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Resumo

De forma a controlar a segurança de estruturas de Engenharia Civil, estas são

monitorizadas através de diversos sensores. Os dados de sensores são utilizados

para construir modelos estatísticos e preditivos, porém necessitam de ser previ-

amente tratados. A deteção e tratamento de Outliers (erros nos dados) é um

processo lento e difícil que vamos tentar melhorar através da utilização de técni-

cas de Aprendizagem Automática e de Data Mining. Com o crescimento de Big

Data, Outliers vão aparecer com mais frequência, e sem um método automático

de deteção podemos não ser capazes de antecipar problemas e agir a tempo.

Nesta dissertação temos como objectivo identi�car e tratar Outliers em dados

de sensores (utilizando dados reais de uma barragem), comparando e tentando mel-

horar os métodos actuais. Devido à falta de datasets classi�cados, vamos utilizar

métodos de Clustering (agrupamento de dados) que nos permitem compreender

que dados devem ou não ser classi�cados como outliers. Vamos introduzir um

algoritmo que utiliza dados dos Sistemas de Aquisição Manuais e utilizá-lo junta-

mente com um algoritmo de clustering (DBSCAN) e métodos actuais de maneira

a criar um método que é capaz de identi�car e remover a maioria dos outliers nos

datasets usados para demonstração.

Palavras-chave: Detecção de Outliers, Big Data Analytics, Dados de Sen-

sores, Aprendizagem Automática, Data Mining
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Abstract

To be able to control structural safety, engineering structures are monitored

by di�erent kinds of sensors. The sensor data collected is used to create statistical

and predictive models, but data needs to be processed. Outlier detection and

treatment is a costly and slow process that we will try to improve through the use

of data mining and machine learning techniques. In a Big Data centered world,

outliers will appear more often and without an automated way to detect them, we

may not be able to anticipate and act on time.

In this dissertation we will try to identify and treat outliers from sensor data

(using real datasets from a dam), comparing and trying to improve the current

baseline methods. Since we do not have labeled datasets, we will use clustering

methods that allow us to group data and therefore understand which points should

be classi�ed as an outlier. We will introduce an algorithm that makes use of Man-

ual Acquisition System measurements and combines it with a clustering algorithm

(DBSCAN) and baseline methods to create a method that is able to identify and

remove most of the outliers in the datasets used for demonstration.

Keywords: Outlier Detection, Big Data Analytics, Sensor Data, Machine

Learning, Data Mining.

v





Acknowledgements

I would like to express my special thanks to the Professors Elsa Cardoso and

José Barateiro for allowing and encouraging me to take this opportunity and the

knowledge I took from it. A special thanks to my colleague Filipe, who accompa-

nied me during this process from the beginning.

A very very big Thank You to my friends and my girlfriend for keeping me

in track (not!) during this Thesis, and to all of my big Family, in special to my

mother, my father, my uncle and aunt Rui and Cati, my grandmother Mami and

to my uncle Luis, who allowed me to accomplish this Thesis and, beyond that,

develop my whole academic path.

vii





Contents

Resumo iii

Abstract v

Acknowledgements vii

List of Figures xiii

Acronyms xv

1 Introduction 1

1.1 Motivation and Research Context . . . . . . . . . . . . . . . . . . . 2
1.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Identify problem and motivate . . . . . . . . . . . . . . . . . 5
1.2.2 De�ne objectives for a solution . . . . . . . . . . . . . . . . 6
1.2.3 Design and Development . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.6 Communication . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9

2.1 Data Mining and Data Preparation . . . . . . . . . . . . . . . . . . 12
2.1.1 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Box And Whiskers Plots . . . . . . . . . . . . . . . . . . . . 18

2.3 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Extreme Value Analysis . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2.1 Linear Regression . . . . . . . . . . . . . . . . . . . 21
2.3.2.2 Logistic Regression . . . . . . . . . . . . . . . . . . 22
2.3.2.3 Support Vector Machines . . . . . . . . . . . . . . 23
2.3.2.4 Neural Networks . . . . . . . . . . . . . . . . . . . 23

ix



Contents

2.3.2.5 K-Nearest Neighbor . . . . . . . . . . . . . . . . . 23
2.3.3 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . 24

2.3.3.1 Principal Component Analysis . . . . . . . . . . . 25
2.3.3.2 Clustering and distance measures . . . . . . . . . . 25
2.3.3.3 K-Means . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3.4 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3.5 Local Outlier Factor . . . . . . . . . . . . . . . . . 27

2.4 Model Evaluation and Outlier Treatment . . . . . . . . . . . . . . . 27
2.4.1 Error Measures . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Resampling Methods . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Outlier Treatment . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Outlier Detection in Structural Engineering . . . . . . . . . . . . . 32

3 Design and Development 39

3.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.1 CaseStudy Dam . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Development Language . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Whiskers Boxplot . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Standard Deviation and Min/Max approach . . . . . . . . . 46

3.4 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 K-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Local Outlier Factor . . . . . . . . . . . . . . . . . . . . . . 54
3.4.4 Clustering Analysis Summary . . . . . . . . . . . . . . . . . 56

3.5 Algorithm for Outlier Detection (Using MDAS) . . . . . . . . . . . 58
3.6 Method for Outlier Identi�cation and Treatment . . . . . . . . . . . 63
3.7 Comparative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Demonstration 69

4.1 Dataset creation and labeling . . . . . . . . . . . . . . . . . . . . . 69
4.2 Baseline Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Method for Outlier Identi�cation and Treatment . . . . . . . . . . . 74

4.3.1 Preliminarily Tests . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Outlier Detection using MDAS measurements . . . . . . . . 77
4.3.3 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.4 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . 81

5 Evaluation 83

5.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Method for Outlier Identi�cation and Treatment . . . . . . . . . . . 84

5.2.1 Dataset with 1% of Outliers . . . . . . . . . . . . . . . . . . 85
5.2.2 Dataset with 5% of Outliers . . . . . . . . . . . . . . . . . . 87

x



Contents

5.2.3 Dataset with 10% of Outliers . . . . . . . . . . . . . . . . . 88
5.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion 93

6.1 Analysis of Research Questions . . . . . . . . . . . . . . . . . . . . 94
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 101

xi





List of Figures

1.1 DSRM Process Model . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Guideline for this research (DSRM) . . . . . . . . . . . . . . . . . . 5

2.1 The �ve V's of big data . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Big Data Analytics as a complementary system . . . . . . . . . . . 11
2.3 CRISP-DM Process Model . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Scatter Plot example . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Histograms example . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Box And Whiskers Plots example . . . . . . . . . . . . . . . . . . . 18
2.7 Spectrum from normal data to outlier . . . . . . . . . . . . . . . . . 20
2.8 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 KNN example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 K-Means example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 Over-�tting example . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.12 Manual vs Automatic measurements . . . . . . . . . . . . . . . . . 33
2.13 Dam System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.14 MLR in Dam Behavior Prediction . . . . . . . . . . . . . . . . . . . 36
2.15 Data Quality Cycle in Dams' Sensor Data . . . . . . . . . . . . . . 37

3.1 GESTBARRAGENS Data Growth . . . . . . . . . . . . . . . . . . 40
3.2 Predictive Setting example . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Whiskers Boxplot examples . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Scatter Plots examples . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Standard Deviation examples . . . . . . . . . . . . . . . . . . . . . 46
3.6 K-Means Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 K-Means Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8 K-Means Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Outlier Removal Example . . . . . . . . . . . . . . . . . . . . . . . 51
3.10 DBSCAN using Epsilon = 0.1 . . . . . . . . . . . . . . . . . . . . . 52
3.11 Outlier Detection using DBSCAN . . . . . . . . . . . . . . . . . . . 53
3.12 DBSCAN Example in DESLOCTANGABS dataset . . . . . . . . . 53
3.13 Outlier Removal in DESLOCTANGABS dataset . . . . . . . . . . . 54
3.14 Outlier Detection using LOF . . . . . . . . . . . . . . . . . . . . . . 55
3.15 Outlier Detection using LOF: Best Results . . . . . . . . . . . . . . 56
3.16 ADAS vs MDAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.17 Chosen Gap Example . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



List of Figures

3.18 Dataset and gap for demonstration . . . . . . . . . . . . . . . . . . 61
3.19 Manual Values Standard Deviation . . . . . . . . . . . . . . . . . . 62
3.20 Manual Values Standard Deviation, with K = 2 . . . . . . . . . . . 63
3.21 Method for Outlier Identi�cation and Treatment . . . . . . . . . . . 64

4.1 Dataset for Demonstration . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Dataset with 1% of Outliers . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Baseline Method on Dataset with 1% of Outliers . . . . . . . . . . . 73
4.4 Baseline Method on Dataset with 5% of Outliers . . . . . . . . . . . 73
4.5 Baseline Method on Dataset with 1% of Outliers . . . . . . . . . . . 74
4.6 F1-Measure vs Recall . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Outlier Detection using MDAS impact on Dataset with 1% of Outliers 78
4.8 Outlier Detection using MDAS impact on Dataset with 5% of Outliers 78
4.9 Outlier Detection using MDAS impact on Dataset with 10% of Out-

liers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.10 DBSCAN impact on Dataset with 1% of Outliers . . . . . . . . . . 80
4.11 DBSCAN impact on Dataset with 5% of Outliers . . . . . . . . . . 80
4.12 DBSCAN impact on Dataset with 10% of Outliers . . . . . . . . . . 81
4.13 Standard Deviation technique impact on Dataset with 5% of Outliers 82
4.14 Standard Deviation technique impact on Dataset with 10% of Outliers 82

5.1 Final result in the dataset with 1% of outliers . . . . . . . . . . . . 85
5.2 Final result in the dataset with 5% of outliers . . . . . . . . . . . . 87
5.3 Final result in the dataset with 10% of outliers . . . . . . . . . . . . 89
5.4 F2-Measure Evolution during the Method . . . . . . . . . . . . . . 91
5.5 Recall Evolution during the Method . . . . . . . . . . . . . . . . . . 91

6.1 Impact of the Method on the Dataset with 1% of Outliers . . . . . 95
6.2 Impact of the Method on the Dataset with 5% of Outliers . . . . . 96
6.3 Impact of the Method on the Dataset with 10% of Outliers . . . . . 96
6.4 Outlier Detection and Treatment System . . . . . . . . . . . . . . . 100

xiv



Acronyms

ADAS Automatic Data Acquisition System

ANN Arti�cial Neural Networks

BDA Big Data Analytics

BI Business Intelligence

BPNN BackPropagation Neural Networks

CM Confusion Matrix

CRISP-DM CRoss Industry Standard Process for Data Mining

DBSCAN Density-Based Spacial Clustering of Applications with Noise

DM Data Mining

DSR Design Science Research

DSRM Design Science Research Methodology

DSS Decision Support System

FN False Negative

FP False Positive

IoT Internet of Things

IT Information Technology

KDD Knowledge Discovery Process

KNN K-Nearest Neighbor

LNEC Laboratório Nacional de Engenharia Civil

LOF Local Outlier Factor

MDAS Manual Data Acquisition System

ML Machine Learning

MLR Multiple Linear Regression

MSE Mean Squared Error

OP Observation Plan

PCA Principal Component Analysis

RQ Research Question

xv



Acronyms

SaaS Software as a Service

SD Standard Deviation

SPE Squared Predition Error

SVM Support Vector Machine

TN True Negative

TP True Positive

xvi



Chapter 1

Introduction

Structures are design to support heavy loads and resist weather, seismic activity

and even time (buildings from previous civilizations can still be seen today). The

need for observation of those structures is, now more than ever, a case of study,

not only due to construction limits being pushed everyday but also the fact that

the technology is rapidly advancing (sensors, video, images, etc.), helping us to

better study and understand what is happening to these structures.

Structural Engineers attempt to predict how a certain structure is going to act

under a set of circumstances, in order to prevent any accidents that may happen.

The way that data is gathered, transformed, visualized and used to gain knowledge

about each structure is of utmost importance for structural engineers, and it is

how structural safety is controlled.

Safety control in large civil engineering structures, like dams and bridges, im-

pacts not only the entities involved directly with the structure but also the whole

society that bene�ts from it without the risk of accidents. However, the correct

interpretation of the state of each structure depends on the quality of the data

collected, so it is essential to eliminate any noise and outliers from the process of

data acquisition. Failing to identify and remove these outliers can produce a chain

reaction, since there are complex processes that are dependent on the quality of

collected data, that may lead to bad evaluations about the current safety state of

the structure.

1



Chapter 1. Introduction

1.1 Motivation and Research Context

Nowadays, the increasing level of population demands a good management of

water resources, not only for consumption but also for irrigation purposes, among

others. A type of structures that is critical for that are dams, which, simply

put, are barriers that impound water. Structural engineers have the challenge of

managing those structures and the risks that are associated with them, not only

during construction but also when in exploration and after abandonment of the

structure. The lack of management and safety control may lead to the loss of

human lives and heavy economic and environmental damage to the dam's region.

Safety control on large engineering structures, like dams and bridges, is key

for controlling risks that may cause environmental, human and economic disas-

ters. To be able to anticipate and act in a timely manner, those structures are

monitored by di�erent kinds of sensors that allow experts to check and ensure

their structural safety. When talking about safety and monitoring on engineering

structures, detecting damage is of the most importance. The identi�cation and

discovery of structural damage is based on numeric and statistical models that use

data collected in their monitoring systems.

In Portugal, the DSR (Dam Safety Regulation) is followed and, accordingly,

every dam project needs to include an OP (Observation Plan). The OP de�nes a

set of inspections, observations, and studies that need to happen during the life

cycle of the dam, while taking into account the classi�cation of the dam and the

main risks associated with it (Castro & Barateiro, 2015). Physical quantities, such

as the water level in the reservoir, water and air temperature, accelerations rep-

resenting seismic activity, displacement, tensions, deformations, movements, etc.,

are worth observing to understand the dam behavior and predict future reactions

to a certain situation. The observation can be manual or automatic, with di�erent

frequencies (some data is worth registering once a day while other may be nec-

essary to register every hour, and the frequency may change throughout the life

cycle of the structure).

In Portugal, data from those observations is registered to an information sys-

tem (currently GESTBARRAGENS is used, developed by LNEC (Laboratório

2



Chapter 1. Introduction

Nacional de Engenharia Civil 1). Within this information system, that was devel-

oped to aid the safety control in dams, data is processed and can be used to obtain

predictive and statistical models that help structural engineers to anticipate and

prepare for any problem that may happen.

The emerging ability to acquire, process and manage data about di�erent busi-

nesses leads to a new paradigm where we can create knowledge by analyzing the

di�erent patterns, correlations, dependencies, etc., on data with di�erent kinds of

properties and representation. With sensors, there is a high potential for acquiring

data representing actual events (that are to be monitored) and lead to multiple

and heterogeneous data sources. These sensors can easily be treated on a big data

scenario, depending on the number of sensors, acquisition frequency, variety and

volume, the processing of which �ts into big data analytics. Some of the sensors

are as old as the structures, since they are embedded during the construction, and

in case of error they cannot be �xed or swapped, we also have lots of redundant

sensors and therefore, data.

To adequately use statistical models on the monitoring data, the data needs to

be previously processed. Part of this process is through outlier detection, which

is one of the most important steps since the existence of errors might lead to

worse statistical models. Outlier detection, when made by humans, it is a time

consuming, slow and prone to error process, so it is desirable to �nd a reliable way

to automate this process.

Outliers are not only errors resulting from the acquisition process, they can

also represent a problem or a deviation in the response of the structure. To be able

to di�erentiate an isolated outlier, for example noise in the acquisition of data on

a speci�c sensor, the monitoring systems of the structures are redundant. In order

to distinguish an isolated outlier from a deviation in the structures' response, we

need to analyze the dependencies between di�erent sensors (temperature, water

level, etc). The removal of outliers in any dataset is necessary when using it

to create prediction models, since we are going to train the future models in an

outlier-free dataset, the results should be better than the dataset with outliers,

thus improving the ability of the structural engineer to understand and predict

results.
1National Laboratory for Civil Engineering
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Chapter 1. Introduction

The proposed study aims to de�ne a methodology for automatic detection of

outliers in data from continuous monitoring of engineering structures, based on

data mining and machine learning techniques. In addition, we intend to implement

the proposed methodology and apply it to real data from one of the structures

supervised by LNEC.

1.2 Research Methodology

To develop this thesis, we will be using the Design Science Research Methodology

(DSRM) that focus on the design, development, demonstration and evaluation of

artifacts (Pe�ers, Tuunanen, Rothenberger, & Chatterjee, 2007), as displayed in

Figure 1.1. Artifacts are tools that, when used, allow us to solve an existing and

perceived problem.

Figure 1.1: Design Science Research Methodology process model (Retrieved
from (Pe�ers et al., 2007), p. 14)

Currently, outliers are not automatically identi�ed in the datasets. We have a

desired state where we can automatically identify those outliers, resulting in a gap

between our current state and our desired state that we will address by designing

and developing our artifacts. We have an Objective-Centered Solution research

entry point, since our research started with goal to be able to classify and remove

outliers from sensor data. To achieve this, in this thesis, we will create three

artifacts: (1) A baseline of how we can identify and remove outliers with existing

techniques, (2) a method for outlier treatment, (3) a comparative model so we can

4



Chapter 1. Introduction

assess which technique achieves better results. After the creation of the artifacts,

we need to Demonstrate and Evaluate them, ensuring they ful�ll our objectives

(see Figure 1.2).

Figure 1.2: Guideline for this research (DSRM) (Adapted from Figure 1.1)

In the following subsections we will detail each step of the DSR Methodology.

1.2.1 Identify problem and motivate

Outlier identi�cation and treatment is a problem present when using almost any

dataset. When it comes to sensor data, outliers can be caused by a lot of things, for

instance, mechanical problems of the sensor, computer problems when storing or

transferring data, manual registration or treatment of data or a structural problem.

These outliers need to be identi�ed and treated so we can correctly assess the data

and be able to make/base decisions on it. Manually identifying and treating the

outliers is not an e�cient and fast option, and it can be prone to errors, so we

want to �nd an e�cient way to do it.

Currently, in the analyzed case study, outliers are being identi�ed through

standard deviation and data limits (which caps the data to avoid absurd values,

that is, there is a minimum and a maximum value for the data).

5



Chapter 1. Introduction

1.2.2 De�ne objectives for a solution

The objective is to develop a method to identify and treat outliers from sensor

data, using Machine Learning algorithms and improving the existing solutions.

During this thesis we will try to address and answer the following research

questions:

RQ1. Can we use clustering algorithms to detect outliers in sensor data?

RQ2. Is the information from other sensors useful when detecting outliers?

RQ3. Can we �nd a method that detects all or most of the outliers in a dataset?

Does it perform better than baseline methods?

1.2.3 Design and Development

To achieve our goals, we will create three artifacts. Each artifact addresses a part

of our problem:

1. Baseline (Instantiation): We need to understand how LNEC is currently

addressing the outliers, what methods and techniques exist to identify and

remove outliers and how well they perform. This is an instantiation type

artifact since we will be using a dataset provided by LNEC on which we will

use these methods and techniques.

2. Outlier Identi�cation and Treatment (Method): After we have the

baseline, we are going to develop a method to identify and remove outliers.

This method is comprised of the preprocessing of the data followed by a

clustering algorithm and/or any other algorithm that can be found �t for

outlier identi�cation and removal. In the end, it is expected that the output

will be the outlier-free dataset or the same dataset but with the outliers

correctly classi�ed as such.

3. Comparative Model (Model):To be able to tell if our new method can

lead to better results than the baseline techniques, we are going to construct

a comparative model. Keep in mind that not all outliers are useless infor-

mation, some of them (like the ones caused by structural anomalies) are

6



Chapter 1. Introduction

important to the creation of knowledge. In this comparative model we have

to compare the percentage of outliers detected and other information that

we �nd useful.

1.2.4 Demonstration

To demonstrate our artifacts, we will use them on datasets given to us by LNEC,

from CaseStudy2 dam, in Portugal. We will use three di�erent labeled datasets,

each one with di�erent types and percentages of outliers (outliers will be inputed

in the data by ourselves). In order to show how both the Baseline and the Outlier

Identi�cation and Treatment Method perform in this instance of the problem, we

will apply them in the three datasets, showing the results. At the end, we should

be able to identify and treat outliers in the datasets.

Since our method can be decomposed into several s teps, we will show the

evolution and impact of each step in the datasets. The impact of each step will

depend on the chosen parameters. So, beforehand, we will perform preliminary

tests to determine one of the combinations of parameters that show the usefulness

and better represent the impact that the method can have on this type of problem.

1.2.5 Evaluation

In the evaluation we assess if our artifacts support our proposed solutions to the

problem. We will use our Comparative Model to assess if our Method for Outlier

Identi�cation and Treatment performs better than the Baseline and respond to our

Research Questions. The performance evaluation will focus on the Demonstration

results, showing the real impact (through the metrics utilized in the Comparative

Model) that both the Baseline and our Method (and each of the steps) had on

each of the datasets.

The Comparative Model should provide performance metrics that allow us to

answer all of our Research Questions, based not only on the results from this

section, but also demonstrations and results obtained during our research.

2 Due to the con�dentiality of the dam's real name, we have replaced it with CaseStudy
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1.2.6 Communication

The communication of this research is done with this document, a LNEC report

(published as a book) and a paper. The LNEC Report was already submitted

and is currently under review. It includes a �rst approach to our solution, where

we try several (baseline and machine learning) methods for outlier detection. The

paper will be submitted to an international conference with a scienti�c peer-review

process. It will include a summary of the outcomes archived in this research

project.

1.3 Document Structure

This document is structured as follows:

• Chapter 2 presents the Related Work, introducing the concepts and algo-

rithms that we will be useful for our research;

• Chapter 3 introduces our Case Study and shows the current Baseline Meth-

ods. Clustering techniques analysis and the Design and Development of our

artifacts (Method for Outlier Identi�cation and Treatment and the Compar-

ative model) is done in this Chapter;

• Chapter 4 shows the creation of three labeled datasets with outliers and

demonstrates the impact of the Baseline Method and our Method on them;

• Chapter 5 presents the results from the impact of the Baseline Method and

our Method on the labeled datasets;

• Chapter 6 summarizes our research, analyzing our research questions and

introducing the limitations of our work. This chapter also contains future

work analysis.
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Related Work

In this chapter we will learn and study about subjects that we will need for the

Design & Development chapter (Chapter 3). The information and knowledge we

will obtain in this chapter serves as an input to the next steps of the research.

Business Intelligence (BI), a term introduced in mid-1990's by the Gartner

Group, is now a major cornerstone to most companies and it is de�ned as an

umbrella term that includes applications, infrastructure, tools and good practices

to enable access and analysis of information in order to improve and optimize

decision making and performance (Burton et al., 2006). Derived from Decision

Support System (DSS), BI Systems are built to �get the right information to the

right people at the right time�, to do that BI Systems collect, transform and store

data from multiple sources, in order to measure, analyze it and provide, through

report tools, the right information, thus providing knowledge to the stakeholder

that is making decisions (Kimball & Ross, 2013).

The amount and the quality of data to process is related to the amount of

knowledge we can obtain, so to improve knowledge, companies gather bigger

amounts and diverse kinds of data. The fact that almost every device nowa-

days has an internet connection or another kind of interaction allows the creation

of a huge network of connected devices that we call The Internet of Things (IoT)

(Evans, 2011). With the IoT paradigm, the quantity of data that can be collected

by the connected devices is huge. Devices, like sensors, can capture an enormous

amount of data, not only in quantity but in quality and types (environmental,

logistic, etc.), leading to a Big Data scenario (Chen, Mao, Zhang, & Leung, 2014).
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Big Data represents a challenge to companies. Although the objective of com-

panies stays the same (obtain value and knowledge from data), there are three

major di�erences: Volume, Velocity and Variety. We have more data, more kinds

of data (structured and unstructured) and need to obtain better and faster results.

To be able to analyze these datasets, companies cannot utilize normal algorithms,

which are too ine�cient, so they need to use faster and more powerful analytical

tools (McAfee, Brynjolfsson, et al., 2012). With the evolution of Big Data, other

key concepts of this challenge besides the aforementioned three V's were added.

More recently we can see big companies like IBM adding Veracity (our data should

be as trustworthy as possible) and Value (we should be able to obtain value from

our data) to the other V's (Analytics IBM, 2017; Marr, 2015). Other companies,

like SAS, refer Complexity as well, stating that in a Big Data scenario data can

"quickly spiral out of control" (Insights SAS, 2017)

Figure 2.1: The �ve V's of big data. Retrieved from (IBM, 2015).
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Big data analytics is a form of data analytics that focuses on Big Data, in order

to discover patterns and obtain knowledge and intelligence. It uses mathematics,

statistics, and modeling techniques, utilizing Data Mining and data visualization

to uncover knowledge, helping to support decision making (Sun, Zou, & Strang,

2015). It can be seen as the union of several techniques in multiple areas, that

combined represent the fundamentals of big data analytics. Big Data Analytics

should coexist and complement the BI systems (see Figure 2.2), allowing decision

making and analysis on di�erent types of data that BI tools may could not be

ready to answer.

Figure 2.2: Big Data Analytics as a complementary system. Retrieved from
(GlobalDataStrategy, 2017).

The remainder of this chapter is organized in the following sections:

• Section 2.1 introduces Data Mining and Data preparation. This includes

possible problems that may appear in data (including Outliers);

• Section 2.2 describes some Data Visualization techniques that can be useful

for outlier detection;

• Section 2.3 describes the several techniques utilized for outlier detection;

• Section 2.4 presents ways to evaluate the performance from outliers detection

methods and ways to treat outliers;

• Section 2.5 introduces some concepts about outlier detection in dams, as well

as Data Quality in dams.
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2.1 Data Mining and Data Preparation

Data Mining is seen as the extraction of knowledge by �nding meaningful patterns

and rules in large amounts of data. Through the exploration and analysis of data,

utilizing methods of arti�cial intelligence, machine learning, statistics, etc., Data

Mining's goal is to discover models in data (Jain & Srivastava, 2013).

Data Mining, often related to knowledge discovery (Fayyad, Piatetsky-Shapiro,

& Smyth, 1996a), can be directed or undirected, depending on the task that we

are trying to accomplish. Directed data mining is used to describe or explain

how data in�uences a certain output, while undirected data mining is utilized to

�nd patterns or similarities in data without a speci�c output. Each type of data

mining has techniques and tasks, however the choice of the techniques depends

not only on the type of data mining but also the nature of the available data and

the situation we are trying to resolve (Berry & Lino�, 1997).

The CRISP-DM (CRoss-Industry Standard Process for Data Mining) reference

model is the standard guide/framework that helps organizations and data miners

to conduct a data mining project. It is a phase-by-phase methodology, that en-

courages best practices in order to get better and faster results by breaking the

data mining project into six phases and indicating the dependencies between them

(Shearer, 2000; Wirth & Hipp, 2000). In this thesis, our focus will be on the Data

Preparation stage.

Figure 2.3: The CRISP-DM process model (Retrieved from (Abbott, 2014,
chap.2))
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Data preparation is a fundamental stage both in the Data Mining cycle and

in the Knowledge Discovery from Databases (which sees Data Mining as a step of

the process, preceded by the selection, preprocessing and transformation of data)

(Fayyad et al., 1996a; Fayyad, Piatetsky-Shapiro, & Smyth, 1996b). Due to the

importance of this step, it should usually take 80 percent of the time invested

in any data project (Zhang, Zhang, & Yang, 2003). The main objective is to

transform raw data into cleaned and quality data to be used as input for the

algorithms. This is important because of three things:

1. Data from real-world sources may not be quality data. It can be incomplete

(lacking values or attributes), noisy (outliers) or be inconsistent (discrepan-

cies in names for example) and these problems can disguise useful patterns

in the data;

2. Improving the e�ciency of data mining, by selecting relevant data (removing

anomalies, duplicates and selecting the right attributes for the task at hand),

therefore reducing the size of the dataset;

3. Quality data leads to quality results. By applying the predictive algorithms

in quality data we obtain outputs (patterns) of higher quality.

To achieve this, Data Preparation utilizes several techniques, like Variable

Cleaning (in the Data Understanding stage we should look for variables with in-

correct values, outliers or problems with Data Formats' consistency) and Feature

Creation (creating new variables, in order to add value to the dataset). The choice

of the techniques and the treatment we give to the data is heavily related to busi-

ness knowledge and to our objectives (Abbott, 2014).

2.1.1 Missing Values

One of the most frequent problems in a dataset are Missing Values. These have

multiple representations, from null values to an empty cell, but can take special

representations depending on the case (for example a missing date can be repre-

sented by 11/11/11 or by 99/99/99). These values can result from simple data

entry errors, unknown values or lost values from corruption or overrides. But on

the other hand a missing value can be important, for instance a question on a sur-

vey that was not answered might give us some information about the respondent.
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To �x missing data we have lots of options, but our primary goal is to input values

into the variables (Abbott, 2014). These are some of the options:

1. Deletion: The simplest way to handle a missing value is by deletion. We

have two options: list wise or column selection. On the �rst, we choose to

remove any record of the dataset with missing values on the variables that

we are using, but it can lead us to a situation with too few lines to make

a good predictive model. On the second, we take the option to delete an

entire column, removing all the information of a certain variable. This is

a good choice on variables with too many missing values, but not useful in

some cases (if the variable is very important to the model for example).

2. Imputation with a Constant: We can input a value on a variable repre-

senting the missing value. For example we can utilize a character or string to

symbolize the missing value or an impossible value (-1 for age, for example).

3. Mean and Median Imputation: The computation of the mean and me-

dian is not expensive, and combined with the low impact to the distribution

of the variable, it makes this a common method. However when utilized in a

variable with high amount of missing values leads to a considerable impact

on the distribution, and therefore should not be used.

4. Imputing Missing Values from a Model: Although more expensive and

slow, the utilization of a model to input missing values leads, most of the

time, to better results. The target of the model is now the variable itself,

and utilizes other variables to predict the value. Decision trees and k-nearest

neighbors are the most used modeling algorithms in this option.

2.1.2 Outliers

Outlier is a statistical term that represents a data point that is distant from

the remaining observations in a sample. It can be seen as an observation that

di�erentiates itself from the others enough to be possible it was not generated

the same way (Hawkins, 1980). Statistically speaking an outlier can impact the

results of any data analysis or statistical model. For example, in Table 2.1 we have

a simple dataset in which we can observe the impact of a single outlier.
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Table 2.1: Single Outlier (300) Impact on a Dataset. Adapted from (Ray,
2016, chap.3).

Without Outlier With Outlier

Values 4,4,5,5,5,5,6,6,6,7,7 4,4,5,5,5,5,6,6,6,7,7,300

Mean 5,45 30

Median 5 5,5

Mode 5 5

Standard Deviation 1,04 85,03

Outliers, or anomalies, can be originated by the unusual behavior of the system

that is generating the data for a dataset. They can represent not only an infor-

matics system error but also the abnormal activity or characteristics of the system

and the entities involved with it. With that in mind, Outlier Analysis is important

not only to remove error from data (that can in�uence the predictive models) but

also to give some insights about our system that can be useful to detect some

problem. Credit Card Fraud, Intrusion Detection Systems and Medical Diagnosis

are some examples (Aggarwal, 2013). These problems are recognized as deviations

of data (may not be a single outlier) from the expected pattern that data from

that system should follow. In Data Mining this is called anomaly detection.

An Outlier can be caused by various factors. Mechanical and instrumental

errors (like sensor failure), IT errors (overrides in databases or data corruption),

human errors (manual entries) or even deviations in the system behavior (if the

Outlier is caused by this, the information gathered by detection is very important

to the creation of knowledge) (Hodge & Austin, 2004).

We can classify an Outlier into three categories, depending on its type: Point

Outlier, Contextual Outlier and Collective Outlier (Singh & Upadhyaya, 2012).

When we observe a single record on our database that can be seen as anomalous

when compared to the rest of the dataset we call it a Point outlier. For example,

when comparing a transaction of a very large amount if it is completely o� the

feature distribution, that entry on the dataset will be a Point Outlier.

The existence of a collection of points that can be seen as anomalous when

observing the entire dataset is called a Collective Outlier. Each individual instance

of the collection may not be an outlier but when they occur successively, the

collection itself can be an outlier. For example a 0 on a dataset of a temperature

sensor dataset might not be an error, but a successive occurrence of the same
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value during some days may indicate a problem with the sensor, and it is called a

Collective Outlier.

Sometimes we cannot assume if the record is an outlier without some context.

For example, on a temperature sensor, without a certain time or date we cannot

assess if it is an outlier. To �nd Contextual Outliers we rely on two types of

attributes: Contextual attributes (like time or location) and Behavioral (like tem-

perature or amount of rainfall). One value can be an outlier given a context but

in another context can be a perfectly normal value. Also it is important to note

that a Point or Collective Outlier can, sometimes, also be treated as Contextual

Outliers, if they have context information related to the problem.

Note that some outliers are identi�ed by observing a single variable, while

others are multi-variable outliers, and can only be detected when observing two

or more variables (Abbott, 2014). After detecting an outlier it is important to

interpret it, trying to understand the type and the cause, in order to gather in-

formation and therefore be able to create knowledge about the system and any

relevant entities.

2.2 Data Visualization

Data Visualization is useful in Big Data Analytics (BDA) for two reasons: Data

Analysis and Communication.

When used for Data Analysis, Data Visualization aims to help understanding

and retrieving information from data. Combined with today's computing power,

the human knowledge and creativity is used to get insight and conclusions from the

data through the direct contact and interaction that visual data allows. Normally,

the process of Data Understanding is helped and complemented by visual data

(Keim, 2002).

Visual display of data is also important in BDA to improve communication.

All the information of our system is useless unless we are able to communicate it in

the right way to the stakeholders. The use of dashboards (Few, 2006), graphs, and

other visualization techniques, when done right, can improve business decisions

and data or information comprehension (Chen et al., 2014). Data Visualization
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makes use of several visual attributes, like color, form, position, etc., so that we

can perceive information in a fast and comprehensive way.

According to (Kimball & Ross, 2013, p.537): �One very current big data theme

is visualization of data sets. �Flying around� a petabyte of data requires spectacu-

lar performance! Visualization of big data is an exciting new area of development

that enables both analysis and discovery of unexpected features and data pro�l-

ing�. There are several Data Visualization techniques, but in this chapter we will

focus on Scatter Plots, Histograms, Box and Whiskers Plots. These techniques

can be used for outlier detection as we will see.

2.2.1 Scatter Plots

Scatter Plots are diagrams that allow two-dimensional display of points, along

two axes (x, y), as seen in Figure 2.4. They are good tools to observe the relation

between two variables (Friendly & Denis, 2005). Utilizing Scatter Plots allows a

�rst look of a dataset and a quick glance of points that probably are outliers.

Figure 2.4: Scatter Plot example (Retrieved from (Han et al., 2011, p.59))

2.2.2 Histograms

Histograms are diagrams that allow the visualization of a single variable distri-

bution. This is archieved by dividing the data into groups (for example [0, 10[,

[10, 20[, etc.) and then count the occurrence of records for each group. Then we

obtain a bar graph where the groups are displayed in the horizontal axis while the

count or percentage is presented in the y-axis, as seen in Figure 2.5 (Abbott, 2014;

Montgomery & Runger, 2010).
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Figure 2.5: Histograms example (Retrieved from (Han et al., 2011, p.57))

2.2.3 Box And Whiskers Plots

Box and Whiskers Plots are a graphic representation, used in Statistics, which

gives lots of insight on a single variable distribution. It allows to represent the

median, the distribution of the data, maximum and minimum values and even

some outliers. This is done by dividing the data into quartiles (each quartile

represents a fourth of the data, so the �rst quartile represents 25% of the data,

the second 50% and so on) and then obtaining a box that represents the IQR

(Interquartile Range), where 50% of the data is contained, as seen in Figure 2.6.

Then horizontal lines are added to represent the minimum, maximum and the

median of the data (Abbott, 2014). This technique is great because it allows to

identify outliers (every point that is outside a certain value, normally +/- 1.5 *

IQR) and visualize them (Montgomery & Runger, 2010).

Figure 2.6: Box And Whiskers Plots example (Retrieved from (Han et al.,
2011, p.55))
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2.3 Outlier Detection

In order to provide cleaned data for processing and also guaranteeing database

consistency and integrity, Outlier Detection (sometimes called Anomaly Detection

(Chandola, Banerjee, & Kumar, 2009; Yao, Sharma, Golubchik, & Govindan,

2010)) is used to detect anomalous observations in data sets. It utilizes a set of

techniques to detect system failures and behavior deviations to prevent further

consequences (a small error may escalate into an enormous problem in the future)

(Hodge & Austin, 2004).

A lot of applications utilize Outlier Detection, in several di�erent �elds, such

as: (a) Fraud detection (e.g., detecting unusual activity in credit card or mobile

phone); (b) Sensor monitoring (e.g., detecting problems or events of interest in

structures, networks and several instruments); (c) Medicine (e.g., unusual patterns

in heart-rate monitors may reveal a real-time urgent problem); (d) Environmental

Impact (e.g., anomalies in temperature and other environmental features can reveal

hidden trends) (Aggarwal, 2013; Hodge & Austin, 2004).

Several techniques have been used to detect outliers. Depending on the knowl-

edge we have of the data we can use supervised, semi-supervised or unsupervised

techniques (Chandola et al., 2009). If we have a response associated with the pre-

dictor in each observation we have a supervised problem, while in an unsupervised

problem we do not have any response, so techniques that �t the model to a certain

target variable will not work. In a semi-supervised problem, just a percentage of

observations has a response associated, not all of them, so a di�erent treatment is

required (James, Witten, Hastie, & Tibshirani, 2013).

Techniques have two kinds of outputs: Scores (a value or percentage depending

on how certain the algorithm is on the fact that each point is an outlier) or Labels

(a simple binary value depending on if each point is or is not an outlier) (Hodge &

Austin, 2004). The �rst enables a better interpretation, since di�erent deviations

may provide di�erent interests. For example, it allows to di�erentiate noise (low

deviation) from an actual anomaly (signi�cant deviation) as we can see in Figure

2.7 (Aggarwal, 2013).
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Figure 2.7: Spectrum from normal data to outlier (Retrieved from (Aggarwal,
2013, p.4))

2.3.1 Extreme Value Analysis

Mostly focused on a single variable (although it can be generalized to multi-variable

data), Extreme Value Analysis is the easiest and simplest form of Outlier Detec-

tion. The basic concept is that a value that is too large or too small in that dataset

is considered an outlier. Normally we �nd through statistical models what is the

normal data distribution and therefore we are able interpret the outlier score of

the points (Aggarwal, 2013).

Extreme Value Analysis proves to play an important role in Outlier Detection,

since most algorithms output is a numerical value related to the deviation of the

normal pattern, and extreme value analysis acts on the original value, comple-

menting the detection algorithm (Aggarwal, 2013). We can observe this extreme

values through a set of Data Visualization techniques, such as Scatter Plots, His-

tograms and Box and Whiskers Plots, or through statistical models and techniques

(de�nition of a maximum and minimum value or utilizing a Gaussian distribution).

The simplest technique is to remove all values that are absurd. This is done by

de�ning a minimum and maximum threshold (normally manually), but requires

some business knowledge. For example, when observing an airplane altitude if we

�nd a value bigger than the earth atmosphere we can infer with certainty that it

is an outlier, or if a sensor observing the distance of two objects records a negative

value we also can label it as an outlier (since the distance between two objects

can not be inferior to zero). These limits can also be discovered using standard

deviation(Montgomery & Runger, 2010).

20



Chapter 2. Related Work

2.3.2 Supervised Learning

Supervised Learning requires the dataset to have pre-labeled observations in order

to be able to build a predictive model. In our case we will need the training set

to have each observation labeled as part of one of two classes (normal data or

anomaly, this is called a classi�cation problem) or with the corresponded score of

�outlierness� (from 0 to 1 for example, this is called a regression problem, since we

are trying to obtain a quantitative value) (Chandola et al., 2009; Abbott, 2014).

The main objective of the Supervised Learning, also called predictive modeling,

is to build a model that will be able to relate the values of known and observ-

able variables (called predictors) to a target variable (that can be quantitative or

qualitative), in a way that is useful to gain information and therefore knowledge

(Abbott, 2014).

We will look into some supervised learning algorithms that we will use, like

Linear Regression, Support Vector Machine and Neural Networks, however there

are more examples (like Decisions Trees algorithm or The Naive Bayes Classi�er).

2.3.2.1 Linear Regression

Linear Regression is one of the simplest methods used to predict a quantitative

output (target). It assumes and identi�es linear relationships between the output

and a single input (predictor) (Simple Linear Regression) or more than one input

(Multiple Linear Regression) (James et al., 2013).

The algorithm tries to �nd the in�uence of the input on the output, and rep-

resents it, normally obtaining a regression line on top of a scatter plot (see Figure

2.8), allowing to visualize the relationship between the variables and detecting �out

of the normal� points (anomalies) (Abbott, 2014).
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Figure 2.8: Simple Linear Regression (Retrieved from (Montgomery et al.,
2012, p.2))

Linear Regression may be useful to us for two reasons:

1. We can seek predictors for the outlier score (our target) of each observation.

Linear Regression can be used for Classi�cation as well;

2. We can apply a Linear Regression to the data and identify existing values

that are too distant of the expected value (predicted value). Normally, we

use the standard deviation times x to set a threshold. It can be an iterative

regression, since the outliers are utilized by the algorithm to build the model,

so once removed, we will obtain a di�erent (probably more realistic) model.

2.3.2.2 Logistic Regression

Logistic Regression is a linear classi�cation technique that, instead of modeling a

response, models its probability based on one or more predictors (Multiple Logistic

Regression). It is mostly used for binary classi�cation, creating a linear decision

boundary that separates one category from the other in the data (Abbott, 2014;

James et al., 2013).
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2.3.2.3 Support Vector Machines

Support Vector Machines (SVM) is a classi�cation algorithm, created for binary

classi�cation which allows the creation of both linear and nonlinear boundaries

(James et al., 2013). The decision boundary is represented by a hyperplane that

is found by maximizing the distance between the hyperplane and the points of the

dataset, while separating most of the observations (it allows some misclassi�ed

points, so it is robust compared to other algorithms to individual points). The

further away the point is from the hyperplane, the more certain we are that it

belongs to that category (Leskovec, Rajaraman, & Ullman, 2014).

2.3.2.4 Neural Networks

Neural Networks are known as one of the most �exible algorithms, they allow the

creation of a model on non linearly separable data. Based on biological neurons,

this algorithm creates an arti�cial network of connected nodes, each one having a

transfer function, that weights each one of the inputs of the node and obtains an

output (normally between 0 and 1) (Abbott, 2014).

The algorithm receives n predictors and searches for values for m target vari-

ables. The arti�cial network contains a set of layers, each one with the respective

nodes. The outputs of the layers, excluding the input and output layer, are hid-

den to the user. Neural Networks modeling is uses iterative learning, adapting the

transfer function of the nodes (they update the weights of each input according to

the error they got in the previous cycle) (Abbott, 2014).

2.3.2.5 K-Nearest Neighbor

As a classi�cation and regression algorithm, K-Nearest Neighbor (K-NN) is known

to be a model with little training cost since it uses the dataset as the model itself.

It uses the k-nearest points (calculated by a distance measure) and the labels

of these points to obtain an output for new observations, as seen in Figure 2.9

(Leskovec et al., 2014).

In a classi�cation problem the new label assigned will be the most frequent class

in the k nearest points (so in the case where k=1 we will assign the same label of

the closest point), while in a regression we can use the average value for example.
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Figure 2.9: K-NN example with k=3. In this case point x will be classi�ed as
blue. On the right we can see the boundaries created by the algorithm (Retrieved

from (James et al., 2013, p.40))

We can also give weights to the neighbors, so each one will have a di�erent impact

when calculating the output (for example if we have k=2, the weight of each one

can be divided (1
2
) or we can give a weight based on their distance, so that closer

points will have more impact) (Leskovec et al., 2014).

2.3.3 Unsupervised Learning

Unsupervised Learning is used when prediction is not our primary goal, since

we do not have a labeled dataset, we do not have a response variable for each

observation. Unlike Supervised Learning, we have a set of features (inputs) but

we are trying to discover the relationships and interesting information between

them rather than their impact on other variable (James et al., 2013). Also called

Descriptive Modeling, Unsupervised Learning is used on problems where the target

value can not be quanti�ed or when we are trying to �nd relationships between

features (Abbott, 2014).

We will be focusing on Principal Component Analysis (PCA) and Clustering

algorithms (like K-Means, DBSCAN and Local Outlier Factor).
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2.3.3.1 Principal Component Analysis

One of the oldest multi-variable analytic method, Principal Component Analysis

(PCA) is used to reduce the complexity of a dataset. This is archived by reduc-

ing the number of variables, combining them into a smaller number of variables.

Although it is mainly used as a Dimensional Reduction algorithm, PCA has a lot

of uses, for example, it can be used to identify correlations, infer and visualize

characteristics of data (Abbott, 2014).

The main goals of PCA are data reduction, simpli�cation, variable selection

(get only the most important information) and �nding relationships between ob-

jects (Wold, Esbensen, & Geladi, 1987). To do this, PCA �nds new variables,

called principal components, where each one is computed based on existing fea-

tures variations and the previous component combination of features (Abdi &

Williams, 2010).

2.3.3.2 Clustering and distance measures

The creation and visualization of groups in a dataset can be used to obtain infor-

mation about the data and features involved. A group of observations, called a

cluster, is obtained by �nding similar observations in the dataset. The grouping

of similar objects is called Clustering (Hartigan & Hartigan, 1975). In Clustering

the de�nition of similar is domain-speci�c and the similarity is obtained through

a distance algorithm (points closer to each other belong to the same cluster and

therefore are considered similar while a point in a di�erent cluster is di�erent)

(Leskovec et al., 2014).

Similarity between two points (observations of a dataset) is not something

that can be simply calculated and the same distance algorithm may not have the

same application in all problems. In any kind of space, the distance between

two points cannot be negative, needs to be symmetric and follow the triangle of

inequality axiom. Following these rules, some of the more known distance measures

are: Euclidean Distance, Manhattan Distance, Jaccard Distance, Cosine Distance,

Hamming Distance (Leskovec et al., 2014).
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2.3.3.3 K-Means

K-means is a point-assignment algorithm used for classi�cation and extraction

of information about our features. Giving a number k, representing how many

clusters the algorithm will try to �nd, K-means iteratively assigns each point to

one of the k clusters (Leskovec et al., 2014). In the end each observation needs to

have a cluster assigned, but can only belong to one cluster at a time, as seen in

Figure 2.10 (James et al., 2013).

Figure 2.10: K-Means algorithm with k=2, 3 and 4. The clusters are identi�ed
by color (Retrieved from (James et al., 2013, p384))

While there are di�erent ways to implement the algorithm on a Euclidean

space, the main idea is to assign each point to the nearest cluster (by calculating

the distance between the point and the center of each cluster (centroid)). In each

iteration, the centroid is recalculated, and the algorithm ends when none of the

points gets assigned to a di�erent cluster in that iteration. In the end we can

classify each observation based on the cluster they are assigned to.

2.3.3.4 DBSCAN

DBSCAN (Density-based spatial clustering of applications with noise) is a cluster-

ing algorithm proposed by (Ester, Kriegel, Sander, Xu, et al., 1996) It searches for

�core objects�, points that contain a minimum of observations (MinPoints) within

its neighborhood (de�ned by an epsilon radius). If a point is found outside of any

26



Chapter 2. Related Work

of the core objects neighborhood, it is considered to be noise (Han et al., 2011).

DBSCAN is known to be able to discover clusters with other than linear shape,

and be robust enough to handle outliers and noise.

The clusters are created as follows: after uncovering a core object (i.e., a point

with high density of neighbors according to the parameters), DBSCAN starts a

cluster with it and all of its neighbors. All points within the epsilon distance of

the neighbors are then all added to the cluster, and this process continues until

there are no more points within distance. All the points that do not belong to a

neighborhood are considered noise or outliers.

2.3.3.5 Local Outlier Factor

Local Outlier Factor (LOF) is an algorithm created for outlier detection that allows

a gradient classi�cation, a degree of �outlierness�. This is a di�erent concept from

the normal binary classi�cation from other algorithms. The degree of �outlierness�

is essentially related to the isolation of a certain point (Breunig, Kriegel, Ng, &

Sander, 2000). This algorithm implements the similar concepts of density and

neighborhood from DBSCAN. The main idea is comparing the density of a point

to the density of its neighbors.

2.4 Model Evaluation and Outlier Treatment

As discussed, there are a lot of possible algorithms to detect and identify outliers,

however which algorithm performs better (i.e., achieves better results)? In order

to answer this question, we need to evaluate the model created by the algorithms

for our dataset. Evaluation is useful not only for the choice of the algorithm but

also for the choice of parameters, for example, choosing the best k (number of

neighbors) in K-NN algorithm. Keep in mind that the perfect algorithm does not

exist, and each speci�c dataset has an algorithm that will perform better when

dealing with a certain task (James et al., 2013).
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2.4.1 Error Measures

In a predictive setting, we can evaluate the algorithm performance by comparing

the predicted response to the real one for each observation. One of the most used

measures is the Mean Square Error (MSE) that is calculated using the following

equation:

MSE =
1

n

n∑
i=1

(yi − f(xi))2 (2.1)

Where xi is the real response for observation i, n is the number of observations

and f(xi) is the predicted response. As we can see, the larger the value obtained,

the further away our predictions are from the real values (James et al., 2013).

We can calculate MSE in both training and test data, however, to �nd the best

performing algorithm, we want to �nd the one with the lowest test MSE (MSE

value in the test dataset). Since we are predicting, we are looking for a model

that can obtain best predictions on unseen (test) observations, and not the ones

we already known (and if the model was trained with the training dataset, it will

probably have a small training MSE value) (James et al., 2013).

With this in mind, we can use MSE to adapt the model to the training data

(by changing some parameters of the algorithm) and by doing this we can have a

model that �ts really well the training data (reducing the MSE value). However,

in most cases a small training MSE does not correlate to a good predictive model,

since test MSE may not be as good (this is called over-�tting). We often search

for a small MSE in both test and training datasets, giving more importance to the

test MSE (James et al., 2013).
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Figure 2.11: An example of Over-�tting. The model represented by green has
a lower MSE in the training set (represented on the right by the gray curve
� training MSE), however is the model with the highest MSE in the test set
(represented by the red curve � test MSE) (Retrieved from (James et al., 2013,

p.31))

In a classi�cation setting, where we do not have a quantitative response, MSE

can not be applied. We use instead an error rate given by the following equation:

1

n

n∑
i=1

I(yi 6= ŷi) (2.2)

That translates in the number of misclassi�ed predictions divided by the num-

ber of observations. If the observed response is di�erent from the predicted one,

the function I is equal to 1, otherwise is 0. Like in the regression setting, we can

calculate the error both in the training (training error) and the test (test error)

dataset, and the best algorithm is the one with smallest test error.

2.4.2 Confusion Matrix

Binary classi�cation is used for problems where we intend to assign each obser-

vation to one of two classes (e.g., normal or anomaly, healthy or disease, relevant

or spam, normal translation or fraudulent, etc.). Normally the model has two
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types of results positive (1) or negative (0). When we compare the predicted

classes against the real ones, we can have four types of results for each observation

(Abbott, 2014):

1. True positives (TP): Both the real and predicted class have a positive

result;

2. False positive (FP): The predictive value is positive, but the observation

is actually classi�ed as negative (also called a false alarm);

3. True negatives (TN): Both the real and predicted class have a negative

result;

4. False negatives (FN): The real classi�cation for the observation is positive,

but the predicted classi�cation is negative (also called false dismissal).

Table 2.2: Confusion Matrix. Adapted from (Abbott, 2014, chap.9).

A
c
tu
a
l
C
la
ss Predicted Class

0 1

0 TN FP

1 FN TP

The use of a Confusion Matrix (that lays out the count of each outcome, as

seen in Table 2.2) can be of some use when evaluating a model. Depending on each

problem, a false alarm error may be better than a false dismissal, for example, in

cancer detection is better to have a false alarm that can be found with posterior

examinations than a false dismissal. Additionally we can obtain the precision

of the model (rate of correctly assigned predicted positive observations) and the

recall (rate of correctly actual positives classi�ed), as seen in Equation 2.3 and 2.4

(Abbott, 2014).

Precision =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)
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2.4.3 Resampling Methods

Resampling methods allow us to obtain more information about each model. In-

stead of �tting a model to all observations in the training set, we use only a partial

amount of observations each time, allowing to obtain di�erent �ts each time and

therefore more information about the model. We can use Resampling Methods

to evaluate the model performance (model assessment) or to choose the right pa-

rameters for the algorithm, thus increasing or decreasing model �exibility (model

selection). The most used resampling methods are Hold-Out, Cross-Validation

and Bootstrap (James et al., 2013).

The most common way to split the data to evaluate a model is called Hold-Out.

Normally the dataset is divided into two sets of observations, called Training and

Test set, where two thirds (depending on the dataset and problem, the percentage

can change) of the data are used to train and �t the model, while the remaining

third is left out and used in the end to test the model (Kohavi et al., 1995).

Cross Validation is a method that splits a dataset into k subsets, and rotates

the training of the model by using all but one subset, and then proceeds by testing

the model in the one subset left out. Cross Validation repeats this process k-times,

by leaving each one of the subsets for testing once. Cross Validation can also be

used by leaving only one observation for testing, and repeating the process for

every observation (this is called Leave-One-Out) (Kohavi et al., 1995).

Bootstrap is used to quantify the uncertainty of a estimator or statistical learn-

ing method. It is used, for example, to calculate the regression coe�cients of linear

models.

2.4.4 Outlier Treatment

After detecting outliers in the dataset, we must choose how to treat them. Remem-

ber that we have several types of outliers, and the way we treat it should depend

on the data itself, the problem and the business knowledge (Abbott, 2014). We

have four alternatives when treating outliers:

1. Remove outliers: When we �nd at an outlier in an observation, and we

are using algorithms that may create a distorted model due to using the
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anomalous observation to train, we can choose to delete the observation.

This is the simplest alternative, however it is not perfect. Since the model

will not be trained with outliers, when dealing with new data inputs (never

seen observations), the output can be unreliable. The model will not be

prepared to deal with new outliers. Another problem comes from models that

should be used to �nd these outliers (fraud detection, anomaly detection,

etc.), so they need to be trained using the existing ones.

2. Split and model outliers from the remaining data: Complementing

the �rst approach, we can use this to create a new dataset with the deleted

outliers and obtain a new model for the data. Doing this allows the creation

of a simpler model �tted to the normal data and a second model prepared

to deal with outliers. When dealing with new inputs and outliers, the model

will be prepared to deal with outliers, treating them di�erently from the

remaining data.

3. Transforming outliers: Here we have two options. We chose to leave the

outliers with the data, but �rst we transform them, so their impact on the

model is minimized. The �rst approach is to smooth extreme values, to a

state where they are no longer considered outliers, while the second approach

is to transform the outlier into a categorical value, or dummy variables (by

doing this we allow the analytic to treat the outlier at his will).

4. Leave the outlier: We may chose to leave the outlier in the dataset. Once

identi�ed, the presence of outliers can lead to more robust models (built with

algorithms una�ected by outliers or �exible enough), capable of dealing with

outliers. This is a good choice if we aim to have a model capable of dealing

with preprocessed data (or at least with noise and/or outliers).

2.5 Outlier Detection in Structural Engineering

In (Portela, Pina dos Santos, Silva, Galhardas, & Barateiro, 2005), GESTBAR-

RAGENS system is presented as a modular system used for safety control in dams.

It includes several report tools that allow the user to obtain information and ana-

lyze structures in any computer with Internet access. (Castro & Barateiro, 2015;

Portela et al., 2005) both highlight the importance of safety control on dams and
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both agree that anomaly detection on these structures is key to ensure a good

evaluation and response to problems that may lead to dangerous situations.

With the advances on technology, automated systems are utilized to monitor

dams, providing an increase of information that beforehand had to be collected

manually and with less frequency. However, with this increased amount of in-

formation, the potential for measurement errors also increases. Automated data

acquisition system (ADAS) in Portugal are being continuously installed in large

dams. The detection of measurement errors is essential to ensure safety control

on these dams, and in (Mata & Tavares de Castro, 2015) a methodology where

automated measurements are compared with the manual ones (manual measure-

ments) are utilized as reference elements) is presented in order to assess the quality

of stored data. A more detailed comparison between the manual data acquisition

system (MDAS) and the ADAS can be seen in Table 2.3, and in Figure 2.12 we can

see how the comparison between the two is useful to observe outliers (measurement

errors).

Figure 2.12: Manual vs Automatic measurements (Retrieved from (Mata &
Tavares de Castro, 2015)
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Table 2.3: ADAS vs MDAS Analysis

ADAS MDAS

Acquisition Automated - Sensors collect mea-

surements to data-loggers and the

information is transmitted to man-

agements systems.

Manual - Operators read measure-

ments from display elements and

record the information.

Frequency High Frequency - Depending on the

sensor, measures can be made every

15 minutes to some hours.

Low Frequency - Since an operator

is obligated to be present, this read-

ings are done daily to a monthly ba-

sis, depending on the sensor and the

dam lifecycle current phase.

Errors Errors can emerge from system or

instrument malfunction.

Errors can emerge from human in-

terpretation and decisions, but can

also be a�ected by system or instru-

ment malfunction.

Age ADAS measurements started being

collected around the year 2000

MDAS measurements are collected

after the dam has been built, some

of them dating back to 1940.

Quality The quantity of data increases the

quantity of possible errors.

Since the instruments are relatively

simple and there was lots of experi-

ence gathered throughout the years,

MDAS measurements are considered

of good quality.

As stated in (Mata & Tavares de Castro, 2015),a measurement error is obtained

when the stored value is di�erent from the true value of the quantity measured.

It consists of three elements: Methodological, Instrumental and Human, but also

can be seen as a composition of gross, systematic and random errors, being that

the last one is impossible to be estimated and therefore di�cult to correct.

The creation of statistical and predictive models for dam behavior and safety

analysis is a current subject of study. In (Salazar, Morán, Toledo, & Oñate, 2017)

a survey is presented with almost 60 study cases and methods used for assessing

the condition of the structure, however there is little focus on Data Preparation.

Although anomaly detection can be a part of abnormal behavior analysis, in most

cases does not play a role on the Data Preparation phase.
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Another solution for anomaly classi�cation in dams is presented in(Cheng &

Zheng, 2013), where data is separated into the environmental variables and noise,

allowing the creation of two models, in order to identify relationships with those

variables and the dam response. It looks for thresholds in data and uses SPE

(Squared Prediction Error) to classify anomalies into several qualitative labels

(extreme environmental value, global damage, malfunction or local damage).

Figure 2.13: Dam System (Adapted from (Cheng & Zheng, 2013, p.49))

In (Tayfur, Swiatek, Wita, & Singh, 2005) compares Arti�cial Neural Networks

(ANN) and Finite Element Method Models (FEM) and concludes that ANN is

capable of detecting anomalous seepage on dams. (Yu, Wu, Bao, & Zhang, 2010)

uses PCA on monitoring data as a method to ensure dam safety, and identi�es

false alarms, data reduction and noise elimination as the three main problems

encountered.

BackPropagation Neural Networks (BPNN) is used to simulate environmental

e�ects and �nd relationships between them, in order to �nd anomalous data that

may need further analysis (create a system warning). It identi�es as problems the

limitations of the training samples and over-�tting, as well as algorithm parameters

(Li, Li, Shi, Yan, & Ren, 2010).

As seen in (Mata, 2011), the Multiple Linear Regression model, when used

for dam behavior prediction uses as predictors the water level (represented as H),

the temperature (represented as θ) and time (represented as a date). Sometimes

time can also be represented as T (number of days since the beginning of the

exploration phase). The model can be trained to predict several e�ects (Abertura,

Deslizamento, Deslocamento, Deslocamento radial & Deslocamento tangencial1).

1Names in Portuguese (Opening, Slippage, Displacement, Radial Displacement and Tangen-
tial Displacement)
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Figure 2.14: Multiple Linear Regression Model used in Dam Behavior Predic-
tion

Most of the times, predictors are obtained through a function. (Mata, 2011)

presented below, where each predictor is obtained di�erently: Water Level e�ect is

represented through a polynomial function while Temperature is obtained through

a linear combination of sinusoidal functions that depend on the day of the year

(although it can be obtained by other sensors).

y′(H, θ, t) = F (H) + F (θ) + F (t) (2.5)

In (Ljunggren, Logan, & Campbell, 2013) it is discussed the importance and

role of data quality on dam safety assurance and assessment. Most of the data is

collected by instruments, and due to new and more reliable sensors and increas-

ing monitoring and reporting obligations, the quantity of dam safety data saw a

signi�cant growth over the last decade.

Dam safety data is considered to be of quality (�good�) if we have enough

information about the sensors, data acquisition and data processing procedures,

as well enough data accuracy and frequency to represent the true measured values

and understand dam behavior, along with the linked causes. In the end we try to

obtain data �free of errors�, so that the value extracted from it can be seen as true

and reliable.

In Figure 2.15 we have the data quality cycle presented in (Ljunggren et al.,

2013) that includes several tasks that can impact quality on dam data. Each task

requires standards and guidelines, combined with careful planning and engineering

expertise, to ensure quality objectives. Examples and explanations about Data

Management tasks (Raw Data Collection, Processing & Data Storage, and Data

Analysis) are given in the aforementionedned paper, along with ways to minimize

risks and possible errors.
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Figure 2.15: Data Quality Cycle in Dams' Sensor Data (Retrieve from
(Ljunggren et al., 2013))
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Chapter 3

Design and Development

In this chapter we will describe the design and development of the artifacts. To

do so, we will need to focus in a case study (CaseStudy Dam), so that we have an

environment where we can develop and test the artifacts. This chapter is organized

in the following sections:

• Section 3.1 describes the data from GESTBARRAGENS provided to us by

LNEC and introduces our case study: CaseStudy Dam;

• Section 3.2 presents the selection of the development language for this re-

search;

• Section 3.3 introduces the baseline methods currently used for outlier detec-

tion;

• Section 3.4 demonstrates the use of clustering algorithms in outlier detection;

• Section 3.5 introduces a new algorithm for outlier detection using MDAS

measurements;

• Section 3.6 introduces our method for outlier identi�cation and treatment;

• Section 3.7 shows how we can compare and infer about the performance of

the methods and techniques presented in the previous sections.
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3.1 Case Study

LNEC, by utilizing GESTBARRAGENS system, provided us with sensor data

and information about the sensors monitoring dams in Portugal. In table 3.1 we

can see metadata about the information. Note that ADAS sensors are very recent

compared to MDAS and are fewer in di�erent types of sensor (62 vs 20), however

we can observe that are growing at a faster rate, due to their frequency (almost 34

millions of records in 74 years (0.46 millions per year) compared to 8 million in 16

years (0.5 millions per year)). So each ADAS sensor has a mean of 25 thousand

records against a mean of 7.4 from the MDAS sensors. In �gure 3.1 we can see

the growth of data in the system.

Table 3.1: GESTBARRAGENS system meta data information

Manual / Automatic Total (Manual + Automatic)

Types of Sensors

62

8220

Amount of Sensors

38651

39597946

Number of Records

33719325

417204668001141

Records Date Distribution

1943 - 2017

1943 - 20172001 - 2017

Figure 3.1: GESTBARRAGENS Data Growth from 1942 to 2016
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3.1.1 CaseStudy Dam

In this thesis we use a dataset from the CaseStudy Dam to develop our artifacts.

CaseStudy dam is established in Portugal. Beginning its exploration phase in 1976,

CaseStudy dam is mostly used for energetic purposes. It has a maximum height

of 76 meters, a crest length of 213 meters and it is divided into 13 concrete blocks.

According to the OP, CaseStudy dam has a monitoring system that allows the

observation of structural behavior, environmental actions and material properties,

guaranteeing the safety of the dam and the 13 x 106 m3 water reservoir.

Besides the MDAS (Manual data acquisition system), CaseStudy dam has an

ADAS (Automatic Data Acquisition System) that collects data from several vari-

ables, such as water level, air temperature, etc., and displacements and other

structure behavior variables. In table 3.2 we can see information about the moni-

toring system and data present in GESTBARRAGENS from CaseStudy Dam.

Table 3.2: GESTBARRAGENS system metadata information about CaseS-
tudy Dam

Manual / Automatic Total (Manual + Automatic)

Types of Sensors

12

219

Amount of Sensors

475

50934

Number of Records

452824

1310647857823

Records Date Distribution

1975 - 2017

1975 - 20172006 - 2017

LNEC provided us with two distinct types of datasets from CaseStudy Dam,

one directed for prediction analysis and the other for ADAS/MDAS comparison,

both related to three di�erent types of measures.

When comparing ADAS against MDAS measurements, we obtain a report

where the comparison between the two kinds of measurements are presented

through several plots. We can also observe a mapping table (that relates ADAS

sensor to the corresponding MDAS sensor), the number of records, mean values
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for each sensor and residuals (di�erence between the measurements). We can also

see the variance and correlation between the samples.

In the prediction setting, the main objective is to analyze structural behavior

response and relate it to several other variables. Multiple Linear Regression is

used to obtain models and the result can be visualized in pdf format (where is

possible to visualize the model, allowing us to see if the model correctly �ts the

data, as seen in Figure 3.2). We can also obtain information about the model such

as regression coe�cients, adjustments (R2), ANOVA table and residuals.

Figure 3.2: Example of a Multiple Linear Regression in the predictive setting
(in Portuguese). Water Level used in the algorithm is represented below.

We will be focusing on the ADAS since the amount of data, automation and the

fact that ADAS is not supervised by humans will lead to more outliers. Although

the MDAS measurements are not outlier free, they are considered to be of quality

(as seen in 2.3). They are manually validated before being made available on the

platform (GESTBARRAGENS). Below (Table 3.3) we have information about the

variables and number of sensors available in the CaseStudy Dam that we will use

throughout this chapter.
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Table 3.3: ADAS vs MDAS setting Dataset Information

Type of Sensor Variable Measured Number of Sensors

Elongometer's base

Opening (mm) 12 (6 ADAS + 6 MDAS)

Horizontal Slippage (mm) None

Vertical Slippage(mm) 12 (6 ADAS + 6 MDAS)

Foundation gauge Displacement (mm) 6 (3 ADAS + 3 MDAS)

Plumb line
Radial Displacement (mm) 12 (3 ADAS + 9 MDAS)

Tangential Displacement (mm) 12 (3 ADAS + 9 MDAS)

3.2 Development Language

To build the prototype software we need to choose a programming language. The

only restriction imposed by the case study is that we cannot use a SaaS, instead we

should use a free platform and language. When talking about Big Data Analytics,

the two most common languages are R and Python. Both have a large and active

community and both are known as a common tool used by Data Scientists. In

terms of popularity Python is the most used, however R is primarily used by

academics and research and it is expanding rapidly. Both are ready to deal with

Big Data, although both need packages to handle it well. The biggest advantage of

R is the visualization of data. It allows an e�cient and e�ective data visualization,

and as it is the programming language currently used by LNEC it is the one we

will choose.

3.3 Baseline

To identify outliers in this section we will utilize three simple approaches: Whiskers

Boxplot, Scatter plots and Standard Deviation and Minimum/Maximum values.

These are not only the simplest techniques to identify outliers but also the ones

currently used in the case study.
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3.3.1 Whiskers Boxplot

We will start by looking at the variables and their distribution. A good way to

do so is by utilizing Whiskers Boxplot, a plot that allows us to extract relevant

information with just one look. We will be using the standard boxplot from R,

where we can �nd information about the median value, 1st and 3rd quartile,

minimum and maximum values and outliers.

Figure 3.3: Whiskers Boxplot examples

As we can see in the Figure 3.3, we can have several scenarios with di�erent

amounts of outliers and some more extreme than others. Despite whiskers boxplot

giving us some information, we do not have a full comprehension of what is going

on with the variable response, and as we will see, some outliers are not getting

caught by this method.
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3.3.2 Scatter plots

To have a better comprehension about the variables and their behavior we plot

the values according to their timestamp. We obtain a 2D plot where the y-axis

represents the variable and the x-axis the date, and each point a pair (value,

timestamp). We obtain the following plots, again using the standard plot tool

from R.

Figure 3.4: Scatter Plots examples

Looking at the plots from Figure 3.4, and without the help of other variables,

we can see some points that we may consider outliers but were not caught by the

whiskers boxplots. For example in the upper right plot, whiskers boxplots did not

show any outliers, however we can see some points, near the year 2012 that appear

to be outliers, since they are �out of the expected behavior�.
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3.3.3 Standard Deviation and Min/Max approach

To identify outliers, Dam Experts use two separate techniques. Due to the busi-

ness knowledge possessed for each variable and their predictors, they are able

to input minimum and maximum values depending on the month/season of the

year, considering any other value as an extreme outlier. Since they expect annual

variation of values for the predictors, they can obtain an approximate value for

the behavior variable. Another technique consists of using the prediction model

created by the Multiple Linear Regression (using Water Level, Temperature and

Time as predictors) and accepting any value between the predicted value and a

certain threshold (normally +/− 2 or 3 times the standard deviation).

Figure 3.5: Outlier Detection using Standard Deviation to de�ne a threshold.
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In Figure 3.5 we can see the threshold (in this case +/− three times the

standard deviation) in blue and the predicted model as a black line. We can

observe that this approach has good results when used to detect extreme outliers,

however we can see that in the upper right plot no outliers were detected, while

in the upper left plot only two out of the three identi�able outliers were caught

(outliers caught are identi�ed with a red cross). The problem with this technique

comes from the predictive model is that: (a) is obtained using a dataset with

outliers and; (b) the algorithm or parameters utilized may not be ideal for the

variable in question (the model in the upper left plot for example).

3.4 Clustering Methods

In order to identify outliers in our dataset we will use three di�erent clustering

algorithms. Since we do not have a labeled dataset, the �rst approach that we will

be using is unsupervised methods that allow us to group the data and therefore

understand which points should be considered outliers or not. We will be using

K-Means, DBSCAN and Local Outlier Factor, and setting a seed in order to

reproduce the same results every time.

Since Dam Experts consider temperature, water level and time (representing

the age of the structure) as predictors to dam's behavior due to the in�uence

they have on the response variable, we will use them as variables for clustering.

Since our dataset does not contain any information besides the timestamp and

the response variable, we needed to obtain the information about the predictors

to complete our dataset. We merged values for Water Level (H), Temperature

(estimated as a trigonometric function of sin(d) + cos(d), based on the day of the

year) and Time (T, age of the dam in days). However these values have a daily

acquisition frequency, and since the target measurements are obtained several

times each day, the same predictor values are added for several measurements

obtained in a given day. These values can be calculated using information from

the timestamp (predictor for Temperature and Time) or collected by other sensors

(predictor for Water Level). We saw in Equation 2.5 that dam experts use several

functions to obtain the predictor values. In table 3.4 we show how the values can

be obtained.
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Table 3.4: Predictors Functions

Name Type Function

F (H) Polynomial Function F (H) = H +H2 +H3 +H4

F (θ) Linear Combinations F (θ) = sin(α) + cos(α)

F (t) Linear F (t) = Dam′s Age(Days)

When treating missing values in the rows we caught two di�erent situations:

one where a single entry was missing and other where an entire timeframe was

missing. In both cases we decided to remove the rows. In the �rst case we are

concerned with the continuous behavior of the variable, and since the sensor col-

lects every set of hours the variance between values in the same day for example

is not signi�cant to the analysis. In the second case, we could input the empty

values by using a model, as explained in Section 2.1.1.

3.4.1 K-Means

To use the K-Means algorithm, like we saw in Section 2.3.3.3, we need to give

the following arguments: a matrix with values (each row is an observation and

each column is a variable) and a value for k (number of clusters). We used a

script to obtain results for all sensors (in batch) and response variables, varying

the variables utilized for clustering and the value of k. We analyze 15 sensors, 27

di�erent datasets (pair sensor/response variable) in 1701 di�erent analysis with a

total of 762826 records, taking about 7 to 8 minutes to run.

Each time we build a view, we create and scale (using the scale() function

from R) a smaller dataset that always contains the response variable and where

we add information about the predictors. The value of k is varied between 2 and

a parameter value (we used the value 10). Besides utilizing a set containing only

the variable, we tested the predictor sets presented in Table 3.5.
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Table 3.5: Predictors Used

Predictor Set Functions Used

H F (H)

H + T F (H) + F (t)

H + COSD + SEND F (H) + F (θ)

H4 + COSD + SEND F (H) + F (θ)

H +H4 + COSD + SEND F (H) + F (θ)

H +H4 + COSD + SEND + T F (H) + F (θ) + F (t)

After the model creation (we used the standard K-Means algorithm from R),

we look for clusters that are composed by a small number of observations. Since

the �rst k points are assigned randomly, one outlier can be tagged as a centroid

of a cluster that probably will end up with a small set of observations. With this

in mind we look for any cluster with size smaller than a certain limit (since in

a space where points are equally distributed we will end up with a mean size of

cluster equal to the number of observations divided by the number of clusters, we

kept the same idea but always tripling the number of clusters, so that we catch

only those with an extreme small size).

The distance between each observation and the centroid (of the cluster they

were assigned) is calculated. The distance metric should be the same in the al-

gorithm and the distance calculation, and in this case we used the Euclidean

Distance. Note that we do not normalize any value, so Euclidean distance will

give more importance to di�erences between variables with bigger variance (as is

the case of any response variable and the water level).

Then we ordered the distances in a decreasing manner, keeping only the index

of the distances above a threshold. We tried two di�erent thresholds: (a) we used

the same idea from the boxplot, where we classify as outlier any distances above

the 3rd quartile + 1.5 ∗ IQR, since bellow the 1st quartile - 1.5 ∗ IQR are points

near the cluster centroid; (b) by utilizing the mean plus 3 times the standard

deviation. The �rst option often classi�ed too many points as outliers, so we

decided to use the second. We then joined the index's to those with the ones from

the clusters of outliers (small clusters), identifying all of them as outliers.
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Figure 3.6: K-Means Algorithm Example using 4 clusters

The left plot we can observe the results by clustering using only the response

variable and 4 clusters (in di�erent colors). As we can observe in Figure 3.6, it

identi�ed correctly the outliers (red crosses), however also incorrectly tagged some

extremes values as well. In the right we used the water level (H) and temperature

(SEND&COSD) together with the response variable, however it did not obtained

better results, as we can see the extreme outliers were not all caught.

Figure 3.7: K-Means Algorithm Example with 5 and 10 clusters.
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Observing Figure 3.7, starting by the left dataset, we can see that, although

it caught some of the visible outliers, it labeled too many observations as outliers.

When looking at the 5 cluster example (Right), the algorithm performed better,

identifying correctly the extreme outliers, however the �rst points were not all

caught.

Figure 3.8: K-Means Algorithm Example with 3 and 8 clusters.

In Figure 3.8 we can observe that a lower number of clusters worked well when

identifying the extreme outliers, independent of the predictive set. However only

in a few test we were able to detect outliers near the main distribution of the

variable. As we can see in Figure 3.9, when removing the outliers we still cannot

clearly identify which points are outliers and which are not.

Figure 3.9: Outlier Removal after results from 3.8
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3.4.2 DBSCAN

Using DBSCAN di�ers from the k-means algorithm in two characteristics: instead

of receiving as arguments the matrix of observations and a value for k clusters,

DBSCAN receives the matrix and a value for epsilon (as seen in Section 2.3.3.4);

we also vary the value for Minimum Points.

Initially we used the default value (5), since studying the algorithm and its

variations is not our objective, however due to the fact that we have a lot of

dimensions we decided to vary it between 5 to 8 and analyze those results. The

output already contains a set of outliers or noise identi�ed by the algorithm, so

we do not need to do any further calculation.

We used the algorithm (from the dbscan R library) in the same datasets, doing

2268 di�erent analysis, in a total of 58 minutes (most of the time is consumed by

the algorithm itself). Using the same predictive sets we used in K-means algorithm,

we build and scale the view. Then we vary the value of epsilon (between 0.1, 0.3

and 0.5), run the algorithm, collect the outliers (present in the algorithm output)

and plot them.

Figure 3.10: DBSCAN Example with Epsilon = 0.1

Most of the time, when using a very low value for epsilon (0.1 being the smallest

we used, as seen in Figure 3.10), the algorithm identi�ed incorrectly a great number

of observations as outliers. In the other end, a big value for epsilon may not identify
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as outliers any observation (we tried using 1 as the epsilon value in preliminary

tests and it failed to identify any observation as outlier in some cases).

Figure 3.11: Outlier Detection using DBSCAN

We obtained good results in the di�erent type of sensors (Figure 3.11), but

when comparing its results with K-Means, DBSCAN was great when dealing with

datasets that the previous algorithm struggled to classify.

Figure 3.12: DBSCAN Example in DESLOCTANGABS dataset
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Note that in the Figure 3.12, DBSCAN failed to identify the extreme outliers

in the beginning of the dataset, but was able to identify correctly some outliers

(not all, as seen bellow, in Figure 3.4.2) that were not identi�ed previously by

other algorithms.

Figure 3.13: Outlier Removal after results from Figure 3.12 in DESLOCT-
ANGABS dataset

3.4.3 Local Outlier Factor

As we saw in Section 2.3.3.5 Local Outlier Factor (LOF) is used to calculate the

score of �outlierness� of each observation. To do so, it receives a matrix of values

(similar to K-means and DBSCAN) and the value of k (the neighborhood of each

observation). To test this algorithm we followed the same approach as before,

analyzing 15 sensors, varying the same predictor sets (to build the matrix), in a

total of 1323 di�erent analysis in 52 minutes.

The LOF algorithm used was imported from the dbscan package. Since we

do not have the threshold between the non-outlier and outlier values, we used

the same approach as the K-means distance to calculate which points are to be

considered outliers. In the future this threshold should be calculated depending

on the response variable by an expert. The k was varied between 6 and 12.
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In preliminary tests this set of values obtained the best results, and due to the

expensive time it took to run the algorithm in batch we decided to reduce the

possibilities of values for k.

During testing we had problems with the algorithm scoring. Due to the pres-

ence of several duplicated values in the matrix, the algorithm would return the

value of �outlierness� as in�nite, creating problems when calculating the mean and

standard deviation. To address this problem we added to the matrix (in every

analysis) a normalized (0 to 1) value representing the timestamp of each observa-

tion. The value is normalized to avoid a big impact, and since every timestamp is

di�erent we do not have duplicates, and as such we obtained better results.

Figure 3.14: Outlier Detection using LOF. Notice that too many points are
marked as outliers
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As seen in Figure 3.14, LOF marked too many points as outliers, although

it was able to identify some of the outliers correctly. This can be corrected by

increasing the threshold, however even with the current threshold some extreme

outliers are not detected. In this processes, extreme outliers were caught using the

variable itself alone, while the addiction of predictors did not improve the results.

Figure 3.15: Outlier Detection using LOF: Best Results

In general, LOF was not able to identify extreme outliers, misclassifying too

many points and failed to catch most of the outliers. For example, for the datasets

in Figure 3.15, none of the experiments classi�ed correctly the 4 outliers near 2012

in the left plot and none were able to identify the extreme outliers in the right

plot.

3.4.4 Clustering Analysis Summary

We tested three di�erent algorithm (K-Means, DBSCAN and LOF), showing that

we are able to identify outliers that baseline methods could not. These algo-

rithms behave di�erently depending on the dataset, the variable and the predictor

variables used. Below we have a small comparison between the three, based on

the results obtained in the four showed datasets (1/4 means it was able to catch

outliers in one of the four datasets).
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Table 3.6: Clustering Analysis Summary

K-Means DBSCAN LOF

Outlier Classi�cation Manual Automatic Manual

Extreme Outliers Caught 4/4 4/4 3/4

Other Outliers Caught 3/4 4/4 1/4

Time Very Fast Slow Slow

Analysing the various datasets and results we found several observations: (1)

most datasets have a group of outliers in the �rst/second year of analysis, which is

probably due to the implementing, testing and calibration phase of each sensor; (2)

most of the extreme outliers can be found utilizing Baseline Techniques; (3) some

analysis classi�ed too many outliers (low precision); (4) after removing outliers

from the datasets and zooming, we can still observe some outliers (low recall); (5)

the predictive variables we used sometimes improved the algorithms, while other

times did not. This can be due to several reasons: the variable is not a good

predictor or the scale and deviation of the variable a�ects the algorithm.

To address the problems identi�ed above, the following techniques/solutions

are applicable:

• Before each analysis remove any observation that occurred in the �rst/second

year of analysis. Since we have a large dataset (most of the analysis began

in 2006, so removing up to 2 years will not matter, since we have at least 10

years' worth of data);

• Before running the machine learning algorithms, we can take a �rst look at

the data, removing any extreme outliers found by the baseline techniques

(such as Whiskers Plot box or Standard Deviation) or other algorithms;

• Although DBSCAN classi�cation is done by the algorithm itself, K-Means

and LOF are depending on a threshold. We found a suitable one, but we

can improve by utilizing an expert de�ned threshold. Another problem may

come from the parameters itself (like the number of neighbors in LOF), that

should be adapted to each dataset;

• After removing the outliers with the �rst algorithm, we can utilize another

algorithm or the same with di�erent parameters to try and catch outliers
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that were not caught and identi�ed before. This can be useful in cases with

lots of outliers, like Figure 3.12;

• For each variable and algorithm we should make a deeper analysis of how each

predictor variable impacts the results. One option is to scale or normalize

each predictor, giving or removing their weight on the results. Another

solution is using PCA, allowing several predictors to be collected into a

small number, but with bigger impact variables, however, PCA is normally

used on scenarios with a large number of variables, but in our case we should

not have more than �ve variables.

3.5 Algorithm for Outlier Detection (Using MDAS)

In this project, we are presenting a new Outlier Detection algorithm that makes

use of the Manual Data Acquisition System (MDAS) measurements. The main

concept of the algorithm is to validate the Automatic Data Acquisition System

(ADAS) measurements by comparing them with the closest MDAS measurements.

This is possible due to the following:

1. MDAS measurements are considered to be of quality (the acquisition process

includes a manual validation of the value before being available on GEST-

BARRAGENS);

2. Despite having less acquisition frequency, the MDAS has enough data to

represent the response variable behavior. ADAS measurements should follow

the same behavior as the corresponding MDAS sensor;

3. ADASs are in place to compliment the MDAS, not to replace them. MDAS

should always exist so that we are able to validate the ADAS measurements

and dam behavior responses (See Figure 3.16).
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Figure 3.16: ADAS vs MDAS Example

The proposed algorithm comprises the following steps:

1. Given an ADAS dataset, obtain the corresponding MDAS dataset. The

information about this relation is already present in the ADAS sensors in-

formation.

2. Identify, for each measurement, the closest MDAS measurement by using the

timestamp from the records. In case of �nding more than one, either one

can be chosen, but in this case we chose the earliest record.

3. Identify a gap where the relation of the ADAS measurements and MDAS

measurements are representative of the data. Should be a full period and as

outliers-free as we can �nd. We have two ways to de�ne the limits (index or

time) and two ways to �nd them (manually or automatically (e.g. by looking

for intervals with less distance between ADAS and MDAS measurements in

the data)).

4. Compute the distance between the values from the ADAS and the closest

MDAS measurements in the chosen gap.

5. Obtain the mean distance between ADAS and MDAS measurements in the

chosen gap.
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6. De�ne a threshold (we can have more than one threshold if we want to dif-

ferentiate extreme outliers from others). This threshold should be a measure

of standard deviation from MDAS values or the distances obtained in d).

7. Classify as outliers any ADAS measurements values that are outside the

de�ned limits (see Equation 3.1). Another option is to see how far the

ADAS values are from the expected value, and we can look at this as an

outlier score (see Equation 3.2).

ADASV alues −mean(Distances) /∈ [MDASV alues ± Threshold] (3.1)

ADASV alues −mean(Distances)−MDASV alues = Outlierness (3.2)

To better explain the algorithm concept we can look at the example in Figure

3.17. Although it does not occur in our dataset, sometimes ADAS sensors have

an o�set from the corresponding MDAS sensor. In blue we have the ADAS values

while MDAS values are represented as orange points. Green points are ADAS

values used for measure distance against the MDAS values in the same gap (limited

by the red lines).

Figure 3.17: Choosing a Gap for the algorithm
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To test this algorithm we have chosen a dataset from CaseStudy Dam with

some visible outliers and varied the threshold. As stated in step 6, we have used

the standard deviation from the distances and the MDAS values, and multiplied

this value from 5 to 2 (K).

Figure 3.18: For demonstration purpose, we have chosen the dataset in the
left, and the gap represented in green in the right plot

As displayed in Figure 3.18, we select a gap (in green) where we calculated

the mean distance between ADAS and MDAS measurements. When using the

standard deviation from the distance measures, even when multiplied by 4 or 5 (K

value), we classi�ed a big number of records as outliers. Since the �rst option had

a bad performance, we tested the Standard Deviation from manual measurements,

which delivered better results, as seen in Figure 3.19.
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Figure 3.19: Results and Outlier Removal (right) from the algorithm with the
Standard Deviation from the Manual Values and K= 5 and 3

When using the standard deviation from the MDAS values we obtained some

good results, but from K=5 to K=3, the algorithm could not detect all visible

outliers as we can see by the right images (after outlier removal). With K = 2 we

were able to detect all outliers, however we detected some points that may not be

outliers, as seen in Figure 3.20.
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Figure 3.20: Results and Outlier Removal (right) from the algorithm with K
= 2

We presented an algorithm that uses Manual Data Acquisition System mea-

surements to validate the ADAS values. This proved useful in one dataset and

especially to remove extreme outliers. Since it does not use any other information

besides the variable itself, it can be used to remove with a certain con�dence the

extreme outliers, leaving the other outliers to be caught by other algorithms.

3.6 Method for Outlier Identi�cation and Treat-

ment

As we saw until now, none of the algorithms or techniques are perfect for outlier

removal. Some of them are great when dealing with Extreme Outliers (as for

example Whiskers Plots and Standard Deviation), while others are able to detect

outliers based on previous experience from the predictors (like DBSCAN and other

clustering algorithms).

Since DBSCAN is the algorithm that best performed (based on the experi-

ments in the clustering section, see the clustering summary in Section 3.4.4), and

the outlier identi�cation is done by the algorithm itself, we will use it to catch the

smaller outliers. But as we concluded in the solution, before we use the clustering
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algorithm we should use an algorithm or technique to remove the Extreme Out-

liers �rst. We tested two options: the standard deviation and the algorithm we

presented in the solution (Algorithm for Outlier Detection (Using MDAS)). While

both are useful to identify extreme outliers and the results were similar, we opted

to use our Algorithm �rst, then DBSCAN and in the end use the Standard Devi-

ation with a predictive model to catch any of left out outliers. Since the MDAS

algorithm is based on a dataset with validated (manual) data, we will use it to

make the �rst approach, allowing us to observe problems that Standard Deviation

alone would not catch due to being single variable.

Figure 3.21: Method for Outlier Identi�cation and Treatment

Table 3.7: Method Parameters

Parameter Algorithm/Technique Observation

K MDAS Algorithm Used for obtaining the Threshold

View DBSCAN Matrix with the information about

the variable plus the predictors

Epsilon DBSCAN -

MinPts DBSCAN -

Predictive Model Standard Deviation We will use Multiple Linear Regres-

sion with SEND, COSD & H4, how-

ever we can use other predictive al-

gorithm and predictors

T Standard Deviation Used for obtaining the Threshold

We will use this method in the next chapter. With it, we expect to remove

most or all of the outliers in a dataset.
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3.7 Comparative Model

When comparing classi�cation algorithms to infer which performed better we must

use the metrics available in the Confusion Matrix, as well as Error Rate, Accuracy

and other measures that allow us to retrieve information about the algorithm

behavior. In this sense we will use the following metrics, adapted to our case (keep

in mind that we obtain the Confusion Matrix (CM) by comparing the results with

the true labels in the dataset):

Table 3.8: Classi�cation Metrics

Metric Type Description Obtained by Observation

True

Positive

(TP)

Numeric Outliers

correctly

identi�ed

Directly re-

trieved from

the CM

-

True

Negative

(TN)

Numeric Non-

Outliers

correctly

identi�ed

Directly re-

trieved from

the CM

-

False

Positive

(FP)

Numeric Non-

Outliers

misclassi-

�ed

From the CM Correct information

that may be deleted

False

Negative

(FN)

Numeric Outliers

misclassi-

�ed

From the CM Outliers that were not

caught by the algo-

rithm

Precision

(P)

Percentage Positive

results that

are actual

Outliers

Equation (2.3) Low Precision -> Al-

gorithm identi�ed too

many points as Out-

liers

Recall

(R)

Percentage Outliers

correctly

identi�ed

Equation (2.4) Low Recall -> Algo-

rithm did not caught

enough Outliers

None of the metrics presented in Table 3.8 by itself is a good identi�er of

the algorithm behavior. For example, when looking at a 100% Recall one may

conclude that the algorithm is behaving well, however if the same algorithm has

a low Precision we can conclude that is classifying too many points as Outliers.
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The reverse can also be observed. A 100% Precision may lead us to think that the

algorithm did well, however we can obtain that value if the algorithm only classi�ed

(correctly) one point as an Outlier. When looking at the Recall we would see a

very small value, giving us a better view of the algorithm performance. With this

in mind, we can combine these metrics into the metrics presented in Table 3.9

Table 3.9: Classi�cation Metrics

Metric Type Description Obtained by

Accuracy Percentage Correctness of the Algo-

rithm

Equation (3.3)

F1-Measure (F1) Numeric Measure that combines

Precision and Recall

Equation (3.4)

F2-Measure Numeric Measure that combines

Precision and Recall,

giving more weight to

Recall

Equation (3.5)

Accuracy =
TP + TN

TotalPoints
(3.3)

F1Measure = 2 ∗ P ∗R
P +R

(3.4)

F2Measure = 3 ∗ P ∗R
2 ∗ P +R

(3.5)

The metrics presented in Table 3.9 allow us to have a good insight about the

algorithm behavior, by combining several of the previous metrics from Table 3.8.

However we have to be careful about the accuracy, since we can expect high values

of accuracy in our algorithms. This is due to the small percentage of outliers in

the very large datasets. Even if we have 10% of Outliers, if the algorithm fails

to identify any as Outliers, we still have a 90% of accuracy which can be seen as

a misleading value. F1-Measure is the one o f the most important metrics since

it correlates the Precision and the Recall, giving us a broader evaluation of the

algorithm performance.
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Since our objective is to identify correctly most of the outliers, we can use the

F2-Measure (derived from F1-Measure). Since F-Measure is a harmonic mean, we

can remove weight from the Precision metric and, therefore, give more weight to

the Recall. Although we do not have to remove correct information from the data,

since we have a huge number of observation we can remove some observations

without losing information about the variable behavior.
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Demonstration

This Chapter shows the impact of both the Baseline and the Method for Identi-

�cation and Treatment of Outliers presented in Section3.6 on a labeled dataset.

Now that we have a good insight about the algorithms and techniques that can be

used for Outlier Detection and Treatment, we will demonstrate their use on one

of the datasets. This Chapter is structured as follows:

• Section 4.1 shows the creation and labeling of our dataset. We will use a

dataset from our case study and manually introduce the outliers, with the

respective label;

• Section 4.2 demonstrates the impact of the baseline method in our dataset;

• Section 4.3 demonstrates the impact of the the method introduced in 3.6 in

our dataset.

4.1 Dataset creation and labeling

Since none of the available datasets are labeled, we do not have any information

about outliers present in them. To be able to compare and infer about the per-

formance of any of the methods, we will need labeled datasets. Due to the fact

that manual labeling is slow and prone to error, and to the di�culty of identi-

fying outliers in multi-dimensional data, we opted for introducing the outliers in

the datasets ourselves. This process was supervised by a dam safety expert from
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LNEC, to ensure that we were obtaining the most realistic labeled dataset possi-

ble. After a meeting with the expert, we opted to use the dataset from a speci�c

plumb line sensor, identi�ed by number 6251 with the DESLOCRADIALABS 1

variable. This dataset was chosen due the lack of visible outliers. To obtain the

new datasets we made the following changes to the original dataset:

1. Cut every observation before 2007 due to the existence of some outliers (that

were originated from sensor installation and calibration phase);

2. Introduced information about the predictors (Water Level, Temperature and

Time). Besides the information used in the solution, we also scaled and

normalized some of the values, so that we have more predictive set available;

3. Inserted Outliers and Labels (More information below).

After these changes we obtained the dataset presented in Figure 4.1.

Figure 4.1: Dataset chosen for Demonstration)

The outliers were created by inputting an o�set (positive or negative at ran-

dom) in the response variable values. Since we have several types of outliers, we

1Radial Displacement
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chose to create outliers with di�erent o�sets, so that each of the labels correspond

to real life situations. For example, while types 4 and 5 are considered extreme

outliers, type 1 o�set is so little that the values are still inside the sensor margin

of error, so it should be very di�cult to be detected. We have the following types

of labels (see Table 4.1):

Table 4.1: Outlier Types Created

Label Outlier O�set (% of Peak-to-Peak Amplitude)

0 No None

1 Yes 5

2 Yes 10

3 Yes 25

4 Yes 50

5 Yes 100

We then created three distinct datasets, each one with a di�erent percentage

of outliers. With the help of the expert, we decided to create datasets with 1%

(Figure 4.2), 5% and 10% of outliers. After we decided the percentage of outliers,

that percentage is divided in the �ve types of outliers and the dataset is created

as seen in Table 4.2.

Figure 4.2: Dataset with 1% of Outliers
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Table 4.2: Dataset with 1% of Outliers Label Information

Label Number of Observation (#) Percentage of Observation (%)

0 27094 99%

1 54 0.2

2 55 0.2

3 55 0.2

4 55 0.2

5 54 0.2

Total 27367 100

4.2 Baseline Method

As seen in Section 3.3, Dam experts use standard deviation with the help of

a MLR model to de�ne thresholds in order to identify outliers in the datasets.

We created a MLR model for each dataset (1%, 5% and 10% of outliers) using

Temperature(COSD and SEND) and Water Level(H4) as predictors. In tests, we

used the standard deviation times 1 to 5, and observed the results. The best

F2-Measurements in each of the three datasets was obtained with the standard

deviation times 1 (T=1), which we show below for each one of the datasets Figures

4.3, 4.4 and 4.5. Note that even with T=1, some of the outliers still went uncaught.

As expected, in the tests with higher threshold values this situation is even more

visible (the larger the threshold, higher the number of outlier uncaught).
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Figure 4.3: Baseline Method on Dataset with 1% of Outliers. Left - Outlier
Identi�cation with T=1; Right - Outlier Removal

Figure 4.4: Baseline Method on Dataset with 5% of Outliers. Left - Outlier
Identi�cation with T=1; Right - Outlier Removal
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Figure 4.5: Baseline Method on Dataset with 10% of Outliers. Left - Outlier
Identi�cation with T=1; Right - Outlier Removal

We can see that higher percentage of outliers leads to more outliers uncaught,

as expected (we can see more uncaught outliers in Figure 4.5 than in Figure

4.3). With more outliers, the statistical information about the data (including the

mean and the standard deviation) is corrupted. Therefore, and since this method

depends not only on the predictive model (which could be improved) but also on

statistic values that are "incorrect", the performance decreases.

4.3 Method for Outlier Identi�cation and Treat-

ment

In this section we demonstrate how the method presented in Section 3.6 behaves

when applied in our datasets. The method can be decomposed in three di�erent

algorithms, so we will analyze the individual impact of each algorithm in the

datasets. This Section is organized as follows:

• Section 4.3.1 presents an analysis of preliminary tests we did to select the

parameters, before using the method in the datasets;

• Section 4.3.2 shows the impact of the algorithm presented in 3.5 (Outlier

Detection using MDAS measurements) in each of the three datasets;
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• Section 4.3.3 shows the impact of DBSCAN algorithm in the datasets;

• Section 4.3.4 shows the impact of Standard Deviation algorithm in the

datasets.

4.3.1 Preliminarily Tests

Before we analyze the impact of the presented method, we tested in batch mode the

variation of parameters (see Table 4.3) and their impact on the datasets. Besides

the following variations, we tested scaling the matrix and normalizing the response

variable for DBSCAN. In total we made more than 50000 di�erent analysis.

Table 4.3: Testing Parameter Variation

Parameter Algorithm/Technique Variation

K MDAS Algorithm 1:5

View DBSCAN 12 di�erent combinations of

predictors

Epsilon DBSCAN 0.1, 0.3 & 0.5

MinPts DBSCAN 2, 4, 6, 8, 10

Predictive Model Standard Deviation MLR with SEND, COSD &

H4

T Standard Deviation 1:5

Figure 4.6: Best F1-Measure vs Best Recall Results
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To observe which combination of parameters performs best in each dataset we

will use the F2-measure. Above (Figure 4.6) we have a comparison between one

result with the best F1-measure and Accuracy and the one with the best Recall

(R=1, so all outlier were caught) from the dataset with 1% of outliers. As we

can see, while the �rst delivered good results we still have some outliers that we

may wish to treat, however the second one removes a lot of points (misclassi�ed

removed points are labeled as blue crosses). To calibrate more the search towards

our objective, we use the F2-Measure that gives more weight to Recall without

disregarding the Precision.

In most cases (except the dataset with 1% of outliers) neither the scale nor

the normalization of the response variable in the matrix utilized in the DBSCAN

algorithm produced better results. In the case of the MinPts, we expected to

obtain better results with higher values, due to the multi variable setting, however

we obtained better results when MinPts where equal to 2. The best epsilon was

also the lowest one tested (0.1). From the tested predictive sets (see Table 4.4) we

can observe that scaling the temperature did not produce better results, however

normalizing the days (T) was a good change. One thing that may seem strange

is that using no predictors produced the best mean accuracy, however the worst

F-Measure (again, not identifying any outliers leads to high Accuracy, e.g., in the

10% outlier dataset if we fail to detect any outlier, we still have a 90% accuracy).
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Table 4.4: Results per PredSet (Mean Values from all di�erent analysis)

PredSet F2-Measure Accuracy Predictor

4 0.5221522 83.31290 COSD SEND H

9 0.5153264 82.14180 SCALEDCOSD SCALEDSEND

NORMH

6 0.5011212 86.11785 NORMT NORMH

12 0.4974072 78.68506 SCALEDCOSD SCALEDSEND H

NORMT

10 0.4958177 78.26938 SCALEDCOSD SCALEDSEND

NORMH T

11 0.4958177 78.26938 SCALEDCOSD SCALEDSEND H

T

5 0.4913435 84.43801 NORMT H

8 0.4689577 78.64226 SCALEDCOSD SCALEDSEND H

3 0.4424414 78.13292 T H

7 0.4424414 78.13292 T NORMH

2 0.4423763 84.86358 H

1 0.4061059 87.82597 None

4.3.2 Outlier Detection using MDAS measurements

The �rst step of our method consists in removing extreme outliers from the dataset.

To do so we used the presented algorithm in our solution (see 3.5). To train the

algorithm we used 1000 observations (between index 1000 and 2000), and used as

threshold the standard deviation from all MDAS measurements times K (K was

varied between 1 and 5). In this demonstration, we will use K = 2 for datasets

with 1 and 10% (Figures 4.7 and 4.9) and K = 3 for dataset with 5% of outliers

(see Figure 4.8).
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Figure 4.7: Outlier Detection using MDAS impact on Dataset with 1% of
Outliers. Left - Outlier Detection with K=2; Right - Outlier Removal

Remember that this method is utilized as a step to remove extreme outliers

from the datasets, and therefore it is not our objective to remove all or most of the

outliers here. We could even use a lower K to tighten the threshold, however we

may mislabel some of the points, and since the next step (DBSCAN) uses more

information (Water Level, Temperature, etc.), we will leave most of the outliers

for it to detect.

Figure 4.8: Outlier Detection using MDAS impact on Dataset with 5% of
Outliers. Left - Outlier Detection with K=3; Right - Outlier Removal
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Figure 4.9: Outlier Detection using MDAS impact on Dataset with 10% of
Outliers. Left - Outlier Detection with K=2; Right - Outlier Removal

4.3.3 DBSCAN

After removing the outliers identi�ed by the previous algorithm, we used DBSCAN

to identify the remaining outliers. To do so, we deliver to DBSCAN not only

information about the response variable but also the predictors. This is the main

step of our method, and it is here that we try and catch most of the outliers. We

will use the following parameter values in this demonstration (see Table 4.5) and

show the impact of the algorithm in the datasets.

Table 4.5: DBSCAN Parameters

Dataset PredSet EPS MinPts Norm Scale

1% 12 0.1 2 FALSE TRUE

5% 3 0.5 2 FALSE FALSE

10% 3 0.5 2 FALSE FALSE
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Figure 4.10: DBSCAN impact on Dataset with 1% of Outliers. Left - Outlier
Detection with DBSCAN using the parameters showed in table 4.5; Right -

Outlier Removal after DBSCAN algorithm

The algorithm was able to identify most of the outliers in the dataset with 1%

of outliers (Figure 4.10). Remaining visible outliers are paired, so they probably

formed a cluster (since MinPts parameter is set to 2). Since the cluster are multi-

variable, and not done in a 2D, we can see isolated outliers in the dataset below.

Figure 4.11: DBSCAN impact on Dataset with 5% of Outliers. Left - Outlier
Detection with DBSCAN using the parameters showed in table 4.5; Right -

Outlier Removal after DBSCAN algorithm
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Figure 4.12: DBSCAN impact on Dataset with 10% of Outliers. Left - Outlier
Detection with DBSCAN using the parameters showed in table 4.5; Right -

Outlier Removal after DBSCAN algorithm

We can observe that with a higher number of outliers the algorithm perfor-

mance is reduced (we can see a big di�erence in the number of uncaught outliers

between Figures 4.10 and 4.12). Another observation that we can make is that the

algorithm labeled correctly most or all of the outliers before 2012. Since not all

outliers were caught, we use the next step of the method to re�ne our �nal result.

4.3.4 Standard Deviation

The �nal step of our method consists of utilizing a Predictive Model and observe

if the points are within the expected results (inside the threshold, similar to the

baseline technique). We utilized a Multiple Linear Regression with temperature

(COSD and SEND) and water lever (H4) as predictors. The threshold was ob-

tained with the standard deviation of the values times T. In testing we varied T

between 1 and 5.

In the dataset with 1% of outliers this step did not improve the results, and the

only impact we obtained was with T=1, where this technique caught the remain-

ing visible outlier in Figure 4.10 however mislabeled a lot of points, decreasing

performance (increasing the number of misclassi�ed non-outlier observations leads
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to worst precision values). In the remaining datasets we used T=1 and were able

to improve the results.

We can observe the impact of the Standard Deviation with T = 1 in the 5%

dataset in Figure 4.13 and in the 10% dataset in Figure 4.14.

Figure 4.13: Standard Deviation impact on Dataset with 5% of Outliers. Left -
Outlier Detection with Standard Deviation technique with T=1. Right - Outlier

Removal

Figure 4.14: Standard Deviation impact on Dataset with 10% of Outliers.
Left - Outlier Detection with Standard Deviation technique with T=1. Right -

Outlier Removal
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Evaluation

This chapter shows and explains in detail the impact of the Baseline Method

and the Method for Identi�cation and Treatment of Outliers presented in Section

3.6 and already demonstrated in the previous chapter. We will use the metrics

presented in Section 3.7, so we will analyze the confusion matrix for each of the

methods and methods' steps, identi�ed outliers (True Positives), leftover outliers

(False Negatives) and misclassi�ed non-outliers that were removed (False Posi-

tives). This Chapter is organized in the following Sections:

• Section 5.1 analyzes the performance of the baseline method in the datasets;

• Section 5.2 analyzes the performance of the Method for Identi�cation and

Treatment of Outliers presented in 3.6 in the datasets;

• Section 5.3 compares the performance between both methods.

5.1 Baseline

In the Baseline technique demonstrated in Section 4.2, we saw that this method

was helpful when treating extreme outliers, however it misbehaved when dealing

with other kinds of outliers. As we will see below, when analyzing the confusion

matrix for each dataset this can be proven. The confusion matrix(CM) presented

in Table 5.1 shows the labels (0=Non Outlier, 1 to 5=Outlier) as rows and the

predicted results (FALSE=Non Outlier, TRUE=Outlier) as columns.
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Table 5.1: Confusion Matrix for Baseline Results

Dataset 1 % Dataset 5 % Dataset 10 %

TYPE FALSE TRUE FALSE TRUE FALSE TRUE

0 27088 6 25996 3 24629 2

1 54 0 272 1 547 0

2 54 1 264 10 544 4

3 29 26 130 144 303 244

4 0 55 0 274 7 540

5 0 54 0 273 0 547

Table 5.2: Baseline Results Metrics

Percentage of Outlier Caught Classi�cation Metrics

Dataset Type 1 Type 2 Type 3 Type 4 Type 5 Recall

(%)

Accuracy

(%)

F2

0,01 0 1.818 47.273 100 100 49,817 97.482 59,302

0,05 0.366 3.650 52.555 100 100 51,316 87.558 61,203

0,1 0 0.730 44.607 98.721 100 48,794 74.882 58,819

In Table 5.2, we can see that all type 4 and 5 outliers (extreme outliers) were

caught by the algorithm (except 7 out of the 547 type 4 outliers in the 10% outliers

dataset). Only about 50% of the type 3 outliers were labeled correctly, while this

method, as expected, is not able to detect type 1 and type 2 outliers. In general,

in the three di�erent datasets, it was able to get 50% of all outliers (Recall), and

mislabeled as outlier very few outliers (so we have a high Precision metric), which

leads to a small increase (compared to the Recall) of the F2 metric to around 60%

in every dataset.

5.2 Method for Outlier Identi�cation and Treat-

ment

In this section we will analyze the impact the method showed in Section 4.3 for

each of the three datasets. We want to understand how each step of the method

a�ects the data, collecting the metrics from the confusion metric, as well as other

classi�cation metrics as F2-Measure and Recall (percentage of caught outliers). We
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will analyze each of the datasets individually and then compare them together, to

obtain a broader look of the method.

5.2.1 Dataset with 1% of Outliers

As we saw in the Demonstration Chapter (Section 4.3), we obtained good results

when using our Method for Identifying and Treating Outliers in this dataset. As we

can see below, in Figure 5.1, our method was able to identify most of the outliers,

leaving only a couple of extreme outliers. Due to the fact that the four remaining

extreme (type 4 or above) outliers are paired (when looked at the 2D scatter plot),

we can �nd two reasons why they were not identi�ed: the MDAS algorithm and the

Standard Deviation �tting was not good enough (chosen parameters, predictive

model, etc) or the DBSCAN combination of parameters led to this situation. Since

the DBSCAN's MinPts parameter was set to two, it means that if two points are

close enough (the de�nition of close enough is set by the Epsilon parameter, in

the multi-variable setting), they form a cluster, and hence are not considered as

an outlier.

Figure 5.1: Final result in the dataset with 1% of outliers. The mislabeled
outliers are pointed out with a red cross (False Negatives), while the mislabeled

correct points are presented as a blue crosses (False Positives).
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Table 5.3: Confusion Matrix Evolution

MDAS Algorithm DBSCAN Standard Deviation

TYPE FALSE TRUE FALSE TRUE FALSE TRUE

0 27094 0 27041 53 27041 53

1 54 0 11 43 11 43

2 55 0 0 55 0 55

3 55 0 0 55 0 55

4 32 23 4 51 4 51

5 0 54 0 54 0 54

Observing the Confusion Matrix presented in Table 5.3 we can see that, in this

dataset, our method was unable to identify 4 of the 55 type 4 outliers, which should

have been easy since they are extreme outliers. We can also see that DBSCAN

was the step responsible for identifying most of the outliers, and it did extremely

well, getting 55 out of 55 type 2 outliers (100%) and 43 out of 54 type 1 outliers

(93%).

Table 5.4: Results Metrics Step by Step (%)

Percentage of Outlier Caught Classi�cation Metrics

Step Type 1 Type 2 Type 3 Type 4 Type 5 Recall

(%)

Accuracy

(%)

F2

MDAS 0 0 0 41.818 100 28,205 97.289 37,079

DBSCAN 79.623 100 100 92.727 100 94,505 97.756 90,315

SD 79 100 100 92.727 100 94,505 97.756 90,315

Final 79.623 100 100 92.727 100 94,505 97.756 90,315

As we can see in Table 5.4, our method was able to correctly label 94.5% of all

outliers, with a F2-Measure standing in the 90 value. Since we have a low number

of outliers, the 53 False Positives (see Table 5.3) in a total of 311 identi�ed outliers

(TP+FP) lead to a rather low 83% of Precision, decreasing the F2 value.
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5.2.2 Dataset with 5% of Outliers

In this dataset, unlike the previous one, the remaining outliers are not paired (at

least in the 2D scatter-plot, in the multi-variable they should be). While we can

observe that before 2012 all (with the exception of one) outliers were removed, at

the cost o� some False Positives (seen in blue in Figure 5.2), after 2012 we can see

more outliers (False Negatives) and less False Positives.

Figure 5.2: Final result in the dataset with 5% of outliers.

Table 5.5: Confusion Matrix Evolution

MDAS Algorithm DBSCAN Standard Deviation

TYPE FALSE TRUE FALSE TRUE FALSE TRUE

0 25999 0 25724 275 25681 318

1 273 0 17 256 17 256

2 274 0 18 256 18 256

3 274 0 26 248 12 262

4 274 0 27 247 0 274

5 9 264 0 273 0 273

In Table 5.5, we can see that the �rst step (MDAS Algorithm) was not able

to detect most of the extreme outliers (missed 9 type 5 outliers and all type 4
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outliers). Again DBSCAN proved to be the step responsible of catching most of

the outliers, with a little detail: the algorithm detected with higher precision type

1 and 2 outliers (94%) than types 3 and 4 (90%).

Table 5.6: Results Metrics Step by Step (%)

Percentage of Outlier Caught Classi�cation Metrics

Step Type 1 Type 2 Type 3 Type 4 Type 5 Recall

(%)

Accuracy

(%)

F2

MDAS 0 0 0 0 96.703 19,298 85.969 26,400

DBSCAN 93.773 93.431 90.511 90.146 100 93,567 88.676 89,495

SD 93.773 93.431 95.620 100 100 96,564 88.669 90,583

Final 93.773 93.431 95.620 100 100 96,564 88.669 90,583

With an higher number of outliers, the method was able to catch 96,5% of

them, with a F2-Measure of 90,5. All of the extreme outliers were caught, and all

other types got high percentage of detection (93% or more), as seen in Table 5.6.

5.2.3 Dataset with 10% of Outliers

The dataset with 10% outliers shows the same problem as the datasets from the

subsections before: the results are dissimilar, having completely di�erent results

before and after 2012. In the end, we can observe that most of the outliers were

removed. However we can also see that we have a lot of False Positives (removed

points that are not outliers) before 2012, while the False Negatives (outliers not

identi�ed) appear only after the year 2012, as we can see in Figure 5.3.
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Figure 5.3: Final result in the dataset with 10% of outliers.

Table 5.7: Confusion Matrix Evolution

MDAS Algorithm DBSCAN Standard Deviation

TYPE FALSE TRUE FALSE TRUE FALSE TRUE

0 24631 0 24316 315 24274 357

1 547 0 92 455 92 455

2 548 0 69 479 63 485

3 547 0 67 480 30 517

4 369 178 44 503 0 547

5 0 547 0 547 0 547

In Table 5.7, we can observe that the MDAS algorithm was able to identify all

of type 5 outliers, however it missed most of the type 4. In the end, the method

was able to detect all type 4 and 5, and most of the other types.
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Table 5.8: Results Metrics Step by Step (%)

Percentage of Outlier Caught Classi�cation Metrics

Step Type 1 Type 2 Type 3 Type 4 Type 5 Recall

(%)

Accuracy

(%)

F2

MDAS 0 0 0 32.541 100 26,499 72.661 35,098

DBSCAN 83.181 87.409 87.751 91.956 100 90,058 77.864 89,589

SD 83.181 88.504 94.516 100 100 93,238 78.028 91,325

Final 83.181 88.504 94.516 100 100 93,238 78.028 91,325

The method was able to classify correctly 93% of the outliers, with a F2-

Measure of 91.3 (as seen in Table 5.8). All of extreme outliers (type 4 and 5)

were caught, 94.5% of type 3 but was not capable to get over than 90% of type

1 and 2 outliers caught. As we can see in 5.3, most of outliers remaining are not

distinguishable from the remaining points. Besides the type 1 and 2, we still have

almost 30 type 3 outliers, visible in the �gure.

5.3 Performance Comparison

In this section we will compare the performance of both the Baseline Method

analyzed in Section 5.1 and the Outlier Detection method analyzed in Section 5.2.

We will use as the main source of comparison the F2-Measure for each dataset.

Table 5.9: Comparison between F2-Measure

Dataset MDAS DBSCAN SD Final Baseline

1 37,079 90,315 90,315 90,315 59,302

5 26,4 89,49 90,583 90,583 61,203

10 35,098 89,589 91,325 91,325 58,819

In Table 5.9 we can observe the F2-Measure values achieved in each step for

each dataset. In the end we also can see the comparison between the Final results

obtained by our method against the Baseline Method. Despite having three di�er-

ent scenarios (datasets with di�erent percentage of outliers), the results were very

similar in all of them, with our method having F2-Measure values near 90 against

the 60 from the Baseline Method. Below we have two plots that allow us to see the

evolution of both the F2-Measure (Figure 5.4) and the Recall (Figure 5.5)in the

90



Chapter 5. Evaluation

three datasets during our Method's steps, and compare it to the Baseline mean

value for those metrics.

Figure 5.4: F2-Measure Evolution during the Method in the 3 datasets. The
Yellow line represents the average Baseline Result

Figure 5.5: Recall Evolution during the Method in the 3 datasets. The Yellow
line represents the average Baseline Result

Looking at Figures 5.4 and 5.5 and Table 5.9 we can analyze the following:
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• DBSCAN is the more impactful step in the Method. We can observe that

in the DBSCAN step we already have near 90 F2-Measure values, up from

the 20/30/40 values from the MDAS algorithm.

• MDAS algorithm alone did not perform better than the Baseline Method

in any dataset. Comparing the F2-Measures and both plots we can observe

that MDAS algoritm performance was always worst than the Baseline mean

values.

• The Standard Deviation does improve the overall performance of the method,

although it is by a very small amount. With the exception of dataset with

1% of outliers, the SD step slightly improved the methods' performance.
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Conclusion

Outlier Detection and treatment is a fundamental process in the predictive and

statistical analysis of sensor data. Due to Big Data chalenges it is necessary to

develop automated outlier detection mechanisms to this costly and error prone

objective. Paired with Big Data Analytics, Data Mining and Machine Learning

introduced tools that allow this process not only to be automated and faster, but

also to be more accurate when identifying outliers. In this thesis, we utilized real

datasets from a dam in Portugal to understand the available tools to detect and

treat outliers. Baseline techniques included Whiskers Box Plots and Standard De-

viation thresholds, while Machine Learning provided clustering techniques (since

we did not have labeled datasets, we used unsupervised algorithms), like K-Means,

DBSCAN and LOF. Due to the quality of Manual Measurements, we were able

to introduce an algorithm which makes use of these measurements. Since MDAS

represents the variable behavior, they also represent the expected behavior for the

ADAS measurements, so we may use them as a control to ensure ADAS measure-

ments' quality.

We introduced a method that made use of the MDAS focused algorithm, to

remove most or all of the extreme outliers, followed by a clustering algorithm (DB-

SCAN proved to be very useful). In the end we re�ned the results with a Baseline

technique (Standard Deviations thresholds) that most of the times slightly im-

proved the performance. To demonstrate and evaluate the methods, and to be able

to prove that it performed better than the previous techniques, we created, with

the help of an expert, three di�erent labeled datasets with di�erent percentages of

outliers (1, 5 and 10%), and �ve di�erent types of outliers (representing extreme
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and multi-variable outliers). Then we used the Baseline techniques and the pro-

posed method to try to detect and remove the outliers from the datasets, gathering

information about several classi�cation metrics like Recall and F2-Measure.

6.1 Analysis of Research Questions

The main objective of this research was to be able to detect outliers in sensor

data from engineering structures. We focused on sensors from dams, and with this

thesis, tried to answer the following questions:

RQ1. Can we use clustering algorithms to detect outliers in sensor data?

RQ2. Is the information from other sensors useful when detecting outliers?

RQ3. Can we �nd a method that detects all or most of the outliers in a dataset?

Does it perform better than baseline methods?

During the design and development phase (Chapter 3), we tried to use several

clustering algorithms to detect outliers in dam's sensor data. From the three

algorithms we used (K-Means, DBSCAN and LOF), two of them proved to be

very useful and capable of identifying outliers in the several di�erent kinds of

variables from the sensors (see Section 3.4.4). In the end, we opted for using

DBSCAN in the developed method (as seen in Section 4.3.3), which proved to be

a extremely important step of the method, since it was capable to detect most

of the outliers (we were able to obtain near 90 value for F2-Measure and Recalls

above 90%, as seen in Chapter 5). Note that not all of the outliers were in place

to be detected, since type 1 outliers o�sets can be even smaller than the sensor

error.

While most of the algorithms used did not use the information of other sensors,

like Temperature, Water Level, etc, the clustering algorithms allow us to input this

information, increasing the performance of the algorithms. Before applying our

method, we did some Preliminary Tests (Section 4.3.1), through which we analyzed

over 50000 di�erent combinations of parameters in batch on the labeled datasets.

One of the variations we tried was inputing di�erent information on the clustering

algorithm (DBSCAN), testing 12 di�erent combinations of predictors (informa-

tion extracted from other sensors (Water Level for example), or representing other
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sensors, as is the case of the Temperature). While �nding the perfect combination

of parameters was not the objective of our study (since these combinations will

vary depending on the target variable, number and density of outliers, etc.), we

wanted to be able to di�erentiate outliers from structural problems and therefore

we needed the information of other variables. We proved that using environmen-

tal information allows better performance of the DBSCAN algorithm, as seen in

Chapter 4 - Table 4.4. Only with the Water Level information, the mean results of

the algorithm improved from a value of 0.406 to 0.442 in the F2-Measure (maxing

at an average value of 0.522 utilizing Water Level and Temperature). In the end,

and for these datasets, every single variation with external values obtained, in

average, better results than the variation with none (just the target variable).

To be able to detect outliers in the datasets, we introduced an algorithm that

made use of MDAS measurements (Section 3.5). While the algorithm does work to

detect extreme outliers, it is insu�cient by itself when the objective is to identify

all or most of the outliers. So in Section 3.6 a method was introduced that involved

the previous algorithm, followed by the clustering algorithm and re�ned with a

Baseline Method. As demonstrated in Section 4.3, the method ful�lls its purpose,

identifying and removing most of the outliers. Below, in Figure 6.1, 6.2 and 6.3,

we can see the �nal results after applying the method on the labeled datasets.

Figure 6.1: Impact of the Method on the Dataset with 1% of Outliers. Left -
Original Dataset; Right - Final Result after outlier removal
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Figure 6.2: Impact of the Method on the Dataset with 5% of Outliers. Left -
Original Dataset; Right - Final Result after outlier removal

Figure 6.3: Impact of the Method on the Dataset with 10% of Outliers. Left
- Original Dataset; Right - Final Result after outlier removal

In Section 5.3, we were able to compare the classi�cation metrics from both

the results showed above and the Baseline method. In Table 6.1, we can observe

that the �nal results of our Method are better than the Baseline values in every

dataset, reaching F2-Measure values above 90 (against values averaging 60 in the

Baseline), and Recall values over 93 as well (against values averaging 50 in the

Baseline).
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Table 6.1: Comparison between F2-Measure

Dataset

Method Metrics Baseline Metrics

F2 Recall F2 Recall

1 90,315 94,505 59,302 49,817

5 90,583 96,564 61,203 51,316

10 91,325 93,238 58,819 48,794

We have enough information to answer our Research Questions:

RQ1. As shown in the Demonstration (Chapter 4), we can use clustering algo-

rithms to detect outliers. Clustering algorithms, like K-Means and DB-

SCAN, proved to be very helpful when detecting the several types of outliers

in the datasets;

RQ2. Information about other sensors proved to be very useful when detecting out-

liers. Water Level and Temperature (simulated) measurements were used by

the clustering algorithms during our research, improving the overall perfor-

mance;

RQ3. A Method for Outlier Detection and Treatment was design and developed

and was able to detect between 93% to 96% of the outlier in our demonstra-

tion. In the end, this method's performance was better than the Baseline

Methods, as we can see in Table 6.1.

6.2 Limitations

During this investigation we encountered some problems and limitations related

to our method. While we were able to satisfy our main objectives (detect all or

most of the outliers), we still have some visible outliers in the �nal result of all

datasets. The main limitations of our method are summed up below.

As expected, Type 1 and 2 outliers are the most di�cult to detect. Since

they have a very small o�set from the original point, they can be considered

non-outliers, most of the times due to being inside the expected sensor's error

threshold. We did not calibrate our method to weight more the remaining types,

probably causing a lower Precision while trying to obtain a higher Recall, that

97



Chapter 6. Conclusion

is, when trying to detect the small outliers, we have a higher chance of obtaining

False Positives, and therefore lowering the Precision.

Since DBSCAN is a density based algorithm, we had a problem with our

datasets. As we can observe in the �nal results (see Figure 6.1 to 6.3), most of the

remaining observable outliers appear after the year 2012. With a deep analysis, we

can understand why: from 2008 until 2012 (including), so during a 5 year spawn,

we have 12800 observations. But afterward, from 2013 to 2016, during 4 years,

we have almost 310000 (increased acquisition frequency). Hence, we have a larger

density of points after the year 2012, but we ran the algorithm with the same

parameters for all the dataset.

The proposed algorithm was not in any case better that the Baseline Method,

but the two are suited for extreme outlier detection. The Baseline Method however

is very dependable on the predictive model. If the predictive model does not

provide a good �t to the data, the Baseline Method will not perform well.

We were not able to separate an outlier from a structural problem. While we

were able to detect both, we did not have any way to classify the outlier as a

structural problem without looking at the neighborhood of the sensor.

Starting with the Baseline Method, one of the improvements we can make is

utilizing it instead of the introduced algorithm (MDAS) in our Method, since we

have seen that, in this dataset, it performed better. Another improvement will

come from the utilization of a better Predictive Algorithm, or improvement of the

current parameters. With a better predictive model, we will have a better �t of

the dataset, and therefore a more accurate threshold.

Since DBSCAN was proven to be the main step of the presented Method, our

focus should be on improving it. To do so, we can either treat the dataset as

two or more separated frames or re�ne the detection by running DBSCAN more

than once with di�erent parameters in the same dataset. The objective of both

solutions is the same: adapt the algorithm to di�erent types of densities, and

therefore, increase its general performance.
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6.3 Future Work

Now that we have proved that we are able to detect and treat outliers in di�erent

datasets with the same target variables, we should expand our tests to di�erent

types of target variables. With di�erent datasets, we need to do a deeper study on

the clustering algorithm used (in this case DBSCAN), better understanding the

impact of each parameter on the performance and provide better �tting depending

on the dataset. This is true not only for the clustering algorithm, but also the

predictive algorithm used on the Baseline Method (Standard Deviation).

As seen during the design and development phase, most of the datasets from

the CaseStudy Dam have some extreme outliers. When asked about this problem,

the Dam Expert explained that most of the datasets available contain a small

number of outliers (either from the installation and calibration phase of the sensor,

or from posterior errors). One of the things that should be done in batch mode,

probably with the approval of an expert, is to either use the Baseline Method or

the MDAS algorithm, allowing a �rst pass through the data and removing the

extreme outliers. After that, we should do a more in depth study for each of the

datasets and remove the remaining outliers with our Method.

During our research, we opted to remove outliers from the datasets after they

were identi�ed. However, in a real life situation information should not be deleted,

but labeled instead. After an observation is signaled as an outlier, by our method,

we still do not know if it is an anomaly or a structural problem. After the alert

is given, a system should be in place that allows the labeling of observations,

either as a normal point, anomaly or a problem. This annotation can be executed

either by an automatic algorithm (extreme values should be always anomalies)

or by an expert (as seen in Figure 6.4). To correctly label an observation as a

structural problem, the expert should have relevant information about not only

the external/environmental inputs but also the neighborhood of the sensor. Most

of the structural problem should correspond to a value deviation from the variable

both in the sensor and the sensors nearby. This information can be delivered to

the expert through data visualization techniques and algorithms, such as graph

networks.
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Figure 6.4: Outlier Detection and Treatment System

In this case study, the datasets were not labeled which lead to the choice

of unsupervised methods (we had labeled datasets created in order to extract

classi�cation metrics to assess the method performance). If the system presented

in Figure 6.4 is in place, we can use it to obtain labeled datasets, which will

allow the use of supervised learning algorithms, like SVM and KNN. In the end,

our main objective is to gather enough information and knowledge in order to

anticipate and react to real problems in engineering structures. To do so, we

should be able to have a real-time response to sensor data. Once the information

is received, we want to classify it as either an outlier (error or structural problem)

or a non-outlier, and depending on the classi�cation be able to alert the experts

about existent structural problems.
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