-

tion, we present an extensive literature review on this subject, that will be complemented

in the forthcoming Chapters when necessary.

Immunizing a portfolio implies the generation of su¢ cient funds to satisfy a single

liability (or a stream of liabilities) regardless of the course of future interest rates (Fabozzi

(2000)). As for duration, Nawalkha, Soto and Beliaeva (2005) present a straightforward

de�nition, by stating that duration gives the planning horizon at which the future value

of a bond portfolio remains immunized from an instantaneous parallel shift in the term

structure of interest rates.

The concept of immunization was �rst introduced by Redington (1952) when ad-

dressing how to choose securities to immunize a company�s net worth. The immuniza-

tion theorem this author introduced broadly states that if one considers that the present

value of the assets and liabilities of a company can be modelled as functions of inte-

rest rates, then, for any interest rates shock, when the asset and liability cash-�ows are

chosen appropriately, the mean term of the assets and the mean term of the liabilities

will be equal. Redington (1952) work has been developed by several authors. For in-

stance, Grove (1974) extended this approach to balance sheet hedging techniques, by

acknowledging that if a company�s asset duration equals its liability duration adjusted

by the company�s capital structure, the company�s value will not be a¤ected by interest

rate shifts. This approach is also presented by Bierwag, Fooladi and Roberts (2000),

that extend the duration analysis as a risk management tool for e¤ective management

of balance sheet duration risk for governments and state owned companies, extending

its use to real assets.
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Fisher and Weil (1971) transpose Redington (1952) reasoning to portfolio manage-

ment by applying immunization strategies based in the maturity and duration of bonds

to build portfolios that would allow to receive in a given point in future time a �xed

monetary amount regardless of the evolution of interest rates. They propose the so-

called naïve investment strategy, based in the investment on bonds whose maturity is

close or equal to the maturity of the liability one wishes to immunize. The naïve strategy

was also applied to portfolios whose duration (instead of maturity) was close or equal

to the maturity of the liability. The reasoning is straightforward: by investing in assets

that mature when (or close to) the date the liability has to be paid, it is possible to

eliminate most of the interest rate risk during the investment horizon. According to

Fisher and Weil (1971), the return of these bond portfolios will be equal to the return of

the immunized liability if the bonds used are zero-coupon bonds and above the return

of the immunized liability if the bonds used are coupon bearing bonds.

Bierwag and Kaufman (1978) support Fisher and Weil (1971) �ndings by addressing

the price and reinvestment e¤ects that a¤ect the market value of a bond portfolio where

the bond proceeds are reinvested. If the portfolio is fully immunized against interest

rate shifts, the price e¤ect will be cancelled by the coupon reinvestment e¤ect. These ef-

fects are broadly similar to the substitution and income e¤ects presented by the demand

theory when one considers �nancial assets as the objects of choice. This was stated

beforehand in Bierwag and Grove (1968), where this extension is thoroughly explained.

The Hicksian substitution e¤ect for �nancial assets can be seen as a price e¤ect because

it represents the variation of the market value of the bond due to an interest rate shift.

In the same vein, the income e¤ect for �nancial assets can be seen as the return from

the reinvestment of coupon payments at a di¤erent interest rate than the one from bond

purchase. Bierwag and Grove (1968) further acknowledge that the relation between

the price e¤ect and the coupon reinvestment e¤ect is an extension of the �Marshallian

Proposition� that states that these e¤ects will tend to cancel each other if the bonds

available for investment are both complementary and substitutes for the immunization
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portfolio setup. However, this will only be the case if the portfolio is fully immunized.

Bierwag and Kaufman (1977) develop this reasoning further by analyzing these price

and coupon reinvestment e¤ects as opposite forces that drive the overall portfolio immu-

nization performance. If the interest rate decreases the price e¤ect will be positive as the

market value of the bond will be higher. However, the coupon reinvestment e¤ect will

be negative due to the lower return of coupons paid and reinvested into the portfolio.

The authors further extend their analysis by stating that coupons that are reinvested at

a yield di¤erent from the yield of purchase will a¤ect the overall return of the bonds.

Bierwag (1977) also proposes investment strategies based on the concept of duration

to immunize a portfolio, protecting it from future unpredictable shifts in interest rates.

The author shows that the optimal selection of an immunized portfolio depends on the

term structure of interest rates observed when the immunization process begins. The

immunization e¢ ciency is also dependant on the type of securities used to hedge the

portfolio. If one uses zero coupon bonds the result will be di¤erent from the one derived

from nonzero coupon bonds due to uncertainty about the reinvestment interest rate for

future payments. However, using multiple coupon bearing bonds allows for a better �t

to the term structure of interest rates relevant for the immunization period, allowing the

investor to construct a more �exible immunization portfolio. Bierwag (1977) discusses

all of these aspects applied to a set of di¤erent shifts of the term structure of interest

rates that include additive and multiplicative shocks, either discrete or continuous. He

concludes that the immunization strategy has to be �t not only to the actual term

structure of interest rates but also to the investors�expectations of future evolution of

the term structure for the considered immunization horizon.

Ingersoll, Skelton and Weil (1978) analyze the duration concept theoretically, by

exposing its uses and abilities. They refute the idea that Macaulay (1938) duration

measure is a risk proxy, since it introduces bias regarding the impact of interest rate

shifts on high and low coupon bonds. Previous literature states the existence of a

straightforward positive relationship between interest rate volatility and maturity i.e.,
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other things equal, the impact of a shift in interest rates will be greater in bonds with

higher time to maturity. The authors prove that this does not apply evenly for all types

of bonds; for instance, a positive parallel interest rate shift will make the price of a

low coupon bond �uctuate more than the price of a high coupon bond. The opposite

applies for a negative parallel interest rate shift. As a consequence, for bonds that

mature in the same date, the duration measure of the high coupon bond will be lower

than the duration measure of the low coupon bond. Furthermore, Ingersoll et al. (1978)

state that duration will only be a good risk proxy for uniform in�nitesimal interest rate

shifts. For other interest rate shifts, duration will only be an approximate measure of

the change in the bond�s value and this must be taken into account when setting up an

immunization strategy. However this does not imply the uselessness of duration, it only

draws the attention to a setback in this risk measure that can impact the immunization

process and thus force the investor to screen the immunization�s quality quite often. The

authors present two ways to address this issue: by computing duration with a non-�at

term structure of interest rates and with an autoregressive model that (1) accounts for

the bias introduced by the diversity of bond coupons and (2) weights the importance of

the term structure of interest rates�convexity as a complementary measure of interest

rate basis risk. This way, Ingersoll et al. (1978) addresses immunization with a stochastic

approach to duration and convexity.

Cox, Ingersoll and Ross (1979) also address the inability of traditional duration

measures, namely Macaulay (1938) duration, to account for basis risk. The authors

present their own measure of basis risk, that is expressed in time units and �ts adequately

to non-�at term structures of interest rates. Khang (1983) proves that an immunization

strategy where the portfolios are regularly adjusted in order to reduce the duration

gap between the portfolio and the liability associated with the immunization process,

is a global minimax strategy. This strategy, that consists of building a portfolio whose

return is the highest possible while minimizing the di¤erence between its duration and

the residual maturity of the liability being immunized, is valid irrespective of the timing
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or dimension of the shift in the term structure of interest rates. This paper addresses

one of the main limitations identi�ed so far in Fisher and Weil (1971) and Bierwag and

Kaufman (1978) where this strategy is applied only taking into account that the shift

in interest rates occurs only once and immediately after the immunization strategy is

implemented. This way, by considering jointly the possibility of several interest rates

changes occurring and at any time during the immunization process, Khang (1983)

expands the �ndings of Fisher and Weil (1971) and Bierwag and Kaufman (1978) to

a more realistic setting to the immunization process. Gaya and Arribas (1991) also

build up in the work developed by Khang (1983) and develop a minimax strategy for

portfolio selection using linear programming, while introducing a real common investor

restriction: the existence of transaction costs. The authors �nd that transaction costs

can take a toll on the immunization process by not allowing the investor to achieve full

immunization. This can be induced into the immunization process if these costs are too

high and a¤ect the portfolio value due to the number of times the portfolio is rebalanced

and the amounts of the bonds traded.

To address the aforementioned shortcomings of duration as an immunization mea-

sure, more models have been put forward by the literature. Soto (2001) presents a

comparison between the models previously explained from Fisher and Weil (1971) and

Bierwag (1977) with other empirical unifactorial models based in logarithmic and time

dependent movements of the term structure of interest rates developed by Khang (1979)

and Babbel (1983). These models try to address several features of the term structure

of interest rates but fail to further explain the dynamics of the term structure of interest

rates, like the decreasing interest rate volatility as the time to maturity increases and

the correlation between short term, medium term and long term interest rates. Even

though the added complexity, the aforementioned models failed to become a standard

when compared with the univariate models put forward by Fisher and Weil (1971) and

Bierwag (1977). Soto (2001) also presents several models of stochastic duration that aim

at hedging interest rate risk while addressing the shortcomings of the univariate models.
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Besides the aforementioned model put forward by Ingersoll et al. (1978), Soto (2001)

presents several models that aim at building portfolios whose shifts are fully correlated

to the risk factors from synthetic zero coupon bonds. These synthetic bonds are build

such that their market value is totally correlated to the shifts of the term structure of

interest rates. This way, these models attempt to implement immunization strategies

that mimic the assumed stochastic movements of the term structure of interest rates,

achieving full immunization against interest rate risk. The one-factor model from Cox

et al. (1979), the two-factor models developed by Brennan and Schwartz (1983), Nelson

and Schaefer (1983) and Moreno (1999) and the three-factor model of Chen (1996) are

highlighted as meaningful theoretical contributions to the stochastic approach to model

the term structure of interest rates. However, Soto (2001) stresses that the empirical

results from these models fail to address their purpose and often lead to results that are

not economically meaningful or adherent to the term structure of interest rates, thus

failing the possibility to be transposed into a new market standard.

In the vein of immunization measures that are build taking into account multi-factor

arbitrage models, Agca (2005) addresses the immunization strategy issue by comparing

the traditional duration and convexity measures and the single factor Heath, Jarrow and

Morton (1992) framework for multiple portfolio strategies and multiple immunization

horizons. The author�s �ndings can be divided in several propositions. Regarding the

risk measures that serve as a base for the immunization strategy, Agca (2005) found that

the traditional measures, such as the Fisher andWeil (1971) duration and convexity, per-

form better than the Heath et al. (1992) models. When considering the choice between a

duration matching immunization strategy and a duration and convexity matching strat-

egy, the author considers the second strategy superior when there are no transaction

costs, for both short term and medium to long term immunization horizons. Yet, in the

presence of this restriction, a duration matching strategy tends to produce better results

since it implies less rebalancing than a duration and convexity strategy for medium to
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long term immunization horizons; for short term portfolios the duration and convex-

ity matching strategy still achieves better immunization results. Furthermore, in Agca

(2005) research, the most important aspects of an immunization framework lie in the

correct choice of the immunization strategy to be implemented, the existence of trans-

action costs and the holding period H for the immunization process rather than risk

measures or interest rate term structure models. Oliveira, Nunes and Malcato (2014)

study addresses Agca (2005) �ndings within the Heath et al. (1992) framework while

testing the Heath et al. (1992) with multiple factors and applying it not only to the tradi-

tional duration measures but also by using stochastic duration. In this context, Oliveira

et al. (2014) shows that for duration matching strategies, and considering three-factor

stochastic Heath et al. (1992) duration models, immunization results are superior than

those achieved using traditional risk measures such as Macaulay (1938) and Fisher and

Weil (1971). The main reason for this to happen lies in the inability if traditional risk

measures to capture adequately interest rate volatility, which makes the three-factor

stochastic Heath et al. (1992) duration model superior. These �ndings hold for three

and �ve-year immunization periods (for one-year immunization period the stochastic

duration measures do not present themselves as superior) and they remain consistent

with and without transaction costs. Oliveira et al. (2014) also point out that the main

issue with Agca (2005) research is the application of a single factor Heath et al. (1992)

framework. In this sense, it has to be considered that the application of stochastic mo-

dels should occur in an appropriate setting and that reducing the factors used in the

Heath et al. (1992) framework can account for the fact that the risk measures or interest

rate term structure models are deemed less important in the immunization process.

Bravo (2007) also points out one of the main issues with stochastic models, like the

Heath et al. (1992), that is related to the ability to correctly infer and model the sto-

chastic process behind each model. Hence, these models also have stochastic process

risk, which means that an incorrectly speci�ed stochastic process can reduce substan-

tially the e¤ectiveness of the immunization strategy. This way, Bravo (2007) takes a
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di¤erent avenue and develops a theoretical immunization measure that combines �rst-

and second-order e¤ects in accounting for shifts in the term structure of interest rates

parametric approach speci�ed by Nelson and Siegel (1987) and Svensson (1995). The

author�s view is that successful immunization models account for both duration and

convexity risk measures while capturing the sensitiveness of bond returns to changes in

one or more interest rate risk factors.

Nawalkha and Soto (2009) also discuss several classes of multivariate models that can

be used to deal with the hedging of interest risk that arises from large nonparallel term

structure of interest rates shifts, such as (i) M-Absolute/M-Squared models, (ii) duration

vector/M-Vector models, (iii) key rate duration models and (iv) Principal Component

Analysis (PCA) models as well as their extension to �xed income derivatives. The

key question these authors try to address is �how do managers of �nancial institutions

hedge their portfolios composed of �xed income securities and their derivatives, against

the e¤ects of non-parallel term structure of interest rates shifts?�. Key rate duration

models introduced by Ho (1992) are based on a discrete vector composed on the key spot

rates of various maturities that serve as anchor points for the term structure estimation

(done via linear interpolation) and are considered as extensions to traditional duration

models, while not relying on stationary covariance structures of interest rate changes.

PCA assumes that the term structure of interest rate movements can be summarized by

a few composite variables, at least three (level, slope and curvature), representing the

parallel change in the term structure of interest rates, the change in the steepness of the

term structure of interest rates and the change of the humpness of the term structure

of interest rates. However, in order to obtain robust results while applying PCA the

covariance structure of interest rates has to be stationary.

The models (i) and (ii) mentioned in Nawalkha and Soto (2009) article originated

from a new avenue in immunization research, that aims at addressing eventual arbitrage

opportunities that might be implicit in the Fisher and Weil (1971) traditional duration

measures, by studying the lower bounds in portfolio value changes and consequently,
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deriving new risk control strategies. The M-Squared model, introduced by Fong and

Vasicek (1983a), Fong and Vasicek (1984) and Fong and Fabozzi (1985), consists of a

linear transformation of convexity in order to allow obtaining a portfolio that will be

immunized against parallel movements of the term structure of interest rates while pro-

tecting the investor from interest rate risk resulting from non-parallel term structure of

interest rate shifts. In this sense, the M-Squared can be interpreted as a measure of

immunization risk. Hence, the M-Squared of a bond is de�ned as the weighted average

of the squared di¤erences of the bond�s cash-�ows from a horizon point. This is achieved

by clustering the portfolios�bonds cash-�ows around the planning horizon date for the

immunization. This approach has been found preferable when compared with the nor-

mal second-term immunization strategy (composed by duration and convexity) by Lacey

and Nawalkha (1993), whose empirical study using U.S. Treasuries between 1976-1987

�nds evidence that high convexity portfolios lead to higher immunization risk without

maximizing bond portfolio returns, whereas high M-Squared adds return to bond port-

folios, while minimizing the immunization risk more e¢ ciently than in the duration and

convexity approach.

The M-Absolute of a bond, developed by Nawalkha and Chambers (1996) is de�ned

as the weighted average of the absolute distances of the bond�s cash-�ows from a given

horizon point. It serves as a measure of dispersion of the bond portfolios cash-�ows

around the portfolio immunization horizon and is designed to provide a powerful and

practical univariate risk measure immunization in particular circumstances. M-Absolute

is similar to M-Squared but is derived as a �rst order interest rate risk hedging model,

whose main concern is to address non-parallel interest rate shifts, in opposition to the

traditional duration model, that only addresses parallel shifts of the term structure of

interest rates. The M-Absolute will only immunize partially against level shifts, while

reducing the interest rate risk caused by shifts in the slope, curvature and all other term

structure parameters. This is achieved by building portfolios whose bond cash-�ows are

clustered around the planned horizon date, in a similar way to the M-Squared model.
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The relative desirability of this model will depend on the nature of the term structure

shifts that are expected. If level shifts are the most in�uent factor in the term structure

of interest rates, the traditional duration model will outperform the M-Absolute model.

However, if slope, curvature and other higher order shifts prevail then the M-Absolute

will outperform the traditional duration model. Empirical tests done by these authors

show that M-Absolute reduces the interest rate risk inherent in the traditional duration

model by more than half, namely in the case of general shifts in the level, slope, curvature

and other higher order term structure shape parameters (i.e. non-parallel shifts).

The M-Squared and M-Absolute models are also addressed in Bierwag and Fooladi

(2006) as models that minimize stochastic process risk when applied as immunizing

stochastic movements of the term structure of interest rates. Therefore, these models

application is widespread, since they can be applied to both parametric and stochastic

approaches of interest rate movements.

The M-Vector model - Nawalkha and Chambers (1997) and Nawalkha, Soto and

Zhang (2003) - is a multivariate model derived as an extension of the M-Squared model

and it demonstrates near-perfect hedging performance, eliminating more than 95% of

interest rate risk inherent to the traditional duration model. Vector models arise from

the fact that most interest rate risk models, duration or M-derived, only achieve perfect

immunization for zero coupon bonds maturing at (or close to) the horizon date. These

models attempt to immunize interest rate risk by applying a vector of higher-order risk

measures than duration and convexity to achieve perfect immunization for any kind of

changes of the term structure of interest rates. The main di¤erence between duration

vector models - Granito (1984), Nawalkha (1995) and Chambers, Carleton and McEnally

(1988) - and M-Vector models is that the former are more restrictive by imposing a

polynomial functional form to the term structure shifts while the M-Vector approach is

based on a Taylor series expansion of the bond price function. Like the M-Squared model,

the M-Vector does not impose strong assumptions on the particular stochastic processes

for the term structure movements. The M-Vector model requires short positions in order
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to obtain immunizing solutions. Nevertheless, explicit short spot positions in bonds are

not necessary for applying the M-Vector model since forward contracts can be used as

short positions. However, if short positions are allowed, the cash-�ows of the portfolio

will not be clustered around the planned horizon.

Crack and Nawalkha (2000) have build up from several other previous contributions

- Macaulay (1938), Fisher and Weil (1971), Fong and Vasicek (1984) and Chambers et

al. (1988) - and present generalized expressions of the sensitivity of several risk measures

(duration, convexity and higher order bond risk measures) to non-parallel interest rate

changes. As Crack and Nawalkha (2000) acknowledge, shifts in the term structure of

interest rates� level, slope and curvature are not independent. This way, this results

can prove useful in a volatile interest rate environment due to its ability to capture the

combined e¤ects of level, slope and curvature shifts. They support their analysis with

some simple and convincing numerical examples. However, it could prove useful to test

empirically this strategy, in order to infer its immunization results with real market data.

Several empirical studies have been done regarding the application of these models,

whose main �ndings are listed below. Bierwag, Fooladi and Roberts (1993) compare

the performance of traditional duration models and the M-Squared model using U.S.

Treasury Bond and Canadian Government Bond data. The authors �nd that, when

using the maturity bond1, a two-bond duration bullet strategies exhibits results that are

equal or even better than the results of the application of the M-Squared model.

Soto and Prats (2002) also evaluate several traditional and M-derived models using

data from the Spanish Government debt market. The authors main �nding is that the

portfolio composition is not trivial for the success of the implemented immunization

strategy. This way, portfolios that include the maturity bond have lower exposition to

non parallel shifts of the term structure of interest rates and mimic the perfect immuni-

zation asset behavior, thus facilitating the implementation of any immunization strategy.

The empirical results presented show that the performance of the M-Absolute strategy

1The maturity bond is the bond whose maturity is closest or equal to the planning horizon date.
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and of bullet and barbell portfolios outweigh the performance of the M-Squared strategy.

Soto and Prats (2002) also discuss the importance of the inclusion of the maturity bond,

implying that duration models fail per se to grasp the interest rate risk embedded in

bond portfolios. The maturity bond is needed as an anchor point to stabilize the immu-

nization strategies applied. Soto and Prats (2002) mention that the implementation of

multifactorial models as a possible way forward to address this issue.

Soto (2004) uses Spanish government bond data to compare single and multiple

factor duration-matching strategies in order to evaluate to what extent the success of

these duration strategies are primarily attributable to (1) the particular model chosen

or (2) to the number of risk factors considered. In this sense, Soto (2004) concludes that

three-factor immunization strategies o¤er the highest immunization benchmark and that

the number of risk factors considered in the immunization strategy is more important

than the model applied in the immunization strategy.

Bravo and Silva (2006) evaluate the relative immunization performance of the M-

Vector model using market data for the Portuguese government debt. Their main �n-

dings are that the application of single and multifactor immunization models has the

bene�t of removing most of the interest rate risk embedded in a naïve maturity strategy

and that duration-matching strategies that include the maturity bond and the use of a

single-factor immunization models achieve the best overall performance in highly volatile

term structure environments and shorter holding periods, as the maturity bond acts as

an anchor for the applied immunization strategy.

Díaz, González and Navarro (2008) argue that the implementation of the M-derived

strategies leads to form portfolios that tend to concentrate their investment in a few

bonds whose maturity is close to the maturity of the immunized liability. This entails an

elevated level of idiosyncratic risk, related with taxes, principal and interest rate strips,

status changes from on-the run to o¤-the-run and changes in cheapest-to-deliver in future

contracts, among others. These factors can be harmful to the immunization strategy

and only be addressed by inducing diversi�cation in the portfolio setup. The authors
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use Spanish Public debt market data, including all bond types in their analysis. When

building the immunization portfolios, Díaz et al. (2008) apply several diversi�cation

procedures via linear programming to the M-Absolute strategy to obtain fully diversi�ed

portfolios and benchmark the results of these portfolios to the M-Absolute strategy as

developed by Nawalkha and Chambers (1996). The empirical results show that the

performance of the diversi�ed portfolios based in the M-Absolute strategy immunization

is superior to the application of the M-Absolute strategy per se. In the opinion of the

authors this is due to the more realistic approach taken to build the bond dataset, where

no bond is discarded regardless of its liquidity level or embedded features.

Kittithawornkul (2008) applies the M-Vector model to the Thai Government debt

market. The results presented are twofold. When the immunization strategy is not

conditioned to include the maturity bond, the M-Vector strategy�s immunization per-

formance is better than the traditional duration strategy. As for the length of the

M-Vector, Kittithawornkul (2008) �nds that for the Thai Government debt market the

optimal length is the M6-vector. However, when the immunization strategy includes

the maturity bond the M-Vector strategy is outperformed by the bullet strategy. The

author attributes this underperformance to the non parallel shifts in the term structure

of interest rates, since the maturity bond is less vulnerable to these e¤ects throughout

the immunization horizon.

Bravo and Fonseca (2012) evaluate the immunizations performance of a multifactor

parametric interest rate risk model based on the Nelson and Siegel (1987) and Svens-

son (1995) parametric extraction methods for the term structure of interest rates using

European Central Bank estimated data for spot, forward, and par yield curves in order

to evaluate if this approach improved immunization performance in high volatile inte-

rest rate environment. Their �ndings show that the empirical duration vector model

built around the Nelson and Siegel (1987) and Svensson (1995) parameters outperforms

several duration matching strategies as the portfolios, while capturing the level, slope

and curvature shifts of the term structure of interest rates, achieve a very high degree
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of immunization, eliminating substantially interest rate risk. The traditional duration-

based strategies and the naïve strategy do not outperform the multifactor parametric

interest rate risk model. Even so, the authors acknowledge that the good performance

of duration-based strategies that include the maturity bond can be taken into account

if transaction costs and frequent reallocations are an issue for the investor.
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CHAPTER 3

Data Selection and Methodology

This section contains a review of some term structure of interest rate parametric

approaches and models and the theoretical framework applied throughout this thesis.

The term structure of interest rates was derived using the exponential functional

form method developed by Nelson and Siegel (1987) parametric approach estimated

using daily interest rates from each dataset used in Chapters 4, 5 and 6. From all the

approaches available, this was the most feasible taking into account the main objective

of applying the same methodology for the term structure of interest rates to the three

datasets considered in this thesis. In this sense, the lower liquidity and bond availability

for U.S. TIPS1 was an active constraint since it would not allow the application of an

interest rate term structure estimation using a parametric approach that would imply

estimating more than four parameters. The low availability of U.S. TIPS bonds induced

the inexistence of estimates for maturities below the 5-year by the U.S. Department of

the Treasury, due to the lack of on-the-run bonds below that maturity. This additional

constraint will be revisited in Chapter 5.

3.0.1. Term structure approaches and framework applied

Choosing an approach to estimate the term structure of interest rates can be quite

di¢ cult, since many approaches have been developed so far, even though all have failed

to become an undisputable market standard. Even though it is not the aim of this thesis,

some meaningful work, that has been developed regarding the estimation of the term

structure of interest rates, is presented.

1U.S. TIPS dataset only includes 19 bonds whose maturity spans between 2 and 30 years.
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In this sense, we recall the analysis made by Martellini, Priaulet and Priaulet (2003)2,

that state the pros and cons of the cubic spline and the Nelson and Siegel (1987) para-

metric approach. The cubic spline parametric approach is deemed as one of the best

approaches to extract a smooth term structure of interest rates, even though it is highly

dependant on the choice of the smoothing points (where the splines meet) and the num-

ber of parameters to estimate. The functional form of the spline (i.e. polynomial or

exponential) also plays a role in the e¤ectiveness of the smoothing. The most common

approach relies in three splines in order to ensure that the second derivative of the model

(used to compute the convexity) is continuous. This means estimating �ve to eight pa-

rameters for the term structure of interest rates. Furthermore, applying a smoothing

process to the term structure of interest rates can induce higher estimation errors when

a small shock is introduced in the evolution of interest rates, thus reducing the quality

of the �t of these models to the real world. Even so, Martellini et al. (2003) states that,

for portfolio pricing purposes, this parametric approach applied to the discount factor

functions seems to be preferable.

Regarding the Nelson and Siegel (1987) parametric approach, Martellini et al. (2003)

see its merits due to the economic intuition associated with the parameters that are

estimated, allowing the investor to better understand the shifts on the term structure

of interest rates by interpreting the parameters estimated. Its mathematical tractability

is also a plus, which is also the reason this approach is widely used by investors and

central bankers3. This parametric approach is also deemed better for risk management

and hedging purposes because it allows the direct extraction of a discount function

curve, while the unsmoothness of the approach is also a plus, since risk management

aims at mitigating risk in markets under distress, which is the case for all the bond

datasets analyzed. A smoothed dataset could fail to promptly identify a market distress

2Please refer to Chapter 4.
3The European Central Bank and several Eurosystem national central banks use Nelson and Siegel
(1987) and Svensson (1995) extraction methods to estimate daily term structures of interest rates. Also
several data vendors (i.e. Bloomberg) and portfolio management tools have the Nelson and Siegel (1987)
model embedded in their softwares.
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event and, consequently, induce an adjustment in the portfolios that could occur in a

later phase, reducing the e¤ectiveness of the immunization procedures. This parametric

approach is also deemed superior when the source of risk is associated with nonparallel

shifts of the term structure of interest rates. In this sense, the economic intuition behind

the estimated parameters plays a very important role, because it allows reducing and

clearly identi�ng the source of the risk factors that are inducing the shift.

The Nelson and Siegel (1987) parametric approach has also been analyzed and further

developed by several authors. Diebold and Li (2006) enhance this parametric approach

by estimating vector autoregressive models for the Nelson and Siegel (1987) parameters.

This dynamic model achieves a better �t of the term structure of interest rates above the

10-year maturities, while keeping the properties the authors deem necessary for a good

model of the term structure of interest rates, namely, persistency in long term interest

rates and yield dynamics, increasing and concave term structures of interest rates, that

are able to assume upward sloping, downward sloping, humped and inverted humped

shapes and higher volatility in the short end of the curve. This dynamic model is not,

however, an a¢ ne model, since Diebold and Li (2006) believe that it is not obvious that

these models are necessary to produce good forecasts, which also explains why they have

failed to become market standards so far.

Christensen, Diebold and Rudebusch (2009) also infer that the Nelson and Siegel

(1987) and Diebold and Li (2006) provide a remarkably goodness of �t to the cross

section of yields for many countries but show a lower ability to �t the long maturity

yields to the term structure of interest rate due to convexity e¤ects. In addition, these

models do not impose a non arbitrage condition. This way, Christensen et al. (2009)

develop a model that includes a second slope factor and imposes the absence of arbitrage.

The main drawback of the �ve factor generalization of the Nelson and Siegel (1987)

presented rests in its assumption that the state factors are independent, which implies

that any given interest rate shock will only a¤ect one factor. This might not be the

case in reality where, for instance, an interest rate shock that implies the steepening
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of the yield curve can also a¤ect both the slope and curvature of the term structure

of interest rates at the same time. Furthermore, the imposition of the non-arbitrage

condition enhances the computational burden of the model. Christensen, Diebold and

Rudebusch (2011) continue their studies of the Nelson and Siegel (1987) and Diebold and

Li (2006) by yet again addressing the main drawbacks of these models against the a¢ ne

class of interest rates models. The aforementioned parametric approaches have a higher

forecasting power and goodness of �t but they admit arbitrage opportunities, while

non-arbitrage models normally exhibit a poor goodness-of-�t and forecasting ability. In

order to settle this matter, Christensen et al. (2011) develop an a¢ ne Nelson and Siegel

(1987) that, once again, achieve a higher goodness-of-�t for maturities above the 10-year

threshold and is arbitrage free. However, as in the previous article from these authors,

the a¢ ne model has the same drawbacks: the assumption that the state factors are

independent and the computational burden of the model, that implies that it lacks the

simplicity to be applied in a quick and e¤ective manner. Alfaro (2011) also presents an

a¢ ne discrete-time version of the Diebold and Li (2006) speci�cation of the Nelson and

Siegel (1987), using the Euler equation as the main tool for pricing. This is however,

a theoretical article that only presents the model and does not apply any empirical

goodness-of-�t and forecasting ability test to market data.

The non-arbitrage condition of the Nelson and Siegel (1987) has also been studied by

Coroneo, Nyholm and Vidova-Koleva (2011), whose work consists of addressing the com-

parability of the normal Nelson and Siegel (1987) and its Gaussian a¢ ne non-arbitrage

speci�cation. The authors conclude that, although not being explicitly a non-arbitrage

model, the Nelson and Siegel (1987) parametric approach is compatible with the hypo-

thesis of no arbitrage, since the parameters derived with the latter hypothesis are not

statistically di¤erent from the parameters derived with the original Nelson and Siegel

(1987) approach. Furthermore, if it is possible to explore arbitrage opportunities with

the Nelson and Siegel (1987) parametric approach, this is due to data bias, i.e. the
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markets themselves are not in equilibrium and exploiting this arbitrage opportunity will

be necessary to drive the markets to a new equilibrium.

A �nal note on the Nelson and Siegel (1987) parametric approach literature review

goes to the empirical tests performed by Nyholm and Vidova-Koleva (2012), that perform

a horse race among a¢ ne term structure models, quadratic term structure models and

the dynamic Nelson and Siegel (1987) by Diebold and Li (2006). The authors fail to prove

that a given model class is superior to the others, even though they demonstrate that

quadratic term structure models achieve the best in-sample goodness-of-�t, while the

a¢ ne term structure models and dynamic Nelson and Siegel (1987) parametric approach

by Diebold and Li (2006) achieve the highest out-of-sample goodness-of-�t.

Taking into account that, for all datasets, several market distress events have oc-

curred due to the U.S. subprime crisis and the European sovereign debt crisis, cubic

splines seem not to be the way to go when estimating the term structure of interest

rates. Hence, we stick to the application of the Nelson and Siegel (1987) parametric

approach since it seems to be the one that better suits our needs:

(i) it is highly tractable and economically intuitive;

(ii) serves our main purpose of testing for immunization procedures while still cap-

turing the distressed events that stir interest rates, and that could jeopardize the e¤ec-

tiveness of the applied immunization strategies;

(iii) it allows to clearly identify the cause of a given shift in the term structure of

interest rates;

(iv) it is possible to estimate for all datasets analyzed, thus not inducing any bias to

the empirical tests we wish to perform.

We apply the original approach because, even though we see merits in the several

developments that have been discussed above, these have yet again failed to become

a market standard. Furthermore, the main advantages seem to rest above the 10-year

maturity, which is not used for our immunization procedures. In this sense, and keeping

the aim to develop a strategy that can be easily replicated by investors and market
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agents, we choose to keep it simple and apply the concrete speci�cation of the Nelson

and Siegel (1987) parametric approach. We also acknowledge the fact, mentioned before,

that several institutions, such as the European Central Bank and several Eurosystem

national central banks (namely the Deutsche Bundesbank, whose nominal interest rates

are used in Chapter 4) estimate daily term structures of interest rates using the Nelson

and Siegel (1987) and Svensson (1995) extraction methods.

3.0.2. Preliminary Notation

In this section we put forward a list of notation that will be applied throughout this

thesis.

We de�ne (0; n) as the time interval, expressed in years, for the occurrence of bond

cash-�ows, where the coupon payments occur at a given time t and the principal pay-

ments occur at time n, such that 0 < t � n.

The investor�s immunization planning horizon - H - will be de�ned as the time

di¤erence, expressed in years, between the beginning of the rebalancing period and the

date the liability is due.

We will apply the immunization strategies to a portfolio of m bonds, where a given

bond will be indexed as the j-th of the portfolio.

In the rebalancing periods, the spot interest rates will be de�ned as y (0; t) and the

discount factors as � (0; t), and since we will be estimating nominal and real continuous

compounded interest rates, the index N will be used to refer to nominal values and the

index R will be applied to real values, according to the examples below:

yN (0; t) - nominal continuous compounded spot interest rate between t = 0 and t = t

yR (0; t) - real continuous compounded spot interest rate between t = 0 and t = t

�N (0; t)� nominal discount factor between t = 0 and t = t

�R (0; t)� real discount factor between t = 0 and t = t
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3.0.3. Term Structure of Interest Rates Speci�cation

Let y (0; t) be de�ned as the continuous compounded spot rate maturing at time t, and

0 to 3 represent parameters that need to be estimated in order to compute the term

structure of interest rates through the equation below,

y (0; t) = 0 + 1

0@1� exp
�
�t
3

�
�t
3

1A+ 2
0@1� exp

�
�t
3

�
�t
3

� exp
�
�t
3

�1A : (3.1)

As mentioned before, and also acknowledged byMartellini et al. (2003)4 and Nawalkha

et al. (2005)5, the parameters estimated for the Nelson and Siegel (1987) parametric ap-

proach have economic intuition. 0 can be interpreted as the consol interest rate, since

it represents the level of interest rates when y (0; t) goes to in�nity. The other three

parameters explain the shape of the term structure of interest rates: 1 represents the

slope of the term structure of interest rates, by measuring the spread between the short

term interest rate and the long term interest rate. In this sense, the short term interest

rate can be easily estimated by adding these two parameters (i.e. y (0) = 0+ 1 ). The

curvature of the term structure of interest rates is represented by 2. If 2 < 0 the term

structure will have a convex shape and, consequently, if 2 > 0 the shape of the term

structure will be concave. Finally, 3 represents the velocity at which the short and

medium term components of the term structure of interest rates converge to the consol

rate.

The correspondent discount function can be computed as

� (0; t) = exp� (y (0; t)� t) : (3.2)

4Please refer to Chapter 4.
5Please refer to Chapter 3.
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This way, it is possible to extract a continuous function for the term structure of

interest rates from the discrete data points gathered, which gives us a great amount of

�exibility to our immunization process. When no rates were available through market

sources, we had to estimate them from the dataset collected to implement the strategies.

The process is similar to the one described above, as it consists of minimizing the mean

squared price error as de�ned below, where P jmid (0) is the dirty mid price
6 of bond j

and Bj (0) is the estimated fair value of the bond, computed as the discounted future

coupons c, paid x times during the year and principal amount 100 for bond j discounted

by � (0; t).

min
0;1;2;3

mX
j=1

�
P jmid (0)�Bj (0)

�2
m

(3.3)

where,

Bj (0) =
nX
t=1

ct
x
� � (0; t) + 100� � (0; n) ^ P jmid =

�
P jbid + P

j
ask

�
2

: (3.4)

These methodologies were used for the estimation of the nominal and real term

structure of interest rates without any loss of generality.

3.1. Theoretical Framework

The �rst step is to de�ne the liability we wish to immunize. As Fabozzi (2000,

p. 449) de�nes, �a liability is a cash outlay that must be made at a speci�c time�.

This author classi�es liabilities in four types: (1) one for which both the cash outlay�s

amount and timing are certain in the beginning of the immunization process, (2) one

for which the cash outlay�s amount is certain but the timing is not known, (3) one for

which the cash outlay�s timing is known but the amount is uncertain and (4) one for

which both the cash outlay�s amount and time are uncertain. In this case we wish to

6The dirty price is the sum of the clean quoted price plus the bond�s accrued interest. When referring
to prices throughout the article, P will always be a dirty price.
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immunize a liability whose nominal �nal amount and timing is known in the beginning

of the planning horizon H: This way, and according to Fabozzi (2000) classi�cation, we

will be immunizing a type (1) liability in Chapters 4 and 5 and a type (3) liability in

Chapter 6. Fabozzi (2000) and Siegel and Waring (2004) mention that, to achieve better

immunization results, it is bene�cial to adjust the immunizing portfolio composition to

the liability one is covering. This way, we can state ex-ante that for known future liability

values, de�ned as type (1), the usage of �xed-rate bonds will be more suitable whereas

for unknown future liability values, de�ned as type (3), the usage of �oating-rate bonds

indexed to the rate of growth applied to the liability will be preferable. In the speci�c

case of liabilities whose growth rate is indexed to in�ation, Fogler (1984) suggests the

usage of stocks, real estate and any type of in�ation-indexed bonds. The usage of TIPS

would only be possible several years later, as the U.S. Government only started issuing

these bonds in January 1997, as highlighted by Wrase (1997).

3.1.1. Risk Measures

Even though the traditional duration measures have some setbacks that have been ad-

dressed in the literature by the development of the non-arbitrage multifactorial models

and new risk control strategies based in the lower bound of immunized portfolios, the

proposed models from Fisher and Weil (1971) and Bierwag (1977) continue to be the

main market standard and will be the starting point of our analysis. The methodology

applied to immunize this kind of liability is presented in Nawalkha et al. (2005).7

The most widely known strategies (naïve, bullet and barbell) were applied by opti-

mizing the portfolios�duration in order to match (or to be close to) the duration of

the liabilities. Duration is a measure that aims to immunize against in�nitesimal and

parallel (level) shifts of the term structure of interest rates, i.e. the percentage change in

interest rates is the same, regardless of their maturity. Hence, the bonds in the portfolio

7Please refer to Chapters 2, 4 and 5.
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will su¤er the same adjustment in their valuation even though their cash �ow structure

and maturities di¤er.

The duration of a given j bond is computed as the weighted average time to maturity

t of the future cash-�ows cjt , paid x times per year, where the weights wk are de�ned

as the present value of the cash-�ows of a given bond divided by their fair price Bj (0),

already de�ned in equation (3.4). A straightforward formulae for the duration of the

j-th bond is presented below:

Dj =
nX
t=1

t� wt : wt =

h
cjt
x
� � (0; t)

i
Bj (0)

: (3.5)

In order to account for second order e¤ects in the parallel shifts of the term structure

of the interest rates, we can compute the convexity of a bond, which is the continuous-

time weighted average of the squared time to maturity of the future j-th bond cash

�ows.

Cj =
nX
t=1

t2 � wt : wt =

h
cjt
x
� � (0; t)

i
Bj (0)

(3.6)

However, how often are the shifts in the term structure of interest rates parallel?

The most common term structure adjustments imply di¤erent absolute adjustments to

interest rates accounting to their time to maturity. Convexity per se does not address

nonparallel shifts in the term structure of interest rates, it only immunizes a portfolio

against large and parallel shifts in the term structure of interest rates when used with

the duration measure. In this sense, the M-Squared measure was developed as a linear

transformation of convexity, by relating the convexity measure to the slope shifts in the

term structure of interest rates.

The M-Squared measure is computed as a weighted average of the squared time

distance between the maturities of the bonds�cash-�ows and the liability immunization

planning horizon H, where the weights are de�ned in the same way as in equation (3.5).
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M2
j =

nX
t=1

(t�H)2 � wt : wt =

h
cjt
x
� � (0; t)

i
Bj (0)

(3.7)

The immunization strategy based on the M-Squared measure allows building port-

folios where the selected bonds�maturities are clustered around the liability horizon H.

This way, the portfolio becomes immunized against both level and slope shifts in the

term structure of interest rates. However, if the level shifts in the term structure prevail,

the M-Squared measure might not be enough to fully immunize a portfolio, and, like

convexity, will require the use of duration to get a better immunization result. There-

fore, although M-Squared is a more elaborate measure than convexity, it can still be

dependent on duration to achieve a better immunization performance.

M-Absolute was developed to address this shortcoming, by condensing in a single

measure the ability to immunize against nonparallel term structure of interest rates

shifts, while partially immunizing against level shifts of the term structure of interest

rates. The M-Absolute measure is computed as a weighted average of the absolute time

distance between the bonds�cash-�ows and the immunization planning horizon, where,

yet again, the weights are de�ned in equation (3.5).

MA
j =

nX
t=1

abs (t�H)� wt : wt =

h
cjt
x
� � (0; t)

i
Bj (0)

(3.8)

The principle is similar to the M-Squared model: immunization strategies that mini-

mize the M-Absolute measure are those whose cash-�ows are nested around the planned

liability horizon H. Even so, the M-Absolute model will only achieve better results than

the traditional duration model if the term structure of interest rates evolves in a such

a way that non parallel shifts (slope, curvature and other higher order shifts) dominate

the parallel height shifts in the planned liability horizon.

However, as already stated, it is more likely that non-parallel shifts occur in the term

structure of interest rates and these shifts could have a higher order than second order

shifts or even be a combination of several higher order shifts. The M-Vector model was
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developed to address each order shift with a di¤erent M-related measure. This model

is built with i rows, each row related to a M-derived measure. For the purpose of this

thesis a vector of up to �ve order M-Vectors was derived, meaning that 1 � i � 5:

This way, to immunize a portfolio using this model is to compute its composition while

setting each row of this vector to zero. Hence, M1 is created to address parallel level

shifts, while M2 addresses slope shifts, M3 curvature shifts, and so on.

�!
M i
j =

2666664
nP
t=0

(t�H)1 � wt
...

nP
t=0

(t�H)i � wt

3777775 : wt =
h
cjt
x
� � (0; t)

i
Bj (0)

^ i = 1; :::; 5 (3.9)

Nawalkha and Chambers (1997, p. 9) state that the �fth order M-Vector model

allows for the elimination of over 95% of the interest rate risk when compared to the

traditional duration model (that can be seen as the M1 vector when H = 0). Moreover,

these authors argue that by extending the M-Squared model and including higher order

e¤ects, the immunization performance of the portfolio almost doubles by increasing the

elimination of risk from over 50% to the 95% stated above. We test the M-Vector model

until the �fth order shift to evaluate what are the most signi�cant shifts in the term

structure of interest rates and how these shifts can a¤ect the immunization performance.

Please note that all the aforementioned measures can be computed for a portfolio

composed by m bonds. The broad formula for that computation can be found below:

Risk MeasurePtf =
mX
j=1

kj �Risk Measurej : (3.10)

Risk Measurej 2
n
Dj; Cj;M

2
j ;M

A
j ;
�!
M i
j

o
(3.11)

where Risk MeasurePtf is the risk measure for the portfolio, kj is the percentage of the

money invested in the j-th bond of the portfolio and Risk Measurej is the risk measure
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for the j-th bond of the portfolio, that can be any of the measures included in the set

de�ned above.

3.1.2. Portfolio and Immunization Setup

In order to empirically test what is the best strategy to immunize a single �xed liabi-

lity, immunization portfolios were built throughout the sample period with overlapping

periods and quarterly rebalancing. Two immunization planning horizons were consid-

ered, 3- and 5-years. For the German dataset, 44 and 36 portfolios were estimated for

the 3-year and 5-year immunization periods respectively (with 12 and 20 quarterly re-

balancing dates after the strategy was initially set up). For the U.S. bonds datasets,

48 portfolios were estimated for the 3-year immunization period and 40 portfolios were

estimated for the 5-year immunization period (with equal quarterly rebalancing dates

after each strategy was implemented). Short-selling was not allowed and transaction

costs were considered, as the bonds bought to the portfolio were valued at the ask price,

while bonds sold were valued at the bid price, in order to replicate the constraints that

the usual investor normally faces. The coupons that are received during the investment

horizon are reinvested in the portfolio. For Chapters 4 and 5 we applied nine strategies,

summarized in Table 3.1. In Chapter 6 we will focus on the M-Absolute strategy.

(insert Table 3.1 here)

All the immunization strategies applied in this thesis have been de�ned as minimax

strategies applying linear or quadratic minimization programming8, since their aim is

to achieve the highest possible value for each portfolio while minimizing the di¤erence

between the risk measure applied in the immunization procedure and the residual matu-

rity of the liability we wish to immunize. The naïve strategy is set up as an investment

in the maturity bond while the bullet and barbell strategies are set up to minimize the

8For other types of optimization criterions that can be applied in an immunization process please refer
to Kondratiuk-Janyska and Kaluszka (2005).
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duration of the portfolio, whose objective is to be closest to the residual maturity of the

liability. These strategies were designed to replicate the most common immunization

behaviors.

The naïve strategy is the most cautious; by placing all the available resources in a

single bond whose maturity is closest to the liability�s maturity, the investor is seeking

only to ful�ll its obligation in the end of the investment period, no matter what happens

to the term structure of interest rates during the immunization period. The bullet port-

folio also shares this cautionary level, the main di¤erence is that by using a combination

of two bonds the di¤erence between the duration of the portfolio and the maturity of the

liability is trimmed further. The objective is to test if (and to what extent) the transac-

tion costs embedded in the quarterly adjustments needed in this portfolio outweigh the

immunization performance. The barbell portfolio is assumed to be the more risky and

volatile but whose results might also be the best considering the underlying tendency

for interest rate decrease across the sampled period.

The naïve strategy is straightforward and consists of using the bond whose maturity

is closest to the date when the liability will need to be reimbursed. The immunization

condition can thus be formulated as below:

Dj = H (3.12)

Since we are using market bonds and not theoretical bonds, when the maturity of

the bond is di¤erent from the maturity of the liability, the investment was allocated to

the closest maturity bond above the liability date. This means that for some cases the

condition above is modelled as Dj � H.

The other strategies are built taking into account the condition that forces the risk

measure used in the immunization process to equal the residual maturity of the liability

to be paid and the common restrictions an institutional investor normally faces, like

the impossibility of short selling and the obligation of investing the overall monetary

amounts, including coupons received, into the portfolio. The bullet and barbell strategies
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are applied using a portfolio composed of m = 2 bonds with the usual restrictions to

investment. The formulation of these strategies is shown below.

min
k

mX
j=1

kjDj (3.13)

s:t:

mX
j=1

kjDj = H

mX
j=1

kj = 1

kj � 0;8j = 1; 2

Bear in mind that the immunization objective of the bullet and barbell strategies

is the same. The di¤erence lies in the way the two bonds used for the immunization

process are chosen. In the bullet strategy we use two bonds whose maturity is closest to

the liability and in the barbell strategy the portfolio includes the maturity bond and a

bond whose maturity occurs at least 5 years after the liability is due to be reimbursed.

The M-derived strategies are set-up to minimize the di¤erence between the M-Risk

�gure that is being tested and the residual maturity of the liability. The objective

here is to test among the di¤erent strategies and evaluate what is the best. It will

also be interesting to evaluate if these strategies perform better than the most common

immunization strategies applied by investors. The M-derived strategy portfolios are built

with eight to ten bonds whose maturity ranges between the setup date for the portfolio

and at least �ve years after the liability is due to be reimbursed. Each strategy has

its own linear programming for the immunization procedure. The M-Squared strategy�s

linear programming is explicit below, and has been adapted from Soto and Prats (2002).

min
k

mX
j=1

kjM
2
j (3.14)
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s:t:

mX
j=1

kjM
2
j = H

mX
j=1

kj = 1

kj � 0;8j = 1; :::;m

The M-Squared strategy is tested in two ways, by itself, and named as M-Squared,

and within the M-Vector approach (i.e. the minimization of the duration M1 mea-

sure and the M-Squared measure at the same time), and named as M2.9 As for the

M-Absolute strategy, we also explicit its linear programming taking into account the

formulation from Soto and Prats (2002).

min
k

mX
j=1

kjM
A
j (3.15)

s:t:
mX
j=1

kjM
A
j = H

mX
j=1

kj = 1

kj � 0;8j = 1; :::;m

As for the M-Vector strategies, these will be tested modelling up to �ve factors. The

formulation of the immunization procedure is based in Nawalkha and Chambers (1997)

quadratic minimization. This di¤erence is important for the programming of this strat-

egy since this is the only strategy where we are minimizing more that one risk measure

9This di¤erence explains the adaptation from the original formulation present in Soto and Prats (2002),
since the linear programming depicted in the mentioned article for the M-Squared measure will be
tested in M2-Vector strategy.
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at the same time and this could induce multiple solutions for the chosen portfolios. This

procedure is applied to ensure that the estimated portfolios�s are unique and achieve

maximal diversi�cation across the dataset selected, thus minimizing unsystematic inte-

rest rate risk.

min
k

mX
j=1

k2j (3.16)

s:t:

mX
j=1

kj = 1

mX
j=1

kj
�!
M i
j = 0;8i = 1; :::; 5 ^ 8j = 1; :::;m

These portfolios�implementation do not have a restriction to include the maturity

bond, allowing for free allocation of the investment among the potentially selectable

bonds. In order to clearly assess the performance of the strategy in itself, the same set

of bonds is used in each rebalancing period. This way, we eliminate another factor that

could introduce calculation bias: di¤erent portfolio compositions.

3.1.3. Immunization and Performance measures

The results have been evaluated using absolute and relative measures. The absolute

measures are straightforward and aim to assess coverage and return. We use an average

liability coverage measure (LC) to assess if, on average, the results obtained with the

strategies are su¢ cient to cover the liability payment in the end of the projected liability

horizon. Let � be any portfolio built to empirically test each immunization strategy

and, consequently, let � be the total number of portfolios built to empirically test each

immunization strategy S. We also de�ne V as the value of the portfolio in the beginning

(V0) and in the end (VH) of the immunization horizon. If the value, expressed as a
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percentage, is below 100%, then the portfolio strategy used would not allow to cover the

liability payment at maturity.

LC (S) =

�P
�=1

V �H
V �0

�
(3.17)

Another absolute measure computed was the average excess return (ER) of the

portfolio. The excess return evaluates, on average, if the return of the portfolio, taking

into account the reinvestment of the coupons that were received during the investment

horizon, was above (or below) the spot rate for the liability horizon (3 or 5 years) observed

in the beginning of the immunization period, i.e. if the portfolio beats the simple strategy

of doing a continuous compounded time deposit of H years in the beginning of the

immunization period.

ER (S) =

�P
�=1

0@ ln

�
V �H
V �0

�
H

1A� y (0; H)
�

(3.18)

In order to evaluate the stability and liquidity of the portfolios, average turnover (T )

and average transaction costs (TC) have also been computed for each strategy. Turnover

aims to evaluate, on average, if (and to what extent) there was the need to rebalance

the portfolio very often in order to keep the immunization strategy, whether this was

done as a bond buy, bond sale or coupon (and bond) reinvestment. Transaction costs are

computed as the absolute value of the product between the bid-o¤er spread
�
P jask � P

j
bid

�
and the transaction amount, in units, for each bond (Qj) in the portfolio.

As already mentioned, each strategy is implemented with quarterly rebalancing for

both the 3- and 5-year horizon. Let z denote the total number of portfolio rebalancing

quarters for each strategy, such that �z stands for the current quarterly rebalancing

period for the portfolio. The transaction amount for each bond is computed as the

di¤erence between the amount held in the portfolio in the last rebalancing period and

the amount estimated in the next quarterly rebalancing optimization procedures. If the

35



j-th bond was not held in the portfolio before the current quarterly rebalancing took

place, the respective transaction amount is set to zero. The amount to be reinvested

includes any coupons received since the last rebalancing period and any amount bought

or sold in the rebalancing date. These two measures are positively related, since a higher

(average) absolute turnover (expressed in units) will lead to higher (average) absolute

transaction costs (expressed as a percentage of each bond�s value). For the strategy S

the average turnover
�
T
�
have been computed as

T (S) =

mP
j=1

abs
�
Qj�z �Qj�z�1

�
m� z (3.19)

and the average transaction costs
�
TC
�
have been computed as

TC (S) =

mP
j=1

abs
��
Qj�z �Qj�z�1

��
�
�
P jask � P

j
bid

�
m� z (3.20)

Based in the aforementioned absolute measures, some relative measures have also

been computed in order to allow ranking the several strategies. The natural and easiest

strategy to implement is the naïve strategy of buying the bond whose maturity is closest

to the liability we have to cover. Therefore, the relative coverage (RC) has been com-

puted taking the naïve strategy as the benchmark and aims to measure how many times

the average liability coverage
�
LC
�
of strategy S exceeds the average liability coverage�

LC
�
of the naive strategy. If the relative coverage is positive, this means that the strat-

egy S we are evaluating was better than the naïve strategy, if the measure is negative,

the conclusion is the opposite. For the strategy S, the relative coverage is computed as

RC (S) =
LC(S)

LC(Naive)
(3.21)

Turnover and transactions costs have also been computed as multipliers when com-

pared to the naïve strategy. This is the strategy that by design is expected to have the
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lowest transaction costs and turnover, since it will only account for the coupon reinvest-

ments. These measures are not by themselves informative of portfolio performances but

can help explaining the causes of the performance of other strategies. For instance, a

portfolio whose relative turnover and transaction costs are quite high might achieve a

lower excess return than a portfolio whose relative turnover and transaction costs are

lower, since high turnovers (while triggered by the need to adjust the portfolio immu-

nization measure), can erode the excess return obtained by a portfolio strategy. The

turnover multiplier (TX) and the transaction costs multiplier (TCX) are computed tak-

ing the naïve strategy has the benchmark. For the strategy S, the turnover multiplier

is de�ned as

TX (S) =
T (S)

T (Naive)
(3.22)

and the transaction costs multiplier is de�ned as

TCX (S) =
TC(S)

TC(Naive)
(3.23)

Another relative measure that is used to assess portfolio strategies is the Reward-

to-Risk Ratio (R=R), that is computed by the portfolio�s excess return divided by the

volatility of the portfolio�s returns. The aim of this measure is to rank strategies con-

trolling for the volatilities of their returns. This allows evaluating what is the most

e¢ cient immunization measure, i.e. the measure that achieves the highest return by

unit of risk incurred, de�ned as volatility (�S) and computed as the standard deviation

of the portfolio returns. For the strategy S the Reward-to-Risk Ratio is de�ned as

R=R (S) =
ER(S)

�S
(3.24)
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Table 3.1: Immunization Strategies Description

The table presents a description of the immunization strategies applied throughout this thesis.

Strategy
Name

Strategy Design

Naive Single bond whose maturity equals (or is closest to) the horizon date.

Bullet Portfolio with two bonds whose maturity is closest to the horizon date.

Barbell Portfolio with two bonds where one of the bonds is close to the horizon
date and the other matures at least 5 years after the horizon date.

M-Absolute Portfolio with 8 (3-year estimation) or 10 bonds (5-year estimation) with
maturities spread between the setup date and 5 years after the horizon
date.

M-Squared Portfolio with 8 (3-year estimation) or 10 bonds (5-year estimation) with
maturities spread between the setup date and 5 years after the horizon
date.

M1 Portfolio with 8 (3-year estimation) or 10 bonds (5-year estimation) with
maturities spread between the setup date and 5 years after the horizon
date. Immunizes the �rst element of the M-vector.

M2 Portfolio with 8 (3-year estimation) or 10 bonds (5-year estimation) with
maturities spread between the setup date and 5 years after the horizon
date. Immunizes two elements of the M-vector.

M3 Portfolio with 8 (3-year estimation) or 10 bonds (5-year estimation) with
maturities spread between the setup date and 5 years after the horizon
date. Immunizes three elements of the M-vector.

M4 Portfolio with 8 (3-year estimation) or 10 bonds (5-year estimation) with
maturities spread between the setup date and 5 years after the horizon
date. Immunizes four elements of the M-vector.

M5 Portfolio with 8 (3-year estimation) or 10 bonds (5-year estimation) with
maturities spread between the setup date and 5 years after the horizon
date. Immunizes �ve elements of the M-vector.
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CHAPTER 4

Single Liability Immunization: strategies for the German bond

market

The purpose of this Chapter is to test empirically several immunization techniques

using the German bond market in order to assess which produces the best results. In this

sense we will apply the most common strategies, based in bullet and barbell portfolios

as well as some less known techniques, like the M-derived immunization strategies (M-

Absolute, M-Squared andM-Vector), testing a wide range of single and multiple duration

measures as already described in the previous Chapter.

The Chapter is structured as follows: section 4.1 contains a characterization of the

German bond market and a thorough analysis of the German term structure of interest

rates within the sample period. Section 4.2 discusses the empirical results obtained. The

last section summarizes our conclusions and proposes a way forward for future research.

4.1. German bond data and term structure of interest rates

The dataset applied in this study is composed of German treasury bond data gathered

from Bloomberg and interest rates computed by the Deutsche Bundesbank1 using the

Nelson and Siegel (1987) and Svensson (1995) parametric extraction method.

The bond data used comprises daily bid and o¤er prices from 34 bonds with matu-

rities of less than 30 years, selected taking into account the total amount issued and the

bid-o¤er spread. This way the objective was to use on-the-run bonds with a high degree

of liquidity in order to minimize the impact of liquidity risk in the immunization results.

The case for on-the-run bonds is obvious as these are far more liquid than o¤-the-run

1Data can be collected from https://www.bundesbank.de/Navigation/EN/Statistics/Time_series_
databases/Money_and_capital_markets/money_and_capital_
markets_node.html?anker=GELDZINS
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bonds, that are used as buy-and-hold securities for long term investors like pension funds.

Price data was gathered between January 2001 and December 2014. The German bond

market is one of the most liquid among European issuers, and its issuances comprises

Federal and Regional bonds. The latter were not considered for the estimation. All the

issued bonds pay an annual coupon and have maturities at issuance ranging from 2 to

30 years. Normally the most liquid issuances are included in the delivery basket of the

futures contracts issued on these bonds2.

For the purpose of this empirical study the maturity at issuance of the bonds chosen

is 10 and 30 years (Bunds), as these proved to be more liquid that the 5 (Bobl) and

2 (Schaetze) year maturity bonds. This is consistent with the German debt issuance

pro�le, where Bunds are considered the most important security used as a mean of Gov-

ernment funding, accounting for about half of the total German federal debt issuance3.

Zero coupon bonds and principal or interest rate strips were also not considered in

this analysis. In the same vein, bonds selected were plain vanilla bonds. Thus, bonds

with embedded options (i.e. callable and puttable bonds) have been discarded from the

dataset. Even though we are using real bonds, the idiosyncratic risks discussed by Díaz

et al. (2008) are not a concern since the bonds selected allow to build a homogeneous

dataset. This way, any di¤erences from the implementation of the portfolio strategies

will not be due to idiosyncratic risk.

All the bonds considered pay a coupon whose value ranges from 1,75% to 9%. Since

the former tend to be more sensitive to negative interest rate shifts, it is expected that

the immunization process proves to be somewhat challenging. Table 4.1 contains the

main features of the chosen bonds.

(insert Table 4.1 here)

2The futures contracts issued by EUREX have maturities of 2, 5 10 and 30 years and are named after
the bonds�maturities they target.
3For more information on German debt issuance please refer to http://www.deutsche-
�nanzagentur.de/en/institutional-investors/federal-securities/
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Since the data available comprises a subset of residual maturities datapoints, that

range from 0,5 to 30 years, we need to extract a continuous discount function curve

to apply to the intermediate residual maturities for the immunization process. We

applied the Nelson and Siegel (1987) parametric extraction method de�ned in equation

(3.1) to infer the parameters using the known daily interest rates computed by the

Deutsche Bundesbank, whose residual maturities (t) range from 6 months to 30 years, to

obtain the continuous discount function curve as depicted in equation (3.2). This means

that, for standard maturities, the interest rates from the Deustche Bundesbank were

applied, while for non-standard maturities, the rates were estimated with the Nelson and

Siegel (1987) discount function curve. For instance, if we use in one of the rebalancing

periods a bond whose residual time to maturity is 2,2 years we do not have an interest

rate available. Two options would then be feasible. We could interpolate4 this rate

from the rates for the 2 and 3 year published maturities or we could extract that rate

parametrically. We chose the latter and opted for using the Nelson and Siegel (1987)

method for consistency reasons, as this will be the method applicable to the entire

thesis. This method was chosen because, even though there are models available that

seem to show a better �t to the data, has already discussed in this thesis, many of these

models have failed to prove themselves as a market standard, due to its mathematical

intractability or lack of economic intuition. The Nelson and Siegel (1987) is widely used

in �nancial market and central banking activity and is highly tractable, quick and easy

to estimate and the parameters have a strong economic intuition associated.

The di¤erences between the observed rates available from the Bundesbank and our

estimated rates from the Nelson and Siegel (1987) parametric approach can be found

in Figure 4.1 and Panel A of Table 4.2. The absolute average di¤erence between the

observed and the estimated rates lies between 3,6 and 35,5 basis points and the standard

4The linear interpolation method seems to be too blunt to be applied to this end. Even so, data for
the linear interpolation of the spot rates for non-standard (and non-published) residual maturities is
available upon request.
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deviation of the di¤erence ranges from 9,14 to 36,88 basis points. Even though it would

be desirable to have the lowest di¤erence possible, these di¤erences are acceptable.

(insert Figure 4.1 and Table 4.2 here)

In order to grasp to what extent we would be compromising the adherence of the data

estimated by the Nelson and Siegel (1987) model to the data collected from the Deutsche

Bundesbank website, we computed the daily correlation rates and the t-test of equality

of means5 for the maturities used to �t the model. The values for the correlations are also

depicted in Panel A of Table 4.2 and show a very high correlation between observed and

estimated daily interest rates, namely in the diagonal of the matrix, which implies that

the estimated rates do not di¤er much from market rates. The correlation coe¢ cients lie

between a minimum of 97,34% for the 2-year maturity and a maximum of 99,91% for the

30-year maturity. The results of the t-test of equality of means are included in Panel B

of Table 4.2. The t-statistic and respective p-value is presented for each maturity. This

test is designed to infer of there is statistical evidence that the means of the observed

interest rates y (0; t) and the estimated rates
^
y (0; t) are equal or su¢ ciently close to each

other and relies on the following formulation:

H0 : E
h
^
y (0; t)

i
= E [y (0; t)] (4.1)

H1 : E
h
^
y (0; t)

i
6= E [y (0; t)]

The test is performed using a t student statistical distribution and assumes that

interest rates follow a Normal distribution. We reject the null hypothesis H0 if the p-

value is equal or below the 0,05 threshold. If that is the case then the means will be

considered statistically di¤erent. This implies that the distributions of the observed and

estimated interest rates are di¤erent. We can see in Panel B of Table 4.2 that we fail to

5This test is included and has been performed in the Eviews 9 software package.
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reject the null hypothesis for every maturity, even though we have p-values that range

from 0,1431 (5-year maturity) to 0,8834 (30-year maturity).

As visible in Figure 4.2, several adjustments to interest rates have occurred through-

out the sample period but the underlying tendency is clearly towards low interest rates.

In this sense two periods stand out, between January 2001 and June 2005 and between

July 2008 and December 2014, where a signi�cant downward movement occurred. In

this last period, from 2012 onwards, it is visible that interest rates are closer to zero or

in negative territory for the shorter maturities. This can also be seen in Figure 4.3, that

depicts the term structure of interest rates of the aforementioned years. The yield curve

remained quasi-�at until 2003, while interest rates were slightly decreasing. Between

2003 and 2007 the yield curve steepened while interest rates were increasing. From 2007

onwards the main tendency was for a sharp interest rate decrease allied with a strong

yield curve steepening. It can be noted the impressive downward shift in interest rates

between 2008 and 2015 (about 4 percentage points throughout the selected maturities)

and that after 2013 the short sector of the curve has negative interest rates.

(insert Figure 4.2 and Figure 4.3 here)

4.2. Results

The results obtained for both 3- and 5-year immunization horizons are presented in

Tables 4.3 and 4.4.

(insert Table 4.3 and Table 4.4 here)

Several conclusions can be inferred. The �rst one is the naïve strategy good per-

formance, that allows for an excess liability coverage of about 10% and 20% in each

immunization horizon. This is due to the coupon reinvestments and can be explained

not only by the high coupon rates of the bonds used but also due to the decreasing

interest rates throughout the time horizon of the immunization. It is possible to see in
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Table 4.1 that, due to its issuance date, several bonds have coupon rates above 4% while

the average spot rate for the 3-year period is 3% and for the 5-year period is 3,6%. When

reinvesting these coupons into the portfolio, we obtain a gain associated with the excess

coupon value because the interest rates are decreasing throughout the investment hori-

zon. This is known as the coupon reinvestment e¤ect. Notwithstanding, high coupon

bond prices are higher and more volatile than low coupon bond prices, which means

that high coupon bond prices also decrease more with decreasing interest rates, eroding

the portfolio value. This is known as price e¤ect. These two e¤ects tend to cancel

each other out. As highlighted by Bierwag and Grove (1968), these e¤ects behave in a

similar way and can be viewed as the income and price e¤ect from consumer demand

theory. However, when we transpose this e¤ects to �nancial assets, and particularly to

our analysis, what we verify is that the coupon reinvestment e¤ect outweighs the price

e¤ect, allowing the portfolio to gain some extra value from the reinvestment of these

coupons. This corroborates the �ndings of Fisher and Weil (1971) and Bierwag and

Kaufman (1978). The valuation driven by the coupon reinvestment e¤ect will also show

up in all other strategies, even though transaction costs and higher turnover volumes

might erode these gains in some cases.

As for the bullet and barbell portfolios, it is visible that the barbell portfolio is

tangently superior to the naïve strategy while the bullet portfolio has lower results. The

latter even shows a negative Reward-to-Risk Ratio in both immunization horizons, that

is explained by the fact that these portfolios achieve a lower excess return than the

naïve strategy portfolios, while having higher turnover volumes (that also lead to higher

transaction costs) and similar standard deviations. The barbell portfolios, while having a

slightly higher excess return, exhibit the highest transaction costs and turnover volumes

(about 3 times and 8 times higher than the naïve portfolios for both immunization

horizons). The higher return of this portfolios is explained by the decreasing interest

rate environment, that is normally very favorable to barbell strategies, since the long

term positions tend to achieve higher realized returns when interest rates decrease. This
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�nding corroborates the �ndings from Bierwag and Kaufman (1978), that state that the

performance of a barbell portfolio strategy is highly dependant on both the movements

of the term structure of interest rates and the overall portfolio composition (i.e. if the

longer bond selected had a lower coupon or if we had opted by building pseudo barbell

portfolios using bonds with lower maturities the result could have been very di¤erent).

Our analysis also shows that these are also the most volatile portfolios due to their

higher cash-�ow dispersion around the planned horizon H, therefore these results could

easily have been worse in an increasing interest rate environment. Even so, they achieve

fairly good Reward-to-Risk Ratios, thus proving to be a good immunization strategy if

the market expectations are of a general interest rate decrease throughout the planned

immunization horizon.

As for the M-strategies, the M-Absolute shows the best results in both immunization

horizons, which can be inferred from all the indicators computed. The excess return

of these strategies is 1,9% for the 3-year investment horizon and 2,4% for the 5-year

investment horizon and both investment horizons achieve Reward-to-Risk Ratios above

80%, due to the high excess returns and similar standard deviations when compared

with the naïve portfolios. This bond clustering strategy also allows for lower turnover

and transaction costs than the naïve portfolio, which is quite surprising since the only

turnover that the naïve portfolio has is coupon reinvestments. This pattern can be

explained by the lower coupon amounts and reinvestment positions in each rebalancing

period. Unlike the naïve, bullet and barbell portfolios, where only two bonds were

considered, the set of possible bonds to reinvest in each rebalancing period is higher.

Since we have more bonds to choose from, the reinvestments are done in a more e¢ cient

way, which leads to lower transaction costs and turnover, while we still achieve total

immunization due to the spreaded positions around the maturity of the portfolio. These

results are in line with the results from Soto and Prats (2002).

The M-Squared and the M-Vector strategies do not achieve better results than the

naïve portfolio strategies in the 3-year and 5-year investment horizon. The M-Squared
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strategy has lower excess returns than the naïve portfolio, although it achieves a positive

Reward-to-Risk Ratio for the 3-year immunization horizon of about 8% (the 5-year

horizon Reward-to-Risk Ratio is -1,93%). These results are in line with Bierwag et al.

(1993). For the 3-year investment horizon, the M-Vector strategies only achieve positive

results for the M4-vector and M5-vector, with Reward-to-Risk Ratios of about 15%

and 18% and excess returns of 0,30%. In what concerns the 5-year investment horizon,

the M-Vector always shows negative excess returns and Reward-to-Risk Ratios. These

results do not support previous empirical results presented by Nawalkha and Chambers

(1997) and Kittithawornkul (2008), as the M-Vector strategy ability to eliminate interest

rate risk is not corroborated.

One last remark regarding the maturity bond. Even though the M-derived portfolios

were built without this restriction, the immunization process applied for every strategy

will choose the maturity bond as a part of the portfolio towards the end of the immuniza-

tion horizon. Since the naïve, bullet and barbell portfolios include the maturity bond by

design, our analysis corroborates the empirical results from Soto and Prats (2002) and

Kittithawornkul (2008) as the maturity bond does seem to play a role for the anchoring

of the M-derived strategies in the portfolio setup when non-parallel shifts in the term

structure of interest rates occur.

4.3. Concluding Remarks

This Chapter presents the results of several empirical tests for immunization strate-

gies applied to German bonds in a period characterized by decreasing interest rates.

The superior M-Absolute performance shows that this is the best immunization strat-

egy to be applied in this environment, because it immunized non-parallel shifts while

not disregarding the parallel component, in line with the empirical results from Soto

and Prats (2002). In this sense, the added complexity of implementing the M-Absolute

strategy is clearly outweighed by its superior immunization results.
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The �ndings of Soto and Prats (2002) and Kittithawornkul (2008) regarding the

maturity bond are corroborated by this empirical analysis. Furthermore, the barbell

strategy�s results, explained by the high coupon rate bonds reinvestment in a favorable

environment, allied with the dominance of the coupon reinvestment e¤ect over the price

e¤ect corroborate the �ndings stated by Ingersoll et al. (1978) regarding the parallel

interest rate shifts on low and high coupon bonds. We also acknowledge that the fact

that strategies based in the clustering of cash-�ows around the maturity date have the

best performance shows that the term structure of interest rates has experienced both

parallel and non-parallel shifts.

As with any empirical study, the aforementioned conclusions cannot be extended

beyond the dataset and methodology applied. Hence, it would be interesting to see if

these results can be con�rmed in an increasing interest rate environment. This could be

a useful empirical test to the performance of the barbell portfolio, as this seems to clearly

be highly dependable of the interest rate environment that characterizes this dataset.

Other hypothesis could be stressed further, like the rebalancing frequency, to infer if a

lower rebalancing frequency (i.e. semi annual or annual) could improve the performance

of some strategies and, consequently, its immunization results, that seem to be burdened

with high transaction costs. It could also be tested if with other term structure model

estimation (either parametric or stochastic) the same results would be obtained in order

to assess to what extent the estimation results might be in�uenced by the method used to

estimate the term structure of interest rates. As for the M-Vector strategies, the results

shown here do not con�rm the near-perfect hedging performance stated by Nawalkha

and Chambers (1997) and Kittithawornkul (2008). In this sense, di¤erent speci�cations

for the M-Vector, such as logarithms, polynomials or other generalizations, could also

be applied.
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Table 4.1: German Bunds Dataset

This table contains a description of the overall bondset selected to implement the immunization
strategies described in Chapter 3. The bond subsets used in each portfolio were selected taking into
account the restrictions included in Table 3.1.

ISIN Description Coupon Issue Date Maturity Date

DE0001134864 DBR 8 07/22/02 8,00% 14/07/1992 22/07/2002

DE0001134906 DBR 6 1/2 07/15/03 6,50% 06/08/1993 15/07/2003

DE0001134930 DBR 6 3/4 07/15/04 6,75% 22/07/1994 15/07/2004

DE0001134989 DBR 6 1/2 10/14/05 6,50% 20/10/1995 14/10/2005

DE0001134997 DBR 6 01/05/06 6,00% 08/01/1996 05/01/2006

DE0001135036 DBR 6 07/04/07 6,00% 25/04/1997 04/07/2007

DE0001135051 DBR 5 1/4 01/04/08 5,25% 09/01/1998 04/01/2008

DE0001135127 DBR 4 1/2 07/04/09 4,50% 04/07/1999 04/07/2009

DE0001135150 DBR 5 1/4 07/04/10 5,25% 05/05/2000 04/07/2010

DE0001135184 DBR 5 07/04/11 5,00% 25/05/2001 04/07/2011

DE0001135200 DBR 5 07/04/12 5,00% 05/07/2002 04/07/2012

DE0001135218 DBR 4 1/2 01/04/13 4,50% 10/01/2003 04/01/2013

DE0001135259 DBR 4 1/4 07/04/14 4,25% 28/05/2004 04/07/2014

DE0001135267 DBR 3 3/4 01/04/15 3,75% 26/11/2004 04/01/2015

DE0001135291 DBR 3 1/2 01/04/16 3,50% 25/11/2005 04/01/2016

DE0001135317 DBR 3 3/4 01/04/17 3,75% 17/11/2006 04/01/2017

DE0001135358 DBR 4 1/4 07/04/18 4,25% 30/05/2008 04/07/2018

DE0001135374 DBR 3 3/4 01/04/19 3,75% 14/11/2008 04/01/2019

DE0001135390 DBR 3 1/4 01/04/20 3,25% 13/11/2009 04/01/2020

DE0001135424 DBR 2 1/2 01/04/21 2,50% 26/11/2010 04/01/2021

DE0001135473 DBR 1 3/4 07/04/22 1,75% 13/04/2012 04/07/2022

DE0001134922 DBR 6 1/4 01/04/24 6,25% 04/01/1994 04/01/2024

DE0001135044 DBR 6 1/2 07/04/27 6,50% 04/07/1997 04/07/2027

DE0001135069 DBR 5 5/8 01/04/28 5,63% 23/01/1998 04/01/2028

DE0001135143 DBR 6 1/4 01/04/30 6,25% 21/01/2000 04/01/2030

DE0001135176 DBR 5 1/2 01/04/31 5,50% 27/10/2000 04/01/2031

DE0001135226 DBR 4 3/4 07/04/34 4,75% 31/01/2003 04/07/2034

DE0001135275 DBR 4 01/04/37 4,00% 28/01/2005 04/01/2037
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Table 4.1: continued

ISIN Description Coupon Issue Date Maturity Date

DE0001135325 DBR 4 1/4 07/04/39 4,25% 26/01/2007 04/07/2039

DE0001135366 DBR 4 3/4 07/04/40 4,75% 25/07/2008 04/07/2040

DE0001135432 DBR 3 1/4 07/04/42 3,25% 23/07/2010 04/07/2042

DE0001135481 DBR 2 1/2 07/04/44 2,50% 27/04/2012 04/07/2044
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Table 4.2: German Bunds Observed and Estimated Interest Rates
Comparison

This table is composed by two panels. Panel A contains the absolute average and standard deviation
of the di¤erence between market interest rates collected from Deustsche Bundesbank and estimated
interest rates using the Nelson and Siegel (1987) parametric extraction method (values in basis
points) and the correlations between the aforementioned interest rates for each maturity included in
this dataset. It is possible to see that the values are very high, which implies a very strong positive
correlation between estimated and observed interest rates. Panel B presents the results for the t-test
of equality of means. For all the maturities presented we do not reject the null hypothesis of equality
of the observed and estimated interest rate means.

Panel A - Absolute Di¤erences and Correlations
Maturities (years)

0,5 1 2 3 5 10 20 30

Average
(b.p.)

3,60 10,78 11,94 28,25 35,50 15,01 6,33 1,95

Standard
deviation
(b.p.)

28,66 32,44 34,88 36,88 35,40 9,14 21,01 13,13

Correlation
(%)

98,35 98,34 97,38 97,40 98,17 99,82 99,39 99,91

Panel B - Mean interest rate equality tests
Maturities (years)

0,5 1 2 3 5 10 20 30

t-statistic -0,2115 -0,6146 0,7318 0,8728 1,4677 1,1854 -0,5084 0,1468

P-value 0,8326 0,5392 0,4648 0,3834 0,1431 0,2367 0,6115 0,8834
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Table 4.3: German Bunds 3-Year Immunization Results

This table is divided in two panels that include several metrics for the strategies de�ned in Table
3.1 for the 3-year horizon. Panel A contains the immunization coverage and performance metrics
explained in Chapter 3. LC is the average Liability Coverage Ratio, RC is the Relative Coverage
Ratio, ER is the average Excess Return and R=R is the Reward-to-Risk Ratio. The Relative
Coverage compares with the Naive Strategy (i.e. if the value for a given Strategy exceeds 100% then
the Strategy�s Average Liability Coverage is higher than the Naive Strategy). Panel B contains the
Immunization Costs metrics. Average Transaction Costs (TC) is expressed as a percentage of the
bond�s value and Average Turnover (T ) is expressed in quantities. The Transaction Costs Multiplier
(TCX) and Turnover Multiplier (TX) compare with the Naive strategy (i.e. if the value for a given
strategy exceeds 1 then that strategy has higher Transaction Costs and Turnover than the Naive
strategy).

Panel A - Immunization Coverage
and Performance

Strategy S LC (S) RC (S) ER (S) R=R (S)

Naive 109,84% � 0,29% 14,43%

Barbell 110,22% 100,36% 0,65% 23,08%

Bullet 109,18% 99,41% -0,31% -17,73%

M-Absolute 111,62% 101,63% 1,92% 87,33%

M-Squared 109,70% 99,88% 0,16% 8,47%

M1 109,22% 99,45% -0,27% -1,59%

M2 109,49% 99,68% -0,04% -0,31%

M3 109,40% 99,62% -0,10% -5,98%

M4 109,85% 100,02% 0,30% 15,14%

M5 109,92% 100,08% 0,36% 18,54%

Panel B - Immunization Costs

Strategy S TC (S) T (S) TCX (S) TX (S)

Naive 0,189% 12,10 � �

Barbell 1,534% 40,19 8,1 3,32

Bullet 0,536% 37,69 2,8 3,11

M-Absolute 0,151% 11,58 0,8 0,96

M-Squared 0,127% 10,00 0,7 0,83

M1 0,334% 24,85 1,8 2,05

M2 0,223% 16,72 1,2 1,38

M3 0,485% 34,16 2,6 2,82

M4 0,503% 33,84 2,7 2,80

M5 0,507% 32,05 2,7 2,65
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Table 4.4: German Bunds 5-Year Immunization Results

This table is divided in two panels that include several metrics for the strategies de�ned in Table
3.1 for the 5-year horizon. Panel A contains the immunization coverage and performance metrics
explained in Chapter 3. LC is the average Liability Coverage Ratio, RC is the Relative Coverage
Ratio, ER is the average Excess Return and R=R is the Reward-to-Risk Ratio. The Relative
Coverage compares with the Naive Strategy (i.e. if the value for a given Strategy exceeds 100% then
the Strategy�s Average Liability Coverage is higher than the Naive Strategy). Panel B contains the
Immunization Costs metrics. Average Transaction Costs (TC) is expressed as a percentage of the
bond�s value and Average Turnover (T ) is expressed in quantities. The Transaction Costs Multiplier
(TCX) and Turnover Multiplier (TX) compare with the Naive strategy (i.e. if the value for a given
strategy exceeds 1 then that strategy has higher Transaction Costs and Turnover than the Naive
strategy).

Panel A - Immunization Coverage
and Performance

Strategy S LC (S) RC (S) ER (S) R=R (S)

Naive 120,27% � 0,26% 9,50%

Barbell 120,45% 100,19% 0,45% 13,09%

Bullet 119,40% 99,30% -0,41% -15,88%

M-Absolute 122,90% 102,21% 2,37% 85,27%

M-Squared 119,89% 99,70% -0,05% -1,93%

M1 119,42% 99,31% -0,44% -17,45%

M2 119,50% 99,38% -0,38% -14,73%

M3 119,27% 99,21% -0,55% -10,82%

M4 118,76% 98,78% -0,98% -36,44%

M5 118,93% 98,93% -0,83% -27,29%

Panel B - Immunization Costs

Strategy S TC (S) T (S) TCX (S) TX (S)

Naive 0,183% 12,31 � �

Barbell 1,449% 39,66 7,9 3,22

Bullet 0,655% 48,86 3,6 3,97

M-Absolute 0,091% 7,85 0,5 0,64

M-Squared 0,072% 6,30 0,4 0,51

M1 0,215% 18,46 1,2 1,50

M2 0,154% 13,06 0,8 1,06

M3 0,341% 25,29 1,9 2,05

M4 0,439% 29,70 2,4 2,41

M5 0,488% 31,64 2,7 2,57
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Figure 4.1: German Bunds Nelson-Siegel Estimation Errors

The �gure contains a comparison between Market Interest Rates from Deutsche Bundesbank and Es-
timated Interest Rates with the Nelson-Siegel parametric extraction method for the selected monthly
interest rates. The chart can be interpreted as follows: the horizontal bar is the average rate for
that maturity and the vertical bar contains the minimum and maximun interest rates, during the
sample period for each maturity. It is visible that market interest rates and estimated interest rates
have a similar pattern in all the maturities presented. This means that their distributions are very
close, which is con�rmed by the results shown in Table 4.2.
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Figure 4.2: German Bunds Interest Rates

This �gure contains the nominal yields for the 1, 3, 5 and 10-year maturities between January 2001
and December 2014. It is observable that in the beginning of 2001 interest rates are fairly high
and tend to decrease until December 2003 in a highly volatile interest rate environment. Between
December 2003 and December 2007 interest rate increase with some �attening. From December 2007
until December 2012 we face a sharpe decrease towards negative interest rates in the short sector
(1- and 3-year maturities), while the 5- and 10-year maturities also exhibit a decreasing tendency
but with a small in�exion in 2009. For the medium sector we see a slight increase in interest rates
in 2013 followed by a sharp decrease in interest rates until year-end 2014.
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Figure 4.3: German Bunds Yield Curve

This �gure contains the year-end term structure of interest rates from 2001 to 2014, as estimated by
the Deutsche Bundesbank. It is possible to observe that the term structure of interest rates assumes
several shapes during the sample period. Between 2001 and 2004 the curve has a concave shape with
some �attening movements in the short sector, evolving to a quasi-�ate structure between 2005 and
2007. From 2008 to 2013 we resume the concave curve with a sharp steepening in the maturities
below 10 years, explained by the signi�cant decrease in interest rates. The curve starts to �atten
again in 2014 while showing negative interest rates in the short sector.
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CHAPTER 5

Single Liability Immunization: Strategies for U.S. Treasuries

and U.S. Treasury In�ation Protected Securities

This Chapter�s purpose is twofold: it aims to apply several immunization techniques

to the U.S. bond market in order to (i) assess which produces the best results and (ii)

assess to what extent the results vary when we use nominal or real bonds.

The immunization strategies described in Chapter 3 will be applied to nominal U.S.

Treasury Bonds (Treasuries) and to real U.S. Treasury In�ation Protected Securities

(TIPS). The comparison with nominal and real bonds is aimed at seeing which bond

type produces the best immunization results for each strategy. In this sense, the aim is

not to compare these bond datasets with each other, but only to see to what extent the

results may vary, since U.S. TIPS are less liquid than U.S. Treasuries. Therefore, in this

Chapter we will only focus on the real component of TIPS. The in�ation component

will be included in Chapter 6. Will the liquidity factor allow for di¤erent immunization

results? Will the asset turnover erode the returns due to higher transaction costs? These

are some of the queries we aim to answer in this Chapter.

The Chapter is structured as follows: section 5.1 de�nes the U.S. Treasuries and U.S.

TIPS security design. Section 5.2 contains a characterization of the U.S. Treasury and

TIPS bond market and a thorough analysis of the U.S. nominal and real term structure

of interest rates within the sample period and Section 5.3 discusses the empirical results

obtained for each dataset. The last section summarizes our conclusions and proposes a

way forward for future research.

56



5.1. U.S. Security Design

Treasuries are de�ned by Fabozzi and Fleming (2002, p. 186) as �coupon securities

(...) issued with a stated rate of interest, pay interest every six months, and are redeemed

at par value (or principal value) at maturity�. Hence, Treasuries are bonds that pay a

�xed coupon and principal amount and whose implied rate of return is nominal (i.e. its

rate accounts for both real investment return and in�ation accrual). The estimated fair

value of a U.S. Treasury (BUST ) can be found below1:

BUST (0) =
nX
t=1

ct
x
� �N (0; t) + FV � �N (0; n) ; (5.1)

where cN is the annual nominal coupon paid at time t, x is the number of times per year

the coupon is paid, FV is the principal amount due at time n when the bond is redeemed

and �N (0; t) is the nominal spot discount factor for the residual maturity where every

cash-�ow is due.

A broad de�nition proposed by Deacon, Derry and Mirfendereski (2004, p. 1) for se-

curities that are linked to in�ation is �securities (. . . ) designed to help protect borrowers

and investors alike from changes in the general level of prices in the real economy�. Bryn-

jolfsson (2002, p. 203) provides a more speci�c de�nition for in�ation-linked bonds, as

�bonds that are contractually guaranteed to protect and grow purchasing power�. Wrase

(1997) states the main objectives surrounding the issuance of these bonds, that started

in January 1997, as useful for investors that want to protect their investments from

in�ation or that wish to diversify their portfolios and also for investors whose liability

structure varies with in�ation, such as insurers, pension funds or companies whose rev-

enues are indexed to in�ation. Apart from literature contributions, one can de�ne TIPS

as bonds which allow for in�ation risk protection, since they provide a �xed real interest

rate return plus a �oating return indexed to a broad in�ation measure, in both coupon

and principal payments. This way an investor that buys in�ation-linked bonds will earn

1Please refer to section 3.2.1. Preliminary Notation.
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a return that is not only interest rate driven but also protects him from in�ation �uctu-

ations, thus not eroding his purchasing power through his investment horizon. Hence,

these bonds can be seen as a combination of two instruments: one with a real determin-

istic component and other that accounts for in�ation. This way, the real estimated fair

value of a U.S. TIPS (BTIPSR) can be de�ned as stated below.

BTIPSR (0) =
NX
t=1

cRt
x
� �R (0; t) + FV � �R (0; n) ; (5.2)

where cRt is the annual real coupon paid at time t, x is the number of times per year the

coupon is paid, FV is the principal amount due at time n when the bond is redeemed

and �R (0; t) is the real discount factor for the residual maturity where every cash-�ow is

due. As stated above, we will only consider the real component of the U.S. TIPS in this

Chapter. This is possible because this bonds�market quotes, collected from Bloomberg,

do not include the in�ation accrual. It is also this fact that allows for a straightforward

computation of the real term structure of interest rates using the Nelson and Siegel

(1987) parametric approach and for the straightforward application of the methodology

de�ned in Chapter 3, by adjusting coupon cR and the j-th bond�s value by BTIPSR (0).

Regarding the total value paid in nominal terms, in a broad sense, the settlement price

of this bonds is computed as

PTIPS (0) = [RQ (0) +RAI (0)]� IR (0) ; (5.3)

where PTIPS (0) is the nominal dirty payable price for a U.S. TIPS, RQ (0) is the real

quoted price for a U.S. TIPS, RAI (0) is the real coupon accrued interest and IR (0) is

the Index Ratio for the settlement date. As depicted above, the in�ation component of

these bonds is estimated and included in the price to pay through the Index Ratio and

it is not known at time t. Further elaboration on this matter is done in Chapter 6, but,

58



for the sake of clarity, further details on the valuation of these bonds are included in

Appendix A.

There have been several contributions in the literature regarding the pricing of TIPS.

Our work is focused on the immunization abilities of these bonds and we have available

all the market information needed to achieve this purpose. With market prices, in�ation

rates and interest rates available, we do not need to theoretically value these bonds.

The application of the above formulas will be enough. However, it is of the utmost

importance to mention the most important pricing methods related to these bonds and

we will do so in the remainder of this section.

One of the most meaningful articles regarding TIPS pricing is the Jarrow and

Yildirim (2003) model. This model is based in a foreign currency analogy, where the

nominal rates are modelled as the domestic currency rates, the real rates are modelled as

the foreign currency rates and the in�ation rate is assumed to be the spot exchange rate

that links both economies. Both nominal and real economies are modelled to be Gauss-

ian Heath et al. (1992) economies, since the volatility and the drift of the instantaneous

forward rate are assumed to be deterministic. Moreover, the volatility of the in�ation

index is also assumed to be deterministic, which implies that the in�ation index follows

a geometric Brownian motion. Hence, the logarithm of the in�ation index process is

normally distributed.

Chen, Liu and Cheng (2005) Value TIPS by applying an analytical two-factor Cox,

Ingersoll and Ross (1985) model with correlated real rates and in�ation, which has the

advantage of allowing the explicit modelling of the structure of in�ation risk premium

by estimating endogenously the correlation between real instantaneous interest rates

and in�ation. This addresses one of the limitations of the Jarrow and Yildirim (2003)

model of not including risk premium modelling, by assuming the real interest rates and

in�ation are not independent, even though this means that Chen et al. (2005) model will

not bene�t from the mathematical tractability that the Jarrow and Yildirim (2003) has.

Chen et al. (2005) also acknowledge that the di¤erence between the nominal and real
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interest rates, perceived as expected in�ation, will also contain an embedded in�ation

risk premium. This is one of the reasons put forward by Chen et al. (2005) for the

non-compliance of their model with the Fisher (1930) equation. The authors also state

that this could be due to other factors they do not consider in their research such as

the TIPS liquidity premium or the estimation of the real term structure of interest rates

directly from TIPS that compare with the constant maturity treasury rates used for

nominal instantaneous interest rates computed by the St. Louis Federal Reserve Board.

Hence, the real instantaneous rates estimation might not be as smooth and will most

likely be noisier than the nominal instantaneous rates used.

Falbo, Paris and Pelizzari (2010) put forward a mixed model using a Vasiµcek (1977)

model for instantaneous in�ation rate processes and a Cox et al. (1985) model for the

nominal instantaneous interest rate, extracting the real instantaneous interest rates by

taking the di¤erence between nominal and in�ation rates. The authors try to address

some shortcoming of the previous models by using this approach. For instance, they use

the Vasiµcek (1977) model for in�ation because this model will allow in�ation rates to

become negative, thus being more realistic. They also apply the Cox et al. (1985) model

to eliminate two strong hypothesis from the Jarrow and Yildirim (2003) model regarding

interest rate modelling: (i) Gaussian independence and (ii) non-negativity of interest

rates. The non-negativity of interest rates and in�ation rates is also an assumption of

the Chen et al. (2005) that Falbo et al. (2010) do not consider. The authors succeed in

achieving a closed-form equation for the price of TIPS that accounts for the modelling

of economies during de�ationary periods but the implied computational burden of this

model is also assumed to be one of the major setbacks, which ultimately will impair this

approach to become a market standard for valuation of TIPS.

Other authors have also used econometric approaches to value TIPS, from which we

highlight Campbell, Shiller and Viceira (2009) consumption-based pricing model using a

vector autoregressive approach that relates the modelling of the real interest rate, while

accounting for the economic contribution behind Consumer Theory. Their goal is to
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relate the evolution of the real interest rates with the implications of the expectations

hypothesis and to infer how short term shocks in the real interest rate can be propagated

along the real term structure of interest rates. In this sense, Campbell et al. (2009)

�ndings show that TIPS, when added to mixed asset portfolios, reduce their variance in

the long run by eliminating idiosyncratic risks, thus being risk-e¢ cient assets.

There is also a wide array of research available regarding the pricing of in�ation-linked

bonds through the modelling of the interest rates and in�ation. Ang, Bekaert and Wei

(2008) apply an econometric regime-switching a¢ ne autoregressive and moving average

model to study the correlation between real rates, expected in�ation and in�ation risk

premiums and determine to what extent these e¤ects explain the structure of the U.S.

nominal term structure of interest rates. This formulation allows for the stochastic

modelling of in�ation and real interest rates. Even though Ang et al. (2008) �nd that

the dynamics of these variables are constant over time, their drifts are not, and the

inclusion of the regime-switching component allows for a more reality driven modelling

which is �t to the very long horizon of the studied dataset (1952 to 2004). Their main

�ndings imply that even taking into account Jensen�s inequality and convexity bias

associated with in�ation compensation (that is assumed to be the di¤erence between

nominal and real interest rates), the one-year in�ation risk premium is estimated to be

1 basis point. When considering estimating longer term in�ation risk premiums, this

value will be increasing with the maturity of the bonds. They also �nd that the in�ation

compensation is the main driver for changes in the nominal interest rates, accounting

for about 80% of the variation of nominal interest rates, irrespective of their maturities,

and also for the nominal interest rate spread for long horizons.

D�Amico, Kim and Wei (2014) work also study the liquidity risk premium using

no-arbitrage term structure models and �nd that there is a persistent liquidity premium

component in TIPS that could hamper the ability to use the in�ation compensation

estimates as a proxy for year-on-year future in�ation. This �nding does not undermine

the �ndings from Ang et al. (2008) since D�Amico et al. (2014) dataset relies on a smaller
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time period (from 1999 to 2013). In addition, the authors also acknowledge that other

research, with di¤erent datasets, produces di¤erent values for the in�ation risk premium,

often negative at shorter maturities. Hence, the results presented by D�Amico et al.

(2014) seem to be highly dependent on the business cycle embedded in the dataset

used. Chen, Liu and Cheng (2010) also study in�ation risk and the term structure

of in�ation risk premium in U.S. TIPS by applying a two-factor correlated Cox et al.

(1985) model to a dataset that spans between 1998 and 2007. Their work also addresses

the aforementioned limitation of the Jarrow and Yildirim (2003) by assuming that real

interest rates and in�ation are correlated and thus estimating all parameters within the

model. The authors �nd that the correlation between the instantaneous real interest

rate and the instantaneous in�ation factor is positive and signi�cant and in�uences the

estimated in�ation risk premium, that is estimated to be 1,95 basis points for one-year

horizon. Chen et al. (2010) also �nd that, although the in�ation risk premium tends to

be stable over time, its term structure is positively sloped, which con�rms the �ndings

from Ang et al. (2008).

The research regarding in�ation risk premium is not con�ned to the U.S. TIPS

market. Hördahl and Tristani (2012) use a joint macroeconomic and term-structure

model to estimate the dynamics of in�ation risk premium in the Euro Area between

1999 and 2007, with a dataset of bonds issued by the French Government. The authors

estimate the in�ation risk premium over nominal Euro Area 10-year yields to be about 20

basis points and also acknowledge that the term structure for this in�ation risk premium

is upward sloping, thus con�rming that the �ndings of Ang et al. (2008) and D�Amico et

al. (2014) regarding the term structure of the in�ation risk premium can be transposed

to other markets.

Pericoli (2014) estimates the real term structure of interest rates using smoothing

B splines to price French in�ation linked bonds, indexed to both the French CPI and
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the Euro Area ex-tobacco Harmonized CPI2. The author �nds that the smoothing B

splines are superior to other parametric approaches to extract the term structure of real

interest rates, such as the Nelson and Siegel (1987) as the obtained results are more

stable over time. However, Pericoli (2014) also acknowledges that the aim of his work is

to obtain smooth forward curves that are �exible enough to capture movements in the

term structure of interest rates as a way to supply a market measure that can be used for

monetary policy purposes and not to achieve high price precision for all bonds available

in the markets. This way, notwithstanding the meaningful contribution for monetary

policy and central banking purposes, the works of Pericoli (2014) might be di¢ cult to

transpose to asset pricing and �nancial markets, where the aim is to price accurately all

assets and develop models that adhere the reality and movement of markets as much

and as quick as possible.

Evans (2003) introduces a Markov-switching Cox et al. (1985) model to estimate

the term structure of nominal and real interest rates and in�ation compensation using

data from the United Kingdom from 1983 to 1995. The author�s aim is to assess how

accurately the term structure captures changes in future yields and in�ation and it also

addresses the estimation of the term structure of in�ation risk premium. However, Evans

(2003) model goes further by introducing the Markov-switching component that allows

for the identi�cation of three distinct in�ation regimes: (i) slowing rising in�ation, (ii)

quickly rising in�ation and (iii) slowly falling in�ation, while allowing for the study of

the behavior of the in�ation risk premium in the United Kingdom in the three di¤erent

regimes. Evans (2003) acknowledges that the ability to infer a good proxy for the

in�ation expectations from nominal and real interest rates depends on the size of the

in�ation risk premium, thus implying that it is not possible to estimate the level of

future in�ation by taking the di¤erence between nominal and real interest rates due

to the size of the in�ation risk premium across states and horizons. Hence, to get a

2The French Government issues in�ation-linked bonds using two di¤erent series of in�ation indexes.
The �rst issues were linked to the French CPI and, after the introduction of the Euro currency, other
series of issues linked to the Euro Area ex-tobacco HICP was introduced.
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feasible estimation of the in�ation risk premium and in�ation compensation, one needs

to acknowledge beforehand what is the state behind the evolution of in�ation.

5.2. U.S. bond data and term structure of interest rates

The datasets applied in this study are composed of U.S. Treasuries and Treasury

In�ation Protected Securities (TIPS) data gathered from Bloomberg and nominal and

real interest rates gathered from the U.S. Department of the Treasury3. These rates are

computed using the cubic splines parametric extraction approach.

The bond datasets used comprises daily bid and o¤er prices from 52 U.S. Treasuries

and 19 U.S. TIPS with maturities that range from 2 to 30 years, selected taking into

account the total amount issued and the bid-o¤er spread. As in the previous Chapter

(and for the same reasons) the objective was to use on-the-run bonds with a high degree

of liquidity. Price data was gathered between January 2000 and December 2014. All the

issued bonds pay semi-annual coupons, as this is the standard in the U.S. markets.

As in the German market, the most liquid U.S. Treasury issuances are included in the

delivery basket of the futures contracts issued on these bonds4 and, for this dataset, this

criteria was crucial to select the most liquid (on-the-run) bonds, taking into account that

the eligible universe comprised over 500 bonds, as the U.S. Treasuries is currently the

biggest bond market with a total outstanding debt of $19,5 trillion as of September 2016.

As in the German dataset, zero coupon bonds, principal or interest rate strips and bonds

with embedded options (i.e. callable and puttable bonds) have been discarded from the

dataset. All the bonds considered have nominal coupons whose annual value ranges from

0,25% to 11,625%. The huge discrepancy among coupons shows the evolution of interest

rates throughout the considered period. As in the previous Chapter, it is expected that

high coupon bonds could introduce some challenges to the immunization process, as

3Interest rate data is available in https://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/default.aspx
4The CBOT futures contracts issued have maturities of 2, 5 10 and 30 years, being the most liquid the
5- and 10-year series.
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these bonds tend to be more sensitive to negative interest rate shifts. Table 5.1 contains

the main features of the chosen U.S. Treasury bonds.

(insert Table 5.1 here)

As for the U.S. TIPS issuances, the selection process was simpler because its issuance

is more recent and less widespread than U.S. Treasuries. U.S. TIPS address a speci�c

segment of investors, like insurance companies and pension funds, whose primary in-

vestment objective is to protect long-term investments from changes in the in�ation

rate. This also explains the lower liquidity, as these investors have a buy-and-hold pro-

�le (hence the stock available for regular trading activities is lower for these bonds).

Consequently, all the 19 on-the-run bonds alive from January 2000 to December 2014

were selected5. The annual coupon value ranges from 0,125% to 4,25%, showing less

amplitude than the U.S. Treasury peer bonds. Even so, the coupons are also decreasing

with time (i.e. U.S. TIPS issued throughout the considered sampled period tend to have

lower annual coupons as time goes by). Table 5.2 contains the main features of the

chosen U.S. TIPS bonds.

(insert Table 5.2 here)

Once again, the idiosyncratic risks discussed by Díaz et al. (2008) are not a con-

cern since the bonds selected for the U.S. Treasuries and U.S. TIPS dataset are very

similar. In this sense the issue could arise only for the U.S. TIPS dataset, where no

pre-screening of the bonds is done but these bonds characteristics are homogeneous. No

strips, embedded options or futures contracts exist for these bonds.

As in the previous Chapter, for nominal rates, we applied the Nelson and Siegel

(1987) parametric extraction method de�ned in equation (3.1) to infer the parameters

5The eligible universe for U.S. TIPS comprises 48 bonds. However, 29 bonds have been excluded due
to severe liquidity issues (i.e. lack of prices for several weeks or months). No further selection criteria
have been aplied.
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using the known daily interest rates computed by the U.S. Department of the Treasury,

whose residual maturities (t) range from 6 months to 30 years, to obtain the continuous

discount function curve as depicted in equation (3.2). The reason is the same - the need

to obtain a continuous discount function for the term structure of interest rates for the

immunization process, as depicted in equation (3.2) to infer the discount factors for non-

standard and non-published maturities. We recall the reasoning presented in Chapter

3 for the application of the Nelson and Siegel (1987) parametric approach. Once again,

we will apply the Nelson and Siegel (1987) parametric approach since it seems to be the

one that better suits our needs:

(i) it is highly tractable and economically intuitive;

(ii) serves our main purpose of testing for immunization procedures while still cap-

turing the distressed events that stir interest rates, and that could jeopardize the e¤ec-

tiveness of the applied immunization strategies;

(iii) it allows to clearly identify the cause of a given shift in the term structure of

interest rate;

(iv) it is possible to estimate for all datasets analyzed, thus not inducing any bias to

the empirical tests we wish to perform.

Furthermore, we have an active constraint to the estimation of real interest rates

due to the lower liquidity and number of bonds issued when compared to the nominal

interest rates.

For real interest rates the approach depicted in equation (3.2) would not be feasible

due to the fact that no real rates prior to the 5-year maturity were available. The

inexistence of estimates for maturities below the 5-year is explained by the use of on-the-

run bonds for the estimation (as is done for the U.S. Treasuries) by the U.S. Department

of the Treasury. As highlighted above, these bonds are used by speci�c market segments

and this explains the inexistence of on-the-run bonds for maturities below 5 years. Hence,

this term structure has been estimated using U.S. TIPS instead of the rates gathered

from the U.S. Department of the Treasury. We minimize the mean square price errors, as
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depicted in equation (3.3), for the overall U.S. TIPS dataset in order to obtain estimated

interest rates for maturities below the 5-year maturity. Although the extraction process

is di¤erent, since it is applied to bonds instead of spot interest rates, the objective is

similar, i.e. to obtain a continuous discount function for the term structure of interest

rates for the immunization process, as depicted in equation (3.2).

The mean square price error obtained for the overall sampling period and dataset

are 0,0016 basis points and the standard deviation of this measure is 0,021 basis points.

The disaggregated values for the mean square prince error (and respective standard

deviation) for each U.S. TIPS are included in Table 5.3. The mean square prince error

between the observed and the estimated prices range from 0 to 0,0079 basis points and

the standard deviation varies between 0 and 0,1664 basis points. Table 5.3 also includes

the correlations between estimated and real prices for each U.S. TIPS. These values are

fairly high, ranging from 76,98% to 99,89%.

(insert Table 5.3 here)

We also replicate the analysis presented in the previous Chapter for observed market

rates from the U.S. Department of the Treasury and estimated rates from the Nelson and

Siegel (1987) parametric extraction method. The results are depicted in Figure 5.1 and

in Panel A of Table 5.4 for the nominal interest rates. The absolute average di¤erence

between the observed and the estimated rates lies between 10,5 basis points (0,5-year

maturity) and 27,7 basis points (3-year maturity), which deems a high goodness-of-�t for

the Nelson and Siegel (1987) estimation. The standard deviation of the di¤erence is also

low, ranging from 3,32 basis points (10-year maturity) to 27,74 basis points (0,5-year

maturity). The correlation coe¢ cients lie between a minimum of 98,40% for the 20-year

maturity and a maximum of 99,98% for the 5-year maturity.

(insert Figure 5.1 and Table 5.4 here)
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Panel B of Table 5.4 contains the results of the t-test of equality of means for the

maturities used to �t the Nelson and Siegel (1987) model. The test is performed as

formulated in equation (4.1) and the null hypothesis H0 is rejected if the p-value is

equal or below the 0,05 threshold. Again, we fail to reject the null hypothesis for every

maturity, even though we have p-values that range from 0,2196 (30-year maturity) to

0,9588 (5-year maturity).

As for the real interest rates, although we have already presented the results for U.S.

TIPS market and estimated prices, we replicate this analysis for the sake of complete-

ness and include the results in Figure 5.2 and Table 5.5. The analysis is presented for

maturities above 5-years, for the reasons explained previously. The absolute average

di¤erence between the observed and the estimated rates lies between 0,55 basis points

(10-year maturity) and 28,41 basis points (5-year maturity) and the standard deviation

of the di¤erence is also low, ranging from 9,16 (20-year maturity) basis points to 25,24

basis points (5-year maturity).

(insert Figure 5.2 and Table 5.5 here)

As for the t-test of equality of means between the observed market interest rates and

the estimated interest rates, we fail to reject the null hypothesis for every maturity, even

though we have p-values that range from 0,3141 (5-year maturity) to 0,9604 (10-year

maturity).

Figure 5.3 depicts the evolution of nominal interest rates. It can be observed that

the underlying tendency is towards low interest rates during the sample period, with

particular emphasis between January 2000 and January 2004 and between January 2007

and December 2008, where a signi�cant downward movement occurred, namely in the 1-

and 3-year maturities. The huge adjustment in nominal interest rates is also visible in

Figure 5.4, namely in the short end of the term structure of interest rates (i.e. maturities

below 5 years), where the downward movements have been more pronounced.
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(insert Figure 5.3 and Figure 5.4 here)

A similar analysis is done for real interest rates, as shown in Figures 5.5 and 5.6.

The underlying tendency towards low interest rates is also visible for real interest rates.

However, the pattern is not similar. The periods where real interest rates decrease

sharply are between 2000 and 2005 and again between 2009 and 2012. The di¤erence

between the two term structures is the evolution of in�ation, which increased between

2004 and 2006. The term structures of interest rates also show this pattern. However,

the decrease seems to be similar throughout the whole term structure of interest rates

except in 2014, where an inversion is visible in the short end of the term structure of

interest rates.

(insert Figure 5.5 and Figure 5.6 here)

5.3. Results

Prior to addressing the results for each dataset independently, we reiterate the remark

done in the previous Chapter regarding the maturity bond. The empirical results from

Soto and Prats (2002) and Kittithawornkul (2008) are once again replicated in this

analysis, as the maturity bond is once again included in all the portfolios built for all

the immunization strategies tested for both datasets. This way, the inclusion of the

maturity bond is not trivial and seems to be as important as the immunization strategy

chosen. We also reiterate that, in this Chapter, TIPS have been addressed taking into

account only their real component and that the portfolios whose results are presented

below have been estimated independently and comprise only Treasuries or TIPS bonds

as we are not creating mixed portfolios nor attempting to compare Treasuries and TIPS.

We are only comparing their immunization abilities towards a single �xed liability with

the objective of assessing to what extent liquidity plays a role in the immunization

procedure applied.
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5.3.1. U.S. Treasuries

The results obtained for both 3- and 5-year immunization horizons are presented in

Tables 5.6 and 5.7.

(insert Table 5.6 and 5.7 here)

In what regards the immunization results, the �rst conclusion is the same derived

from the German dataset used in the previous Chapter: the good performance of the

naïve strategy, that allows for an excess liability coverage of about 11% and 23% in

each immunization horizon. This is mainly due to the coupon reinvestments and can

be explained not only by the high coupon rates of the bonds used but also due to

the decreasing interest rates throughout the time horizon of the immunization sampled

period. Hence, this allows to further conclude that carrying high coupon bonds in a

low interest environment is bene�cial to the immunization process. As in the German

case, when reinvesting these coupons into the portfolio, we obtain a gain associated

with the excess coupon value because the interest rates are decreasing throughout the

investment horizon. We also obtain a loss associated with bond prices increases that

erode the portfolio value. These two e¤ects - coupon reinvestment e¤ect and price e¤ect

- behaving similarly to the income and price e¤ect of consumer demand theory, as stated

by Bierwag and Grove (1968), and tend to cancel each other out. However, what we verify

in our analysis is that, as high coupons were reinvested at rates that were decreasing

throughout the investment horizon, the portfolio gained extra value that was yet again

reinvested in the portfolio. In this sense, the coupon reinvestment e¤ect will not cancel

the price e¤ect associated with these bonds�rising prices and the high coupon will allow

an extra gain for the portfolio, corroborating the �ndings of Fisher and Weil (1971)

and Bierwag and Kaufman (1978). The valuation driven by the coupon reinvestment

e¤ect will also show up in all other strategies, even though transaction costs and higher

turnover volumes might erode these gains in some cases.
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As for the bullet and barbell portfolios, it stands out the barbell portfolio�s superior

performance while the bullet portfolio has lower results. The amazing returns associated

with the barbell portfolio are due to the expressive downward movement of the interest

rates, as shown in Figure 5.3. Besides that, the term structure of interest rates has also

steepened quite sharply, and this explains the positive carry associated with both longer

maturing bonds and also high coupons paid and reinvested into the portfolio. This allows

for an average excess return of 5,44% and 3,33% for the 3-year and 5-year investment

horizons and high Reward-to-Risk Ratios. Even so, this is also achieved with high

turnover and transaction costs (i.e. for the 3-year immunization horizon this strategy

shows the highest transaction costs and turnover). These are also the most volatile

portfolios, therefore these results could easily have been worse in an increasing interest

rate environment. These results con�rm the empirical results presented by Bierwag and

Kaufman (1978). The bullet portfolios perform marginally worse than the naïve strategy

but exhibit lower average excess return and Reward-to-Risk Ratio statistics. This can

be explained by the higher transaction costs and turnover that erode the returns (bear

in mind that the naïve strategy transaction costs are only due to coupon reinvestments).

As for the M-strategies, the M-Absolute shows the best results in both immuni-

zation horizons, as it had already been seen in the German immunization case. The

excess return of the strategy is 0,76% for the 3-year investment horizon and 1,44% for

the 5-year investment horizon and the correspondent Reward-to-Risk Ratios are 34%

and 48%. This bond clustering strategy also allows for lower turnover than the naïve

portfolio, even though, naturally, the transaction costs are higher. This is consistent

with lower quantities of each bond reinvested in each rebalancing period to achieve total

immunization due to the nested positions around the maturity of the portfolio and even

though the transaction costs are higher, this does not seem to have an impact in the

average excess return for the 5-year investment horizon, where the results are close to

the naïve strategy. This is in line with the results from Soto and Prats (2002).
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The M-Squared strategies achieve lower results than the M-Absolute strategy, namely

in the 5-year immunization horizon. The average transaction costs and turnover are

lower in the 3-year strategy, which could imply that the M-Squared could be more cost

e¢ cient than the M-Absolute strategy. This is not the case because the M-Squared

strategy returns are slightly more volatile (2,52% and 2,99% in the 3-year and 5-year

immunization horizons, respectively) than the M-Absolute strategy returns (2,23% and

2,95% in the 3-year and 5-year immunization horizons, respectively), supporting Bier-

wag et al. (1993). Since this strategy accounts for the second order e¤ect of the term

structure of interest rates movements, this pattern also supports the barbell strategy

outperformance being related to the steepening of the term structure of interest rates

in the short sector, as this is an example of a slope adjustment, corroborating Bierwag

(1977).

As for the M-Vector strategies, for the 3-year horizon, the M1 strategy has better

results than the M-Absolute strategy, but the average transaction costs and turnover are

three times higher. This outperformance is also not visible in the 5-year M1 strategy. As

for the other M-Vector strategies, in the 3-year immunization horizon the M1 and M4

strategy also achieve good results, with higher average excess returns and Reward-to-

Risk Ratios than the M-Absolute strategy (the M1 strategy even achieves higher results

than the naïve strategy). Yet again, this also comes at average transaction costs and

turnover, deeming these strategies less cost e¢ cient. In the 5-year immunization horizon

the M-Vector strategies overall underperform the M-Absolute and naïve strategies. Once

again, these results are not in line with the empirical results presented by Nawalkha and

Chambers (1997) and Kittithawornkul (2008).

As in the German case, it is also shown that the M-Squared strategy can achieve

good immunization results without accounting for the �rst order e¤ect of immunization,

as this strategy outweighs the M2 strategy in both immunization horizons. This �nding

is also consistent with the yield curve slope adjustment observed throughout the sample

period.
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5.3.2. U.S. TIPS

The results obtained for both 3- and 5-year immunization horizons are presented in

tables 5.8 and 5.9.

(insert Table 5.8 and 5.9 here)

In what regards the immunization results, the �rst conclusion is, yet again, the good

performance of the naïve strategy, that allows for an excess liability coverage of about

7% and 12% in each immunization horizon. Bear in mind that this only accounts for

the real interest rate immunization. Once again, the reason is straightforward and has

already been widely discussed in the previous section and in the previous Chapter. This

is mainly due to the coupon reinvestments and can be explained not only by the high

coupon rates of the bonds used but also due to the decreasing interest rates throughout

the time horizon of the immunization. Hence, this allows to further conclude that car-

rying high coupon bonds in a low interest environment is bene�cial to the immunization

process, since the reinvestment e¤ect outweighs the coupon e¤ect. As high coupons were

reinvested at rates that were decreasing throughout the investment horizon, the port-

folio gained extra value that was yet again reinvested in the portfolio. This valuation

also appears in all other strategies, even though transaction costs and higher turnover

volumes might erode these gains in some cases.

As for the bullet and barbell portfolios, these once again stand out but for di¤erent

reasons. The barbell portfolio has, again, an outstanding performance for both immu-

nization horizons. This is explained not only by the reinvestment of higher coupons

but also due to the aggressively steepening of the term structure of interest rates in the

short end, as we can recall from Figure 5.5, and as it was also acknowledged from the

U.S. Treasuries results. This way, the longer bonds�return more than compensated the

decreasing interest rates in the short end of the term structure of interest rates, that

also lead to higher average excess returns (1,26% and 1,4% for the 3-year and 5-year
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investment horizons respectively) and Reward-to-Risk Ratios (39,51% and 36,31% for

the 3-year and 5-year investment horizons respectively). Even so, this is only true due to

the combination of a decreasing interest rate environment and a pronounced steepening

of the term structure of interest rates. If it were the opposite, the most likely scenario

would be that the barbell portfolio would be the lowest performer. The bullet portfolio

has a similar performance to the naïve portfolio, but exhibits fairly high turnover (that

also account for the high transaction costs). This can be explained by the lower liquidity

of these bonds. Taking into account that the bullet portfolio is only composed by two

bonds, keeping the duration of the portfolio equal to the target duration of the liability

implies a higher turnover and transaction cost for this strategy and clearly this takes its

toll on performance.

As for the M-strategies, the M-Absolute shows again the best results in both immuni-

zation horizons, and stands out as the only strategy achieving two-digit Reward-to-Risk

Ratios (13,42% for the 3-year horizon and 10,55% for the 5-year horizon) due to the

low standard deviation and positive average excess return. It also exhibits low turnover

and transaction costs. Even so, it does not achieve the returns obtained by the barbell

portfolio but the signi�cantly lower turnover and transaction costs seem to imply that,

from a cost e¢ ciency perspective, this strategy might be better for immunization. The

di¤erence between the average excess return of these strategies is 0,85 percentage points

for the 3-year immunization horizon and 1 percentage point for the 5-year immunization

horizon while average transaction costs are about 1,6 and 1,3 percentage points higher

for the 3- and 5-year immunization horizon. This way, the loss in transaction costs

clearly do not compensate the higher return of the barbell portfolios when compared

to the M-Absolute portfolios. The M-Squared strategy also achieves a good coverage

and low transaction costs and turnover. However, the excess return and Reward-to-Risk

Ratios are negative.

The M-Vector strategies do not achieve better results than the naïve portfolio strate-

gies. For the 3-year investment horizon, the M-Vector strategies never have positive

74



returns or Reward-to-Risk Ratios while for the 5-year investment horizon it achieves

positive excess returns of 0,22% and 0,05% in the M4 and M5 strategies, with fairly high

turnover and transaction costs when compared to other strategies. When comparing the

M-Squared with M2, the results are di¤erent. In U.S. TIPS dataset, M2 strategies have

similar or higher average excess returns. This �nding can be explained, in this case, by

the dominant parallel e¤ect in the downward movement of interest rates. Although a

slope adjustment also occurs towards the end of the sampled period, this adjustment is

embedded with an inversion in the short end of the term structure of interest rates (the

hump observable in the 1-year residual maturity in Figure 3.4), that could also explain

this result.

As in the U.S. Treasuries dataset, the empirical results from Fisher and Weil (1971)

and Bierwag and Kaufman (1978) regarding coupon reinvestments and barbell portfolios

are also veri�ed in this dataset. Soto and Prats (2002) results favouring the M-Absolute

strategy when compared with the M-Squared strategy and Bierwag et al. (1993) re-

sults favouring the traditional bullet and barbell strategies when compared with the

M-Squared strategy are also acknowledged. Once again, the M-Vector results are not

in line with the empirical results presented by Nawalkha and Chambers (1997) and

Kittithawornkul (2008).

5.4. Concluding Remarks

This Chapter presents the results of several empirical tests for immunization strate-

gies applied to U.S. Treasuries and U.S. TIPS from 2000 to 2014, where signi�cant down-

ward interest rate movements have occurred. In this sense the immunization strategies

that achieve the best overall results are the barbell strategy and the M-Absolute strategy.

These results hold whether we use nominal or real bonds. As for the strategies based

in the clustering of cash-�ows around the maturity date, it is not clear cut that the M-

Absolute is the best strategy in the U.S. Treasuries dataset for the 3-year immunization

horizon. Even so, this is not the case for the 5-year horizon portfolio. In the U.S. TIPS
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case this strategy achieves superior results as it allows to immunize non-parallel term

structure of interest rates shifts while not disregarding the parallel component. For the

U.S. TIPS dataset we see that liquidity does play a role in the immunization strategies,

as the higher rebalancing costs take its toll on the strategies return. However, there

is also an upside to this e¤ect: we also see that the results from this dataset are more

stable which could also mean that illiquidity may work as a catalyst that avoids excessive

turnover in some strategies.

Other meaningful results are consistent with the empirical results achieved in the

German bond dataset presented in the previous Chapter. In both datasets the barbell

strategy�s good results are explained by the high coupon rate bonds reinvestment in a

favorable environment, corroborating again the �ndings stated by Ingersoll et al. (1978)

regarding the parallel interest rate shifts on low and high coupon bonds. The inclusion

of the maturity bond in all the immunization portfolios built for each immunization

strategy also corroborate the �ndings of Soto and Prats (2002) and Kittithawornkul

(2008).

As in the German case, it would be interesting to see if these empirical results can

be con�rmed in an increasing interest rate environment or with semi-annual rebalancing

frequency. This could help evaluating if the performance of some strategies is dependent

on the interest rate environment and if some strategies would have better immunization

results if the rebalancing frequency was lower. This could be a good empirical test in

favour of the M-Absolute strategy. It could also be empirically tested if with another

term structure model estimation (either parametric or stochastic) the same results would

be obtained in order to assess to what extent the estimation results might be in�uenced

by the method used to estimate interest rates. As for the M-Vector results, we verify

again that the results shown here do not con�rm the near-perfect hedging performance

stated by Nawalkha and Chambers (1997) and Kittithawornkul (2008), namely in the

U.S. TIPS dataset, where the lower liquidity of the bonds seems to erode the results of

the strategies. In this sense, di¤erent speci�cations for the M-Vector, such as logarithms,
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polynomials or other generalizations, could also be empirically assessed, as they could

prove more e¢ cient for bonds that show less market liquidity.
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Appendix A: U.S. TIPS Valuation

This appendix is based on Deacon et al. (2004), pages 176 to 178. Some adjustments

have been applied to the notation, according to Section 3.1.2, for the sake of consistency

throughout this thesis.

Index Ratio calculation

For both valuation and settlement purposes the Index Ratio in day t is computed as

follows:

IRt =
It
Ibase

: It = CPIv�3 +
(d� 1)
Dv

� (CPIv�2 � CPIv�3); (A.1)

where

IRt = Index Ratio in day t

It = Reference Index for day t

Ibase = Reference Index for the �rst interest accrual day of the bond

CPIv�3 = value of the price index at time v-3 months

CPIv�2 = value of the price index at time v-2 months

D = number of days in month v

d = day of the month v when settlement occurs

v = month on which settlement takes place

base = bond�s �rst interest accrual day

The formula shown here is for an Index Ratio with an indexation lag of 3 months.

However, other indexation lags can be considered by substituting variables CPIv�3 and

CPIv�2 with the values for the indexation lag required, i.e. if the indexation lag wanted

is 8 months then the price indices to consider are CPIv�8 and CPIv�7.

Interest payment calculation

The nominal interest payment at time t is computed as shown below.

cpn (t)N =
cRt
x
� IRt; (A.2)
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where

cpn (t)N = (%) interest payment in day t

cRt = annual real coupon rate in day t

x = number of coupons the bond pays per year

IRt = Index Ratio in day t

The real interest payment at time t is computed in a similar way, but does not include

the Index Ratio.

cpn (t)R =
cRt
x

(A.3)

Principal payment calculation

Calculation of the principal�s value to be redeemed at maturity is done as shown

below

Redemption(n) = FV �max f1; IRng ; (A.4)

where

FV = Face Value of the bond

IRn = Index Ratio in maturity day n

The redemption payment contains an embedded option that means that this payment

shall not be inferior to the face value of the bond, i.e. the in�ation accrual will only be

taken into account if it is positive. Please note that this feature is only applicable to the

redemption payment.

Settlement price calculation

Settlement price calculation is more complex than for nominal �xed rate bonds, since

it implies adjusting for in�ation both clean price and real accrued interest. The formulas

are presented beneath.
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PTIPSt = IQt + IAIt : (A.5)

IQt = RQt � IRt

RQt =

 
1

1 + f
d
yR(0;t)
x

!
�

"
cRt
x
+
cRt
x

nX
t=1

 
1

1 + yR(0;t)
x

!t
+

 
1

1 + yR(0;n)
x

!n#
�RAIt

RAIt =
cRt
x
� (g � f)

g

IAIt = RAIt � IRt

where

PTIPSt = Nominal Dirty Price for day t

IQt = In�ation adjusted Price for day t

RQt = Real Quoted Price for day t

IAIt = In�ation adjusted Accrued Interest for day t

RAIt = Real Accrued Interest for day t

IRt = Index Ratio in day t

yR (0; t) = annual real spot rate for residual maturity t

yR (0; n) = annual real spot rate for residual maturity n

f = number of days from the settlement date to the next interest payment date

g = number of days in the regular annual coupon period ending on the next interest

payment date

cRt = annual real coupon rate payment in day t

x = number of coupons the bond pays per year
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Table 5.1: U.S. Treasury Bond Dataset

This table contains a description of the overall bondset selected to implement the immunization
strategies described in Chapter 3. The bond subsets used in each portfolio were selected taking into
account the restrictions included in Table 3.1.

ISIN Description Coupon Issue Date Maturity Date

US912810DM72 T 11.625 11/2004 11,625% 30/10/1984 15/11/2004

US912810DR69 T 10.75 8/2005 10,750% 02/07/1985 15/08/2005

US9128272C54 T 5.875 11/2001 5,875% 02/12/1996 30/11/2001

US912827Y554 T 7 7/2006 7,000% 15/07/1996 15/07/2006

US9128273L45 T 5.75 10/2002 5,750% 31/10/1997 31/10/2002

US9128273E02 T 6.125 8/2007 6,125% 15/08/1997 15/08/2007

US9128274V18 T 4.75 11/2008 4,750% 16/11/1998 15/11/2008

US9128274T61 T 4 10/2000 4,000% 02/11/1998 31/10/2000

US9128273V27 T 5.5 1/2003 5,500% 02/02/1998 31/01/2003

US9128275N82 T 6 8/2009 6,000% 16/08/1999 15/08/2009

US9128275E83 T 5 4/2001 5,000% 30/04/1999 30/04/2001

US9128275Z13 T 6.5 2/2010 6,500% 15/02/2000 15/02/2010

US9128275X64 T 6.375 1/2002 6,375% 31/01/2000 31/01/2002

US9128277H96 T 3.25 12/2003 3,250% 31/12/2001 31/12/2003

US9128277B27 T 5 8/2011 5,000% 15/08/2001 15/08/2011

US9128277E65 T 2.75 10/2003 2,750% 31/10/2001 31/10/2003

US912828AG57 T 2.25 7/2004 2,250% 31/07/2002 31/07/2004

US912828AL43 T 1.875 9/2004 1,875% 30/09/2002 30/09/2004

US9128277L09 T 4.875 2/2012 4,875% 15/02/2002 15/02/2012

US912828AX80 T 1.625 4/2005 1,625% 30/04/2003 30/04/2005

US912828AW08 T 1.625 3/2005 1,625% 31/03/2003 31/03/2005

US912828BH22 T 4.25 8/2013 4,250% 15/08/2003 15/08/2013

US912828CF56 T 2.25 4/2006 2,250% 30/04/2004 30/04/2006

US912828CD09 T 1.5 3/2006 1,500% 31/03/2004 31/03/2006

US912828CA69 T 4 2/2014 4,000% 17/02/2004 15/02/2014

US912828DS68 T 3.625 4/2007 3,625% 02/05/2005 30/04/2007

US912828EE63 T 4.25 8/2015 4,250% 15/08/2005 15/08/2015

US912828DQ03 T 3.75 3/2007 3,750% 31/03/2005 31/03/2007

US912828EU06 T 4.375 1/2008 4,375% 31/01/2006 31/01/2008
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Table 5.1: continued

ISIN Description Coupon Issue Date Maturity Date

US912828FF20 T 5.125 5/2016 5,125% 15/05/2006 15/05/2016

US912828HF02 T 3.625 10/2009 3,625% 31/10/2007 31/10/2009

US912828HA15 T 4.75 8/2017 4,750% 15/08/2007 15/08/2017

US912828JP65 T 1.5 10/2010 1,500% 31/10/2008 31/10/2010

US912828JR22 T 3.75 11/2018 3,750% 17/11/2008 15/11/2018

US912828LT59 T 1 10/2011 1,000% 02/11/2009 31/10/2011

US912828LU23 T 3.125 10/2016 3,125% 02/11/2009 31/10/2016

US912828LY45 T 3.375 11/2019 3,375% 16/11/2009 15/11/2019

US912828NB24 T 1 4/2012 1,000% 30/04/2010 30/04/2012

US912828MH03 T 2.25 1/2015 2,250% 01/02/2010 31/01/2015

US912828NA41 T 3.125 4/2017 3,125% 30/04/2010 30/04/2017

US912828MP29 T 3.625 2/2020 3,625% 16/02/2010 15/02/2020

US912828QE36 T 0.625 4/2013 0,625% 02/05/2011 30/04/2013

US912828QG83 T 2.625 4/2018 2,625% 02/05/2011 30/04/2018

US912828RR30 T 2 11/2021 2,000% 15/11/2011 15/11/2021

US912828SR21 T 0.25 4/2014 0,250% 30/04/2012 30/04/2014

US912828ST86 T 1.25 4/2019 1,250% 30/04/2012 30/04/2019

US912828SF82 T 2 2/2022 2,000% 15/02/2012 15/02/2022

US912810EW46 T 6 2/2026 6,000% 15/02/1996 15/02/2026

US912810EV62 T 6.875 8/2025 6,875% 15/08/1995 15/08/2025

US912810ES34 T 7.5 11/2024 7,500% 15/08/1994 15/11/2024

US912828UL23 T 1.375 1/2020 1,375% 31/01/2013 31/01/2020

US912828UN88 T 2 2/2023 2,000% 15/02/2013 15/02/2023
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Table 5.2: U.S. Treasury In�ation Protected Securities Dataset

This table contains a description of the overall bondset selected to implement the immunization
strategies described in Chapter 3. The bond subsets used in each portfolio were selected taking into
account the restrictions included in Table 3.1.

ISIN Description Coupon Issue Date Maturity Date

US9128273A89 TII 3.625 7/2002 3,625% 15/07/1997 15/07/2002

US9128272M37 TII 3.375 1/2007 3,375% 06/02/1997 15/01/2007

US9128273T70 TII 3.625 1/2008 3,625% 15/01/1998 15/01/2008

US9128274Y56 TII 3.875 1/2009 3,875% 15/01/1999 15/01/2009

US9128275W81 TII 4.25 1/2010 4,250% 18/01/2000 15/01/2010

US912828CZ11 TII 0.875 4/2010 0,875% 29/10/2004 15/04/2010

US9128276R87 TII 3.5 1/2011 3,500% 16/01/2001 15/01/2011

US912828FB16 TII 2.375 4/2011 2,375% 28/04/2006 15/04/2011

US912828GN45 TII 2 4/2012 2,000% 30/04/2007 15/04/2012

US912828AF74 TII 3 7/2012 3,000% 15/07/2002 15/07/2012

US912828BD18 TII 1.875 7/2013 1,875% 15/07/2003 15/07/2013

US912828KM16 TII 1.25 4/2014 1,250% 30/04/2009 15/04/2014

US912828DH04 TII 1.625 1/2015 1,625% 18/01/2005 15/01/2015

US912828QD52 TII 0.125 4/2016 0,125% 29/04/2011 15/04/2016

US912828SQ48 TII 0.125 4/2017 0,125% 30/04/2012 15/04/2017

US912828HN36 TII 1.625 1/2018 1,625% 15/01/2008 15/01/2018

US912828NM88 TII 1.25 7/2020 1,250% 15/07/2010 15/07/2020

US912828UH11 TII 0.125 1/2023 0,125% 31/01/2013 15/01/2023

US912810FH69 TII 3.875 4/2029 3,875% 15/04/1999 15/04/2029
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Table 5.3: U.S. TIPS Observed and Estimated Price Comparison

The table contains the mean square price error (MSPE) and respective standard deviation obtained
for the real term structure of interest rates estimation process using the Nelson and Siegel (1987)
parametric extraction method on the U.S. TIPS dataset. The values, in basis points, are presented
for each bond as well as for the global dataset. The correlations between the market prices collected
from Bloomberg and estimated prices using the Nelson and Siegel (1987) parametric extraction
method for each bond included in this dataset are also presented.

Description Mean Square Price
Error (b.p.)

Standard Deviation of
the MSPE (b.p.)

Correlation
(%)

TII 3.625 7/2002 0,0079 0,1664 91,91

TII 3.375 1/2007 0,0037 0,1025 98,08

TII 3.625 1/2008 0,0032 0,0961 99,37

TII 3.875 1/2009 0,0028 0,0908 99,50

TII 4.25 1/2010 0,0021 0,0843 99,19

TII 0.875 4/2010 0,0036 0,1103 94,65

TII 3.5 1/2011 0,0009 0,0287 98,26

TII 2.375 4/2011 0,0040 0,1173 98,43

TII 2 4/2012 0,0025 0,0491 96,37

TII 3 7/2012 0,0013 0,0349 93,82

TII 1.875 7/2013 0,0026 0,0847 93,70

TII 1.25 4/2014 0,0004 0,0005 76,98

TII 1.625 1/2015 0,0002 0,0004 97,74

TII 0.125 4/2016 0,0003 0,0004 65,54

TII 0.125 4/2017 0,0002 0,0002 90,91

TII 1.625 1/2018 0,0003 0,0003 98,00

TII 1.25 7/2020 0,0002 0,0003 99,53

TII 0.125 1/2023 0,0000 0,0000 99,89

TII 3.875 4/2029 0,0004 0,0008 99,70

Global Dataset 0,0016 0,0210 �
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Table 5.4: U.S. Observed and Estimated Nominal Interest Rates
Comparison

This table is divided in two panels. Panel A contains the absolute average and standard deviation
of the di¤erence between market interest rates collected from U.S. Department of the Treasury and
estimated interest rates using the Nelson and Siegel (1987) parametric extraction method (values
in basis points) and the correlations between the aforementioned interest rates for each maturity
included in this dataset. It is possible to see that the values are very high, which implies a very
strong positive correlation between estimated and observed interest rates. Panel B presents the
results for the t-test of equality of means. For all the maturities presented we do not reject the null
hypothesis of equality of the observed and estimated interest rate means.

Panel A - Absolute Di¤erences and Correlations
Maturities (years)

0,5 1 2 3 5 10 20 30

Average
(b.p.)

10,50 3,55 1,23 3,67 0,84 2,29 7,84 27,70

Standard
deviation
(b.p.)

27,74 17,12 6,97 6,46 3,94 3,32 22,60 27,30

Correlation
(%)

99,20 99,67 99,94 99,95 99,98 99,97 98,40 96,36

Panel B - Mean interest rate equality tests
Maturities (years)

0,5 1 2 3 5 10 20 30

t-statistic -0,4798 -0,1686 0,0624 0,1983 -0,0516 0,1820 0,7437 1,2299

P-value 0,6317 0,8662 0,9503 0,8429 0,9588 0,8556 0,4575 0,2196
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Table 5.5: U.S. Observed and Estimated Real Interest Rates Comparison

This table is divided in two panels. Panel A contains the absolute average and standard deviation
of the di¤erence between market interest rates collected from U.S. Department of the Treasury and
estimated interest rates using the Nelson and Siegel (1987) parametric extraction method (values
in basis points) and the correlations between the aforementioned interest rates for each maturity
included in this dataset. It is possible to see that the values are very high, which implies a very
strong positive correlation between estimated and observed interest rates. Panel B presents the
results for the t-test of equality of means. For all the maturities presented we do not reject the null
hypothesis of equality of the observed and estimated interest rate means.

Panel A - Absolute Di¤erences and Correlations
Maturities (years)

5 7 10 20 30

Average (b.p.) 28,41 9,92 0,55 1,48 6,15

Standard deviation (b.p.) 25,24 18,21 13,28 9,16 18,60

Correlation (%) 97,81 98,72 99,12 99,19 94,17

Panel B - Mean interest rate equality tests
Maturities (years)

5 7 10 20 30

t-statistic 1,0085 0,8151 -0,0497 0,1377 0,7195

P-value 0,3141 0,4157 0,9604 0,8906 0,4724
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Table 5.6: U.S. Treasuries 3-Year Immunization Results

This table is divided in two panels that include several metrics for the strategies de�ned in Table
3.1 for the 3-year horizon. Panel A contains the immunization coverage and performance metrics
explained in Chapter 3. LC is the average Liability Coverage Ratio, RC is the Relative Coverage
Ratio, ER is the average Excess Return and R=R is the Reward-to-Risk Ratio. The Relative
Coverage compares with the Naive Strategy (i.e. if the value for a given Strategy exceeds 100% then
the Strategy�s Average Liability Coverage is higher than the Naive Strategy). Panel B contains the
Immunization Costs metrics. Average Transaction Costs (TC) is expressed as a percentage of the
bond�s value and Average Turnover (T ) is expressed in quantities. The Transaction Costs Multiplier
(TCX) and Turnover Multiplier (TX) compare with the Naive strategy (i.e. if the value for a given
strategy exceeds 1 then that strategy has higher Transaction Costs and Turnover than the Naive
strategy).

Panel A - Immunization Coverage
and Performance

Strategy S LC (S) RC (S) ER (S) R=R (S)

Naive 111,22% � 1,42% 64,46%

Barbell 115,59% 103,97% 5,44% 122,25%

Bullet 110,22% 99,15% 0,54% 28,68%

M-Absolute 110,43% 99,38% 0,76% 33,99%

M-Squared 110,37% 99,31% 0,70% 27,74%

M1 111,80% 100,54% 1,95% 68,96%

M2 110,17% 99,11% 0,49% 26,27%

M3 110,19% 99,13% 0,51% 27,60%

M4 110,75% 99,62% 1,01% 49,08%

M5 110,65% 99,52% 0,92% 45,16%

Panel B - Immunization Costs

Strategy S TC (S) T (S) TCX (S) TX (S)

Naive 0,365% 15,36 � �

Barbell 2,187% 80,24 6,0 5,22

Bullet 0,926% 37,65 2,5 2,45

M-Absolute 0,415% 12,84 1,1 0,84

M-Squared 0,276% 10,29 0,8 0,67

M1 1,172% 31,47 3,2 2,05

M2 1,697% 16,72 4,6 1,09

M3 1,171% 29,15 3,2 1,90

M4 0,638% 25,62 1,7 1,67

M5 0,706% 26,29 1,9 1,71
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Table 5.7: U.S. Treasuries 5-Year Immunization Results

This table is divided in two panels that include several metrics for the strategies de�ned in Table
3.1 for the 5-year horizon. Panel A contains the immunization coverage and performance metrics
explained in Chapter 3. LC is the average Liability Coverage Ratio, RC is the Relative Coverage
Ratio, ER is the average Excess Return and R=R is the Reward-to-Risk Ratio. The Relative
Coverage compares with the Naive Strategy (i.e. if the value for a given Strategy exceeds 100% then
the Strategy�s Average Liability Coverage is higher than the Naive Strategy). Panel B contains the
Immunization Costs metrics. Average Transaction Costs (TC) is expressed as a percentage of the
bond�s value and Average Turnover (T ) is expressed in quantities. The Transaction Costs Multiplier
(TCX) and Turnover Multiplier (TX) compare with the Naive strategy (i.e. if the value for a given
strategy exceeds 1 then that strategy has higher Transaction Costs and Turnover than the Naive
strategy).

Panel A - Immunization Coverage
and Performance

Strategy S LC (S) RC (S) ER (S) R=R (S)

Naive 122,84% � 1,54% 48,32%

Barbell 124,85% 101,75% 3,33% 100,63%

Bullet 121,62% 99,04% 0,56% 19,33%

M-Absolute 122,74% 99,92% 1,44% 48,22%

M-Squared 121,73% 99,14% 0,65% 22,01%

M1 121,54% 98,94% 0,44% 15,62%

M2 121,35% 98,80% 0,30% 10,78%

M3 121,48% 98,92% 0,42% 14,87%

M4 122,18% 99,49% 1,00% 33,53%

M5 122,05% 99,38% 0,90% 29,92%

Panel B - Immunization Costs

Strategy S TC (S) T (S) TCX (S) TX (S)

Naive 0,374% 14,55 � �

Barbell 1,140% 49,23 3,1 3,38

Bullet 1,097% 44,05 2,9 3,03

M-Absolute 0,715% 9,10 1,9 0,63

M-Squared 0,208% 7,00 0,6 0,48

M1 1,786% 31,22 4,8 2,15

M2 2,264% 12,69 6,1 0,87

M3 1,114% 22,79 3,0 1,57

M4 0,592% 23,65 1,6 1,62

M5 1,052% 24,30 2,8 1,67
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Table 5.8: U.S. TIPS 3-Year Immunization Results

This table is divided in two panels that include several metrics for the strategies de�ned in Table
3.1 for the 3-year horizon. Panel A contains the immunization coverage and performance metrics
explained in Chapter 3. LC is the average Liability Coverage Ratio, RC is the Relative Coverage
Ratio, ER is the average Excess Return and R=R is the Reward-to-Risk Ratio. The Relative
Coverage compares with the Naive Strategy (i.e. if the value for a given Strategy exceeds 100% then
the Strategy�s Average Liability Coverage is higher than the Naive Strategy). Panel B contains the
Immunization Costs metrics. Average Transaction Costs (TC) is expressed as a percentage of the
bond�s value and Average Turnover (T ) is expressed in quantities. The Transaction Costs Multiplier
(TCX) and Turnover Multiplier (TX) compare with the Naive strategy (i.e. if the value for a given
strategy exceeds 1 then that strategy has higher Transaction Costs and Turnover than the Naive
strategy).

Panel A - Immunization Coverage
and Performance

Strategy S LC (S) RC (S) ER (S) R=R (S)

Naive 106,86% � 0,94% 28,93%

Barbell 107,17% 100,38% 1,26% 39,51%

Bullet 105,74% 99,08% -0,07% -2,48%

M-Absolute 106,25% 99,56% 0,41% 13,42%

M-Squared 105,18% 98,47% -0,33% -11,24%

M1 105,57% 98,92% -0,24% -7,97%

M2 105,48% 98,86% -0,32% -10,57%

M3 105,57% 98,95% -0,23% -7,70%

M4 105,71% 99,08% -0,10% -3,13%

M5 105,71% 99,09% -0,09% -2,96%

Panel B - Immunization Costs

Strategy S TC (S) T (S) TCX (S) TX (S)

Naive 0,232% 7,80 � �

Barbell 1,914% 45,27 8,3 5,80

Bullet 2,820% 81,77 12,2 10,48

M-Absolute 0,354% 12,53 1,5 1,61

M-Squared 0,380% 13,85 1,6 1,78

M1 0,597% 20,16 2,6 2,58

M2 1,195% 39,83 5,2 5,10

M3 1,556% 54,32 6,7 6,96

M4 1,794% 61,81 7,7 7,92

M5 1,619% 56,29 7,0 7,21
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Table 5.9: U.S. TIPS 5-Year Immunization Results

This table is divided in two panels that include several metrics for the strategies de�ned in Table
3.1 for the 5-year horizon. Panel A contains the immunization coverage and performance metrics
explained in Chapter 3. LC is the average Liability Coverage Ratio, RC is the Relative Coverage
Ratio, ER is the average Excess Return and R=R is the Reward-to-Risk Ratio. The Relative
Coverage compares with the Naive Strategy (i.e. if the value for a given Strategy exceeds 100% then
the Strategy�s Average Liability Coverage is higher than the Naive Strategy). Panel B contains the
Immunization Costs metrics. Average Transaction Costs (TC) is expressed as a percentage of the
bond�s value and Average Turnover (T ) is expressed in quantities. The Transaction Costs Multiplier
(TCX) and Turnover Multiplier (TX) compare with the Naive strategy (i.e. if the value for a given
strategy exceeds 1 then that strategy has higher Transaction Costs and Turnover than the Naive
strategy).

Panel A - Immunization Coverage
and Performance

Strategy S LC (S) RC (S) ER (S) R=R (S)

Naive 112,72% � 0,84% 21,31%

Barbell 113,33% 100,58% 1,40% 36,31%

Bullet 111,68% 99,14% -0,06% -1,64%

M-Absolute 112,15% 99,62% 0,40% 10,55%

M-Squared 111,41% 98,94% -0,28% -7,40%

M1 111,44% 98,93% -0,28% -7,35%

M2 111,55% 99,06% -0,16% -4,17%

M3 111,49% 99,02% -0,20% -5,30%

M4 111,98% 99,42% 0,22% 5,60%

M5 111,80% 99,26% 0,05% 1,40%

Panel B - Immunization Costs

Strategy S TC (S) T (S) TCX (S) TX (S)

Naive 0,239% 7,90 � �

Barbell 1,686% 43,50 7,0 5,51

Bullet 3,680% 106,69 15,4 13,51

M-Absolute 0,336% 11,50 1,4 1,46

M-Squared 0,267% 9,11 1,1 1,15

M1 0,811% 27,13 3,4 3,44

M2 1,173% 39,84 4,9 5,05

M3 1,471% 50,76 6,1 6,43

M4 1,433% 49,21 6,0 6,23

M5 1,538% 51,91 6,4 6,57

90



Figure 5.1: U.S. Treasuries Nelson-Siegel Estimation Errors

The �gure contains a comparison between Market Interest Rates from the U.S Department of the
Treasury and Estimated Interest Rates with the Nelson-Siegel parametric extraction method for
the selected monthly interest rates. The chart can be interpreted as follows: the horizontal bar
is the average rate for that maturity and the vertical bar contains the minimum and maximun
interest rates, during the sample period for each maturity. It is visible that market interest rates
and estimated interest rates have a similar pattern in all the maturities presented. This means that
their distributions are very close, which is con�rmed by the results shown in Table 5.4.

91



Figure 5.2: U.S. TIPS Nelson-Siegel Estimation Errors

The �gure contains a comparison between Market Interest Rates from the U.S Department of the
Treasury and Estimated Interest Rates with the Nelson-Siegel parametric extraction method for
the selected monthly interest rates. The chart can be interpreted as follows: the horizontal bar
is the average rate for that maturity and the vertical bar contains the minimum and maximun
interest rates, during the sample period for each maturity. It is visible that market interest rates
and estimated interest rates have a similar pattern in all the maturities presented. This means that
their distributions are very close, which is con�rmed by the results shown in Table 5.5.
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Figure 5.3: U.S. Treasuries Interest Rates

This �gure contains the nominal yields for the 1, 3, 5 and 10-year maturities between January 2000
and December 2014. We observe a considerable decrease in interest rates between 2000 and 2002,
followed by an increase for all maturities until year-end 2006 in a highly volatile environment, namely
in the 1-year maturity. From 2006 to 2008 we see another signi�can decrease in interest rates due
to the subprime crisis. Apart from the 1-year maturity, that stays in low levels until year-end 2014,
interest rates rebound for a while in 2009 but subsequently resume their decreasing tendency until
2012. From that year onwards, interest rate above the 3-year maturity tend to increase until the
end of the sampling period.
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Figure 5.4: U.S. Treasuries Yield Curve

This �gure contains the term structure of nominal interest rates in the year-end from 2000 to 2014,
obtained from the U.S. Department of the Treasury (please note that between 2003 and 2005 no
data is available for the 30-year maturity). As it is visible, the yield curve assumed several shapes,
beginning with an inverted shape in 2000, where we can see that the 0,5-year interest rate is above
the 5-year interest rate. A steepening movement occurs from 2001 to 2003 with a sharp decrease
in interest rates in the short sector of the curve. The curve �attens again between 2005 and 2007,
showing a slight inversion in the short sector in the latter year. From 2008 onwards, the curve
assumes a concave shape with steepening movement as interest rates in the short sector decrease
more than in the long sector of the term structure of interest rates.

94



Figure 5.5: U.S. TIPS Interest Rates

This �gure contains the real yields for the 1, 3, 5 and 10-year maturities between January 2000 and
December 2014. The interest rate evolution hints at a quasi �at structure until year-end 2012. It is
visible a downward tendency in interest rates between 2000 and 2005 with some stability from 2002 to
2004. From 2006 onwards a increasing tendency sets is and interest rates peak in 2008. Afterwards,
the downward tendency resumes until December 2012 and into negative territory. Rates increase
and decouple from 2012 onwards, even though they remain negative in the 1-year maturity until the
end of the sample period.
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Figure 5.6: U.S. TIPS Yield Curve

This �gure contains the term structure of real interest rates in the year-end from 2002 to 2014,
as estimated by the U.S. Department of the Treasury. The interest rates were only available from
2002 onwards and for maturities equal or above 5-years and several gaps is the data are visible until
2009. As it is visible, the yield curve assumed several shapes, beginning by what seems to imply a
concave shape from 2002 to 2004. The cruve �atten in years 2005 and 2006 with a slight increase in
interest rates. From 2007 onwards we see a decrease with �attening at �rst (year 2008) but evolving
onwards to a steep shape with a signi�cant decrease in interest rates, that reach negative values in
years 2011 and 2012 for maturities below the 10- to 15-year interest rates. In 2013 interest rates rise
with steepening but consequently converge to a quasi-�at term structure in year-end 2014.
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CHAPTER 6

Multi Liability Immunization with the M-Absolute model: an

approach to the U.S. bond market

This Chapter takes the results presented in the previous Chapters and extends the

analysis of the M-Absolute strategies to immunize multi-period liabilities. We apply the

strategy to the U.S. datasets used in the previous Chapter while going one step forward

and taking into account all the necessary adjustments to make the datasets comparable,

in both risk measurement and return.

TheM-Absolute strategy will be applied to nominal U.S. Treasury Bonds (Treasuries)

and to real U.S. Treasury In�ation Protected Securities (TIPS), whose de�nitions and

main characteristics are included in Chapter 5. However, in the present Chapter, we

will compare both datasets, which poses a challenge in what concerns portfolio setup

and performance evaluation. As stated in Chapter 3, we will immunize a type (3)

liability - one for which the cash outlay�s timing is known but the amount is uncertain

- according to Fabozzi (2000, p. 449) classi�cation. The comparison with nominal and

real bonds is aimed at seeing which bond type produces the best immunization results

for each strategy. It will also be possible to compare the results of U.S. Treasuries and

U.S. TIPS datasets, since U.S. TIPS have been tested for immunization in their two

components (with and without in�ation accrual).

Bierwag, Kaufman and Toevs (1983) address immunization strategies for multiple

liabilities and multiple parallel interest rate shocks, expanding the �ndings by Redington

(1952). Under the multiple liability funding hypothesis, the authors state that, for an

immunization strategy to be e¤ective the asset portfolio and the liability portfolio must

ful�ll three conditions:

(1) the asset portfolio and the liability portfolio must have the same present value;
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(2) both portfolio durations must be similar and

(3) asset dispersion must be higher than liability dispersion in the stable interest rate

scenario.1

This way, by applying Bierwag et al. (1983) conditions, one can use multiple bonds

with di¤erent maturities to immunize a stream of predictable future liabilities.

The article by Fong and Vasicek (1983a), that presents the M-Squared as an immu-

nization risk measure, extends Bierwag et al. (1983) reasoning towards multiple liability

immunization by establishing the necessary and su¢ cient conditions for multiperiod im-

munization with this risk measure. In this sense, conditions (1) and (2) are identi�ed

and condition (3) is modi�ed, taking into account the way the M-Squared measure is

built. The new Fong and Vasicek (1983a) condition (3) states that the dispersion of the

mean absolute deviation of the bond portfolio has to be higher than the dispersion of the

mean absolute deviation of the liability portfolio. This is an extension from the single

liability immunization problem where we see that for this measure, the bond portfolio�s

cash-�ows are clustered around the date the liability will be paid. For the multiple liabi-

lity immunization problem, the restated condition (3) implies that the bond portfolio�s

cash-�ows have to be clustered around each liability due to be paid.

Fong and Vasicek (1983b) also extend the immunization multiple liability problem to

the M-Squared measure to assess the trade o¤ between risk and return in an immunized

portfolio, due to accounting for the composition of the immunization portfolio in its

design. The authors state that strictly minimizing risk while applying an immunization

strategy may be quite restrictive to the investor, hence they present the risk return min-

imax problem as the minimization of the di¤erence between the M-Squared measure and

the target return of the portfolio, subject to the immunization conditions of equality of

1This last condition can be replaced by the Bierwag rule.
The authors extend the results further by proving that the 3-rd condition will be met if the asset
portfolio can be divided in two sub-portfolios and the following rules are applied:
(a) one of the asset portfolios has a duration below or equal to the date the �rst liability is paid;
(b) one of the asset portfolios has a duration equal or above the date the liability is paid;
(c) the combined asset portfolios�duration equals the duration of the liabilities.
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the portfolio�s duration and residual maturity of the liability and other investment policy

requirements (like the absence of short-selling and minimum investment in individual

securities, for example).

Barber and Copper (1998a) also acknowledge the work of Fong and Vasicek (1983b)

and Fong and Vasicek (1984) and extend it for a multiple liability setting applying a min-

imax strategy and an in�nite factor interest rate model using the M-Squared measure.

In this sense, this article di¤ers from Fong and Vasicek (1983b) because the aim here is

not to study the trade o¤ between return and risk in a multiple liability immunization

problem. Another article from Barber and Copper (1998b) establishes the necessary

and su¢ cient conditions for immunization for addictive term structure models, consid-

ering the single and multiple liability immunization problems. The conditions presented

broadly state that an immunized portfolio�s duration will be equal to the residual ma-

turity of the liability due to be paid and that for each pair of assets maturing around

the liability payment date H, and considering that one matures before and the other

after date H, the investment combination that achieves full immunization is unique.

This last condition is also extended to the case where multiple liabilities have to be

paid. The authors state that the added complexity of a multiple liability immunization

problem can be handled by separating immunizing each liability, i.e. separately building

sub portfolios that contain two assets that ful�ll the conditions above. In this sense,

the multiple liability immunization problem is considered as an extension of the single

liability immunization problem.

Shiu (1988) also con�rms the conclusions presented by Bierwag et al. (1983) for

multiperiod immunization and acknowledges that the 3-rd condition stated by Bierwag

et al. (1983) is a necessary and su¢ cient condition to immunize multiple liabilities. Shiu

(1988) �ndings are extended by Uberti (1997) to portfolio immunization considering

general shifts on the term structure of interest rates and embedding the M-Squared

measure in the multiple liability conditions (1) to (3) established by Bierwag et al.

(1983), taking into account that the multiple liability immunization problem can be
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set up minimizing both duration and M-Squared measures, accounting for parallel and

nonparallel interest rate shocks.

The multiple liability problem is also addressed by Theobald and Yallup (2005),

that extend previous �ndings to the M-Squared and M-Vector strategies and test these

strategies empirically using the United Kingdom guilts market from 1997 to 2003. The

authors state that immunization will be successfully implemented if the moments of the

asset and liability portfolios are the same or very close, since this will assess to what

extent the distribution of cash-�ows of the asset portfolio and liability portfolio will agree

and present a general framework for the M-Squared and M-Vector risk measures. Their

results show that the immunization strategies using these latter measures outweigh the

results of the traditional duration strategies.

Alina Kondratiuk-Janyska and Marek Kaluszka have also extensively studied port-

folio immunization techniques and procedures. For instance, Kaluszka and Kondratiuk-

Janyska (2004) generalize the multiple liability portfolio immunization strategies to other

dispersion measures, taking into account that the immunization strategies based in the

traditional theory risk measures, such as Macaulay (1938) and Fisher and Weil (1971)

duration, do not rule out ex-ante the possibility of arbitrage, thus being inconsistent with

modern �nance theory. The authors present a stochastic measure that builds from the

duration gap and dispersion of portfolio payments that also accounts for the maturity

bond. Kaluszka and Kondratiuk-Janyska (2004) state that the immunization of multiple

liabilities can be achieved by immunizing separately each liability cash-�ow. This is an

extension of the rules (a) to (c) stated by Bierwag et al. (1983), since these rules were de-

veloped in a setting where one would divide the asset portfolio into two sub-portfolios,

no matter the number of liabilities to immunize. Kaluszka and Kondratiuk-Janyska

(2004) statement implies, when immunizing with Macaulay (1938) and Fisher and Weil

(1971) duration, each sub-portfolio that is built will have a duration equal to the date

the liability it is supposed to immunized is due and, consequently, the combined asset

portfolios�duration will match the duration of the liabilities.
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The authors expand their research in Kondratiuk-Janyska and Kaluszka (2006a)

and Kondratiuk-Janyska and Kaluszka (2006b) where an application of immunization

strategies to the single factor Heath et al. (1992) framework is presented and the im-

munization programming for Fong and Vasicek (1984) M-Squared and Nawalkha and

Chambers (1996) M-Absolute strategies in a continuous time setting is extended to the

multiperiod immunization setting. Regarding the M-Absolute measure, Kondratiuk-

Janyska and Kaluszka (2006b) also show that for the multiple liability immunization

problem, minimizing the M-Absolute measure implies per se the minimization of the

absolute duration gap between the asset portfolio and the liability portfolio. This is an

important result that has to be taken into account while setting up the linear program-

ming for the multiple liability portfolios. Finally, Kondratiuk-Janyska and Kaluszka

(2009), extends the immunization setting for continuous-time single and multiple lia-

bility portfolios, using again the M-Squared and M-Absolute strategies, and assuming

random shocks to the term structure of interest rates.

The Chapter is structured as follows: section 6.1 contains a brief description of the

year-on-year in�ation behavior throughout the sampled period2. Section 6.2 presents the

theoretical framework for the M-Absolute model with the adjustments made to the U.S.

TIPS bonds to account for the in�ation accrual component and their implications for

portfolio design. Section 6.3 presents the methodology and assumptions applied in this

empirical study, bearing in mind the necessary adjustments, and section 6.4 discusses the

empirical results obtained. The last section summarizes our conclusions and proposes a

way forward for future research.

6.1. U.S. in�ation data

In order to allow for U.S. TIPS to account for the in�ation evolution, the index used

as an in�ation proxy for these bonds is the non-seasonally adjusted Consumer Price

Index for all urban consumers (CPI-U henceforth). The dataset used has been retrieved

2The dataset characterization can be found in section 5.2 of the previous chapter.

101



from the Bureau of Labor Statistics3 from 2000 to 2014, and comprises the values of

this index, as published by the Bureau. These values were used to compute the year-

on-year in�ation rate and the Index Ratios applied to U.S. TIPS, whose calculation

will be explained in the next section. Figure 6.1 shows the evolution of the year-on-year

in�ation rate throughout the sample period. As it is visible, there is an upward tendency

between 2002 and 2006 and 2007-2008, that is followed by a severe disin�ation process,

that arises as a consequence of the quantitative easing process carried out by the U.S.

Federal Reserve in the wake of the subprime crisis. Actually, from 2009 to 2012 in�ation

picks up again, even though it never reaches the around 4% area from 2008; from 2012

onwards the underlying tendency is for a steady and continuous decline in year-on-year

in�ation.

(insert Figure 6.1 here)

6.2. Theoretical framework

The formula for computing the fair value of a U.S. Treasury bond can be found in

equation (5.1)4

BUST (0) =
nX
t=1

ct
x
� �N (0; t) + FV � �N (0; n) ;

The formula for the real fair value of U.S. TIPS has already been de�ned in equation

(5.2).

BTIPSR (0) =
NX
t=1

cRt
x
� �R (0; t) + FV � �R (0; n) ;

To compute the nominal fair value of a U.S. TIPS, this formula has to be adjusted

to include the in�ation accrual. Since time is needed to compile and publish the data

3Please refer to http://data.bls.gov/pdq/SurveyOutputServlet for more information.
4Please refer to Subsection 3.1.2 in Chapter 3 and to Section 5.2 in Chapter 5 for preliminary notation
and details on the de�nitions recalled in this Section.
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for the index, the in�ation adjustment is done with a lag, i.e., the Index Ratio that is

computed today uses the information from the two last published values for the CPI-U

as a proxy for the actual in�ation rate. This way, it is not possible to have a full hedge

against in�ation through these bonds; however, they still provide a very high degree of

protection against in�ation and purchasing power erosion.

The indexation lag is minimized by making it as short as possible. The indexation

lag applied to U.S. TIPS is 3 months and the reference index is computed by linear

interpolation, between index publications, like equation (6.1) shows.

It = CPIv�3 +
(d� 1)
Dv

� (CPIv�2 � CPIv�3); (6.1)

where It is the reference index for day t, CPIv�3 is the value of the price index at time

v � 3 months, CPIv�2 is the value of the price index at time v � 2 months, D is the

number of days in month v, d is the day of the month v when settlement occurs and

v is the month on which settlement takes place5. Applying this formula to the day in

which the in�ation accrual for the bond begins, by substituting the Dv day for the �rst

day when the bond�s in�ation component starts to accrue (the base day), allows for the

calculation of the base index (Ibase). This way, it is possible to compute a daily Index

Ratio to adjust for daily in�ation changes in the bond and whenever it is traded, making

the in�ation accrual steadily over each month instead of adjusting only once a month,

when the new �gure of the price index is published. The daily adjusted Index Ratio is

given by the expression

IRt =
It
Ibase

(6.2)

where IRt stands for Index Ratio in day t. Both indices used to compute IRt are

truncated to six decimal places and then rounded to �ve decimal places. In order to

compute cash settlement amounts, real accrued interest is computed as done for nominal

5For further details please refer to Appendix A in Chapter 5.
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�xed rate bonds. Then, clean price and real accrued interest are each multiplied by the

Index Ratio. As for coupon and principal amounts, the process is the same: each

is multiplied by the Index Ratio computed with reference to the day when they are

calculated. However, if at maturity the Index Ratio is less than one (this will happen if

de�ation occurs), the in�ation �oor will be triggered and the principal amount will be

redeemed at par value.

One thing that stands out from this design is that, for both annual and semi-annual

coupons, the in�ation accrual varies between coupon payments, since it re�ects the

monthly changes in the index. Nonetheless, the indexation lag means that the nominal

interest rates do not include all known in�ation information from a time lag that could

vary between two weeks and a month and a half of in�ation in the current CPI measure,

which has not yet been incorporated in the calculus of the Index Ratio.

After accounting for the in�ation accrual, it is possible to derive the formula for

computing the nominal fair value of a U.S. TIPS, which is similar to the calculation of

the value of a U.S. Treasury bond. The main di¤erence is the inclusion of the Index Ratio

IRt and of an option against de�ation at maturity (i.e. if de�ation occurs throughout

the life of the bond this is not re�ected in the payment of the face value of the bond,

thus no capital erosion occurs6). Equation (6.3) presents the formula we use to calculate

the fair value of a U.S. TIPS, taking into account both real and in�ation components.

BTIPS (0) =
nX
t=1

cRt
x
� IRt � �N (0; t) + max f1; IRng � �N (0; n) (6.3)

Please note that �N (0; t) and �N (0; n) refers to a nominal discount factors. As for

the component max f1; IRtg, as already stated above, it is an embedded option that

6The study of the de�ation option is beyond the scope of this thesis. However, for a meaningful research
contribution regarding the embedded de�ation option, we would like to refer to Grishchenko, Vanden
and Zhang (2016), who assert this option�s ability and informational content to account for the evolution
of future in�ation.
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aims at protecting the investor from de�ation. This way, if the estimated Index Ratio

IRt is negative, the investor will not lose value when the bond is redeemed.

We now highlight the adjustments needed to compare the U.S. Treasury and U.S.

TIPS duration.

As Brynjolfsson (2002, p. 209) summarizes, �Duration is the measure of a bond�s

market value sensitivity to changes in speci�c yields - real or nominal�. Hence, duration

measures, as de�ned by Macaulay (1938) and Fisher and Weil (1971), also could be

applied for in�ation-linked bonds. Equation (3.5) can be applied to compute the nominal

duration of U.S. Treasuries and the real duration of U.S. TIPS. However, to be able to

compare both datasets results, further adjustments need to be done.

Siegel and Waring (2004) discuss the importance of the dual duration problem asso-

ciated with the U.S. TIPS. Either in�ation-linked bonds and nominal bonds have two

durations, the in�ation duration and the real-interest rate duration, and these two du-

rations can be separately de�ned and seen as the decomposition of a bond�s nominal

duration. In the case of nominal bonds, the di¤erence is not relevant because both dura-

tions are similar to each other and to the nominal duration, since any change in nominal

interest rates in�uences the nominal bond price in a similar way, whether is arises from

changes in in�ation or changes in the real interest rate. This way, by investing in nominal

bonds, an investor is unable to hedge independently against changes in real interest rates

and in in�ation. For in�ation-linked bonds, the in�ation duration is close to zero, so the

nominal duration is only explained by the real-interest rate duration. Therefore, if the

liabilities one wishes to hedge are indexed to in�ation, it seems clear that immunization

through real-interest rate duration is the best way to achieve this, because we do not

know ex-ante the �nal value of the liability. This way, the investor would be able to

hedge directly against real interest rate risk while accounting for (and naturally hedging)

in�ation risk in both variable components of in�ation-linked bonds and in�ation-linked

liabilities. Siegel and Waring (2004) suggest this type of immunization to pension funds

and to individual tax-deferred use. However, one must account for the indexation lag
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that exists in all in�ation-linked bonds in order to make the formulae consistent with

reality. Notwithstanding, these �ndings will hold since considering the indexation lag

will make the in�ation duration di¤erent but very close to zero. The major contribution

of Siegel and Waring (2004) work lies in addressing something that is quite important

for the aim of this Chapter: the duration measures of these two types of bonds are not

directly comparable. This is an important issue when trying to compare the immuni-

zation results between nominal bonds and in�ation-linked bonds, as the risk measures

used will have to be adjusted.

Other authors have also focused in the comparison of the real and nominal durations

of TIPS. Roll (2004) documents the correlation of TIPS returns with nominal bonds and

equity returns and the relationship between TIPS real and e¤ective durations through

the estimation of the yield beta (�), by regressing TIPS returns on current changes in

nominal yields using data on U.S. TIPS from 1997 to 2003. However, the author points

out that the yield � estimation does not take into account the ageing e¤ect of bonds until

they mature, and, by assuming that this parameter is stable through time, Roll (2004)

infers that the relation between TIPS real duration and e¤ective duration is constant

over time, and, consequently, that the response of TIPS to changes to the nominal

term structure shape is also the same, irrespective of the bonds residual maturity. This

hypothesis is not realistic and this is also demonstrated in the the empirical work carried

out by Roll (2004). An interesting empirical work on the factors that in�uence the

estimates of U.S. TIPS yield � is put forward by Cocci (2013), that presents a simple

regression-based measure that links real and nominal yields, using data from the U.S.

bond market from 2003 to 2013. The author�s work also takes into account the research

carried out by Roll (2004) and con�rms that the estimate of the yield � cannot be

considered constant. By studying the evolution of the yield � parameter throughout the

aforementioned sample, Cocci (2013) shows that the correlation between nominal and

real interest rate yields has dropped during the �nancial crisis, implying a weaker link
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between these markets in a distressed environment, which has serious implications to

the applicability of the yield � measure to estimate TIPS�e¤ective duration.

Laatsch and Klein (2005) take a di¤erent approach and study the applications of

the e¤ective duration of TIPS while setting up mixed bonds portfolios. They present

a proprietary model7 to value TIPS that is based in the relation between nominal and

real interest rates as portrayed by the Fisher (1930) equation, that is con�rmed to hold

since TIPS bonds are shown to have little sensitivity to changes in expected in�ation.

The authors show that the relationship between e¤ective durations and real durations

of TIPS is not constant and have to take into account the investors believe regarding

the future evolution of nominal and real interest rates and the expected in�ation when

building portfolios with TIPS and nominal bonds, supporting the �ndings from Siegel

and Waring (2004).

U.S. TIPS bonds have two types of duration: real-interest rate duration and in�ation

duration, which can be seen as a decomposition of a bond�s nominal duration. Although

this decomposition is very hard for nominal bonds, since all the cash-�ows associated

to the bond are expressed in nominal terms, the same does not apply for in�ation-

linked bonds. Since in�ation-linked bonds�cash-�ows are stated in real terms, the usual

duration formulae can be used to compute the bonds real duration (DR). This way, for

a non-�at interest rate term structure the in�ation-linked bond�s real duration will be

computed as depicted in equation (3.5) with the below mentioned adjustments

DRj =

nX
t=1

t� wt : wt =
� cRt
x
� �R (0; t)

�
BTIPSR

(6.4)

The real duration of a given j-th bond will be computed as the weighted average

time to maturity t of the future real cash-�ows cRt, paid x times per year and discounted

with the real discount factor �R (0; t) where the weights wt are de�ned as the present

7The proprietary model is presented in the referenced paper, but, for further details, please refer to
Laatsch and Klein (2002).
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value of the cash-�ows of a given bond divided by their fair price BTIPSR , already de�ned

in equation (5.2). In real terms, the formula is straightforward, but in nominal terms

the calculation can be tricky. There are two ways to compute these bonds�nominal

duration, most commonly referred to as e¤ective duration.

First, by adjusting the real duration by a factor denominated yield beta that arises

from the yield � coe¢ cient of a linear regression that attempts to measure the yield

sensitivity of the real interest rate to a change in the equivalent nominal interest rate -

Pond (2008, p. 164). Given a 1% change in nominal yields, the yield � can be interpreted

as the expected percent change in TIPS real yields. The same reasoning can be extended

to the relationship between TIPS�nominal e¤ective duration (ED) and real duration,

as depicted in the formula beneath:

ED = � �DR (6.5)

This is a very simple way to estimate in�ation-linked bonds e¤ective duration; how-

ever we recall that it has important �aws that have been explained by Roll (2004) and

Cocci (2013), namely that this value cannot be assumed to be constant over time. Pond

(2008) also addresses some of these �aws. Although nominal interest rates changes can

be explained by real interest rates changes, this is not the only factor that makes nominal

interest rates vary. In�ation changes also contribute for variations in nominal interest

rates and, in a broader level, anything that can lead to in�ation changes can have an

e¤ect on nominal interest rates. Pond (2008) also acknowledges the unsteadiness of the

yield beta estimate: the in�ation-linked bonds�yield sensitivity to changes in the equiv-

alent nominal yield is not stable. This arises because usually real interest rates are less

volatile than nominal interest rates, but it is also an information issue: market move-

ments and the arrival of new information can be incorporated in both yields in di¤erent

ways. For instance a new in�ation rate release should not a¤ect real interest rates, only

nominal interest rates and, for this speci�c event the yield beta is zero. This way, to cor-

rectly use the yield beta to compute e¤ective duration, new estimates for this parameter
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would be needed on a daily basis. Taking into account all these aspects, to simply adjust

the e¤ective duration formula using the yield beta seems to be an oversimpli�cation and

can lead to a high level of basis risk. See, for instance, for a complete and detailed

explanation, the overall �ndings of Deacon et al. (2004, p. 77-79), whose view on the

e¤ective duration computation based in equation (6.5) is quite critical, since estimating

the � coe¢ cient with historical data might lead to inducing further bias because future

market conditions might (and in most cases do) di¤er from the past.

Another method, already discussed above, is the model presented by Siegel and

Waring (2004) and Laatsch and Klein (2005). This approach seems more feasible than

the yield � estimate presented beforehand because, even though we do not intend to

build mixed portfolios with both U.S. TIPS and Treasuries, we do mean to compare

the results of our multiple liability immunization strategies using both datasets. Hence,

this method was applied in this empirical test under the formulation and hypothesis

presented by Siegel and Waring (2004) and Laatsch and Klein (2005). In order to

compute the e¤ective duration we adjust the real cash-�ows of the bond considering the

in�ation compensation until the bond�s maturity and then discount the cash-�ows using

nominal rates. For this purpose, we assume that the best estimate for future in�ation

is the year-on-year actual in�ation rate (depicted as �) and recall the relation between

nominal interest rates and real interest rates as portrayed in Fisher (1930):

(1 + yN (0; t)) = (1 + yR (0; t))� (1 + �) (6.6)

where yR (0; t) stands for real annual spot rate and yN (0; t) stands for nominal annual

spot rate. Equation (6.6) is widely known as the Fisher�s equation. Deacon et al. (2004,

p. 80) propose a more thorough formulation for Fisher�s equation, by decomposing the

term (1 + �) - that accounts for the year-on-year actual in�ation rate, but also serves as

a proxy for the embedded in�ation compensation demanded by investors to hold TIPS,

as presented by the CPI-U Index - into two terms that account for expected in�ation
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�e and an in�ation risk premium � that aims to account for the uncertainty of future

in�ation. Hence, their formulation of equation (6.6) is extended to

(1 + yN (0; t)) = (1 + yR (0; t))� (1 + �e)� (1 + �) (6.7)

Even though the decomposition of the in�ation compensation shown in equation (6.7)

is not the aim of our analysis, we note that this is not a trivial issue. As mentioned in

Chapter 5, empirical work conducted by Ang et al. (2008) and Chen et al. (2010) has

found that the value for the one-year in�ation risk premium for the U.S. TIPS market is

estimated to be between one and two basis points. This way, even though the presence

of an in�ation risk premium might hamper the validity of our hypothesis of considering

the actual-year-on-year in�ation rate as a proxy of the in�ation compensation, the afore-

mentioned research seems to support our assumption. Recalling that our immunization

program implies the annual payment or the liability we wish to immunize grows with

year-on-year in�ation, keeping this assumption seems quite realistic. This would not

be the case if the liability we wish to immunize was indexed to a two-year (or higher)

in�ation growth rate.

In order to transform the duration equation (3.5) it is necessary to adjust both nu-

merator and denominator in it. The denominator adjustment is straightforward: since

we have estimated a continuous function for the nominal term structure of interest rates

we can use those values as the nominal spot interest rate yN (0; t). The numerator

adjustment will be done by multiplying it by the Index Ratio (IRt) at time t, assuming

that future year-on-year in�ation � will be equal to the most recent data on present

year-on-year in�ation. This hypothesis is consistent with the absence of arbitrage op-

portunities between both securities at time t. This way the U.S. TIPS e¤ective duration

is computed as shown in equation (3.5) with the following adjustments:

ED =

nX
t=1

t� wt : wt =
� cRt
x
� IRt +max f1; IRng jt=n

�
� �N (0; t)

BTIPS (0)
(6.8)
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Although it can be argued that the Index Ratio a¤ects equations (6.3) and (6.8) in

the same way and, hence, the in�ation adjustment is redundant, that is not entirely

true due to the indexation lag. This way the future in�ation expectations are re�ected

instantaneously in the nominal interest rates but re�ected with a three month lag in

the coupon and principal valuation, since the Index Ratio computation allows for that

lag, as stated in equations (6.1) and (6.2). Anyway, although not being redundant, it

is expected that the di¤erence between the e¤ective duration and the nominal duration

measures might be small.

The calculation of the e¤ective duration is important to allow comparisons between

in�ation-linked bonds and nominal bonds in a portfolio context, since all risk measures

computed in a portfolio must derive from similar individual bond measures, i.e. it is not

possible to compare accurately the portfolio�s duration using nominal duration for �xed

rate bonds and real duration for in�ation-linked bonds, as stated by Siegel and Waring

(2004).

As stated before by Nawalkha and Chambers (1996), the M-Absolute model has

been developed to address both parallel and nonparallel shifts in the term structure of

interest rates, while addressing M-Squared shortcoming of being dependant on duration

to achieve a better immunization performance. This is done by condensing in a sin-

gle measure the ability to immunize against nonparallel term structure of interest rates

shifts, while partially immunizing against level shifts in the term structure of interest

rates. The immunization principle behind the M-Absolute model states that immuni-

zation strategies that minimize the M-Absolute measure are those whose cash-�ows are

nested around the planned liability horizon H. In this Chapter, this will be tested in

a multi-liability immunization setup. Once again, for U.S. Treasuries and U.S. TIPS

the M-Absolute measure can be computed as shown in equation (3.8). However, for the

portfolio where we are using U.S. TIPS accounting for both in�ation accrual and real

interest rate accrual, the M-Absolute will have to be adjusted in a similar way as done
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with the e¤ective duration. Hence, the M-Absolute of a bond for the immunization ex-

ercise for U.S. TIPS taking into account the in�ation accrual will be computed as shown

below,

MA =

nX
t=1

abs (t�H)� wt : wt =
� cRt
x
� IRt +max f1; IRng jt=n

�
� �N (0; t)

BTIPS (0)
: (6.9)

As Kondratiuk-Janyska and Kaluszka (2006a) point out, this measure can be only

applied for a single liability immunization problem, where H is when the liability is

paid. In order to use the M-Absolute measure for the multiple liability immunization

problem, the authors derive the M-Absolute of the multiple asset and liability portfolio

in a continuous-time setting as for expression below:

MA
ptf =

Z H

h

abs (VA (h)� VA (H) + E [VL (H)� VL (h)]) dh; (6.10)

where VA stands for the value of the asset portfolio, E(VL) represents the expected value

of the liability portfolio (i.e. the set of liabilities we wish to immunize), h is the time

at which the intermediate liabilities are due and H is the point in time where the �nal

liability is paid and both portfolios cease to exist, such that h = h1; :::; H.

6.3. Methodology

In the following sections the portfolio setup and the immunization programming and

performance measures used in this Chapter are highlighted.

6.3.1. Portfolio setup

The M-Absolute strategy was set-up to minimize the di¤erence between the M-Absolute

of the invested amount and the residual maturities of the liability. Since we are in

the presence of multiple annual liabilities for the two immunization planning horizons

considered, the immunization process has been carried out by taking into account that
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the stream of liabilities we wish to immunize can be seen as a portfolio of zero coupon

bonds. In this sense, the easier way to estimate the amounts to buy and sell of each

bond is by decomposing the overall liability into subsets of single liabilities and immunize

1
H
of the portfolio against each upcoming payable liability, as suggested in Barber and

Copper (1998b) and Kaluszka and Kondratiuk-Janyska (2004). In this sense, we refer

again to H as the last liability to be paid and h as the intermediate liabilities payable

during the immunization planned horizon. This way, each sub-portfolio will comprise a

3-rd or a 5-th of the overall portfolio value, taking into account the �nal immunization

horizon of 3 or 5 years. As before, the portfolios were set up with 8 or 10 bonds (for

the 3- and 5-year estimation respectively) with residual maturities spreaded between the

setup date and 5 years after the horizon date.

To make the U.S. Treasuries subset comparable with the U.S. TIPS, the �nal amount

of the liability was adjusted in order to account for the year-on-year in�ation, as mea-

sured by the CPI-U. By applying the same in�ation rate to the liabilities and the bonds

we wish to use in the immunization process, we eliminate the possibility of inducing any

bias in the process that could arise if these metrics were di¤erent. The year-on-year and

average in�ation growth rates, used as a proxy to compute the �nal value of the liability

we wish to immunize, can be found in Table 6.1. Year-on-year in�ation growth ranges

from 2,15% to 2,62%. As for the cumulative growth values, for the 3-year immunization

period, in�ation growth is 6,9% on average while for the 5-year immunization in�ation

growth is 12,35% on average. This means that each year the immunized portfolios have

to generate, on average, at least the cumulative liability growth projected for each year

in order to allow paying in full the liability due at the end of each year.

(insert Table 6.1 here)

The immunization procedure applied is once again, based on a minimax strategy,

whereby we wish to minimize the di¤erence between the M-Absolute risk measure of the

invested amount and the residual maturities of the liabilities while maximizing the value
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of the portfolio in each rebalancing period. The linear programming applied is depicted

below and takes into account the conditions stated in Bierwag et al. (1983) and Fong

and Vasicek (1983a) in their setup:

min
k

mX
j=1

kjM
A (6.11)

s:t:

mX
j=1

kj = 1

kj � 0;8j = 1; ::;m

(i) VA (t) = E [VL (t)] ;8t = 0; ::; n

(ii)
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MA
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...
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H

377775 =
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H

377775
(iii)

HX
h=1

MA
h =

HX
h=1

h

Besides the conditions applied to the weights kj, that are similar to the ones applied

in the single immunization problem, it is also necessary to consider the conditions for

the multiple liability immunization problem, while taking into account that the immu-

nization measure used is the M-Absolute and not the duration. As stated in Chapter 2,

the M-Absolute is designed as a measure of dispersion of the asset portfolio�s cash-�ows

around the immunization horizon. Since we have multiple liabilities, the M-Absolute

will measure the dispersion of the sum of the overall asset portfolio around the liabi-

lity portfolio, considering that each sub-portfolio�s cash-�ows are clustered around each

payable liability. In this sense, we have adapted the conditions stated by Bierwag et al.
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(1983) and Fong and Vasicek (1983a) to the M-Absolute measure. Firstly, we add ex-ante

necessary conditions that ensure that in the beginning of the immunization process8:

(i) the value of the asset portfolio has to be equal to the expected value of the liability

we wish to immunize for each liability due to be paid in time h � H;

(ii) the vector of the M-Absolute measure of each sub-portfolio has to be equal to

the residual maturity of each liability due to be paid for all times h 2 [1; :::; H];

(iii) The sum of the M-Absolute measures has to be equal to the sum of the residual

maturities of each liability due to be paid for all times h 2 [1; :::; H].

At this stage, we recall Nawalkha and Chambers (1996) de�nition of the M-Absolute

as a weighted average of the absolute distance of the bond�s cash-�ows around the

liability dates of a given portfolio and its main purpose to serve as an alternative to the

traditional duration measures while immunizing a portfolio against non-parallel interest

rate shocks. Since this measure takes into account the portfolio�s composition, it is

already built as a dispersion measure. Taking the simple example of a bullet and barbell

portfolio (like the ones built in Chapters 4 and 5), these will, by de�nition, have the

same duration. However, their M-Absolute will be quite di¤erent, because the bond cash-

�ows of the bullet portfolio are nested around the liability date (i.e. low M-Absolute),

while the bond cash-�ows of the barbell portfolio are spreaded out (i.e. higher M-

Absolute). Furthermore, Fong and Vasicek (1983a) have adapted the 3-rd condition to

account for the dispersion of the mean absolute deviation between portfolio cash-�ows

and upcoming liabilities for the M-Squared measure. This condition can also be applied

for the M-Absolute measure. This way, it does not appear to make sense to compare

the dispersion indices of the asset and liability portfolio based in the duration measure,

as mentioned in Bierwag et al. (1983), since these dispersion indices are based in Fisher

and Weil (1971) duration and we are applying the M-Absolute, instead of duration, as

a risk measure for the immunization process.

8The conditions will be ensured only in the beginning of the immunization process because we assume
that the received coupons are reinvested into the asset portfolio. If we wished to enforce these conditions
in each rebalancing period we would have to drop this hypothesis.
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Adding the �ndings of Kondratiuk-Janyska and Kaluszka (2006b) regarding the re-

lation between the M-Absolute and the duration gap (i.e. minimizing the M-Absolute

of a portfolio implies minimizing the absolute duration gap between asset cash-�ows

and payable liabilities), we are sure that there is no need to compare asset and liabi-

lity dispersion measures based on duration in order to apply the multiple immunization

minimax strategy.

To ensure that immunization is achieved overall we could compare the M-Absolute

of the portfolio with the M-Absolute of the multiple liabilities we wish to immunize,

applying the formula stated in equation (6.10). Please recall that, applying equation

(3.8) to the single liability setting, the M-Absolute of the liability is null, because the

date t the liability is due equals the immunization horizon H. This will not be the case

in the multiple liability setting because we face several liabilities to be paid in dates

t � H. In this sense, we can treat the multiple liabilities as a portfolio and apply the

M-Absolute measure as stated in equation (6.10) to the asset and liability portfolios.

Taking a closer look into equation (6.10) we observe that it incorporates the expected

value of the liabilities in its calculation. This way, since we enforce ex-ante conditions

(i) to (iii) stated above, this means that the M-Absolute measure of the assets will be

equal to the residual maturity of the liability portfolios and, consequently, the di¤erence

between these two measures will be null. This is true because the M-Absolute measure,

as already mentioned, is built as a dispersion measure and its anchor (around which the

level of dispersion is evaluated) is the liability portfolio.

Consequently, it will be su¢ cient to ensure that conditions (i) to (iii) apply to

guarantee that the dispersion of the asset portfolio is equal or above the dispersion of the

liability portfolio. By doing so, we are also ensuring that the 3-rd condition, as de�ned

by Fong and Vasicek (1983a), is ful�lled. However, we would always need to enforce these

conditions ex-ante, because we are immunize 1
H
of the portfolio against each upcoming

payable liability. The 3-rd condition de�ned by Fong and Vasicek (1983a) is trivial

when immunizing single liabilities, thus it would be always ful�lled for each liability.
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The extension that allows to ensure that the overall portfolio complies with all Fong and

Vasicek (1983a) conditions implies enforcing conditions (ii) and (iii) simultaneously.

This way, the conditions stated in equation (6.11) are both necessary and su¢ cient

conditions to apply the multiple liability immunization minimax problem with the M-

Absolute strategy.

6.3.2. Immunization and Performance measures

The results have been evaluated using some of the measures that have been de�ned in

Chapter 3 and are recalled here. The absolute measures used were the average liability

coverage, de�ned in equation (3.17) and the average excess return of the portfolio, de�ned

in equation (3.18). Please note that � (0; t) could refer to the nominal or real discount

factor, according to the type of dataset we are evaluating. If we are using the U.S.

Treasuries or the U.S. TIPS with in�ation adjustment datasets the discount factor will

be computed in nominal terms and if we are using the U.S. TIPS without in�ation

dataset the discount factor will be computed in real terms.

LC (S) =

�P
�=1

V �H
V �0

�

ER (S) =

�P
�=1

0@ ln

�
V �H
V �0

�
H

1A� y (0; H)
�

The average turnover - equation (3.19) - and average transaction costs - equation

(3.20) - have also been computed for each immunization year.

T (S) =

mP
j=1

abs
�
Qj�z �Qj�z�1

�
m� z
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TC (S) =
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abs
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Finally, the relative measure that is computed is the Reward-to-Risk Ratio - equation

(3.24).

R=R (S) =
ER(S)

�S

6.4. Results

We reiterate that the immunization procedure has been conducted taking into ac-

count that a portfolio of multiple liabilities can be decomposed in a set of single liabilities

and the respective assets can be divided accordingly in order to immunize 1
H
of the port-

folio against each upcoming payable liability, as suggested by Kaluszka and Kondratiuk-

Janyska (2004). This is done while �xing for each subset of liabilities the available bonds

for the immunization (i.e. in each 1
H
immunization procedure the portfolios were set up

with the same 8 or 10 bonds). This allows us to know in every rebalancing period which

is the portion of each bond that has been bought to the portfolio, irrespective of the dates

the intermediate h liabilities are due. The conditions (i) and (ii) regarding the value

of the assets and liabilities portfolios have also been ensured ex-ante since, as discussed

above, they are necessary and su¢ cient conditions for the immunization procedure.

The results for U.S. Treasuries, reported in Table 6.2 and for U.S. TIPS, reported in

Table 6.3, show that in all cases the immunization procedures are largely achieved, since,

on average, the liability coverage is always above 100%, even taking into account that

the average year-on-year in�ation growth is 2,2%. This is the case due to the decreasing

interest rate environment.

(insert Tables 6.2 and 6.3 here)
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Another thing that we observe is the direct relation between the average return and

transaction costs, since portfolios with higher average transaction costs tend to have

lower average excess returns. We also highlight that for the longer portfolios the average

turnover tends to be lower, which is a sign that shorter immunization horizons generate

portfolios that are more volatile and need to be adjusted more often to achieve perfect

immunization. These two factors are related and can be explained by the fact that most

U.S. Treasuries and U.S. TIPS bonds have maturities above 5 years, as can be see in

Table 5.1 and Table 5.2.

However, the results for the U.S. TIPS immunization strategy taking into account

the in�ation accrual, included in Table 6.4, are striking.

(insert Table 6.4 here)

One would expect to see the immunization results from this dataset in line with the

immunization results achieved for the U.S. Treasuries but what is observed is that the

average liability coverage is much higher. For the 3-year immunization portfolios, the

average liability coverage for U.S. TIPS is about 7 to 10 percentage points above the

average liability coverage for U.S. Treasuries, while for the 5-year immunization portfolios

the average liability di¤erence ranges from 7 to 18 percentage points. If the datasets

are similar and the time to maturity of the bonds selected for the clustering process are

also in line, what could explain this divergent result? The answer seems to lie in the

divergence itself: in�ation. Bear in mind that for either coupon or principal amounts

the in�ation accrual is computed through the Index Ratio, as stated in (6.2), that takes

into account the evolution of the CPI-U index since the issuance of the bond. If one

looks more closely to the issue dates for U.S. TIPS in Table 5.2, it is possible to see that

most bonds were issued prior to 2000. In line with the year-on-year in�ation estimates,

if we analyze the CPI-U index values, as shown in Figure 6.2, it is possible to see that

these are increasing during the sampling period, with an exception for 2008, that even

so does not jeopardize the upward tendency of the CPI-U index values. There is even a
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2-year period in this sample (2004 to 2006) where in�ation is growing and real interest

rates are decreasing. In this sense, the coupon reinvestment e¤ect is enhanced with the

growing in�ation accrual component. Since we had already observed in Chapter 5, that

the coupon reinvestment e¤ect outweighs the price e¤ect associated with the decreasing

interest rates, the inclusion of the in�ation accrual allied with the divergent behavior

of in�ation and real interest rates leverages the di¤erence that was observed, enhancing

portfolio returns.

(insert Figure 6.2 here)

Hence, the Index Ratios for all the bonds are always increasing with time. This e¤ect

generates higher in�ation accruals as time goes by, that are reinvested into the portfolio

and leverage the portfolios� coverage in a similar way as veri�ed with high coupons

reinvested from the previous Chapters. The only way this would not be the case was

if the Index Ratio applied to U.S. TIPS bonds coupons was computed to account only

for the in�ation growth from the previous coupon and not since the bond�s issuance, as

it would make the in�ation accrual lower. In theory this would allow for near-perfect

hedging of the in�ation accrual, since the only bias would come from the indexation

lag, as depicted in equation (6.1). However, this is not the way these bonds are built

and, even considering it would be a good theoretical exercise, it would not be possible

to apply it in the real world. Recalling the cumulative in�ation growth rates in Table

6.1, these can be compared with the average cumulative implicit in�ation growth rates

in U.S. TIPS, derived from their Index Ratios. This information can be found in Table

6.5. As can be observed, the average cumulative in�ation growth is above the liabilities�

cumulative in�ation growth, thus explaining this overvaluation.

(insert Table 6.5 here)
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Even so, this allows to conclude that, to immunize liabilities that are uncertain and

whose growth is related to in�ation, U.S. TIPS seem to be a better instrument than

U.S. Treasuries, corroborating Fogler (1984) and Siegel and Waring (2004).

6.5. Concluding Remarks

This Chapter presents the empirical results for the multiperiod immunization applied

to U.S. Treasuries and U.S. TIPS from 2000 to 2014, taking into account the results from

previous Chapters and extending the M-Absolute strategy empirical tests from single

to multiperiod immunization. To the best of our knowledge, this is one of the �rst

empirical tests with the M-Absolute measure considering multiperiod immunization and

U.S. TIPS and U.S. Treasuries datasets.

Immunizing growing liabilities with U.S. TIPS seems to be a better strategy than

using U.S. Treasuries, even though both achieve above 100% liability coverage, corrobo-

rating Fogler (1984) and Siegel and Waring (2004). Furthermore, the security design for

U.S. TIPS explains their overperformance in the immunization setting applied, despite

their lower liquidity when compared to U.S. Treasuries, which are considered one of

the most liquid assets in the world. This is due to the way the in�ation component is

accounted for in the U.S. TIPS �oating component.

The sample period is characterized by signi�cant downward interest rate movements

(either nominal or real interest rates) and an upward in�ation growth tendency only

interrupted in 2008. Other empirical tests could be carried out, such as testing the

robustness of these results in a di¤erent interest rate environment. It could also be

tested empirically if with another term structure model estimation (either parametric

or stochastic) the same results would be obtained in order to assess to what extent

the estimation results might be in�uenced by the method used to estimate the term

structure of interest rates and if di¤erent speci�cations for the M-Absolute strategy,

such as logarithms, polynomials, or other generalizations, could induce di¤erent results.
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Table 6.1: U.S. Average In�ation Growth Rate

This table contains the average year-on-year in�ation growth rates for each payment year and the
correspondent cumulative growth rates. These in�ation rates are computed taking into account
the year-on-year growth rates. For instance, the cumulative growth rate of 4,48% for the 2-year
immunization period assumes that in�ation grows by 2,15% in the 1st year and 2,28% in the 2nd

year.

In�ation Payment year

Growth (%) 1st 2nd 3rd 4th 5th

Y-o-Y 2,15% 2,28% 2,35% 2,38% 2,62%

Cumulative 2,15% 4,48% 6,94% 9,48% 12,35%
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Table 6.2: U.S. Treasuries Immunization Results

This table is divided in two panels. Panel A contains the immunization results for the 3-year
horizon and Panel B contains the results for the 5-year horizon. Both Panels report the same
metrics. Immunization Coverage and Performance metrics include the Average Liability Coverage
(LC), Average Excess Return (ER) and the Risk-to-Reward ratio (R=R). As for the Immunization
Costs metrics, Average Transaction Costs (TC) and Average Turnover (T ) are calculated.

Panel A - 3-year immunization horizon

Sub-portfolio horizon LC (S) ER (S) R=R (S) TC (S) T (S)

1-year 103,30% 0,76% 49,60% 1,43% 28,57

2-year 107,34% 1,45% 72,76% 0,77% 18,91

3-year 110,43% 0,76% 33,99% 0,63% 19,62

Panel B - 5-year immunization horizon

Sub-portfolio horizon LC (S) ER (S) R=R (S) TC (S) T (S)

1-year 103,85% 0,82% 52,49% 1,55% 27,53

2-year 108,46% 1,64% 78,56% 0,88% 18,98

3-year 111,70% 0,74% 31,61% 0,72% 19,14

4-year 118,14% 2,05% 73,66% 0,63% 14,82

5-year 122,74% 1,44% 48,22% 1,21% 15,42
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Table 6.3: U.S. TIPS Immunization Results

This table is divided in two panels. Panel A contains the immunization results for the 3-year
horizon and Panel B contains the results for the 5-year horizon. Both Panels report the same
metrics. Immunization Coverage and Performance metrics include the Average Liability Coverage
(LC), Average Excess Return (ER) and the Risk-to-Reward ratio (R=R). As for the Immunization
Costs metrics, Average Transaction Costs (TC) and Average Turnover (T ) are calculated.

Panel A - 3-year immunization horizon

Sub-portfolio horizon LC (S) ER (S) R=R (S) TC (S) T (S)

1-year 102,54% 3,16% 128,07% 0,66% 22,65

2-year 104,40% 5,45% 195,68% 0,43% 14,89

3-year 106,25% 7,67% 251,99% 0,35% 12,53

Panel B - 5-year immunization horizon

Sub-portfolio horizon LC (S) ER (S) R=R (S) TC (S) T (S)

1-year 103,04% 0,92% 59,88% 0,55% 22,94

2-year 105,43% 1,04% 51,98% 0,77% 18,91

3-year 107,70% 0,93% 41,77% 0,63% 19,62

4-year 109,73% 0,52% 18,79% 0,63% 14,82

5-year 112,15% 0,40% 10,55% 0,34% 11,50
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Table 6.4: U.S. TIPS with In�ation Accrual Immunization Results

This table is divided in two panels. Panel A contains the immunization results for the 3-year
horizon and Panel B contains the results for the 5-year horizon. Both Panels report the same
metrics. Immunization Coverage and Performance metrics include the Average Liability Coverage
(LC), Average Excess Return (ER) and the Risk-to-Reward ratio (R=R). As for the Immunization
Costs metrics, Average Transaction Costs (TC) and Average Turnover (T ) are calculated.

Panel A - 3-year immunization horizon

Sub-portfolio horizon LC (S) ER (S) R=R (S) TC (S) T (S)

1-year 110,97% 9,03% 198,81% 0,70% 24,85

2-year 118,19% 13,89% 251,24% 0,46% 16,10

3-year 120,31% 13,67% 238,02% 0,35% 12,31

Panel B - 5-year immunization horizon

Sub-portfolio horizon LC (S) ER (S) R=R (S) TC (S) T (S)

1-year 110,51% 5,76% 128,67% 0,58% 22,95

2-year 119,37% 9,12% 161,19% 0,44% 16,90

3-year 122,99% 7,36% 125,63% 0,35% 13,34

4-year 127,11% 6,06% 96,20% 0,29% 10,34

5-year 140,54% 11,87% 136,85% 0,46% 14,69

125



Table 6.5: U.S. TIPS Index Ratios and Implied In�ation Growth

This table contains the average Index Ratios and implicit In�ation Growth for the U.S. TIPS Dataset.
Please refer to equation (6.2) to recall how this Index is computed. As visible, this measure is
cumulative by design, which means that both average Index Ratio and average implied In�ation
Growth are cumulative �gures. Residual Maturity represents the number of years for which the
In�ation Growth �cure is calculated. It is computed taking into account the sample period. This
way, for bonds issued before January 2000, the residual time to maturity is shown. For bonds that
mature after December 2014, the residual maturity is cut-o¤ at that date. Please refer to table 5.2)
for the Issuance and Maturity Dates of each bond.

ISIN Description Average
Index
Ratio

Average
In�ation
Growth

Residual
Maturity

US9128273A89 TII 3.625 7/2002 1,1174 11,74% 2,53

US9128272M37 TII 3.375 1/2007 1,1687 16,87% 7,04

US9128273T70 TII 3.625 1/2008 1,1653 16,53% 8,04

US9128274Y56 TII 3.875 1/2009 1,1665 16,65% 9,04

US9128275W81 TII 4.25 1/2010 1,1526 15,26% 9,99

US912828CZ11 TII 0.875 4/2010 1,0889 8,89% 5,46

US9128276R87 TII 3.5 1/2011 1,1424 14,24% 10,00

US912828FB16 TII 2.375 4/2011 1,0694 6,94% 4,96

US912828GN45 TII 2 4/2012 1,0685 6,85% 4,96

US912828AF74 TII 3 7/2012 1,1478 14,78% 10,00

US912828BD18 TII 1.875 7/2013 1,1510 15,10% 10,00

US912828KM16 TII 1.25 4/2014 1,0600 6,00% 4,96

US912828DH04 TII 1.625 1/2015 1,1338 13,38% 9,95

US912828QD52 TII 0.125 4/2016 1,0397 3,97% 3,67

US912828SQ48 TII 0.125 4/2017 1,0194 1,94% 2,67

US912828HN36 TII 1.625 1/2018 1,0633 6,33% 6,96

US912828NM88 TII 1.25 7/2020 1,0415 4,15% 4,46

US912828UH11 TII 0.125 1/2023 1,0077 0,77% 1,92

US912810FH69 TII 3.875 4/2029 1,2470 24,70% 15,00
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Figure 6.1: U.S. Year-on-year Consumer Price Index Rates

This �gure contains the year-on-year in�ation rate, computed between January 2000 and December
2014, taking into account the monthly U.S. CPI-U unrevised index statistics, as published by the
U.S. Bureau of Labor Statistics. The year-on-year in�ation is quite volatile during the sample period,
without showing a clear tendency. The only signi�cant movement occurs between 2007 and 2009
where, after an increasing tendency and consequent upper bound above 5%, a sharp decrease occurs
into negative in�ation of around 2% during 2009, mainly due to the U.S. Federal Reserve Quatitative
Easing measures. In late 2009 in�ation starts increasing again into positive teritorry.
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Figure 6.2: U.S. Consumer Price Index Values

This �gure contains the U.S. CPI-U unrevised index statistics, published monthly by the U.S. Bureau
of Labor Statistics and used for the calculation of the Index Ratio for U.S. TIPS. We can observe
the positive tendency of the index that shows that coimpounded in�ation is rising throughout the
sample, thus explaining the high Index Ratios for the in�ation accrual of U.S. TIPS.
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CHAPTER 7

Conclusions

In this dissertation several immunization techniques and strategies have been empir-

ically tested with three di¤erent datasets of treasury bonds, from di¤erent countries and

di¤erent designs. As with any empirical work, there are some constraints to the results

obtained: (1) the underlying dataset, (2) the methodology applied and (3) the overall

interest rate environment. The empirical results presented are quite similar, even tough

the bond datasets are di¤erent, which confers some robustness to the empirical results

presented in terms of dataset and methodology applied.

In what concerns the most widely used immunization techniques, it is possible to see

that naïve maturity-bond strategies have good performances. Hence, if the objective is

to purely immunize a single future liability without taking into account what will happen

to the term structure of interest rates, this could be a feasible way to go. In this sense,

the same would apply for a ladder strategy for multi-liability portfolios, if one build a

portfolio composed of several maturity bonds (one for each due liability). However, this

has not been empirically tested in this thesis and could be developed in future articles

regarding multiperiod immunization.

Barbell strategies, while being fairly risky, have proven to be good to immunize

portfolios in a decreasing interest rate environment for the bond datasets tested. These

strategies allowed reinvesting high coupons at decreasing rates and, at the same time,

holding long-term bonds that have gained a signi�cant intrinsic value as interest rates

decreased. Therefore, it seems to exist a non-negligible bias from the decreasing interest

rate environment embedded in the success of these strategies. If we were in the presence

of an increasing interest rate environment, this strategy might not have been e¢ cient.
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This is also something that could be empirically tested in future research. Bullet strate-

gies, when compared to the naïve maturity bond strategy, prove to be less e¢ cient from

a cost perspective, due to the higher rebalancing of the portfolios, as the naïve strategy

only has transaction costs derived from coupon reinvestments. This e¤ect is more pro-

nounced in the U.S. TIPS dataset, due to its lower liquidity. This way it seems better

to �t the liability to be paid to a single bond.

As for the most complex immunization strategies applied, it is visible that, from

all the M-derived immunization strategies, the M-Absolute is the most consensual in

what regards immunization abilities. In this sense, previous empirical studies that had

acknowledged the good immunization ability of the M-Squared and M-Vector strategies

have not been con�rmed. The M-Absolute produces good immunization results while

accounting for lower transaction costs (i.e. even lower than bullet portfolios). This shows

that the bond clustering strategy in which the M-Absolute is based can be a better

alternative to the naïve strategy because investing in several bonds diminishes the need

to rebalance signi�cantly the portfolios. This can be seem as a diversi�cation e¤ect

in the sense that portfolios become more cost e¢ cient if the investments are spreaded

throughout several bonds.

This way, the coherence of the results presented for the M-Absolute strategy show

that this strategy can be applied by an institutional investor or asset manager whose

purpose is to immunize its investment in order to guarantee the payment of future

liabilities, as an alternative to the traditional duration matching strategies. In this

sense, the added complexity of this strategies is outweighed by the lower turnover and

transaction costs, that ultimately also allow for better immunization results. On the

opposite side, if the investor does not have the possibility to invest in 8 to 10 bonds, he

is better o¤ sticking to the naïve strategy. For example, if an individual investor wishes

to invest some money to safeguard future liabilities, instead of buying investment funds

or contributing to private pension plans, he could buy the maturity bond.
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Regarding the type of liability the investor wishes to immunize, it is also clear that

for nominal liabilities, known ex-ante, it will be better to use nominal interest rate bonds.

The real interest rate bonds achieve good immunization results but this can also be a

consequence of the decreasing interest rate environment. Even so, these bonds liability

coverage is lower than the one achieved by nominal bonds. If the liability�s value is

not known in the beginning of the immunization period, the use of variable coupon

bonds, whose coupon growth rate is close to the growth rate of the liability we wish

to immunize, will be the best asset to build the immunization portfolio. This has been

tested for in�ation growing liabilities and the portfolios using in�ation-linked bonds have

shown to be far better at immunizing these liabilities than nominal portfolios. Even so,

we would see the possibility of empirically retesting these strategies in an environment of

increasing interest rates as a good robustness check for these results since these results

can be deeply linked to the decreasing interest rate environment portrayed in all the

datasets.

Several other empirical tests can be carried out with these datasets in order to

infer if di¤erent methodological setups would achieve di¤erent results. For instance, a

lower rebalancing frequency and longer immunization horizons could be used to test the

robustness of these results. Other avenues for future research can be testing for di¤erent

parametric constellations or even stochastic term structures of interest rates or di¤erent

designs for the M-Vector strategies, like logarithms and/or polynomials. Regarding the

in�ation e¤ect, that clearly seems to play an important role in the results obtained in

Chapter 6, one could also try to develop a stochastic model for the term structure for

in�ation rates, that takes into account both tendency and seasonality of this index, in

order to assess what is the impact of both e¤ects in the immunization process. For

instance, it could be tested if it is indi¤erent to invest in U.S. TIPS regardless of the

month their coupons are paid, or if in�ation accruals are a¤ected by in�ation seasonality

and what role (if any) these e¤ects have in the immunization process.
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Even so, our empirical results show that an informed institutional investor will be

better o¤ implementing the M-Absolute strategy, since, from all the M-Risk measures

tested empirically, this is the one that seems to clearly add value to the immunization

process. When compared to the M-Squared and the M-Vector risk measures, the M-

Absolute is also the easiest to implement, since it relies only in a single dispersion

measure. When compared to the traditional duration-based immunization strategies,

the M-Absolute is highly mathematically tractable, thus not adding excessive complexity

to the immunization process while achieving better results with lower transaction costs.
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