
Instituto Universitário de Lisboa

Department of Information Science and Technology

Evil-Twin Framework
-

A Wi-Fi intrusion testing framework
for pentesters

André Esser

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Telecommunications and Computer Engineering

Supervisor

Prof. Dr. Carlos Serrão, Assistant Professor
ISCTE-IUL

October 2017

"Obviously, the highest type of efficiency is that which can utilize existing ma-
terial to the best advantage."

Jawaharlal Nehru

Resumo

Actualmente existem inúmeros pontos de acesso Wi-Fi. Apesar dos utilizadores
serem sempre recomendados a utilizar redes protegidas, esta não é a única preocu-
pação que devem ter. A conveniência de nos ligarmos facilmente a um ponto de
acesso deixou grandes falhas de segurança em aberto para atacantes explorarem.
Isto acentua a preocupação em relação à carência de segurança do lado cliente
em tecnologias Wi-Fi. A segurança nas comunicações Wi-Fi foi uma preocupação
desde os dias em que esta tecnologia foi primeiramente lançada. Por um lado,
protocolos como o WPA2 aumentaram consideravelmente a segurança das comu-
nicações Wi-Fi entre os pontos de acesso e os seus clientes, mas como saber, em
primeiro lugar, se o ponto de acesso é legítimo? Hoje em dia, com a ajuda de
software de código aberto e a imensa quantidade de informação gratuita, é fácil
para um atacante criar uma rede Wi-Fi falsa com o objetivo de atrair clientes. O
risco desta vulnerabilidade torna-se óbvio ao estudar o comportamento do lado do
cliente Wi-Fi. O cliente procura activamente redes conhecidas de forma a ligar-se
automaticamente a estas. Em muitos casos os clientes ligam-se sem interação do
utilizador mesmo em situações em que a legitimidade do ponto de acesso não é
verificável. Ataques ao lado cliente das tecnologias Wi-Fi já foram descobertos há
mais de uma década, porém continuam a não existirem formas eficazes de proteger
os clientes deste tipo de ataques.

Com base nos problemas apresentados existe uma necessidade clara de proteger
o lado cliente das comunicações Wi-Fi e ao mesmo tempo sensibilizar e educar
os utilizadores de tecnologias Wi-Fi dos perigos que advêm da utilização destas
tecnologias. A contribuição mais relevante deste projeto será a publicação de
uma ferramenta para análise de vulnerabilidades e ataques em comunicações Wi-
Fi. A ferramenta irá focar-se em ataques ao cliente mas permitirá extensibilidade
de funcionalidades de forma a possibilitar a implementação de qualquer tipo de
ataques sobre Wi-Fi. A ferramenta deverá ser utilizada por auditores de segurança
durante testes de intrusão Wi-Fi. Tem também como objetivo ser uma ferramenta
educacional e de prova de conceitos de forma a sensibilizar os utilizadores das
tecnologias Wi-Fi em relação aos riscos e falhas de segurança destas.

Palavras-chave: Wi-Fi, segurança, cliente, ponto de acesso malicioso, hack-
ing, auditoria de segurança, framework

v

Abstract

In today’s world there is no scarcity of Wi-Fi hotspots. Although users are
always recommended to join protected networks to ensure they are secure, this is
by far not their only concern. The convenience of easily connecting to a Wi-Fi
hotspot has left security holes wide open for attackers to abuse. This stresses the
concern about the lack of security on the client side of Wi-Fi capable technologies.

The Wi-Fi communications security has been a concern since it was first de-
ployed. On one hand protocols like WPA2 have greatly increased the security of
the communications between clients and access points, but how can one know if
the access point is legitimate in the first place?

Nowadays, with the help of open-source software and the great amount of free
information it is easily possible for a malicious actor to create a Wi-Fi network
with the purpose of attracting Wi-Fi users and tricking them into connecting to a
illegitimate Wi-Fi access point. The risk of this vulnerability becomes clear when
studying client side behaviour in Wi-Fi communications where these actively seek
out to access points in order to connect to them automatically. In many situations
they do this even if there is no way of verifying the legitimacy of the access point
they are connecting to.

Attacks on the Wi-Fi client side have been known for over a decade but there
still aren’t any effective ways to properly protect users from falling victims to these.
Based on the presented issues there is a clear need in both, securing the Wi-Fi
client side communications as well as raising awareness of the Wi-Fi technologies
everyday users about the risks they are constantly facing when using them.

The main contribution from this project will be a Wi-Fi vulnerability analysis
and exploitation framework. The framework will focus on client-side vulnerabilities
but also on extensibility for any type of Wi-Fi attack. The tool is intended to be
used by auditors (penetration testers - pentesters) when performing intrusion tests
on Wi-Fi networks. It also serves as a proof-of-concept tool meant to teach and
raise awareness about the risks involved when using Wi-Fi technologies.

Keywords: Wi-Fi, security, client, evil access point, hacking, pentesting,
framework.

vii

Acknowledgements

I would like to thank my supervisor Dr. Carlos Serrão for correcting and
reviewing my work and also for his guidance throughout this thesis. I would also
like to acknowledge all teachers and colleagues who I have learned and shared
thoughts with. Additionally I want to sincerely thank the open-source community
as I have learned so much by reading awesome code from great projects.

Last but not least I would like to sincerely thank Ana Febrer Caetano for her
amazing work and the countless hours spent designing and creating the diagrams,
lists and tables found throughout this thesis.

ix

Contents

Resumo v

Abstract vii

Acknowledgements ix

List of Figures xiii

Abbreviations xv

1 Introduction 1
1.1 Subject and Motivation . 1
1.2 Problem Description . 3
1.3 Research Questions . 5
1.4 Objectives . 5
1.5 Contribution . 6
1.6 Thesis Overview . 7
1.7 Research Methodology . 8

2 State of the Art 11
2.1 Summary of the Evolution of Wi-Fi Security 12
2.2 Wi-Fi Communications and Security 14

2.2.1 Wi-Fi Client Behavior . 15
2.2.2 Wi-Fi Networks and Communication 16

2.2.2.1 Open Networks . 17
2.2.2.2 WEP Protected Networks 18
2.2.2.3 WPA-PSK Protected Networks 19
2.2.2.4 WPA-Enterprise Protected Network 21

2.2.3 Vulnerabilities and Attacks on Wi-Fi Communications . . . 24
2.2.3.1 Wi-Fi Client Behavior 24
2.2.3.2 Open Networks . 26
2.2.3.3 WEP Protected Networks 27
2.2.3.4 WPA-PSK Protected Networks 28
2.2.3.5 WPA-Enterprise Protected Network 32

2.3 Vulnerabilities and possible Exploitation Summary 35
2.4 Wi-Fi Penetration Testing . 38

xi

Contents

2.5 Tools of the Wi-Fi Hacking Trade 41
2.6 Conclusions . 43

3 Proposed Solution and Implementation 45
3.1 Review of needed features . 45
3.2 Choosing of Technologies and Justification 47
3.3 Architecture and Design . 49
3.4 Technical and Detailed Description of the Evil-Twin Framework . . 52

3.4.1 The "ConfigurationManager" Module 52
3.4.2 The "SessionManager" Module 55
3.4.3 The User Interface . 56
3.4.4 The "AirCommunicator" Module 62
3.4.5 The "SpawnManager" Module 75
3.4.6 The "ETFITM" Module . 76
3.4.7 Extensibility of the Evil-Twin Framework 79

3.5 Additional Features . 93

4 Testing and Validation 95
4.1 List of implemented features . 96
4.2 Feature coverage comparison between the State of the Art tools and

the Evil Twin Framework . 98
4.3 Features and Attack validation in a test environment 100

4.3.1 Test 1: Capturing a WPA 4-way handshake after a de-
authentication attack . 100

4.3.2 Test 2: Launching an ARP replay attack and cracking a
WEP network . 104

4.3.3 Test 3: Launching a catch-all honeypot 107
4.3.4 Test 4: Capture 10,000 packets with caffe-latte attack 110

5 Conclusion 115
5.1 Result Summary . 115
5.2 Conclusions . 116
5.3 Future Work . 118

Bibliography 121

xii

List of Figures

2.1 Security Protocol Description . 12
2.2 Authentication Protocol Description 14
2.3 Discovery and Authentication . 16
2.4 Authentication on Open Network 17
2.5 Authentication on WEP Network 18
2.6 Authentication on WPA Network 20
2.7 Basic Authentication on WPA-EAP Network 22
2.8 Certificate Authentication on WPA-EAP Network 23
2.9 Catch-all Evil-Twin attack . 25
2.10 PMK Formula . 29
2.11 Wi-Fi Vulnerabilities Description 36
2.12 Wi-Fi Vulnerabilities Mapped to Network Security Type 37

3.1 Software Architecture . 50
3.2 "ConfigurationManager" Class Screenshot 53
3.3 Excerpts from the configuration file 54
3.4 The "SessionManager" Class . 55
3.5 ETFConsole Auto-Complete . 58
3.6 ETFConsole Navigation . 58
3.7 ETFConsole start and stop . 58
3.8 ETFConsole display . 59
3.9 ETFConsole display where . 60
3.10 ETFConsole display only . 60
3.11 ETFConsole copy . 60
3.12 ETFConsole crack . 61
3.13 ETFConsole spawn . 61
3.14 ETFConsole session loading . 62
3.15 ETFConsole shell . 62
3.16 The "start_sniffer" method of the "AirCommunicator" 63
3.17 Class Diagram of the AirHost . 65
3.18 The "start_access_point" method of the "APLauncher" 66
3.19 The "start_access_point" method of the AirHost module 67
3.20 The "start_sniffer" method of the AirScanner module 68
3.21 The "handle_packets" method of the AirScanner module 69
3.22 The "hop_channels" method of the AirScanner module 69

xiii

List of Figures

3.23 Class Diagram of the AirScanner 70
3.24 The "interpret_targets" method of the "Deauthenticator" plugin . 71
3.25 The "injection_attack" method of the AirInjector module 72
3.26 The "injection_thread_pool_start" method of the AirInjector mod-

ule . 73
3.27 Class Diagram of the AirInjector 74
3.28 The "add_spawner" and "restore_spawner" method of the "Ses-

sionManager" module . 76
3.29 The "start" and "stop" method of the "ETFITM" module 77
3.30 Method hooks of the "MasterHandler" 78
3.31 The constructor of the "Plugin" class 80
3.32 The "add_plugins" method of the "AirCommunicator" module . . 81
3.33 The "CredentialSniffer" class . 81
3.34 Class Diagram of the "AirCommunicator" Plugins 82
3.35 The "AirScannerPlugin" class . 83
3.36 The "handle_packet" method from the "PacketLogger" plugin . . . 84
3.37 The "AirHostPlugin" class . 85
3.38 The "pre_start" method from the "Karma" plugin 86
3.39 The "AirInjectorPlugin" class . 87
3.40 The "inject_packets" method from the "Deauthenticator" plugin . 88
3.41 The "MITMPlugin" base class . 89
3.42 The "BeEFInjector" plugin . 90
3.43 The "SSLStrip" spawner configuration 90
3.44 The "Spawner" base class . 91
3.45 The "SSLStrip" spawner class . 92
3.46 The "DNSSpoofer" configuration 92

4.1 ETF Implemented Features . 96
4.2 ETF Implemented Features Description 97
4.3 Feature Coverage Comparison 1 . 98
4.4 Feature Coverage Comparison 2 . 99
4.5 Test 1 . 101
4.6 Results of Test 1 . 103
4.7 Test 2 . 104
4.8 Results of Test 2 . 106
4.9 Test 3 . 108
4.10 Results of Test 3 . 110
4.11 Test 4 . 111
4.12 Results of Test 4 . 113

xiv

Abbreviations

Wi-Fi Wireless Fidelity

WEP Wired Equivalent Privacy

WPA Wireless Protected Access

WPS Wireless Protected Setup

EAP Extensible Authentication Protocol

PSK Pre Shared Key

PTK Pairwise Transient Key

PMK Pairwise Master Key

GTK Global Transient Key

MIC Message Integrity Check

SSL Secure Socket Layer

TLS Transport Layer Security

MD5 Message Digest 5 Hashing Algorithm

AP Access Point

IV Initialization Vector

PRNG Pseudo Random Number Generator

MITM Man In The Middle

GUI Graphical User Interface

API Application Programming Interface

HTTP(S) Hiper Text Transfer Protocol (Secure)

ETF Evil- Twin Framework

Pentester Penetration Tester, a professional security auditor

OSI Open System Interconnection

SSID Service Set Identifier

xv

Abbreviations

BSSID Basic Service Set Identifier

IP Internet Protocol

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Server

Spoof Act of mimicking/impersonating someone or something

xvi

Chapter 1

Introduction

1.1 Subject and Motivation

The use of Wi-Fi technologies has become common practice in today’s world.

Anybody with a laptop or a smartphone will most likely use Wi-Fi on a daily

basis. To cope with such high demand for Wi-Fi connected Internet access many

small businesses, such as shops and restaurants, tend to offer free Wi-Fi to their

users. It is not uncommon to walk along a busy street and detect dozens of access

points. Even if the offered connection uses encryption, users may still connect to

an unprotected access point when they want to avoid authentication.

This significant increase in Wi-Fi hotspots and their users has left many secu-

rity flaws to be exploited by malicious attackers. Attackers focus is on the users

of Wi-Fi technologies as it is on their side where the most easily exploitable vul-

nerabilities lie and can be exploited [14, 39]. These vulnerabilities become more

highlighted when studying client behaviour of Wi-Fi devices. Most devices that

employ a Wi-Fi client will actively look towards connecting to an access point that

they have previously connected before. This process alone is already a security

flaw in which the device discloses a lot of information about networks it previously

connected to, which can result in a lack of privacy as one can find out where the

person has been. Furthermore if an access point’s name and security configuration

1

Chapter 1. Introduction

match the ones saved on the client device it will try to automatically connect to

it without user interaction, making it possible to be unknowingly connected to a

malicious access point. Following this logic, an attacker could set up a rogue access

point that mimics a real one in a way that it cannot be identified as such by the

client device. The client device will then establish a connection to this malicious

access point sending all its Internet traffic through it. The attacker can then sniff,

store and manipulate the information coming from and going to the client device.

The attacks mentioned above have been discovered over a decade ago, but

little has been done to mitigate these problems. None of the various proposed

mitigation techniques [28, 5, 19, 34, 21, 22, 3, 16] have a 100% success rate and

none of them have been implemented in commercial products. This still leaves

Wi-Fi users at a high risk of falling victim to one of these attacks.

The main motivation for this thesis is to raise awareness about Wi-Fi client-

side technology vulnerabilities while at the same time providing professional se-

curity auditors with the tools and necessary information to identify and showcase

them. This was accomplished through the development of a complete security

framework capable of detecting and exploiting the client-side vulnerabilities men-

tioned above, as well as other Wi-Fi related security problems. The developed

framework is intended to be used by professional security auditors (otherwise also

known as penetration testers, or pentesters for short) during their security audits.

Although there are already several open-source Wi-Fi security penetration testing

tools, these tend to focus on cracking Wi-Fi networks and neglect the client-side

vulnerabilities. Furthermore they usually require complex configurations as well

as having multiple terminal windows open, this contributes to unnecessary com-

plexity which slows down the pentester productivity. The work developed in this

thesis, resulted in the development of a framework, known as Evil-Twin Framework

(ETF), that tries to mitigate these issues by integrating different but interdepen-

dent features needed for Wi-Fi penetration testing by connecting them all inside

a single integrated framework.

2

Chapter 1. Introduction

1.2 Problem Description

Even though security being a critical concern in Wi-Fi technologies since the days

it was first deployed it still has high risk and a large number of security flaws not

addressed that should be taken into consideration [35, 17].

Firstly it is relevant to mention encryption. The addition of cryptography in

Wi-Fi communications has greatly increased the security of the communications

between the access point and a client device [17, 8, 25]. On the other hand only

the communication between the client and the access point is encrypted, while

the communication to the rest of the Internet might not be. This leads to a

false sense of security since most people tend to think all of their communications

are secure when connected to an access point that uses WPA2. Furthermore,

the used encryption system in use may be broken to begin with and therefore

be as good as non-existent. This is true considering WEP protected networks.

WEP is the predecessor of WPA which was created out of necessity of fixing the

major security flaws that plagued WEP [35, 2, 8, 30]. Another concern is the

widespread deployment of Wi-Fi access points. This problem ranges from busy

streets where every shop offers a Wi-Fi connection, schools and colleges using

international networks (such as "eduroam" [12]), even to nationwide projects that

try to offer free Internet connection to all their users (such as Fonera - Fon). It

poses a problem because every single one of these networks’ access points can be

spoofed and consequently trick a user into connecting to them.

One more issue worth mentioning is the lack of awareness when it comes to Wi-

Fi security, this is the reason most users will fall victim to hacking attacks in the

first place. The combination of lack of security related knowledge and awareness

and the convenience of connecting to free Internet makes Wi-Fi a very appealing

attack platform for hackers.

The problems mentioned above focus on the security of Wi-Fi and its clients.

Another problem that the Evil-Twin Framework will address is the actual showcas-

ing and exploitation of these vulnerabilities. Currently, organizations in order to

3

Chapter 1. Introduction

be prepared to deal with the security potential threats conduct technical security

audits. These audits, both internal or external, are carried in a controlled manner,

by information security experts, to try to identify the major security flaws that

affect organization – this is usually conducted at different levels, such as the net-

work and system level. The role of the auditor, also known as penetration tester,

is to discover the flaws, know how it can be exploited (and sometimes even exploit

it) and document its findings and recommendations.

The phases involved in a Wi-Fi penetration test that are described here fol-

low the PTES (Penetration Test Execution Standard) [26]. The phases include

pre-engagement interactions, intelligence gathering and threat modeling as well

as vulnerability analysis, exploitation and post-exploitation and finally reporting

[11, 26]. The scope of the penetration test is discussed and agreed upon during

the pre-engagement interactions. The intelligence gathering, threat modeling and

vulnerability analysis are known as the Wi-Fi reconnaissance phase. During this

phase, auditors usually enumerate access points and their security configurations

as well as Wi-Fi clients. The attack phase englobes the exploitation and post-

exploitation phases. During the exploitation phase, auditors will perform attacks

on the Wi-Fi network according to the previously found vulnerabilities, this may

include attacks on Wi-Fi clients as well. The post-exploitation mostly refers to

attacks done inside the network once access is granted and also exploits on Wi-Fi

client devices up to a persistent infection. Exploitation and post-exploitation rules

are agreed upon during the pre-engagement interactions as well. The last phase

is reporting the findings and risk remediation recommendations back to the entity

being tested.

Conducting an audit or penetration test on a Wi-Fi network can be a cum-

bersome job for the auditor. It requires the usage of a multiplicity of different

tools with different purposes to test for the existence of serious vulnerabilities.

This requires time and skills that can increase the duration of the audit and in-

crease its costs. Most Wi-Fi hacking tools require complex and time-consuming

configurations. Furthermore each tool tends to contribute with a single feature of

Wi-Fi hacking even though multiple aspects are interdependent of each other. This

4

Chapter 1. Introduction

results in having multiple programs (with multiple windows) concurrently open,

increasing the needed resources, knowledge to work with all the different programs

and time consumption. Even if the attack environment is already set up by the

pentester it will still be time consuming to manually pass information between

programs when needed. The need to run multiple tools that only serve a single

purpose concurrently, unnecessarily increases the complexity of the penetration

test and consequently decreases its efficiency.

The Evil-Twin Framework (the tool developed as contribution of this disser-

tation) will tackle these limitations by providing a complete Wi-Fi penetration

testing platform/framework.

1.3 Research Questions

The research questions were identified by the author while studying the topic of

Wi-Fi security. These are the questions that this thesis will try to answer:

- What Wi-Fi vulnerabilities can still be exploited? - How vulnerable are

client devices to attacks over Wi-Fi? - Is there a better way of performing Wi-

Fi penetration tests? - Is it possible to develop a better tool to conduct Wi-Fi

penetration tests?

1.4 Objectives

The goals of this thesis is to mitigate the problems described in the previous

section. The way this was accomplished was by developing a very complete Wi-

Fi intrusion testing framework which has to take the mentioned problems into

consideration.

The major objective of this work is the research and development of a frame-

work that can be used to create Wi-Fi client security awareness, through the

5

Chapter 1. Introduction

demonstration of the potential attacks that can be conducted to exploit the end-

user devices, and also to offer a simpler and streamlined process for security au-

ditors (pentesters) to improve their productivity while conducting Wi-Fi security

assessments.

Another objective of the work was to research and implement ways to extend

the developed framework. This way, the developed framework as an open-source

project to enables its extension through the addition of new attacks and new tools.

1.5 Contribution

The contribution of this thesis project is directly related to its objectives.

First, by providing a detailed and organized list of possible Wi-Fi vulnerabili-

ties, depending on the network encryption and authentication type, this work will

give a complete cover of what to look out for, either when doing a Wi-Fi pentest

or while setting up a wireless network. This thesis will also focus on the client

side of Wi-Fi security to stress, not only to the common Wi-Fi user but also the

security community, that this side still has a lot of security flaws which can easily

be exploited with the necessary know-how.

In addition to the detailed set of vulnerabilities, the tool itself. The Evil-Twin

Framework will be able to showcase some exploits for which there is no tool yet,

thereby making it an unique contribution. Furthermore it will serve as a one

stop shop for all other Wi-Fi penetration testing needs, eliminating the need for

complex configurations and usage of multiple programs. Additionally, these same

features will also enable interoperability between basic Wi-Fi components, ease of

use and most importantly extensibility and code reuse for future development of

new features.

Since the framework will be designed in a way that allows easy contribution

and extensibility, it will serve as a platform for developing new zero-day exploits

that the security community may discover in the future. This contribution is not

6

Chapter 1. Introduction

only important for the security community but also for the open-source commu-

nity since the framework will have fully documented code to teach about wireless

security as well as Wi-Fi related programming.

1.6 Thesis Overview

In addition to this introductory chapter the current thesis is composed by 4 addi-

tional chapters which will be described briefly here.

Chapter 2 is where the state of the art of Wi-Fi networking security will be

presented. Since this thesis is about the development of a Wi-Fi pentesting frame-

work this chapter will focus on three main aspects. The first is meant to familiarize

the reader with the current state of Wi-Fi communications. It starts off with a

description of what Wi-Fi client behaviour looks like and how it interacts with

the various types of networks. Later it will relate the previous communication

scenario descriptions to known Wi-Fi vulnerabilities and exploitation possibilities.

After the detailed explanation of Wi-Fi vulnerabilities and attacks follows a brief

and concise summary of the same before going into the second part which aims

to explain how intrusion tests on Wi-Fi environments are conducted. This second

part will identify the phases of such an intrusion test, what tools are usually used

in each phase and the current limitations that pentesters face when conducting

their them. The third part is where the state of the art Wi-Fi hacking tools will be

presented. As mentioned in the introduction, these tend to focus on one specific

feature of Wi-Fi hacking and can therefore be directly related to the vulnerabil-

ities presented in the previous chapter. Following the introduction of the tools

is a description of how each of them exploits the vulnerabilities that they were

designed for.

Following the state of the art comes the actual solution proposal description

and its development plan. Chapter 3 starts with a review of the needed features

according to the objectives described in in the ’Objectives’ section but also taking

7

Chapter 1. Introduction

the state of the art tools into consideration. After describing the needed compo-

nents comes the need to choose the technologies to be used in order to implement

the desired features. So what follows is a list of the technologies with proper jus-

tification of why they were chosen instead of others. Chapter 3 ends with UML

diagrams describing the architecture and design of the proposed solution.

In Chapter 4 the focus is on validating the Evil-Twin Framework and its fea-

tures. It starts by enumerating the implemented features up until the time of the

conclusion of this thesis. It goes on by first comparing feature coverage and then

performance with the tools mentioned in the state of the art. This will be done in

a test environment by setting up a set of realistic attack scenarios. The evaluation

criteria will be explained for each test and tends to be as objective as possible.

Finally the tool will also be tested by security auditors for a professional review

and validation of the framework and its features.

Chapter 5 is the final chapter of this thesis. Here is where the evaluation results

are presented. It will also feature a conclusion about the current state of Wi-Fi

security and pentesting. It ends with a sub-chapter about the future work related

not only to the development of the framework but also Wi-Fi security in general.

1.7 Research Methodology

The chosen research methodology is Design Science Research. It was chosen as it

was the most suitable for the resolution of the proposed problem. This is because it

uses information technology artifacts to solve a real world problem. The following

research questions have been used as guidance throughout this thesis:

- Question 1 - What is the focus of this research?

The focus of this research is the development of an integrated and extensible

Wi-Fi vulnerability detection and exploitation framework to be used by profes-

sional security auditors. The developed solution is meant to increase the efficiency

8

Chapter 1. Introduction

of the pentester by providing a flexible tool that covers a large scope of function-

ality.

- Question 2 - What is the produced artifact and how is it represented?

The produced artifact is the developed Wi-Fi vulnerability detection and ex-

ploitation framework called "Evil-Twin Framework". The framework is meant

to substitute previous tools with similar functionality by providing a tool with

integrated intercommunication between parts of the program.

- Question 3 - What design methods are going to be used for the creation of

the artifact?

The development of the tool focuses on using the Object Oriented Program-

ming paradigm as it increases the artifacts organization and eases its extensibil-

ity. Furthermore, programming design patterns were used whenever the developer

found it was adequate.

- Question 4 - How is the design method and the artifact supported by the

knowledge base?

The knowledge base will be the tests conducted by with the developed frame-

work in comparison to other tools of the state-of-the-art.

- Question 5 - What evaluations are performed during the internal development

cycle? What design improvements are identified during each cycle?

The internal evaluation first focuses on making a certain functionality work.

This is then verified by using other, already verified, tools. Secondly, the efficiency

of the added functionality is taken into consideration when comparing it to other

tools. Improvements are considered if the level of efficiency is not satisfactory.

- Question 6 - How is the produced artifact introduced in practice? What met-

rics were used to demonstrate its use and improvement of the previous artifacts?

9

Chapter 1. Introduction

The artifact’s efficiency is tested against other tools over the course of four

tests. The evaluation metrics are different for each test but will generally focus on

"execution time" and "complexity of use".

- Question 7 - What information is added to the knowledge base and how?

The development of the tool covers the implementation of many attacks. As

it is an open-source project, the project will educate security enthusiasts on how

certain attacks work and how they are implemented in a programming language

that is easy to read.

- Question 8 - Was the question that led to the research answered in a satis-

factory manner?

According to the results of the tests performed with the tool and the general

experience during the usage of the tool it is possible to say that the question that

led to the research was properly answered.

10

Chapter 2

State of the Art

This chapter serves the purpose of introducing the reader to the world of Wi-Fi

communications in order to better understand the inherent security flaws. It will

start by briefly guiding the reader through the evolution of Wi-Fi security. The

next section is dedicated to analyzing client behavior, seeing how it discovers Wi-

Fi networks and how it connects to them. Since there are many different security

configurations a Wi-Fi network can have, this chapter follows by describing each

one and will analyze how the client interacts with each of the network types.

After that, this chapter will pinpoint vulnerabilities in each of the previously

described communications and explain how they can be exploited. At the end

there will be a concise summary table of the known vulnerabilities and attacks

that can be performed on them. This will serve as reference to match the state

of the art tools to the attacks they can perform. It will also serve as reference of

what capabilities the Evil Twin Framework will have to have.

Later in this chapter the reader will be introduced to the state of the art Wi-Fi

pentesting tools. These tools will be explained thoroughly, first by describing their

capabilities and later by identifying their strengths and drawbacks.

11

Chapter 2. State of the Art

2.1 Summary of the Evolution of Wi-Fi Security

This section is simply meant to guide the reader through the evolution of Wi-

Fi security. From the very start, IEEE 802.11 considered security mechanisms

to preserve the confidentiality and integrity of the data exchanged over wireless

channels. The standard’s authors had into consideration the aspects related with

security of the data over the air, between the user devices and the different network

equipments.

The following table (2.1) presents an overview of the major security mecha-

nisms that have been implemented on the different versions of the IEEE 802.11

standard and also some of its major limitations. The three major security pro-

tocols have been implemented to comply with security requirements of wireless

communication: WEP, WPA and WPA2 [40, 23, 6, 17].

Figure 2.1: Evolution of Wi-Fi security.

12

Chapter 2. State of the Art

The Wireless Equivalent Privacy (WEP) was the first default encryption proto-

col to be introduced in the IEEE 802.11 standard however, due to major technical

failures in the protocol security was practically abandoned [9, 17]. As a response

to WEP problems, Wi-Fi Protected Access (WPA) was created. But WPA was

only a quick patch for WEP as a response for the lack of security it provided as

the newer version was already being developed but would need extra hardware on

routers that were only meant to support WEP encryption [17]. The new version

of WPA - WPA2 - was released as an IEEE 802.11 amendment [29, 17].

These standards however refer mostly to what encryption scheme they use.

These protocols can use many different authentication mechanisms which have

their own security flaws [27]. Wi-Fi authentication mechanisms are mainly de-

signed for two purposes, personal or enterprise use [27]. For personal use the

authentication mechanism usually relies on a simple password and is known as the

pre-shared key (PSK). For enterprise use however there is a need to differentiate

the user access level and for this purpose there are a multitude of protocols which

rely on a username and password credential combination for authentication. This

allows for better control over who can and who is accessing the network. Most

enterprise authentication mechanisms rely on the EAP authentication framework

[27], so in order to increase the security of the individual authentication protocol

some have introduced the use of certificates as a form of authentication. All of

these authentication protocols offer a different type of protection for the exchange

of credentials. The following table (2.2) presents a description of all authentication

mechanisms divided into categories with an evaluation of their pros and cons.

13

Chapter 2. State of the Art

Figure 2.2: Difference between various authentication protocols.

2.2 Wi-Fi Communications and Security

This section focuses on describing Wi-Fi communications. It first analyzes the

typical client behavior and later the access point behavior and how it interacts

with the client depending on its security configuration.

14

Chapter 2. State of the Art

2.2.1 Wi-Fi Client Behavior

One key aspect to learning how Wi-Fi communications can be compromised is

understanding client behavior. The ad-hoc behavior may vary slightly depending

on the operating system that is used, but in principle they all follow the same

rules.

Whenever a user wants to connect to a network he will first take a look at the

available networks. These have been detected by the client device by listening for

"Beacon" packets, these packets are the ones being constantly sent by an access

point - this behavior is known as passive network scanning [27, 31].

Another way for discovering Wi-Fi networks is by sending out "Probe Request"

packets. These packets contain the SSID of the network they want to connect to.

These are usually sent when the device is looking for a network that it has con-

nected to previously and is therefore saved as a "trusted" network. This discovery

method is known as active network scanning [27, 31]. The rate and frequency of

when these packets are sent is what may vary depending on the operating system.

After finding a network the client wants to connect to, either by passive scan-

ning and user interaction or through active scanning and automatic connection,

the client device will enter the authentication and association phase [27, 14].

The communications are represented in the flowchart in figure 2.3. It is im-

portant to mention that the 802.11 management frames were only supposed to

support WEP authentication, that is why WPA authentication occurs after the

actual association process. In case of the WEP-PSK authentication the above

shown communication will have two extra packets between the packets identified

as 4 and 5, this will be described later in this chapter. It is important to mention

that the client will only try to associate automatically to a network if the security

settings match the ones saved on the device [27, 39, 31], the security settings can

be found in "Beacon" and "Probe Response" packets. For instance, if a client

has a WPA/WPA2-PSK protected network stored as trusted and an access point

broadcasts a network with the same SSID, the client will only try to connect to

15

Chapter 2. State of the Art

Figure 2.3: Probe Request followed by Authentication

it if it is also a WPA/WPA2-PSK protected network, otherwise it will ignore the

"Probe Response" packet.

2.2.2 Wi-Fi Networks and Communication

It is common knowledge that Wi-Fi networks may either be protected, if they use

any encryption mechanism, or unprotected if not. The level of security is highly

dependent on what security configuration the access point has. The communica-

tion between the client and the access point can be very different depending on

these configurations, specially during the authentication phase. To understand

the security implications of these communications one has to analyze each type

individually since they have different vulnerabilities.

16

Chapter 2. State of the Art

2.2.2.1 Open Networks

Open networks are inarguably the least secure. They don’t employ any access

management, which means anybody can connect to it and be on the same net-

work. Furthermore they don’t offer any type of encryption, this means that all

communications between any client and the access point can be intercepted and

read without even being connected to the access point [27, 31]. The following

flowchart (2.4) shows the authentication and association process.

Figure 2.4: Open Network Authentication

As it is possible to observe from the flowchart in 2.4, authentication with these

access points will always be successful and after associating they can exchange

data freely.

17

Chapter 2. State of the Art

2.2.2.2 WEP Protected Networks

WEP was the first step in Wi-Fi security, it stands for "Wired Equivalent Privacy".

The authentication to these types of network can be done in two ways depending

on its configuration.

Figure 2.5: WEP Network Authentication

AWEP access point can be configured as open, where the user does not provide

any credentials to authenticate to the access point, although he has to have the

encryption keys configured on his side in order to exchange data with it. The other

method is known as WEP-PSK, as the name suggests it uses a pre shared key (a

18

Chapter 2. State of the Art

password) to authenticate to the access point [35, 17, 8]. The encryption keys are

derived from this password. The authentication process to the latter example is

shown in the flowchart 2.5.

As can be seen in the flowchart in 2.5 the authentication includes two extra

packets. When a client wants to authenticate to the access point it responds with

a challenge. The client has to encrypt the challenge using the pre shared key and

sends the result back to the access point. The access point has to verify if the result

matches the one it calculated to then send a response of success or failure. After

successfully authenticating to and associating with the access point, the client is

able to exchange encrypted packets with the access point. The encryption keys

used to encrypt the data exchange are static, this means they are always the same

for every user and don’t change with time.

2.2.2.3 WPA-PSK Protected Networks

The WPA and WPA2 protocols were developed to address and fix the many secu-

rity issues that were found in the WEP protocol and is considered the most secure

Wi-Fi communications protocol [8, 25, 17]. The WPA/WPA2 protocol has two

different authentication mechanisms. One was designed for personal use and is

also known as WPA-Personal or WPA-PSK. As the latter name suggests it uses

a pre shared key for authentication, but the mechanism is very different from the

WEP implementation.

The first noticeable difference is when it begins, as one can see in the flowchart

in 2.6 it starts right after the association phase, unlike WEP where it happens

before. But what actually happens during the 4-way handshake and what pro-

tection does it offer? The 4-way handshake is used for many things. First the

protocol ensures mutual authentication between the client and the access point

[27, 25, 8]. It is assumed that both have the pairrwise master key (PMK), which

is directly derived from the password. The PTK (Pairwise Transient Key) can

be calculated using the PMK and the generated nonces by each of the parties, so

the PTK is different in every authentication. From the PTK it is already possible

19

Chapter 2. State of the Art

Figure 2.6: WPA Network Authentication

to calculate the message integrity check (MIC). The client has all the informa-

tion it needs to calculate the MIC after receiving the first frame containing the

authenticator nonce. The client generates his own nonce and calculates the MIC

and sends both back to the access point. At this point the access point also has

enough information to calculate the MIC, which he then compares to the MIC

sent by the client. This is where the actual authentication of the client happens,

if the calculated MIC matches the one sent by the client it means he knows the

password and therefore has access to the network. After verifying the MIC the

access point sends back a message telling the client to install the PTK and the

20

Chapter 2. State of the Art

GTK (Global Transient Key) encrypted by the calculated PTK, the GTK is used

to encrypt broadcast communications from the access point to all clients. Both

the PTK and GTK are temporary and go through a cycling process. The PTK is

unique to each client while the GTK is the same for all clients. The last step of

the 4-way handshake is the acknowledgement of the installed PTK and GTK by

the client.

After the 4-way handshake is complete the client and access point can exchange

packets encrypted with the calculated PTK.

2.2.2.4 WPA-Enterprise Protected Network

WPA-Enterprise uses the authentication mechanism designed for companies and

corporations. The authentication process for this kind of network is a lot more

complex, on the other hand it enables features that were not possible through the

classic PSK authentication.

To the user the main difference will be that instead of just a password the user

also has to provide a username as well. This makes it possible to uniquely identify

each user on the network. It also makes it easier to manage access, since the pair

of credentials is unique to each user it is possible to add or remove access to each

user individually. This was not possible with the PSK authentication since the

password is the same for all users.

The other difference is that, instead of authenticating directly with the access

point, an extra RADIUS server is used to authenticate users [27, 14]. There is

a wide range of RADIUS-based protocols over which a client may authenticate.

These protocols can be divided into two categories, protocols that use EAP and

the ones that don’t. The main difference between non-EAP and EAP protocols is

that the latter starts with an authentication protocol negotiation before the actual

authentication. Protocols using EAP may be subdivided into protocols that don’t

use certificates, the ones that use certificates but only on the server side and the

ones that use certificates on both, client and server side. The focus will be on

21

Chapter 2. State of the Art

protocols using EAP since these are the most widely deployed as well as being

similar to the ones that do not use EAP but with EAP packet type encapsulation.

EAP protocols that don’t use certificates do not establish a TLS connection

which would hide the client authentication process. The protocols that use a server

side certificate will have to negotiate an outer authentication protocol as well as an

inner authentication method which is to be used inside the encrypted TLS tunnel.

Figure 2.7: Basic WPA-EAP Network Authentication

In the flowchart in 2.7 one can see that basic EAP relies on a challenge-response

authentication mechanism, the challenge and response go through the air unen-

crypted. In this scenario we can see that only the client authenticates himself

to the server. Examples of these protocols would be EAP-MD5 and EAP-LEAP,

which use "Message Digest 5" and "MS-CHAPv2" as hashing algorithm respec-

tively. Protocols using certificates will use the server certificate to establish a TLS

tunnel. The client has to trust the certificate to establish a layer 3 connection, this

is how the client authenticates the server. What follows is the client authenticat-

ing to the server inside the TLS tunnel. They will previously have agreed on an

22

Chapter 2. State of the Art

Figure 2.8: WPA-EAP Network Authentication with certificates

inner authentication method to be used inside the encrypted tunnel. Examples of

these are EAP-PEAP and EAP-TTLS which can use many different protocols as

inner authentication method. The most common inner authentication method for

EAP-PEAP is "MS-CHAPv2" and is also based on challenge-response mechanism.

Regarding protocols that use certificates on both sides, EAP-TTLS has an op-

tional feature that requires the client to authenticate to the server using a certifi-

cate as well before creating the encrypted tunnel. After that there is a multitude of

inner authentication protocols that can be used that also use a challenge-response

mechanism.

23

Chapter 2. State of the Art

2.2.3 Vulnerabilities and Attacks onWi-Fi Communications

In this subsection the previously described communications will be analyzed from

a security perspective. It will cover the vulnerabilities for each type of network as

well as the vulnerabilities in client behavior when communicating with each type

of network.

2.2.3.1 Wi-Fi Client Behavior

From a security perspective, the ad-hoc behavior of a client device is the most

neglected aspect of Wi-Fi communications. It puts the owner of the device in risk

of being compromised as well as the network it tries to connect to.

It is important to first understand how its behavior affects the owner and the

device itself. As mentioned in section 2.1, the client has two ways of discovering

if a certain Wi-Fi network is nearby. The one that poses a security risk is active

scanning as it sends out information about Wi-Fi networks it had previously been

connected to. Knowing this, an attacker could simply listen for probe requests

coming from a device and associate the network SSIDs to geographical locations

to find out where the owner has been. This can be done via online services such

as "WiGLE" 1 [27]. This would be considered information disclosure and results

in a lack of privacy for the owner of the device.

This is not the only security risk enabled by active scanning. It is important to

remember that this mechanism leads to an automatic attempt of authentication if

it finds a network with the same SSID and security configuration [27, 39]. From an

attacker’s perspective there is no way of discovering the security configurations of

the networks from simply analyzing the probe requests. Regardless, the attacker

could perform what is referred to as a "Catch-all Evil-Twin" attack. The Evil-

Twin by itself works creating an access point that clients are likely to connect

to. The catch-all part means that multiple access points are created, all with

the same SSID but with different security configurations. This works because the
1https://wigle.net

24

Chapter 2. State of the Art

device will automatically try to connect to the network that matches its security

configurations, this way an attacker can force a device into disclosing the security

type of the network it had previously connected to [27]. The following illustration

(2.9) explains the process.

Figure 2.9: Probe Request triggering a Catch-all Evil-Twin attack

In step one (1) the attacker starts sniffing for probe requests and captures the

one for "Home Internet" sent by the client device in step two (2). Then in step

three (3) the attacker is able to create multiple access points all with the same

SSID matching "Home Internet" but with different security configurations since

that at that point he does not know what type of network the client is trying

to connect to yet. Once the client device identifies a Wi-Fi network with the

same SSID and security configuration (in this case it is WPA-PSK) it tries to

authenticate and associate with it automatically as illustrated in step four (4).

Now depending on the security settings there are different ways an attacker

can take advantage, the different scenarios will be explained when analyzing that

specific network type later in this chapter.

Once a client device is connected to the attacker’s machine it will be exposed

to a whole new set of attacks operating on layer 3 of the OSI model. This greatly

increases the attack surface of an attacker because he is on the same network

25

Chapter 2. State of the Art

as the victim and also acts as the gateway to the Internet. This enables the

possibility of DNS spoofing in order to redirect victims to malicious websites as

well as HTML and Javascript injection on websites that are not using HTTPS

[39, 14]. An attacker can also target and attack SSL/TLS communications in

order to sniff sensitive data. Furthermore, because the victim is on the same

subnet as the attacker it is also vulnerable to network based attacks since the

victim could be running a vulnerable version of a networking service. Strategical

use and combination of these attacks could result in malware infection and access

to the victim’s machine.

2.2.3.2 Open Networks

Open Wi-Fi networks provide the least security to the client. The communications

between client devices and the access point are not encrypted in any way, this

means that any outsider can spy on these communications without even being

connected to the network. Since everybody can connect to this type of network

it is also a lot more likely that a malicious actor is connected. Being on the same

network as the attacker makes the victim exposed to layer 3 attacks that were

already mentioned before, although with a little less control since the attacker

would need to perform an ARP poision attack to act as the gateway for other

clients.

Considering the Evil-Twin problem, this would be the easiest network to repli-

cate [33, 13]. Even worse, since no proper authentication is needed in order to

associate with the access point, the victim would automatically and successfully

connect to the network without giving warnings or user interaction [31, 27]. The

key problem here is blind trust in networks whose authenticity cannot be verified

by conventional means.

26

Chapter 2. State of the Art

2.2.3.3 WEP Protected Networks

Wired Equivalent Privacy (WEP) was the first encryption standard developed for

Wi-Fi communications and as the name suggests it was supposed to make wireless

network as secure as its wired equivalent. There is a whole plethora of known

vulnerabilities regarding the WEP protocol and if a network uses it, it is considered

insecure [27, 2, 8, 35]. This is because the used encryption is considered weak and

the WEP encryption key can be deterministically recovered from gathering enough

WEP data packets [2, 25, 35, 8]. The rate at which these data packets are generated

usually depends on how busy the network is. An attacker could although perform

an ARP replay attack which greatly increases the rate at which these data packets

are generated and thereby accelerates the cracking process as he can gather more

information needed for WEP cracking in a shorter amount of time. With today’s

open-source tools the whole process of gathering enough packets and recovering

the WEP key can take less than ten minutes [2, 35, 30]. What makes this even

more dangerous is that WEP keys are static, this means that all captured packets,

even though they were encrypted, can now be deciphered and read by the attacker.

Again, let’s take into consideration the problem of the Evil-Twin attack. De-

pending on the goal of the attacker he could perform different types of attacks.

For the first example an attacker could setup a WEP encrypted AP configured

with the real WEP key [2]. If the attacker does not have the key he would not be

able to set up the access point since he would not be able to decrypt packets sent

by the client nor sent correctly encrypted packets back to the client. But since the

WEP key is so easy to recover, the attacker would be able to mimic the network

once the WEP key had been recovered, putting the client at risk of all the layer 3

and man-in-the-middle attacks mentioned earlier in section 2.3.1.

The method explained in the first paragraph of this section assumes that the

attacker is near the legitimate access point in order to actually sniff its traffic.

However there is a way an attacker can retrieve the WEP key solely by com-

municating with clients who have that WEP key cached in their system. This

method involves creating an Evil-Twin access point to lure clients into connecting

27

Chapter 2. State of the Art

with them. The attacker is able to accept all incoming connections regardless of

the entered key. Assuming that the client connects automatically it will use the

WEP key stored in its system. After the client associated with the evil AP it

will try to obtain an IP address, it will do it according to how it is configured.

However, regardless of their configuration, if that method fails the client will most

likely fall back to assigning a static AP to itself and sending out a gratuitous

ARP packet. Once that packet is detected the attacker can cleverly modify the

encrypted content so that it is still a valid encrypted packet. These modifications

turn the original gratuitous ARP packet into a regular ARP request for the same

IP address that client assigned to himself. By replaying this packet the client will

respond to the ARP requests, thereby generating new packets with different IVs

which can then be used to crack the real network. This whole process can take as

little as six minutes and is called the caffe-latte attack [2]. It is important to note

that the attacker can obtain the WEP key without ever communicating with the

real access point, therefore this attack can also be called AP-less WEP cracking

[2, 27].

2.2.3.4 WPA-PSK Protected Networks

The WPA protocol was very successful in correcting almost every security flaw

found in WEP. First there is no way of recovering the WPA key through statis-

tical analysis since WPA uses dynamic keys. This is also important in case of an

attacker eventually recovering the PMK, he will still be unable to decrypt previ-

ously captured packets since he would need the PTK which is the key that is used

when encrypting data and is generated dynamically [8, 17, 29]. Additionally the

WPA protocol implements a sequence counter in order to protect against replay

attacks.

Cracking a WPA network to figure out the key can be an arduous and time

consuming process. The first thing the attacker needs to have in order to crack

a WPA password is the 4-way handshake that occurs between the client and an

28

Chapter 2. State of the Art

access point during authentication. This can be done by passively sniffing pack-

ets in the air and waiting for someone to authenticate with the target network.

Another way would be by performing a de-authentication attack, this is done by

sending spoofed de-authentication packets to an already connected client, the 4-

way handshake is then captured during reconnection to the access point. When

an attacker captures the 4-way handshake he will have everything but the actual

passphrase to calculate the message integrity check, this means he can perform a

brute-force or dictionary attack in order to crack the password [27, 35, 37].

There is more than one reason why this process is very time consuming. Firstly

a WPA password has a minimum of 8 characters and a maximum of 63 characters.

With this we conclude that the key space is very large and the smallest passphrase

is at least 8 characters long. To further understand why WPA cracking is a very

time consuming process it is important to understand how the PMK is calculated.

The formula for generating the PMK is:

Figure 2.10: Formula for calculating the PMK

The PBKDF stands for "Password Based Key Derivation Function", it is

specifically designed to reduce the vulnerability of encrypted keys to be brute-

forced. This function receives five parameters. The first is a PRF (Pseudo Random

Function) which has a fixed output length. The second is the master password

from which the derived key is generated, this is the password one would type in

when connecting to a WPA network. The third parameter is the cryptographic

salt, WPA uses the network’s SSID for this parameter. The fifth parameter is

the desired output length of the final key, in this case it is 32 bytes. The fourth

parameter is the number of iterations going through this function, as we can see

in case of WPA the number of iterations is 4096, this is the actual bottleneck that

makes WPA cracking very slow. It means that every word in a dictionary would

have to go through 4096 iterations. Assuming we had a dictionary with a million

(1.000.000) words (which is relatively short), it would have to go through a total

29

Chapter 2. State of the Art

of 4096 million iterations of the PBKDF. Taking this into account it is safe to say

that performing a dictionary attack from a regular laptop is infeasible. There are

however online services that will attempt to crack a WPA handshake for as little

as five (5) american dollars 2 [27].

In summary, cracking a WPA password is generally hard and very time consum-

ing. However it is possible avoid having to crack the WPA password altogether.

This is due to another attack vector that the access point might be vulnerable to.

The attack targets the Wi-Fi Protected Setup (WPS) which gives out information

about the AP’s configuration, including the WPA password. If the the access point

is WPS enabled an attacker can brute-force its PIN which is 8 digits long. This

PIN however, is divided into three parts. The first four digits are the first part of

the pin, the next three digits are the second part of the pin, the last digit is just a

checksum of the previous seven digits. The attacker usually has two main ways of

taking advantage of this vulnerability. The first method is brute-forcing the WPS

pin by directly communicating with the actual access point. This method should

work 100% of the time but can take a long time since a lot of wrong guesses will

trigger a blocking mechanism where the access point stops answering [38]. The

second method is called the Pixie attack and works by capturing two hashes that

are sent in clear-text, these hashes are calculated with the help of two generated

nonces. These nonces are what is needed to be brute-forced offline, they are how-

ever 128 bits long which would take a long time to crack even offline. The key to

this attack is that these two nonces are not generated securely in many routers, the

nonces are either static or generated by a weak PRNG. This low entropy in nonce

generation is what allows for a more directed offline guessing approach which can

lead to a compromised WPS pin in a matter of minutes [7, 18].

The WPA-PSK protocol unfortunately does not solve the Evil-Twin problem

completely. Although WPA-PSK supposedly offers mutual authentication between

the client and the access point, this simply means that both parties know the

passphrase to calculate the PMK. This means that if the attacker knows the WPA

password he can ultimately mimic the network without raising suspicion from the
2OnlineHttps://www.onlinehashcrack.com/

30

Chapter 2. State of the Art

client. This becomes a realistic problem when taking into account that a lot of

shops and restaurants, even though they offer WPA protected Wi-Fi, simply hand

out their password when asked for it. It would make a lot of sense for an attacker

to deploy an Evil-Twin attack in this scenario as the evil access point would have

increased credibility due to the false sense of security of connecting to a WPA

protected network .

Furthermore, similarly to the case of WEP networks, WPA networks are also

vulnerable to AP-less attacks. The information an attacker needs in order to

crack a WPA password is: the authenticator nonce generated by the access point,

the supplicant nonce generated by the client, the message integrity check that

is calculated and sent by the client and the access point’s and the client’s MAC

addresses. All of this information can be captured within the first two frames of

the WPA handshake. So all an attacker has to do is setup a WPA-PSK access

point with the SSID of the network he wants to crack and a random passphrase. A

client who actually knows the password would automatically try to connect to it,

the attacker then proceeds to generating its nonce (the authenticator nonce), the

client uses that nonce along with the one it generated itself (the supplicant nonce),

calculates the MIC and sends it all back to the access point for verification. At this

point, since the attacker does not have the actual password he cannot conclude the

handshake as he cannot calculate the PTK to encrypt messages from that point

forward. The attacker does however have all the information necessary to start

cracking the WPA password [27, 36, 1].

In conclusion it is possible to see that the client is still not completely safe

from Evil-Twin attacks when connecting to a WPA-PSK network. Moreover, the

ad-hoc client behavior unnecessarily increases the risk of a WPA-PSK network

being hacked, emphasizing that the Evil-Twin attack is still a problem even for

this type of network.

31

Chapter 2. State of the Art

2.2.3.5 WPA-Enterprise Protected Network

As mentioned before, the WPA-Enterprise network is mostly used in companies

and corporations. The only thing that differs from the WPA-PSK protocol is the

authentication mechanism, the encryption scheme between the client and the ac-

cess point remains the same. Therefore WPA-Enterprise offers the same security

features in regards to encryption standard, dynamic keys and replay attack pro-

tection as WPA-PSK. Since there are no known vulnerabilities in those features

there are only the various types of authentication mechanisms left to analyze.

The focus will be on protocols that use EAP. These can be subdivided into

three categories according to certificate usage, therefore this section will be divided

in three subsections accordingly, one for each EAP category.

WPA-EAP without certificates

Examples of WPA-EAP protocols that do not use certificates are EAP-LEAP and

EAP-MD5 [14]. The flowchart in section 2.7 regarding EAP protocols without

certificates shows that the challenge-response authentication goes through the air

unencrypted. This would allow an attacker to passively listen to 802.11 traffic and

capture these authentications. In this scenario it all comes down to the strength of

the password as well as the hashing algorithm. In case of EAP-MD5 the hashing

algorithm is MD5 which is considered to be very weak. There are many online

services which offer reverse hash lookup for MD5 hashes, these services hold a

very large database of pre-calculated MD5 hashes and their respective plain-text.

In case of EAP-LEAP the hashing algorithm is "MS-CHAPv2", it is a stronger

hashing algorithm than MD5 but nevertheless it is still crackable.

Regarding the Evil-Twin attack, clients that have a WPA-EAP network con-

figured and don’t use certificates are very susceptible to this attack. Because

there are no certificates there isn’t a way to authenticate the server, this forces

the client to simply send out its username and hashed password directly to the

attacker. Furthermore, contrary to the WPA-PSK authentication, the PMK is not

32

Chapter 2. State of the Art

directly derived from the password but is negotiated between the client and the

RADIUS server. This allows the attacker to always send out EAP Success packets

regardless of knowing the client’s password or not. For the client this means he

can successfully associate with the attacker’s access point and browse the Inter-

net with a man-in-the-middled connection while at the same time providing the

attacker with crackable credentials that he can use to gain access to the target

network [27].

It is important to note that, in a scenario where the attacker’s objective is

to gain access to the corporate network, the attacker would have a larger attack

surface since there would be a lot of clients with different credentials, the attacker

would only need to crack one of the credentials to gain access [27, 39, 1]. Again

the client behavior is the weakest link in keeping the network itself secure.

WPA-EAP with server-side certificates

These types of networks provide a much stronger authentication mechanism than

the previous one. Examples of these would be EAP-PEAP and EAP-TTLS. First

the client is able to authenticate the server by validating its certificate. This

is meant to ensure that the access point that the client is connecting to is a

legitimate one. Secondly, after validating the server’s certificate a TLS tunnel is

established inside of which the inner authentication protocol takes place. The inner

authentication mechanism can be one of many challenge-response authentication

protocols. This protocol is not necessarily stronger as it can be configured to use

MD5 or MS-CHAPv2 anyway, but since it is encrypted inside the TLS tunnel it

is safe from passively being sniffed off the air [27, 14, 39].

Nevertheless this network still is not completely secure and again it is mostly

the client’s fault. To set up an evil access point with WPA-EAP authentication

the attacker would need to run a RADIUS server alongside the access point and

have a certificate ready to be sent to the client [27, 39]. Some Wi-Fi clients, as

is the case of many Android smartphones, do not perform certificate validation

33

Chapter 2. State of the Art

at all, this allows an attacker to send any certificate. So although certificates are

being used, the server’s authenticity is never verified. In the case of having an

iPhone as the Wi-Fi client, it does verify the certificate, if it is not trusted it the

phone prompts the user giving him the possibility to still accept it. In this scenario

the attacker could perform a social engineering attack by making the fields in the

certificate look legitimate and thereby enticing the user to accept it.

After accepting the certificate the client will have successfully associated with

the access point, exposing himself to layer 3 and man-in-the-middle attacks, while

at the same time having given out its hashed credentials which can be cracked and

used to log in to the real corporate network.

Yet again it is the client’s behavior outside the network that introduces a strong

attack vector that could compromise a corporation’s network [39].

WPA-EAP with client and server-side certificates

WPA-EAP with server and client-side certificates is the most secure Wi-Fi setup

possible. Both EAP-PEAP and EAP-TTLS support this feature and both are

based on the EAP-TLS protocol. The EAP-TLS protocol also uses certificates on

both sides, but it never establishes a TLS session, the client and server simply verify

and validate each other’s certificates before exchanging data encrypted through

WPA [27].

In case of EAP-PEAP and EAP-TTLS, if EAP-TLS is used as inner authen-

tication protocol, the only difference is that the client certificate is sent over the

TLS tunnel that was established after validation of the server’s certificate.

In both scenarios there is no critical information to be obtained by passively

sniffing the air. Moreover, the encryption scheme is still WPA so it is still immune

to replay and statistical analysis attacks.

All there is left to analyze is the Evil-Twin problem. The only thing that

would make the client vulnerable to Evil-Twin attacks would be if it does not

34

Chapter 2. State of the Art

honor certificate validation and would connect to the attacker’s malicious access

point. Even if the attacker is able to trick a user into connecting with him, the

client would only have sent the public part of its certificate which the attacker

cannot use to log in to the corporate network. Nevertheless the client would still

be vulnerable to layer 3 and man-in-the-middle attacks, which could eventually

lead to malware infection followed by information theft, such as certificates.

In conclusion, if the client honors certificate validation then these authentica-

tion protocols completely mitigate the Evil-Twin attack. Otherwise, in case they

don’t honor certificate validation, then they at least do not reveal any critical in-

formation which the attacker could use to log in to the corporate network. This

means that for these authentication protocols the ad-hoc client behavior does not

compromise the security of the network.

2.3 Vulnerabilities and possible Exploitation Sum-

mary

This subsection will present a concise summary of all the previously mentioned

vulnerabilities and what Wi-Fi protection protocols are vulnerable to each.

This first table (2.11) contains the the generalized vulnerability name and its

corresponding description.

This set of vulnerabilities is now mapped to the security protocols described

before (2.12).

Looking at the table above there are a few things that need clarification. For

instance the de-authentication attack to which every network type is vulnerable,

this happens because de-authentication packets are part of the IEEE 802.11 defined

management frames. These frames are either sent by the access points or clients

and are unencrypted, this allows an attacker to easily spoof these packets and send

them. There is no way of verifying if the packet was sent by its legitimate source.

35

Chapter 2. State of the Art

Figure 2.11: Description of identified Wi-Fi vulnerabilities

Obtaining the authentication key with an Evil-Twin attack is marked as "some-

times" for WPA-EAP networks that use server-side certificates. This is only pos-

sible if the inner authentication protocol is a plain-text password authentication.

WEP is the only protocol whose packets can be decrypted after recovering

the key. This is because WEP uses static keys [35, 20], WPA on the other hand

encrypts its packets with the PTK which is new for every connection.

The "Client authentication with wrong key" shows a vulnerability on the client

side. If authentication is done via an EAP protocol the attacker can always reply

36

Chapter 2. State of the Art

Figure 2.12: Mapping of the identified Wi-Fi vulnerabilities to their network
security type

with an EAP-Success message no matter what the credentials are, allowing a

client to establish a compromised Internet connection. This does not hold true for

WPA-PSK since the attacker has to prove to the client that he knows the PSK.

The "Client automatic association with Evil Twin" vulnerability varies a lot

between authentication methods. For a WEP network the client can successfully

authenticate with the AP and become victim of the Caffe-Latte attack [2], but he

cannot connect to the Internet since the Evil Twin does not know the WEP key to

decrypt packets. In case of WPA-PSK this vulnerability is marked as "sometimes".

37

Chapter 2. State of the Art

The clients will automatically connect to an Evil-Twin as long as the PSK matches,

in a scenario where the client is visiting a restaurant or a shop where the network’s

PSK is public then this vulnerability becomes exploitable. WPA-EAP networks

that don’t use certificates are specially vulnerable to this since the client has no way

of verifying the legitimacy of the AP with certificate and the attacker can always

reply with EAP-Success messages. In the case of WPA-EAP authentication with

certificates this problem could be completely avoided, unfortunately some clients

that support WPA-EAP authentication do not verify the certificate and therefore

are able to automatically associate with the evil-twin access point.

2.4 Wi-Fi Penetration Testing

In this section, the different phases of a Wi-Fi penetration test will be presented

and elaborated as well as the tools that are involved in each phase - for this work,

only free or open-source tools were considered. The phases will be mapped to the

stages of the Penetration Testing Execution Standard (PTES) [26].

Reconnaissance

This phase corresponds to the intelligence gathering, threat modelling and vul-

nerability analysis stages in the PTES. The reconnaissance phase is where the

auditor/pentester first identifies the location and settings of the network’s access

points and clients [15, 24, 32]. The most popular free tools are "airodump-ng"

[4, 17, 24] and "wireshark" for Linux and "Cain & Abel" for Windows. The

"airodump-ng" tool is part of a set of Wi-Fi hacking tools called "aircrack-ng".

The tool is able to sniff the air for nearby access points and clients by looking

for 802.11 management frames. For example, if it finds a "Beacon" or "Probe

Response" frame it knows a certain access point is nearby - analyzing the frame it

is possible to determine its SSID, BSSID and signal strength as well as its security

settings. For client detection, it looks for "Probe Request" and "Association Re-

quest" frames that were sent by client devices [4]. The tool can log these frames

38

Chapter 2. State of the Art

in a packet capture format (".pcap") format for later analysis and is able to detect

if a WPA handshake was captured [4].

Attack

The next phase is the attacking phase. This phase corresponds to the exploitation

and post- exploitation stage in the PTES. Taking into account that there are a

wide variety of exploitable Wi-Fi vulnerabilities there also are the matching tools

to exploit them. If the attack is focused on cracking either WEP or WPA(2)-PSK

keys the most popular tools are probably the ones included in the "aircrack-ng"

suite. Alongside "airodump-ng", which only covers the sniffing part of the attack,

there is "aireplay-ng" and "aircrack-ng" [27]. The "aireplay-ng" command line

tool is a general packet injector for specific Wi- Fi attacks. It can perform de-

authentication attacks to force a re-authentication from a client and capture the

WPA handshake, it can also perform ARP replay attacks when attacking WEP

networks. The "aircrack-ng" tool can then attempt to crack a Wi-Fi key by

analyzing a packet capture file [4].

For attacking WPS-enabled routers other tools need to be used. There are two

main tools that can achieve this using different techniques. The first is "Reaver"

and it attempts to brute-force the WPS pin by directly communicating with the

access point [27, 38]. This attack method has become less efficient lately since

the access points tend to lock WPS after only a few attempts. The other tool is

"pixieWPS". This tool uses an offline brute-forcing technique to discover the WPS

pin. Given enough information it tries to brute-force it strategically by knowing

default WPS pins of some popular routers and exploiting vulnerabilities in weak

PRNGs that routers might use when generating these pins [7].

All other vulnerabilities are naturally on the client side of Wi-Fi and are usually

exploited through some form of Evil-Twin attack [15, 32]. In order to create a fake

access point, the attacker usually needs a set of tools: to create an access point

and to run the needed services such as DHCP and DNS [5]. In this paper the focus

39

Chapter 2. State of the Art

will be on the tools that are able to create a soft access point on a Wi-Fi card.

The most popular tool is probably "airbase-ng" [27], another tool that is part of

the "aircrack-ng" tool suite. The tool, although easy to use, has its limitations.

It is a command line tool which receives its configuration through command line

arguments. It supports several security settings such as OPEN, WEP, WPA2-

PSK but not WPA- Enterprise, for access point creation. Another tool capable of

running an access point on a Wi-Fi card is "hostapd". It is a user space daemon

for access point and authentication servers developed for Linux. It runs based on a

configuration file and it is very versatile. It supports every type of security setting

including WPA-Enterprise with connection to a RADIUS authentication server. A

patch was developed for it called "hostapd-wpe" [27], and is especially designed for

Evil-Twin attacks on WPA-Enterprise protected networks by accepting all users

that try to connect to it and printing out their credentials (either in hash format

or plain text). Once a client connects to an Evil-Twin an attacker can perform

all sorts of Man-In-The-Middle and other networking layer attacks. For this the

attacker can use a whole other set of tools, but since these are not Wi-Fi related

they were not analyzed.

Reporting

This is the last phase of any penetration test and corresponds to the last stage

of the PTES. This part is usually done by manually filling out a penetration test

report. The tools mentioned before do not log all their findings and therefore the

penetration tester needs to keep notes of what was discovered in order to later be

able to fill out the report. For this part of the audit it would be useful if these tools

logged important events during the penetration testing for easier event recollection

in the future. Considering there are a lot of different tools and some even need

to work cooperatively with others for some attacks, this feature is hard to achieve

with the current set of technologies.

40

Chapter 2. State of the Art

2.5 Tools of the Wi-Fi Hacking Trade

This subsection will focus on the other side of the state-of-the-art technology, the

actual tools to perform intrusion tests on Wi-Fi networks. There are many tools

that have been developed for the purpose of assisting pentesters in their intrusion

tests. Their capabilities and scope will be analyzed in this section.

Aircrack-ng Suite

The "aircrack-ng" suite is not just one tool, but a combination of tools developed

to be used cooperatively. These tools include "aircrack-ng" whose whole purpose is

cracking WEP or WPA keys after capturing the necessary packets. Another tool is

"airmon-ng", a script that will put a wireless interface in monitor mode. However

it will do that at the price of killing the "NetworkManager" process which can be

limiting in some situations since it disables connection to the Internet. Yet another

tool is "airodump-ng", this script will listen for and parse IEEE 802.11 packets

and present relevant information to the user. Additionally the "aireplay-ng" script

allows for a variety of replay and injection attacks. Finally there is "airbase-ng",

a script that creates a Wi-Fi access point on a wireless interface. Its configuration

is limited and cannot create an access point with EAP authentication.

All tools that are part of the "aircrack-ng" suite are command line tools,

thereby enabling heavy scripting. These tools also represent the basics of Wi-Fi

communication, packet sniffing, packet injection and access point creation, how-

ever their scriptability is limited by the features that these tools provide which

do not cover all aspects of Wi-Fi communications. These tools are open-source

so one could think about contributing with features it is missing. On the other

hand these tools are all written in "C" programming language and each tool is a

script with thousands of lines of code which make contribution a lot more difficult

since it is harder to read and poorly organized. In contrast, a project that makes

use of object oriented programming and is written in "python" will naturally have

increased readability, simplicity, organization and maintainability. In summary,

41

Chapter 2. State of the Art

the set of tools covers a wide range of attacks and capabilities needed for Wi-Fi

hacking. The tools are to be used via the terminal and therefore allow scripting.

On the other hand, contributing to these tools is not easy. Furthermore, as indi-

vidual tools they need to be run in different terminals which in a more complex

and demanding scenario may be confusing and inefficient.

Reaver and Pixiewps

Reaver is a tool written in the C programming language that performs an online

brute-force attack on WPS enabled access points. The tool by itself is very stable,

allows for various configurations that are relevant to the attack and is capable of

saving the current session in order to continue the attack at a later time. Pix-

iewps is another tool that attempts to crack WPS pin. This one however uses the

second cracking technique mentioned in section 2.3.4 when talking about guessing

the WPS pin. So what Pixiewps does is attempting to crack the WPS pin locally

and offline with information that the attacker has previously obtained. It is worth

mentioning that there are not many tools available that serve the purpose of crack-

ing the WPS pin which makes the existence of both these tools very significant.

Both tools were developed for a single task and therefore tend to perform well

doing it.

Wi-Fi Pumpkin

The Wi-Fi Pumpkin project is heavily focused on providing a good Evil-Twin

attack platform. The tool can create a Wi-Fi access point on a wireless interface

and route traffic through it. In addition to that the tool also focuses on the

integration of MITM tools. The integration of MITM capabilities is done in two

major ways. The first being that the tool has a few external projects directly

integrated into the tool. The other way is enables the user to program custom

MITM attacks. The developed scripts can be added either to the "mitmproxy",

which is a pure web proxy, or to the TCP proxy for generic TCP traffic interception

42

Chapter 2. State of the Art

and modification. Unfortunately the generic TCP proxy does not support SSL

interception

The upsides of this tool is the possibility to easily create an access point and

having great MITM resources directly integrated into the tool. Furthermore the

possibility to program custom attacks and seamlessly adding them to tool is also

a very important feature that enables extensibility in terms of MITM attack inte-

gration.

The downsides however are that the tool only has a GUI as its interface, this

prevents users from scripting certain features of the tool which results in a lack

of possible automation. In addition, although the tool integrated other external

projects that can serve a MITM purpose it does not facilitate integration with

new tools that might be developed in the future and therefore lacks extensibility

in terms of integration with new MITM tools. Another downside is that the tool

does not offer the possibility of creating WPA-EAP networks which would be

considered important when performing a pentest on a corporate Wi-Fi network.

2.6 Conclusions

After the state-of-the-art analysis it is clear that both sides, attacking and defense,

of Wi-Fi security have space for improvement.

It is possible to see in 2.12 that the WPA/WPA2 protocol patched practically

all encryption issues that affected WEP. However it is also possible to see that

encryption is not everything. Wi-Fi users can still be easily tricked into connect-

ing to a malicious WPA-PSK access point if it has a public password (such as

in shops and restaurants). The Evil-Twin problem is even greater if we consider

WPA-EAP networks. Since WPA-EAP is supposed to give access to different

users individually, it has a greater attack surface because only one user needs to

be compromised to have access to the network. Furthermore, the hash resulting

43

Chapter 2. State of the Art

from EAP-MD5 authentication is even faster to brute-force than a WPA hand-

shake. This makes the network’s users the most vulnerable point of the network

itself because the Evil-Twin attack has not been efficiently mitigated by the new

encryption protocols.

On the attacking side the issues are more related to the complexity of execut-

ing a Wi-Fi penetration test. As was possible to see in sections 2.4 and 2.5 (Wi-Fi

Penetration Testing and Tools of the Wi-Fi Hacking Trade) there are a lot of tools

that can aid the pentester in an intrusion test. The main problem is that, indi-

vidually, they only contribute to very specific tasks regarding Wi-Fi penetration

testing. For example, the "airodump-ng" script continuously lists nearby access

points and Wi-Fi clients, to then use its information on other tools one has to copy

and paste necessary information (such as bssid, ssid, operating channel) into other

tools. Furthermore most of these tools have complex configurations and require

a multitude of flags, this will be seen in section 3 (Testing and Validation) when

comparing other tools side by side with the ETF. What is fundamentally lacking

is interoperability between tools in order to reuse code efficiently, this results in a

the development of a variety of tools that need to re-implement basic aspects of

Wi-Fi security testing (such as packet sniffing, packet forging and packet injection)

to then just exploit a single vulnerability in Wi-Fi communications.

The next chapter will present the developed solution to cope with the current

limitations of Wi-Fi penetration testing.

44

Chapter 3

Proposed Solution and

Implementation

This section will describe the proposed solution to the problem of inefficient Wi-

Fi intrusion testing as well as its development process. As referred beforehand,

the solution is a Wi-Fi pentesting framework on top of which any Wi-Fi based

attack can be implemented. The challenge is finding the right set of technologies

that allow the implementation of the needed features as well as coming up with a

software architecture that enables easy extensibility.

The section following the "Architecture and Design" will dive deeper into the

framework, how their modules are implemented and how information is passed

between components. It will also explain what parts are meant to be extended

and how that can be accomplished.

3.1 Review of needed features

The needed features concern two main aspects, education and pentesting efficiency.

To address the educational side, the framework must be open-source so one can

learn the various aspects of Wi-Fi communication in detail. Furthermore, in order

45

Chapter 3. Solution Proposal and Implementation

to be used as a teaching tool it should be easy to install, use and should output clear

human-readable information. It should also offer an intuitive graphical interface

for the same purpose.

The second aspect focuses on increasing the efficiency of a Wi-Fi pentest by

eliminating the need for complex configurations and multiple tools at the same

time. With that in mind, the framework must support the implementation of

already known Wi-Fi attacks and vulnerability detection. Moreover, its architec-

ture should allow easy extensibility of features related to Wi-Fi, thereby enabling

the implementation of any form of Wi-Fi attack without external tools. There

are many pentesting tools, especially MITM attacking tools, that can take ad-

vantage of the MITM position enabled by the rogue access point but cannot be

natively integrated into the tool. Taking this into consideration there should be a

way to call these tools from within the framework, thereby providing support for

communication with external tools.

These external tools however must not be directly related to Wi-Fi communi-

cations as these features should be implemented natively inside the tool.

An important part of attacking the client are MITM attacks, since this is

achieved with the Evil-Twin attack the tool should also include built-in MITM

capabilities.

The tool, being open-source, will educate developers, security enthusiasts and

pentesters about Wi-Fi security issues and how to exploit them by having concrete

implementations of a wide variety of attacks.

The information in the "State of the Art" and "Solution Proposal and Imple-

mentation" chapters also focus on giving deep technical information about how

exploits work and how the tool implements certain attacks. This is done in order

to educate security enthusiasts about previously found vulnerabilities and how to

exploit them. This also holds true for developers that do not have much technical

knowledge about digital security.

46

Chapter 3. Solution Proposal and Implementation

In order to raise awareness about client side Wi-Fi security this tool can be used

in an educational environment, such as schools and colleges, or in a presentation.

To satisfy this requirement the tool must:

- Be easy to setup/install.

- Be easy to use.

- Output clear and human-readable information.

- Fast user interaction (improving presentation timings and pentest efficiency).

- Be open-source.

The second issue that the Evil Twin Framework has to solve is the lack of

intercommunication between other Wi-Fi hacking tools and the need to develop

Wi-Fi security tools from scratch. In order to mitigate these problems the tool

will:

- Cover a wide range of features related to Wi-Fi configuration.

- Cover a wide range of Wi-Fi vulnerability detection, analysis and exploitation

(focusing on client-side vulnerabilities).

- Feature easy intercommunication between its various components.

- Its architecture should allow easy integration of other tools.

- Its architecture should allow easy contribution of new feature-expanding com-

ponents.

3.2 Choosing of Technologies and Justification

In order to effectively implement these features the right set of technologies had

to be chosen.

The first thing to choose was the platform (Operating System) where the tool

would be built on. Considering that it should be open-source and that pentesters

47

Chapter 3. Solution Proposal and Implementation

usually use Linux distributions, Linux was chosen as the platform. Furthermore,

Linux gives full control of the operating system which can be useful.

The second most important technology to be decided upon was the program-

ming language in which it should be developed. In order to be used as a learning

artifact the code should be easy to read. In order for one to easily contribute and

extend the framework the language should also be easy to write. With this in

mind the chosen language was Python version 2. Version 2 was chosen because

some of the needed libraries did not support version 3 yet.

Furthermore there is "scapy", a very versatile packet forging and dissecting

library developed in python. This library supports a wide variety of protocols

including the IEEE 802.11 frames, the library also offers sniffing and injection

methods. One could create an access point via "scapy", but that would be infea-

sible due to the complexity of states and security protocols that an access-point

could have. Therefore another technology had to be chosen for that purpose.

The most complete and stable access point creation tool found was "hostapd".

This tool is highly configurable and is able to create every type of access point.

There is a patch one can apply to "hostapd" called "hostapd-wpe" that is espe-

cially made for evil-twin attacks on networks with EAP authentication. So this

tool with the "hostapd-wpe" patch is what was chosen as the backend tool for

access point creation.

After clients connect to the access point created by hostapd they need to

establish a layer 3 connection by requesting an IP address in order to have Internet

access. To assign an IP address to the client and to resolve hostnames we need

to run a DHCP and DNS server respectively. This can be achieved by using

dnsmasq. This tool works as both, a DHCP and DNS server. It is a lightweight

Linux daemon and very easy to configure, perfect for this scenario.

Lastly in order to natively incorporate MITM capabilities mitmproxy was cho-

sen. Mitmproxy is both a tool and a library that creates an HTTP/HTTPS proxy.

48

Chapter 3. Solution Proposal and Implementation

The library offers an easy API to intercept and manipulate HTTP requests and

responses.

3.3 Architecture and Design

The framework architecture must be designed in a way that enables the fulfillment

of the requirements while at the same time allowing for flexible extensibility.

The ETF architecture is divided into modules that can interact with each

other. The framework’s settings are all configured on a single configuration file.

The user can verify and edit the settings through the user interface via the “Con-

figurationManager” class. All other modules can only read these settings and run

according to them.

The ETF will offer multiple user interfaces to interact with the framework.

For now there is only an interactive console interface similar to the “Metasploit”

framework. A graphical user interface and a command line interface are currently

under development. The user can edit the settings in the configuration file by

using either the interactive console or GUI. The user interfaces can interact with

every other module of the framework.

The Wi-Fi module was built in order to support a wide range of Wi-Fi capa-

bilities and attacks, therefore the framework identifies three basic pillars of Wi-Fi

communication. The three pillars are packet sniffing, custom packet injection and

access point creation. Therefore the three main Wi-Fi communication modules are

“AirScanner”, “AirInjector” and “AirHost” for packet sniffing, packet injection and

access point creation respectively. The three classes are wrapped inside the main

Wi-Fi module “AirCommunicator” which reads the configuration file before start-

ing the services. Any type of Wi-Fi attack can be built using one or a combination

of these core features.

49

Chapter 3. Solution Proposal and Implementation

Since an important part of attacking the Wi-Fi client is performing Man-In-

The-Middle (MITM) attacks the framework has an integrated MITM web proxy

capable of intercepting and manipulating HTTP/HTTPS traffic.

There also are a lot of other tools that can take advantage of a MITM posi-

tion or other features of the ETF but, for different reasons, cannot be natively

integrated in the framework. Instead of having to call them separately one can

add whatever program to the framework by extending the Spawner class. As the

name suggests, a Spawner will spawn a new instance of a program by calling it as

a terminal command. The arguments of the spawned program can be configured

through configuration file. The Spawner class also supports setup and teardown

features for the program (e.g. configuring port redirection rules). This way a

pentester can call the program with a preconfigured argument string and setup

commands from within the framework.

Figure 3.1: High level view of the Evil Twin Framework Architecture

However, that is a limited way of contributing to the project and is only sup-

posed to serve as a bridge between the framework and other tools. In fact another

way to contribute to the framework is by adding plugins. The framework plugins

can be divided into two categories. The first is for any contribution related to

Wi-Fi communications and the other one is related to MITM attacks.

50

Chapter 3. Solution Proposal and Implementation

MITM plugins are based on the capabilities of the “mitmproxy”. The “mitm-

proxy” project allows developers to script modules where is is possible program

what happens for every HTTP(S) request and/or response. To add a new plugin

the developer simply has to create a new class which extends the MITMPlugin

class and then add the new file to the folder containing all MITM plugin mod-

ules. The “mitmproxy” project is starting to show support for interception of

generic TCP traffic, however at the time of this writing it does not yet support

the manipulation of generic TCP traffic.

The Wi-Fi communication plugins are a little more complex but also more flexi-

ble. Since Python supports multiple inheritance in object oriented programming it

allows these plugins to be programmed for one or more of the main Wi-Fi commu-

nications modules. There is one template plugin class for each of the modules, the

“AirScannerPlugin”, the “AirInjectorPlugin” and the “AirHostPlugin”. The tem-

plate plugin classes define the events that the plugin is supposed to handle (e.g.

the “AirScannerPlugin” passes all the captured packets to its plugins for additional

processing). These events follow a sequence of pre-execution, mid-execution and

post execution events. New events may be added in the future if needed. The pre-

execution and post-execution events can be used as setup and teardown events in

order for plugins to be able to start and shutdown in a clean manner.

The whole framework is based on a single configuration file. The user can

verify and edit it through the user interface via the “ConfigurationManager” class.

The “ConfigurationManager” is a singleton style class in order to be easily acces-

sible by all parts of the framework. For now there is only an interactive console

interface similar to the “Metasploit” framework. A graphical user interface and

a command line interface are currently under development. The framework fea-

tures an interactive console interface similar to and inspired by the “Metasploit”

framework. The framework will also include a GUI with the same capabilities as

the console interface and a command line interface which will enable using certain

functionalities of the ETF, such as launching an access point, in scripts.

51

Chapter 3. Solution Proposal and Implementation

The following diagram represents the architecture of the framework. The lines

pointing away from the “ConfigurationManager” mean that the module where it

is pointing at can read configurations from it. Lines pointing towards the “Con-

figurationManager” mean that the module can write/edit configurations.

3.4 Technical and Detailed Description of the Evil-

Twin Framework

This section is meant to guide the reader through the development of the Evil-Twin

Framework.

It will analyze each of the modules displayed in 3.1 individually and explain

their inner workings in a technical and detailed manner.

3.4.1 The "ConfigurationManager" Module

The "ConfigurationManager" is one of the most important components of the

Evil-Twin Framework. As can be seen in figure 3.1, it is the central component

where all other modules get their information from.

The "ConfigurationManager" is a class that will hold every configuration of

the ETF as can be seen in figure 3.2.

As can be seen in the code excerpt from 3.2 the class receives the path of

a configuration file as input and creates a "ConfigObj". The "ConfigObj" is an

object that parses a configuration file into nested dictionary objects. As can be

seen in figure 3.3, the configuration file has a very simple and easy to read structure.

It is also possible to see that different modules may receive arguments whose

name is identical, this means that the modules are interdependent and configura-

tions must be consistent. This is assured by setting variables with the "set_global_config"

52

Chapter 3. Solution Proposal and Implementation

Figure 3.2: Implementation of the "ConfigurationManager"

method. This method, as can be seen in 3.2 recursively searches the "ConfigObj"

for a specific key and changes its corresponding value every time it finds it.

The subsections are passed down to their correspondent modules. For example

the "AirCommunicator" configuration section is passed to the "AirCommunicator"

module which then passes the subsections of the "AirHost", "AirScanner" and

"AirInjector" to their correspondent object instances.

53

Chapter 3. Solution Proposal and Implementation

Figure 3.3: An excerpt of the "etf.conf" configuration file.

54

Chapter 3. Solution Proposal and Implementation

3.4.2 The "SessionManager" Module

The "SessionManager" is responsible for saving information about the current ses-

sion and generating the session report. A "Session" object holds information about

the session’s creation date, the command history and the "event" history. The

"event" history is produced continuously as other modules use the "SessionMan-

ager" during their execution to report important events. This is what produces

the session report.

The "SessionManager" class implements the "Singleton" programming design

pattern. This was chosen as it needs to easily be accessible by all modules for

them to log important events. The class constructor is depicted in figure 3.4.

Figure 3.4: The constructor fo the "SessionManager" module.

As can be seen in figure 3.4, the "_session" attribute in the "__SessionMan-

ager" constructor holds the "Session" object, this class is responsible for holding

the session data, writing it and reading it to log files. The "Session" object uses

55

Chapter 3. Solution Proposal and Implementation

the "jsonpickle" library to be able to write and read non-serializable "Python"

objects to a log file. Other than the command and event history the "Session"

object is also responsible for saving information generated by other modules such

as the already detected access points and Wi-Fi clients. Ultimately the "Session-

Manager" will restore the saved session information so the user can continue where

he left off before shutting down the program.

3.4.3 The User Interface

The Evil-Twin Framework will provide three forms of interacting with the frame-

work. It has an interactive console interface (ETFConsole) and will have a com-

mand line interface (ETFCMD) and a graphical interface (ETFGUI).

The ETFCMD and ETFGUI have not yet been implemented. What follows is

a brief description of what their purpose will be. Afterwards the ETFconsole will

be described with more technical detail since it is already implemented.

The "ETFCMD"

The ETFCMD will be a command line tool that will be able to use the underlying

API of the framework. It is meant to provide a scriptable interface so others can

use certain features of the Evil-Twin Framework in a "Bash" script.

While the other interfaces will work according to a configuration file, this one

will have its arguments passed via flags on the command line. It will still be pos-

sible to use configuration files as there will be an option to pass a configuration

file as an argument. The configuration file will then be parsed by the "Configura-

tionManager" and the ETF will be configured accordingly.

The text will be in an easy to parse format for commands whose output has

information that can be passed to other tools/commands (such as SSID, BSSID

and operating channel). This is meant to increase the usability and the possibility

of integration with features of other tools.

56

Chapter 3. Solution Proposal and Implementation

The "ETFGUI"

The ETFGUI will present itself as a very intuitive user interface for the Evil-Twin

Framework.

It will provide access to every configuration of the ETF by directly commu-

nicating with the "ConfigurationManager". It will be possible to easily find and

modify any configuration with only a few clicks. The same thing goes for starting

and stopping services. Since the "AirCommunicator" modules can use plugins,

these can be selected with check-boxes.

The graphical interface will be leveraged to provide a very rich visual experience

to the user. The pentesters perspective will be especially taken into consideration

by providing the most relevant information, not only in text form but also through

diagrams, graphs and other visual aids.

This interface will be the best choice in an educational setting or in a presen-

tation as it will most likely be the easiest to follow along.

The "ETFConsole"

The ETFConsole is the only developed interface for now. It was first meant to

be the only user interface to communicate with the ETF, but throughout the

development it was clear that the architecture of the framework would allow for

the development of different user interfaces independently.

The interactive console was inspired by the Linux terminal running "Bash"

and therefore has similar features. One feature of the "Bash" terminal that makes

increases productivity is the auto-completion by pressing the "Tab" key. This

works very similarly in the "ETFConsole", it will even print out suggestions when

auto-completion is not possible because of ambiguity between command characters

or empty arguments 3.5.

57

Chapter 3. Solution Proposal and Implementation

Figure 3.5: Demonstration of the Auto-Complete feature.

The interactive console makes it possible to navigate through the configuration

file seen in 3.3 by communicating directly with the "ConfigurationManager". The

user can switch context by using the "config" command and list the arguments

inside that context with the "listargs" command. It is then possible to change the

argument’s value with the "setconf" command. An example of the usage of these

commands is shown in a screenshot in figure 3.6.

Figure 3.6: Demonstration of how to use the ETFConsole.

As it is possible to see in figure 3.6 the prompt prefix indicates the current

context so as to understand what module the configurations are related to.

Once the user has configured the module to be used he can start the services

with the "start" command. The user can also specify plugins to use along with

the module with the "with" keyword 3.7. The user can then stop the service with

the "stop" command. It does this by using the API provided by the "AirCommu-

nicator" module, this will be explained in more detail in the next subsection.

Figure 3.7: Demonstration of starting and stopping a service.

58

Chapter 3. Solution Proposal and Implementation

Some services and/or plugins generate data that is either saved in memory or to

disk. Modules such as the "AirScanner" gather temporary information that is only

saved for the session, this information is saved in memory. The "CredentialSniffer"

Plugin, a plugin that mainly captures WPA-PSK handshakes and unencrypted

WPA-EAP authentications, saves this information in a file in the "data" folder

inside the framework. It is possible to list all this information with the "display"

command as seen in figure 3.8.

Figure 3.8: Demonstration of the display command.

It can happen that too many access points are nearby which might make the

output of "display sniffed_aps" overwhelming and disorganized. Therefore one

can easily filter the output with the "where" and "only" keywords. The "where"

keyword represents an inclusive filter, basically a logical "OR" between filter ar-

guments 3.9. The "only" keyword represent an exclusive filter, basically a logical

"AND" between filter arguments. The filtering operation simply checks if the filter

value is a substring of argument value of the listed objects, this can be seen in

figure 3.10.

There are some commands that are applied to this gathered information. For

example, the "copy" command followed by the object type, either "ap" or "probe",

followed by the "ID" of the object listed in the output of a "display" call as in 3.8

will copy that object’s configuration to the "aplauncher" configuration which is

part of the "AirHost" module 3.11. Another example of these commands is "add"

and "del". These two commands can add and delete access points and Wi-Fi

clients to and from the target list. The target list is used by the "AirInjector"

59

Chapter 3. Solution Proposal and Implementation

Figure 3.9: Demonstration of applying filters to the display command.

Figure 3.10: Demonstration of applying filters to the display command.

module to determine who to send packets to. Both commands support the use of

the "where" and "only" keywords to filter through the objects to add or delete as

targets.

Figure 3.11: Demonstration of using the copy command.

Yet another example of such a command is "crack". This command followed by

60

Chapter 3. Solution Proposal and Implementation

the type of credential to crack, will launch a cracking program (such as "aircrack-

ng" or "halfWPAid") to crack that credential 3.12. This command calls function-

ality of the "AirCracker" module.

Figure 3.12: Demonstration of using the crack command.

The "Spawners" can be called with the "spawn" command 3.13. It does so by

communicating with the "SpawnManager". This command will launch a program

in a separate terminal according to the configuration in the "etf.conf" file, that

is where possible command line arguments are specified. The "Spawner" classes

provide additional "setup and "tear down" methods to be used

Figure 3.13: Demonstration of using the spawn command.

Then there is the possibility to interact with the "SessionManager". This is a

very recent feature that enables saving and loading of sessions. When a session is

saved, using the "save_session" command, the framework saves the session data

(such as the command history and the temporary information generated by the

different modules) in a specific folder. These sessions can be loaded when restarting

the ETF with the "load_session" command followed by the "ID" of the session

displayed in the output of the "display sessions" command 3.14.

It is also possible to issue shell commands by prefixing them with the "!"

character. This is a feature of the library that the "ETFConsole" uses to provide

an interactive console interface 3.15.

61

Chapter 3. Solution Proposal and Implementation

Figure 3.14: Demonstration of how to load a session in the ETFConsole.

Figure 3.15: Demonstration of how to run a shell command in the ETFCon-
sole.

These are the features of the "ETFConsole", they present a way of commu-

nicating with the underlying API of the Evil-Twin Framework. The rest of the

architecture will be explained in the next sections by showing some of the actual

code behind the functionality.

3.4.4 The "AirCommunicator" Module

The "Aircommunicator" is basically a wrapper class around the "AirHost", "AirScan-

ner" and "AirInjector". This class provides the necessary API to perform tasks

related to Wi-Fi. The API provides methods to start services (with or without

plugins) and stop them. These services are run by the individual modules, the

"AirScanner" for example provides the general packet sniffing service.

The API provides another level of abstraction between on top of the modules it

holds. For instance, most programs that are able to launch an access point on a Wi-

Fi interface struggle with the "NetworkManager" process. The "NetworkManager"

is a Linux daemon that handles the connections of all network interfaces, it usually

is a conflicting process as it will try to set the interface’s mode of operation to

"managed" when it actually needs to be in either "Master" or "Monitor" mode.

What other programs suggest is switching the "NetowrkManager" off completely,

this comes with many drawbacks as the user will be unable to connect any interface

62

Chapter 3. Solution Proposal and Implementation

Figure 3.16: The "start_sniffer" method of the "AirCommunicator"

to the Internet. The ETF solves this issue by configuring the "NetowrkManager"

to ignore the specific interface that is going to be used to launch an access point

3.16, when the user exits the ETF all configurations are set back to what they were

before. This then allows the user to launch an access point on one interface and

redirect the traffic to another Wi-Fi interface that is connected to a legitimate

access point. The same thing happens when starting the "AirScanner" service

as the interface that is sniffing packets needs to be set to "Monitor" mode. An

example of this can be seen in figure 3.16 depicting the "start_sniffer" method of

the "AirCommunicator" module.

The figure in 3.16 also shows that the "AirCommunicator" is responsible for

validating certain configuration options of the service as well as adding the specified

plugins to the module.

It also holds the "AirCracker" module, it is not considered aWi-Fi module since

it does not provide functionality that is related to sniffing or injecting packets but

63

Chapter 3. Solution Proposal and Implementation

rather works with packets that are already saved on disk (such as captured WPA

handshakes).

The following subsections explain every module in more detail.

The "AirHost" Module

The "AirHost" module is responsible for configuring and launching the access point

as well as launching the DHCP and DNS servers. The DHCP server is necessary

so IP addresses are attributed to the connected clients once they ask for one. The

DNS server is necessary so name resolution works for clients trying to access the

Internet. These responsibilities, configuring and launching an access point and

launching the DNS and DHCP servers, are divided in two other modules. These

modules are the "APLauncher" and the "DNSMasqHandler".

The "APLauncher" holds the functions necessary for configuring the "hostapd.conf"

file used by "hostapd" to launch an access point. It also holds functionality for

starting and stopping the execution of the "hostapd" background process. Fur-

thermore, it takes care of any functionality related to launching and managing

the access point, these include identifying new connected clients and parsing the

output of the "hostapd" process for WPA-EAP credentials. As mentioned in the

"Choosing of Technologies and Justification", the ETF uses a patched version of

"hostapd" called "hostapd-wpe", this patch allows to configure a WPA-Enterprise

network with an "Accept All" policy, this way the access point will always respond

with an "EAP Success" message for every authentication request. It is also be-

cause of the patch that the process prints the credentials of clients that connect

to it. The "start_access_point" method is shown in figure 3.18.

As can be seen in figure 3.18 the method uses the "subprocess.Popen" module

to launch and manage "hostapd-wpe" process. Later two threads are started, one

looks for credentials in the output from "hostapd-wpe", the other one looks for

new connected clients while at the same time checking if the access point is still

running correctly by verifying that the interface is still in "Master" mode.

64

Chapter 3. Solution Proposal and Implementation

Figure 3.17: UML Class diagram of the AirHost module.

The "DNSMasqHandler" holds the methods responsible for configuring the

"dsnmasq.conf" file to be used by the "dnsmasq" service as well as functionality on

starting and stopping the service. The "dnsmasq" service is capable of launching

both, the DNS and DHCP, servers.

The "AirHost" module also uses plugins if they were specified when starting

the service. The plugins have abstract methods that need to be implemented,

these are called at specific moments when starting and stopping the services. An

"AirHostPlugin" for example should implement the "pre_start", "post_start"

and "stop" methods. The "pre_start" method is called right before launching

65

Chapter 3. Solution Proposal and Implementation

Figure 3.18: The "start_access_point" method of the "APLauncher".

the access point and the "post_start" is called right after launching it, this can

be seen in the "start_access_point" method shown in figure 3.19. The "stop"

method is only called after shutting down the access point.

In summary the "AirHost" module is responsible for the configuration, launch

and monitoring of the access point. Additionally it is also responsible for setting up

the infrastructure that allows the Wi-Fi client to stay connected, such as dynamic

IP address distribution with the DHCP server and name resolution with the DNS

server.

The "AirScanner" Module

The "AirScanner" module is responsible for everything related to sniffing and

parsing IEEE 802.11 frames off the air.

To be able to use this module the user needs to have a Wi-Fi card capable of

running in "Monitor" mode. A Wi-Fi card running in "Managed" or "Master"

mode will only pass the packets that where directed to it (meaning that the desti-

nation MAC address matches the one of the card) to the operating system. When

the Wi-Fi card is operating in "Monitor" mode it will accept all packets it sees.

66

Chapter 3. Solution Proposal and Implementation

Figure 3.19: The "start_access_point" method of the AirHost module.

This is what allows the ETF to identify access points and specially Wi-Fi clients

as their packets would normally be directed at the access points.

The "AirScanner" module makes heavy use of the "Scapy" library to sniff and

parse packets. It also uses the "pyric.pyw" module in order to query and set differ-

ent parameters of the Wi-Fi interface (such as checking and setting the operating

channel or the mode of operation). It also leverages the power of threading in or-

der to continuously read and parse packets and also to switch channels. As shown

in figure 3.20, the "start_sniffer" method tries to set the Wi-Fi card into monitor

mode, if successful it launches a thread responsible for sniffing packets off the air

and another one to switch channels according to the configuration.

As can be seen in figure 3.21 the method "handle_packets" receives the read

67

Chapter 3. Solution Proposal and Implementation

Figure 3.20: The "start_sniffer" method of the AirScanner module.

packets as input argument. It then starts by passing the packet to the "han-

dle_packet" method of every loaded "AirScannerPlugin" instance. Then it checks

its own configuration to determine if it should parse the current packet. The "han-

dle_beacon_packets", "handle_probe_req_packets", "handle_probe_resp_packets"

and "handle_asso_resp_packets" methods are specific packet parsers for differ-

ent types of the IEEE 802.11 management frames. These are the methods that

populate the "sniffed_aps", "sniffed_probes" and the "sniffed_clients" lists/dic-

tionaries that can be queried with the "display" command in "ETFConsole".

Furthermore as can be seen in figure 3.22, the "hop_channels" method con-

tinuously checks the configuration to see it how it should behave. It can be con-

tinuously iterating over the list of supported channels in order to identify access

points operating on different frequencies. This is similar to what a Wi-Fi client

would do when doing a passive discovery of access points. It can also fix the card

to operate on a specific channel, this is needed when looking for WPA handshakes

or other information that is exchanged between a client and a single access point.

Changing these configurations can be done while the "AirScanner" is running and

changes take effect immediately.

The UML diagram in 3.23 summarizes the class’s attributes and methods.

68

Chapter 3. Solution Proposal and Implementation

Figure 3.21: The "handle_packets" method of the AirScanner module.

Figure 3.22: The "hop_channels" method of the AirScanner module.

69

Chapter 3. Solution Proposal and Implementation

Figure 3.23: UML Class diagram of the AirScanner module.

70

Chapter 3. Solution Proposal and Implementation

The "AirInjector" Module

The "AirInjector" is responsible for anything that requires forging and injection

of packets in the air. It is possible to use this module concurrently with the

"AirScanner". For example, one can use the "AirScanner" with a plugin that

looks for WPA handshakes and while it is running the user can perform a de-

authentication attack with the "AirInjector" to trigger a reconnection from other

users which, in turn, will be detected by the "AirScannerPlugin" looking for WPA

handshakes.

The "AirInjector" is a very dynamic module in which the plugins do all the

work. If no plugin is specified the "AirInjector" uses the "Deauthenticator" (a

plugin that performs de-authentication attacks) by default.

Figure 3.24: The "interpret_targets" method of the "Deauthenticator" plugin.

71

Chapter 3. Solution Proposal and Implementation

To better understand how the "AirInjector" works it is important to examine

the method included in the "AirInjectorPlugin" called "interpret_targets". This

method needs to be implemented by any concrete implementation of an "AirIn-

jectorPlugin", the method receives a set of access points and Wi-Fi client objects

that were chosen by the user using the "add" command in the "ETFConsole".

Then each individual plugin forges packets according to what they were designed

for and creates a list of packets to be sent. For example, the "Deauthenticator"

will craft general de-authentication packets for every access point in the target list

and also directed de-authentication packets for every Wi-Fi client in the target

list. This can be seen in 3.24.

Figure 3.25: The "injection_attack" method of the AirInjector module.

As can be seen in 3.25 the plugins also receive a socket to be used for the

injection, for this a "Layer 2" socket from the "Scapy" library is used. Otherwise,

if the generic "send " method of the "Scapy" library were to be used a socket

would have to be opened and closed for every sent packet, this is very inefficient

72

Chapter 3. Solution Proposal and Implementation

and slows injection speed down. The method shown in figure 3.25 also shows

that a thread pool is launched for every step of the injection attack. This is

because the "AirInjector" can be used with multiple plugins at the same time.

The "injection_thread_pool_start" method is depicted in figure 3.26.

Figure 3.26: The "injection_thread_pool_start" method of the AirInjector
module.

As can be seen in figure 3.26 each method of the "AirInjectorPlugins" is run

simultaneously for every phase but every plugin needs to finish their methods

before advancing to the next stage, this is assured with the "plugin.join()" call at

the end of the "injection_thread_pool_start" method.

The UML diagram of the "AirInjector" class can be seen in figure 3.27.

73

Chapter 3. Solution Proposal and Implementation

Figure 3.27: UML Class diagram of the AirInjector module.

74

Chapter 3. Solution Proposal and Implementation

The "AirCracker" Module

The "AirCracker" module is very simple. All it does is list the data that can

be passed to Wi-Fi cracking programs. This data is generally generated by the

"AirScannerPlugins" or "AirHostPlugins". This data can be a log of WEP packets

that resulted from an "ARP replay" or "Caffe-Latte" attack or WPA handshakes

(full or half handshakes) that resulted from de-authentication or evil-twin attacks.

Then, as already explained in the "ETFConsole" section, the AirCracker is

able to launch a cracking program that will try to recover a key for the data it is

trying to crack.

3.4.5 The "SpawnManager" Module

The "SpawnManager" is responsible for, as the name suggests, launching "Spawn-

ers" which are separate programs that could not be directly implemented on the

framework but can take advantage of the ETF platform.

In the actual "Spawner" classes a "setup" and "tear down" method allows

running additional configuration commands in case they are necessary for the

program. For instance, when launching the "MITMFSpawner", new "iptables"

rules are set in order to redirect traffic to the MITM proxy that is created by the

"MITMFSpawner".

The "SpawnManager" then calls the specific "Spawner" instances when called

via the "ETFConsole" with the "spawn" command. When the user wants to

shut the spawned program off he can use the "restore" command. This will

kill the spawned process and restore the ETF’s configuration by calling the "re-

store_process" method from the "Spawner" class. The spawning and restoring

methods are depicted in figure 3.28.

75

Chapter 3. Solution Proposal and Implementation

Figure 3.28: The "add_spawner" and "restore_spawner" method of the "Ses-
sionManager" module.

3.4.6 The "ETFITM" Module

The "ETFITM"Module, which stands for "Evil-Twin-Framework-In-The-Middle",

is responsible for launching a MITM web proxy using the "mitmproxy" library.

When the module starts it first reads its configuration and then prepares the

"MasterHandler", which handles requests to and responses from the proxy, by

loading the specified plugins. Finally it launches the web proxy listening on the

port specified in the configuration and sets new "iptables" rules to redirect any

traffic directed at port 80 (port used for HTTP) and optionally port 443 (port

76

Chapter 3. Solution Proposal and Implementation

used for HTTPS) to the port where the proxy is listening on. The "start" and

"stop" methods of the "ETFITM" proxy can be sen in figure 3.29.

Figure 3.29: The "start" and "stop" method of the "ETFITM" module.

The "MasterHandler" is responsible for passing the handling of a request or

response to the plugins it was instantiated with. This can be seen in figure 3.30.

While the "request" and "response" methods handle information in their entirety,

the "responseheaders" and "requestheaders" method is responsible for handling

streams of data.

It is possible to leverage this MITM position in very powerful ways. One of

the already implemented plugins is called "PEInjector" and stands for "Portable

77

Chapter 3. Solution Proposal and Implementation

Figure 3.30: Method hooks of the "MasterHandler".

78

Chapter 3. Solution Proposal and Implementation

Executable Injector". It makes use of the "peinjector" project 1, this project

supports injection of payloads into streams of data. The project is written in

"C" but also has "python" connector scripts that enables simple interaction with

it. The plugin looks for download streams that include files in the "portable

executable" format where it can stealthily inject payloads into. No code is shown

for this is not shown as it is part of the "peinjector" project and not the ETF.

An example of a "MITMPlugin" and how one can be created will be analyzed

in more detail in the next section.

3.4.7 Extensibility of the Evil-Twin Framework

The Evil-Twin Framework was built with extensibility in mind. Therefore there

are various ways in which the framework supports contribution.

If a developer wants to implement a new Wi-Fi attack/feature he can create

a plugin for one or more of the "AirCommunicator" modules. These will have to

implement certain methods, as already explained in the sections describing each

individual "AirCommunicator" module, in order to be called during the execution

of the services.

Another type of plugin that a developer can implement are the "MITMPlu-

gins". These can be added to the "MasterHandler" of the "ETFITM" module.

These plugins will act on the information passed to them via the "MasterHan-

dler" and can then read, log and modify requests/responses to and from the Wi-Fi

clients.

Moreover, if a known program can take advantage of the ETF platform it can

be added as a "Spawner" and launched through the "ETFConsole".

Yet another way of contributing is to add web pages to the ETF. One of

the "AirHost" plugins is called "DNSSpoofer", this plugin can be used to spoof

DNS responses and redirect clients to pages that are being served by an HTTP
1https://github.com/JonDoNym/peinjector

79

Chapter 3. Solution Proposal and Implementation

server running on the attacker’s machine. These web pages can be found in the

"data/spoofpages" folder.

The following subsections will explain how each of these extensions can be

implemented and added to the ETF.

Programming Plugins for the "AirCommunicator" Modules

All plugins for the "AirCommunicator" modules must subclass one or more the

base plgunin classes called "AirHostPlugin", "AirScannerPlugin" and "AirInjec-

torPlugin". These in turn all subclass the "Plugin" class which can be seen in

figure 3.31.

Figure 3.31: The constructor of the "Plugin" class.

As it is possible to see in 3.31, the class attributes itself a subset of config-

urations specific the the plugin being instantiated with the call to "self.config =

config[name]" inside the class’s constructor. This allows for automatic attribution

of a set of configurations simply by passing it a name. The base configuration

section is passed to the plugins by the "AirCommunicator" as can be seen in the

method "add_plugins" depicted in figure 3.32.

80

Chapter 3. Solution Proposal and Implementation

Figure 3.32: The "add_plugins" method of the "AirCommunicator" module.

Since the project is written in "Python", classes suuport multiple inheritance.

This allows for a single plugin to subclass more then one of the three base plugin

classes. The plugin’s methods will be called according to the module that is using

it. For instance, the "CredentialSniffer" plugin subclasses all three base classes as

can be seen in figure 3.33.

Figure 3.33: The "CredentialSniffer" class.

The "CredentialSniffer" plugin looks for complete WPA handshakes and unen-

crypted WPA-EAP authentications when being used by the "AirScanner" module.

81

Chapter 3. Solution Proposal and Implementation

When it is being used by the "AirHost" module it will look for half WPA hand-

shake. When it is in use by the "AirInjector" it will also look for complete WPA

handshakes and unencrypted WPA-EAP authentications after performing the in-

jection attack.

An UML diagram of the relation between the base plugin classes can be seen

in figure 3.34.

Figure 3.34: UML Class diagram of the "AirCommunicator" Plugins.

The next three subsections will detail each of tha base plugin classes and

explain how they can be used to create new Wi-Fi attacks or features.

82

Chapter 3. Solution Proposal and Implementation

Anatomy of an "AirScannerPlugin"

The "AirScannerPlugin" is the abstract class that defines the methods that should

be implemented by the concrete implementations of the classes that subclass it.

A depiction of the class can be seen in figure 3.35.

Figure 3.35: The "AirScannerPlugin" class.

As can be seen in figure 3.35, the class is very simple and has three possible

methods that should be overridden by a subclass.

An already implemented "AirScannerPlugin" is called the "PacketLogger". As

the name suggests its main purpose is logging packets to a packet capture file.

It is also capable of applying filters defined in the configuration file, this way

83

Chapter 3. Solution Proposal and Implementation

the user can choose what packets he wants to log. The implementation of the

"handle_packet" method from the "PacketLogger" can be seen in figure 3.36.

Figure 3.36: The "handle_packet" method implementation by the "Packet-
Logger" plugin.

As it is possible to see, it is relatively simple to program a plugin as it doesn’t

require the developer to understand the entire framework.

Anatomy of an "AirHostPlugin"

The "AirHostPlugin" is also a very simple class. This class provides four method

hooks that are run at certain key points during the execution of the "AirHost".

The "AirHostPlugin" class can be seen in figure 3.37.

An example of a subclass of the "AirHostPlugin" is the "Karma" plugin. This

plugin enables the possibility of performing classic karma attacks with the ETF.

84

Chapter 3. Solution Proposal and Implementation

Figure 3.37: The "AirHostPlugin" class.

The plugin makes use of the "pre_start" method to sniff the air for "Probe Re-

quest" packets before the launch of the access point. Later, after having captured

a sample of "Probe Requests" it will configure "hostapd" to launch multiple access

points. It does so according to how many different "Probe Request" packets it

found and how many Access points the Wi-Fi card in use is capable of launching

concurrently. The implementation of the "pre_start" method is depicted in figure

3.38.

As can be seen in figure 3.38 the plugin can change the flow of execution of the

85

Chapter 3. Solution Proposal and Implementation

Figure 3.38: The implementation of the "pre_start" method from the
"Karma" plugin.

main service. In this case the plugin stalls the service for the amount of time it was

configured for in order to sniff for "Probe Request" packets. This is accomplished

with the call to "sniffer_thread.join()" as it will wait for the previously launched

thread to finish execution.

Anatomy of an "AirInjectorPlugin"

The "AirInjectorPlugin" is a little more complex than the other two plugin base

classes. This class holds a socket object called "L2Socket", this is a low level layer

two socket implementation from the "Scapy" library. The "AirInjector" module

passes this socket to its plugins so that only one socket is used by all plugins for

the entire injection attack.

The "AirInjector" also passes the access point and Wi-Fi client target lists to

the plugins. As can be seen in figure 3.39 subclasses of the "AirInjectorPlugin"

need to implement the "interpret_targets" method. This method receive the ac-

cess point and client targets lists as an argument, the plugin then parses these

targets and creates the corresponding packets, these should be saved in the "pack-

ets" set of the object. These packets are then to be sent during the execution of

the "inject_packets" method. The actual "AirInjector" module will wait for its

86

Chapter 3. Solution Proposal and Implementation

Figure 3.39: The "AirInjectorPlugin" class.

injection attack to finish before running the "post_injection" method of any other

plugin.

An obvious candidate for an "AirInjectorPlugin" is one that performs de-

authentication attacks. This is already implemented in the "Deauthenticator"

plugin. The "interpret_targets" method of this plugin is depicted in figure 3.24.

As can be seen in the "interpret_targets" method depicted in 3.24, the "Deau-

thenticator" plugin creates broadcast de-authentication packets for every access

87

Chapter 3. Solution Proposal and Implementation

point in the target list and creates directed de-authentication packets for every

client in the target list and adds them to the "packets" set. Finally in the "in-

ject_packets" method the "Deauthenticator" sends the previously crafted packets

via the "L2Socket" provided by "AirInjector" as can be seen in figure 3.40.

Figure 3.40: The implementation of the "inject_packets" method from the
"Deauthenticator" plugin.

Programming Plugins for the "ETFITM" Module

The "ETFITM" is another module whose functionality can be extended through

the development of plugins. The "MITMPlugin" class is depicted in figure 3.41.

The class has a "setup" and "cleanup" method for plugins that need changes

that affect the system (such as setting "iptables" rules). The last four methods

are the ones called by the "MasterHandler" of the "mitmproxy".

An example of this type of plugins is the "BeEFInjector". This plugin is able

to inject the "hook.js" script from the "BeEF XSS" project into the "HTML"

(Hypertext Markup Language) of web pages. The whole implementation of the

class can be seen in figure 3.42.

88

Chapter 3. Solution Proposal and Implementation

Figure 3.41: The "MITMPlugin" base class.

As can be seen in figure [3.42, the "BeEFInjector" makes use of the "response"

method. This method handles responses coming from the web servers to the

clients. It first uses the "chardet" library to detect the encoding of the content

of the response. It the proceeds by using the "BeautifulSoup" library to parse

the "HTML" content of the response after decoding the content correctly. After

checking if the "HTML" response has a "body" the "BeEFInjector" proceeds to

create a new "javascript" tag where the "hook.js" script will be. Afterwards it

injects it into the "HTML" content before sending it back to the client.

This same plugin can be used to inject any other arbitrary "javascript" code

into web pages.

89

Chapter 3. Solution Proposal and Implementation

Figure 3.42: The implementation of the "BeEFInjector" plugin.

Developing "Spawners" for the "SpawnManager" Module

A "Spawner" is simply an external program that can be called from within the

framework. A software that can enhance the ETF’s capabilities is "SSLStrip", it

is capable of performing SSL stripping attacks in which it downgrades the HTTPS

connection to a plain HTTP connection [10].

It is possible to call this spawner by simple typing "spawn ssltrip" in the

"ETFConsole". The flags of the program to use are set in the configuration file,

this can be seen in figure 3.43.

Figure 3.43: The configuration of the "SSLStrip" spawner.

The basic "Spawner" class can be seen in figure 3.44. As can be seen, the

"Spawner" class receives a configuration section and a name, this way the individ-

ual spawner has access to its own configurations. The "spawn" method is simply

launches a terminal and appends the programs name and arguments to be called

in the new terminal window. This method does not need to be overridden as all

the necessary information is in the configuration file. Additionally a "Spawner"

90

Chapter 3. Solution Proposal and Implementation

Figure 3.44: The "Spawner" base class.

can make use of the "setup_process" and "restore_process" methods in order to

prepare and clean up the spawned process. An example of this is shown in the

implementation of the "SSLStrip" spawner class depicted in figure 3.45.

In figure 3.45 it is possible to see that the "sslstrip" process redirects requests

from port 80 and 443 to the port the "sslstrip" proxy is listening on. This port is

configured in the configuration file as seen in figure 3.43.

Adding WEB Pages to be used by the "DNSSpoofer" Plugin

The ETF provides support for launching fake captive portal phishing attacks. It

does so with the functionality of the "DNSSpoofer" plugin. The "DNSSpoofer" is

a subclass of the "AirHostPlugin". It is responsible for configuring the "Apache"

server, which will be serving the fake web pages, and the "dnsmasqhandler", which

91

Chapter 3. Solution Proposal and Implementation

Figure 3.45: The implementation of the "SSLStrip" spawner class.

will be redirecting the users to the fake web pages served by the "Apache" web

server.

The configuration of the "DNSSpoofer" is fairly simple as can be seen in figure

3.46. The "spoof_pages" argument is a list of web pages to be served by the web

server. If the web page is supposed to log credentials these can be printed out

by the framework by using the "creds_file_keyword" argument. The plugin will

use this to search for files inside the web page directory containing the specified

keyword and perform a "tail -f" on these files to continuously print any changes

that occur on them.

Figure 3.46: The configuration of the "DNSSpoofer" plugin.

92

Chapter 3. Solution Proposal and Implementation

A developer can simply create his own web page and put all its contents inside

a folder in the "data/spoofpages" directory of the framework, it will immediately

be available to be used by the "DNSSpoofer" plugin.

3.5 Additional Features

The development of the Evil-Twin Framework took into consideration that the

main users of this technology would be actual penetration testers. Therefore some

additional features were implemented which will increase the tool’s value in a real

penetration testing environment.

The tool heavily focused on solving the problem of lack of interoperability

between Wi-Fi security testing tools. This only increases the efficiency of the

reconnaissance and attack phase of the actual penetration test. Nevertheless the

reporting phase is very important and should not be neglected. With the ETF one

has all the information in one place, this allows the application to have complete

view of what is happening during a Wi-Fi penetration session. Having all the

information aggregated in one place makes it possible to log important events and

produce reports of the pentesting session.

To facilitate this a session handling mechanism was implemented. By managing

sessions the pentester can keep information he previously discovered during a

session after shutting down the application. Furthermore the framework is able

to generate a report of the session by logging important events and occurrences.

These features make the reporting phase of a Wi-Fi penetration test easier and

more accurate.

Additionally, to support the unique feature of capturing WPA Half-Handshakes

another tool was developed to attempt cracking them. The tool is published as

separate project and is only meant as a proof of concept. The tool is called

93

Chapter 3. Solution Proposal and Implementation

"halfWPAid", it is a dictionary based WPA cracker written in python and makes

use of the "multiprocessing" module in order to improve efficiency 2.

2https://github.com/Esser420/HalfWPAid

94

Chapter 4

Testing and Validation

This chapter is about presenting the solution and its various features.

The first section tries to list all of the already implemented features of the Evil

Twin Framework. The next section will compare the coverage of the implemented

features with other tools. The third section is about testing the implemented

features against other tools. This will be done through objective test scenarios

that need to be completed with the ETF and compared against a combination

of other tools. The last section shares the thoughts and opinions about the ETF

from security experts and penetration testers.

95

Chapter 4. Testing and Validation

4.1 List of implemented features

The list of the features that are implemented on the Evil Twin Framework are

shown in the figure below (4.1).

Figure 4.1: List of features already implemented on the Evil Twin Framework.

A more detailed description of these features can be found in figure 4.2. These

are the features that will be compared to other state-of-the-art tools.

96

Chapter 4. Testing and Validation

Figure 4.2: Description of the already implemented features.

97

Chapter 4. Testing and Validation

4.2 Feature coverage comparison between the State

of the Art tools and the Evil Twin Framework

The tables in 4.3 4.4 compare the feature coverage of the Evil Twin Framework

against other tools of the Wi-Fi hacking trade.

Figure 4.3: Comparing implemented features across Wi-Fi security tools.

98

Chapter 4. Testing and Validation

Figure 4.4: Comparing implemented features across Wi-Fi security tools.

As one can see the Evil Twin Framework covers a much wider scope of features

related to Wi-Fi security testing compared to all of the other tools. On the other

hand, there are some important features that were implemented in other tools, such

as WPS security testing, that are not yet implemented on the ETF. Regardless

of that, the ETF provides an easily extensible framework that easily supports the

implementation of such features.

99

Chapter 4. Testing and Validation

4.3 Features and Attack validation in a test envi-

ronment

This section present the tests that were conducted with the framework in order

to validate it. Some of the attacks that are carried out by the tools that were

mentioned before are already implemented on top of the framework. These can

be compared in terms of efficiency and ease of use.

All tests have an objective goal and will be completed once by the ETF and

another time with one or a combination of other already available tools. The

evaluation criteria will be mentioned for every test since they differ between each

other. The tests will only cover attacks/capabilities already implemented on the

ETF, therefor there will be no test-case to evaluate attacks on WPS vulnerabilities.

There will be a well defined start and finish for tests where efficiency is an

important factor so that time measurements are accurate and objective. The

time it took to finish the test will be considered the main indicator of efficiency.

Other factors that will be considered include setup complexity, number of executed

commands and number of open terminals (or foreground programs) needed to

finish the task.

For every test there is a list of commands that were executed during the test.

These commands usually have receive variables as input. The abbreviations are

“APS”, “APB”, “APC”, “WI” and “CM” which correspond to “Access Point SSID”,

“Access Point BSSID”, “Access Point Channel”, “Wireless Interface” and “Client

MAC” respectively.

4.3.1 Test 1: Capturing a WPA 4-way handshake after a

de-authentication attack

This test will take two main things into account, the de-authentication attack

and catching a 4-way WPA handshake. The test scenario starts with a running

100

Chapter 4. Testing and Validation

WPA/WPA2 enabled access point with one connected client device. The client

device is a smartphone. The goal is to de-authenticate the client with a general de-

authentication attack and then capture the WPA handshake once he tries to recon-

nect. The reconnection will be done manually right after being de-authenticated.

This test is about reliability, the goal is to find out if the tools are always able to

capture the WPA handshake. The test will be performed five times with each tool

in order to check its reliability when capturing the WPA handshake. This test will

compare the ETF against the combination of airodump-ng and aireplay-ng. The

test scenario is depicted in the following diagram (4.5).

Figure 4.5: Process of performing the de-authentication attack followed by the
WPA Handshake capture.

Evil-Twin Framework

Attack Mechanism:

There is more than one way one can capture a WPA handshake

using the Evil-Twin Framework. One can either use a combination of

101

Chapter 4. Testing and Validation

the AirScanner and AirInjector modules or simply use the AirInjector.

For this test the combination of both modules will be used. The ETF

launches the AirScanner module and analyzes the IEEE 802.11 frames

to find a WPA handshake. In succession the AirInjector can be used

to launch a de-authentication attack to force a reconnection.

Setup commands:

config airscanner # Enter the AirScanner configuration mode

set hop_channels = false # Configure AirScanner not to hop channels

set fixed_sniffing_channel = <APC> # Set the channel to sniff on

start airscanner with credentialsniffer
Starts the AirScanner module with the

CredentialSnifferplugin

add aps where ssid = <APS> # Add target AP from sniffed AP list

start airinjector
Start the airinjector which by default

launches a de-authentication attack

airodump-ng + aireplay-ng

Attack Mechanism:

This attack requires at least two open terminals. O one terminal

one has to run the airodump-ng script which continuously captures

packets. Aireplay-ng launches the de-authentication attack on another

terminal.

Setup commands:

airodump-ng <WI> -c <APC> –encrypt WPA -w <log_file> # airodump-ng command

aireplay-ng <WI> –deauth 10 -a <APB> # aireplay-ng command

Conclusions:

The ETF was able to perform an efficient and successful de-authentication

attack on every test run. The ETF was also able to capture the WPA
102

Chapter 4. Testing and Validation

handshake on every test run. However, it is important to note that

this test was performed in an environment with a medium level of

Wi-Fi traffic. It is known that scapy may miss packets when there is

more traffic, this means one cannot be sure if this efficiency holds up

in environments with a higher volume of traffic.

Using the airodump-ng and the aireplay-ng tools, the de-authentication

attack and the consequent WPA handshake capture were 100% suc-

cessful on every test.

Figure 4.6: de-authentication attack and WPA handshake capture results.

In conclusion (4.6), the attack was performed with 100% success

by both tools. However, since the aircrack-ng suite is written in C it

is much more efficient in reading packets which probably makes it a

better choice for scenarios with high volume of traffic. On the other

hand, the ETF configuration commands are very simple and the tool

seems to be just as efficient as the aircrack-ng tools.

103

Chapter 4. Testing and Validation

4.3.2 Test 2: Launching an ARP replay attack and cracking

a WEP network

This test scenario will also focus on the efficiency of the ARP replay

attack and the speed of capturing the WEP data packets containing

the IVs. The same network may require a different number of caught

IVs to be cracked so for this test the limit is 50,000 (fifty thousand) ini-

tialization vectors (IVs). If during the first test the network is cracked

with less than the limit of 50,000 IVs then that number with be the

new limit for the second test. The cracking tool to be used will be

aircrack-ng.

Figure 4.7: An ARP Replay attack scenario.

The test scenario starts with an access point using WEP encryption

and an offline client that knows the key. The key is ‘12345’. Once the

client connects to the WEP access point it will send out a gratuitous

ARP packet, this is the packet meant to be captured and replayed.

The test ends once the limit of packets containing IVs is captured.

The process is depicted in figure 4.7.

104

Chapter 4. Testing and Validation

The time starts when the client starts connecting with the WEP

access point, this will be done through user interaction. The time stops

once the network key is cracked or once the limit of captured packets

is reached.

This test will again compare the ETF against the combination of

airodump-ng and aireplay-ng.

Evil-Twin Framework

Attack Mechanism:

The Evil-Twin Framework uses the scapy library for packet sniffing

and injection which is rather slow. With some tweaks and usage of

lower level scapy libraries it was possible to speed up packet injection

significantly. For this specific scenario the ETF uses tcpdump as a

background process instead of scapy for more efficient packet sniffing.

However scapy is still used to identify the encrypted ARP packet.

Setup commands:

config airscanner # Enter the AirScanner configuration mode

set hop_channels = false # Configure AirScanner not to hop channels

set fixed_sniffing_channel = <APC> # Set the channel to sniff on

config arpreplayer # Enter the arpreplayer configuration mode

add aps where ssid = <APS> # Add target AP from sniffed AP list

set target_ap_bssid <APB> # Set the target bssid of the WEP network

start airscanner with arpreplayer
Starts the AirScanner module with the

ARPReplayer plugin

105

Chapter 4. Testing and Validation

airodump-ng + aireplay-ng

Attack Mechanism:

The whole aircrack-ng suite is written in c, this makes it very ef-

ficient for packet injection and sniffing. This attack requires at least

two open terminals. O one terminal one has to run the airodump-

ng script which continuously captures packets and another terminal

running aireplay-ng to look for the encrypted ARP packet and replay

it.

Setup commands:

airodump-ng <WI> -c <APC> –encrypt WEP -w <log_file> # airodump-ng command

aireplay-ng <WI> –arpreplay -h <CM> -a <APB> # aireplay-ng command

Conclusions:

The ETF correctly identified the encrypted ARP packet and then

successfully performed an ARP replay attack which resulted in crack-

ing the network. With the “aircrack-ng” tools the attack was also

successful. However the results (4.8) show that the tools are more ef-

ficient since the time it took it to capture the same amount of traffic

was less than the one of the ETF.

Figure 4.8: ARP Replay and WEP network cracking results.

106

Chapter 4. Testing and Validation

This attack is heavily impacted by the packet injection and capture

speed. The Evil-Twin Framework uses “scapy” primarily for these tasks

which can be disappointingly slow, although with a few tweaks it ends

up giving good performance.

The “aircrack-ng” suite on the other hand is very efficient when it

comes to packet injection and capture. It is almost twice as fast as

“scapy” in sending out packets. Regarding the number and complexity

of the setup commands. The Evil-Twin framework needed more con-

figuration commands than the other tools. However, these commands

are very simple and the interactive console of ETF provides tab auto-

completion and suggestions for a speedier setup. The “airodump-ng”

and “aireplay-ng” commands are generally more complex and require

copy and pasting of information to fill out the needed parameters.

Both tools showed very good performance, stability and reliability.

The “aircrack-ng” tools are however slightly more efficient but the ETF

makes up for it by making the setup much easier and just as complete.

4.3.3 Test 3: Launching a catch-all honeypot

This test consists of creating multiple access points with the same

SSID. It is a technique to discover the encryption type of a network

that was probed for but is out of reach. By launching multiple access

points with all security settings the client will automatically connect to

the one that matches the security settings of the locally cached access

107

Chapter 4. Testing and Validation

point information. The depiction of the test’s objective is shown in

figure 4.9.

The test will only compare the way the catch-all honeypot is set up

with the ETF and airbase-ng.

Figure 4.9: A catch-all honeypot broadcasting with SSID "Test 3".

Evil-Twin Framework

Attack Mechanism:

The Evil-Twin Framework uses the scapy library for packet sniffing

and injection which is rather slow. With some tweaks and usage of

lower level scapy libraries it was possible to speed up packet injection

significantly. For this specific scenario the ETF uses tcpdump as a

background process instead of scapy for more efficient packet sniffing.

However scapy is still used to identify the encrypted ARP packet.

108

Chapter 4. Testing and Validation

Setup commands:

config aplauncher # Enter the APLauncher configuration mode

set ssid = <APS> # Set the desired SSID

set catch_all_honeypot = true
Configure the APLauncher as

a catch-all honeypot

start airhost # Starts the AirHost module

airbase-ng

Attack Mechanism:

In order to set up a catch-all honeypot with airbase-ng one has to

create multiple different virtual interfaces on the same physical card.

Then create an access point on each of the newly created virtual in-

terfaces.

Setup commands:

iw <WI> interface add mon0 type monitor
Create new mon0 virtual interface

over <WI> in monitor mode

iw <WI> interface add mon1 type monitor # Create new mon1 virtual interface

iw <WI> interface add mon2 type monitor # Create new mon2 virtual interface

iw <WI> interface add mon3 type monitor # Create new mon3 virtual interface

airbase-ng –essid <APS> -c <APC> -a <APB> mon0 # Create Open AP on mon0

airbase-ng –essid <APS> -c <APC> -a <APB> -W 1 mon1 # Create WEP AP on mon1

airbase-ng –essid <APS> -c <APC> -a <APB> -z 2 mon2 # Create WPA-PSK AP on mon2

airbase-ng –essid <APS> -c <APC> -a <APB> -Z 4 mon3 # Create WPA2-PSK AP on mon3

Conclusions:

The ETF is capable of launching a complete catch-all honeypot with

all types of security configurations. The “airbase-ng” script is able to

successfully launch access points on non-managed virtual interfaces.

109

Chapter 4. Testing and Validation

The script however does not support the creation of WPA(2)-EAP

access points.

Figure 4.10: Catch-all honeypot creation results.

Both tools are able to set up catch-all honeypots (4.10) although

“airbase-ng” lacks the support for WPA(2)-EAP networks. Further-

more, when the ETF launches an access point it automatically launches

the DHCP and DNS servers which allow clients to stay connected and

use the Internet. To do this with “airbase-ng” a lot more commands and

configurations would have been necessary. Alternatively, it is possible

to use “hostapd” to set up the catch-all honeypot manually but the

configuration file can be complicated to write, especially when setting

up multiple access points on the same interface. Ultimately the ETF

offers a better, faster and more complete solution to create catch-all

honeypots.

4.3.4 Test 4: Capture 10,000 packets with caffe-latte attack

This test is meant to validate the capability of performing the caffe-

latte attack as well as its efficiency. The test will consider all phases

of the attack. These include launching an AP using WEP encryption,

accepting the client regardless of their key, identifying the gratuitous

ARP packet, correctly modifying that packet and replaying it. The
110

Chapter 4. Testing and Validation

test starts once the gratuitous ARP packet is identified, since that is

the beginning of the caffe-latte attack, and finishes once 10.000 WEP

data packets are captured.

Figure 4.11: An attacker performing the Caffe-Latte Attack.

The test will compare the performance of the ETF against the com-

bination of airbase-ng and airodump-ng.

111

Chapter 4. Testing and Validation

Evil-Twin Framework

Attack Mechanism:

The ETF mostly uses hostapd to launch access points but it was

not suited for this attack because it could not be configured to accept

any WEP client. A minimalistic WEP AP simulator was used instead.

The simulator periodically sends out beacon packets with the desired

SSID and is able to respond IEEE 802.11 management frames such

as probe requests, authentication requests and association requests.

To authentication requests it always responds with a success message.

This WEP AP makes use of scapy to receive and respond to pack-

ets. The rest of the attack is carried out as expected, after the client

sends the gratuitous ARP packet that packet is modified and replayed

continuously. To sniff the responses from the clients tcpdump is used

again to avoid packet loss.

Setup commands:

config airscanner # Enter the AirScanner configuration mode

set hop_channels = false # Configure AirScanner not to hop channels

config caffelatte
Enter the Caffe-Latte plugin

configuration mode

set ap_ssid <APS> # Set the desired AP SSID

start airscanner with caffelatte
Starts the AirScanner modules with

the Caffe-Latte attack plugin

airbase-ng + airodump-ng

Attack Mechanism:

Airbase-ng can be configured to set the WEP flag on beacon packets

and is also able to accept any incoming connection regardless of the
112

Chapter 4. Testing and Validation

used key. With another flag airbase-ng can also be configured to launch

the caffe-latte attack. Airodump-ng is used to log the responses from

the client while the caffe-latte attack is running.

Setup commands:

airbase-ng -c <APC> –essid <APS> <WI> -W 1 -L # airbase-ng command

airodump-ng -c <APC> <WI> -w <log_file> # airodump-ng command

Conclusions:

Even though the ETF uses a relatively slower library it was still

able to slightly outperform the tools from the aircrack-ng suite due to

the way it was implemented. The results prove that the ETF can be

used in scenarios where packet injection speed is critical.

It is important to note that ETF’s caffe-latte attack implementation

is the only publicly available implementation of the attack written in

python. This increases the educational value of the tool since the code

is much easier to read.

Figure 4.12: Caffe-Latte attack results.

113

Chapter 5

Conclusion

This chapter concludes the thesis. First the results of the tests from

the previous chapter are analyzed.

The next section explains conclusions about the result of the final

project considering the objectives that were defined in the first chapter.

The last section presents ideas on the future work that could be

done on the framework in terms of supported features.

5.1 Result Summary

The results of the test cases described in the last chapter validate

ETF’s capabilities of performing well known attacks on Wi-Fi net-

works and clients. The results also validate that the architecture of

the framework enables the development of new attacks and features

on top of it while taking advantage of the pre-existing capabilities

that the platform provides. This reality makes future development of

115

Chapter 5. Conclusion

new Wi-Fi pentesting tools much more efficient since a lot of the code

is already written. Furthermore, the fact that complementary Wi-Fi

technologies are all integrated in one tool will make Wi-Fi penetration

testing simpler and more efficient.

Even though the performance of the ETF was slightly less efficient

than the tools it was compared against on the “ARP replay attack” test,

it still finished the test in little over a minute which is still considered

to be very efficient. When taking all the other tests into account, the

ETF did not show any drawbacks in efficiency nor reliability. These

tests however are not conclusive since more experimentation is needed,

especially in more demanding and realistic environments.

The tool does not yet completely replace all the other tools because

some capabilities, such as attacks on WPS, are not yet implemented.

However this is meant to change in the future once it supports all

attacks.

5.2 Conclusions

Taking the initial project objectives into consideration one can say that

the ETF does complete most of them. As an educational and aware-

ness raising tool the ETF needed to comply with various objectives.

One of the objectives included is being easy to install – therefore the

project is installable on most “Debian” based systems by running a

single setup script. Being easy to use was another objective – this is

rather subjective but the provided GUI is a good step in that direction.
116

Chapter 5. Conclusion

Still more tests and users are needed in order to evaluate its ease of use.

Another objective was outputting clear and human-readable informa-

tion. This was an issue that was focused on during the development of

the tool, yet again more users are needed to validate that the output is

in fact clear and correct. The tool is also open-source and available on

Github 1 for educational purposes. Additionally, in order to support

the spirit of education, a series of video tutorials were developed 2 and

published on Youtube. These explain everything about the usage of

th Evil-Twin Framework as well as how to program plugins to extend

its functionality.

The other set of requirements related to the versatility, extensibility

and general capabilities needed for the tool in order to mitigate the

limitations of other Wi-Fi pentesting tools. Firstly the tool should be

highly configurable and also cover a wide range of Wi-Fi capabilities.

The ETF complies with these objectives by providing an interface to

tool’s configurations where the user has access to every setting of the

tool while also being able to edit it at runtime. Also by providing

the three main pillars of Wi-Fi communication (packet sniffing, packet

injection and access point creation) and an integrated way of commu-

nication between these capabilities the tool provides a very complete

platform to cope with the necessity of covering a wide range of Wi-Fi

capabilities. Furthermore, many of the well known attacks on Wi-

Fi communications have been implemented and tested on the ETF

thereby proving the value of the platform. Another important aspect
1https://github.com/Esser420/EvilTwinFramework
2https://goo.gl/MifJFs

117

Chapter 5. Conclusion

focused on during the development of the framework was its flexibility

and extensibility. The tool offers a simple way of communicating with

other tools by using “Spawners”, this also enables enables adding of

new tools if needed. A very important feature was the ability to eas-

ily contribute and add new feature-expanding components to the tool,

this is possible through the use and development of plugins. The ETF

plugins provide a very simple interface through which one can take

advantage of the already implemented features and expand on them.

A paper presenting the developed framework entitled "The “Evil-

Twin” – attacking and testing the security of Wi-Fi clients and net-

works" was submitted to Elsevier’s international journal of "Future

Generation Computer Systems" presenting the developed tool. Cur-

rently the paper is still under revision.

In conclusion, the tool developed for this thesis does complete all

of the requirements although some of them need to be tested by more

users. The tests done in order to validate its capabilities were very

successful and undoubtedly show its value in comparison to other tools.

5.3 Future Work

The framework is considered finished since the platform for the de-

velopment of new Wi-Fi features is completely implemented. How-

ever some Wi-Fi attacks, such as attacks on WPS, are not yet imple-

mented. The implementation of these features is important so that

the ETF can completely substitute all other Wi-Fi pentesting tools
118

Chapter 5. Conclusion

without any drawbacks. Yet another very useful contribution would

be adding a database to the framework. This database could hold in-

formation about vulnerabilities in known routers such as default WPA

key and WPS pin generation algorithms. This increases the chance of

discovering hidden Wi-Fi vulnerabilities and thereby the efficiency of

the pentest.

The tests showed that the Evil Twin Framework sometimes required

more setup commands than the other tools. This can be solved by

being able to save and load a set of configurations. This would speed

up the configuration of the tool during a pentest and would thereby

increase its efficiency.

Another feature that would be good to support is interception of

generic SSL traffic, this would allow for implementation of new MITM

attacks, thus increasing the scope of possible attacks and ultimately

making the tool more complete.

For now the framework is only supported on "Debian" based Linux

systems. In order to make the tool more portable the developer is con-

sidering using docker container technologies to enable easy deployment

on other Linux system and possibly even MacOS and Windows.

Another valuable contribution would be extending the framework

to facilitate Wi-Fi fuzzing. The IEEE 802.11 protocol is very complex

and considering there are multiple implementations of it, both on the

client and access point side, one can safely assume that these imple-

mentations contain bugs and even security flaws. These bugs could

119

Chapter 5. Conclusion

be discovered by fuzzing IEEE 802.11 protocol frames. Since "scapy"

allows for custom packet creation and injection a fuzzer can be im-

plemented through it. On the other hand, implementing this feature

would not follow the principles that the ETF was designed for. The

ETF detects and exploits known vulnerabilities in Wi-Fi communica-

tions, the practice of fuzzing is normally used when looking for new

vulnerabilities (also known as zero days). A new tool/framework that

focuses on discovering new vulnerabilities in Wi-Fi communication by

fuzzing 802.11 frames could be developed as an independent project.

This project could make use of some of the code of the ETF, such as

the "AirScanner" and "AirInjector" modules.

120

Bibliography

[1] Cassola, A., Robertson, W., Kirda, E., & Noubir,

G. (2013). A Practical, Targeted, and Stealthy Attack

Against WPA Enterprise Authentication. Network and Dis-

tributed System Security Symposium, 1–15. Retrieved from

http://iseclab.org/publications.html%5Cnpapers3://publication/uuid/1E0CC29B-

B87E-4DB2-B044-2C9E1280B246.

[2] Md Sohail Ahmad and Vivek Ramachandran. Cafe latte with a

free topping of cracked wep retrieving wep keys from road warriors,

2007.

[3] Nazrul M. Ahmad, Anang Hudaya Muhamad Amin, Subarma-

niam Kannan, Mohd Faizal Abdollah, and Robiah Yusof. A RSSI-

based rogue access point detection framework for Wi-Fi hotspots.

In ISTT 2014 - 2014 IEEE 2nd International Symposium on

Telecommunication Technologies, 2015.

[4] Aircrack-ng. Tutorial: Getting Started, 2009.

121

References

[5] Kevin Bauer, Harold Gonzales, and Damon McCoy. Mitigating

evil twin attacks in 802.11. In 2008 IEEE International Perfor-

mance, Computing and Communications Conference, pages 513–

516. IEEE, 2008.

[6] RUCHIR BHATNAGAR and K V Birla. Wi-Fi Security: A Liter-

ature Review of Security in Wireless Network. IMPACT: IJRET,

3(5):23–30, 2015.

[7] Dominique Bongard. Offline bruteforce attack on wifi protected

setup. Presentation at Passwordscon, 2014.

[8] Halil Ibrahim BULBUL, Ihsan BATMAZ, and Mesut OZEL.

Wireless network security: comparison of WEP (Wired Equivalent

Privacy) mechanism, WPA (Wi-Fi Protected Access) and RSN

(Robust Security Network) security protocols. In Proceedings of

the 1st International ICST Conference on Forensic Applications

and Techniques in Telecommunications, Information and Multi-

media, page 9. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), ACM, 2008.

[9] Nancy Cam-Winget, Russ Housley, David Wagner, and Jesse

Walker. Security flaws in 802.11 data link protocols. Commu-

nications of the ACM, 46(5):35–39, 2003.

[10] Jeremy Clark and Paul C. Oorschot. SoK: SSL and HTTPS: Re-

visiting Past Challenges and Evaluating Certificate Trust Model

Enhancements. Berkeley, CA, USA, 2013. IEEE.

[11] Chuck Easttom. A Model for Penetration Testing. 2014.
122

References

[12] Matthias Ghering and Erik Poll. Evil Twin vulnerabilities in Wi-

Fi networks. 2016.

[13] Fu Hau Hsu, Chuan Sheng Wang, Yu Liang Hsu, Yung Pin Cheng,

and Yu Hsiang Hsneh. A client-side detection mechanism for evil

twins. Computers and Electrical Engineering, 59, 2017.

[14] Hyunuk Hwang, Gyeok Jung, Kiwook Sohn, and Sangseo Park.

A study on MITM (Man in the Middle) vulnerability in wireless

network using 802.1 X and EAP. In Information Science and

Security, 2008. ICISS. International Conference on, pages 164–

170. IEEE, 2008.

[15] Aigerim Ismukhamedova, Yelena Satimova, Andrei Nikiforov, and

Natalia Miloslavskaya. Practical studying of Wi-Fi network vul-

nerabilities. In Digital Information Processing, Data Mining,

and Wireless Communications (DIPDMWC), 2016 Third Inter-

national Conference on, pages 227–232. IEEE, 2016.

[16] Fabian Lanze, a Panchenko, Benjamin Braatz, and Thomas Engel.

Letting the puss in boots sweat: detecting fake access points using

dependency of clock skews on temperature. Proceedings of the 9th

ACM . . . , 2014.

[17] Guillaume Lehembre. Wi-Fi security–wep, wpa and wpa2.

Hackin9 (January 2006), 2005.

[18] Eduardo Novella Lorente, Carlo Meijer, and Roel Verdult. Scru-

tinizing WPA2 Password Generating Algorithms in Wireless

Routers. In WOOT, 2015.
123

References

[19] Liran Ma, Amin Y Teymorian, and Xiuzhen Cheng. A hybrid

rogue access point protection framework for commodity Wi-Fi net-

works. In INFOCOM 2008. The 27th Conference on Computer

Communications. IEEE, pages 1220–1228. IEEE, 2008.

[20] Tahar Mekhaznia and Abdelmadjid Zidani. Wi-Fi Security Anal-

ysis. In Procedia Computer Science, volume 73, 2015.

[21] C. Modi, V.;Parekh. Detection of Rogue Access Point to Prevent

Evil Twin Attack in Wireless Network. International Journal of

Engineering Research and Technology, 6(4), 2014.

[22] Omar Nakhila, Erich Dondyk, Muhammad Faisal Amjad, and

Cliff Zou. User-side Wi-Fi Evil Twin Attack detection using SS-

L/TCP protocols. In 2015 12th Annual IEEE Consumer Com-

munications and Networking Conference, CCNC 2015, 2015.

[23] Abdullah Nor Arliza. Developing A Wireless Penetration Testing

Tool In Linux Platform. 2013.

[24] Magnus Andreas Ohm. Wireless LAN auditing procedure for in-

dustrial environments. PhD thesis, NTNU, 2017.

[25] Vipin Poddar and Hitesh Choudhary. A Comparitive Analysis

of Wireless Security Protocols (WEP And WPA2). International

Journal on AdHoc Networking Systems, 4(3):1–7, 7 2014.

[26] PTES. Penetration Testing Execution Standard - Technical

Guidelines, 2011.

124

References

[27] V. Ramachandran. Cracking WPA/WPA2 Personal and Enter-

prise for Fun and Profit, 2012.

[28] Volker Roth, Wolfgang Polak, Eleanor Rieffel, and Thea Turner.

Simple and effective defense against evil twin access points. In

Proceedings of the first ACM conference on Wireless network se-

curity, pages 220–235. ACM, 2008.

[29] A K M Nazmus Sakib, Fariha Tasmin Jaigirdar, Muntasim Mu-

nim, and Armin Akter. Security Improvement of WPA 2 (Wi-Fi

Protected Access 2). IJEST, 3(1), 2011.

[30] Pouyan Sepehrdad, Petr Sušil, Serge Vaudenay, and Martin Vuag-

noux. Smashing WEP in a passive attack. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), volume 8424

LNCS, 2014.

[31] Nikos Sidiropoulos, Michaa Mioduszewski, Pawee Oljasz, and Ed-

win Schaap EdwinSchaap. Open Wifi SSID Broadcast vulnerabil-

ity SSN Project Assessment 2012. 2012.

[32] Harshdeep Singh and Jaswinder Singh. Penetration Testing in

Wireless Networks. International Journal of Advanced Research

in Computer Science, 8(5), 2017.

[33] Yimin Song, Chao Yang, and Guofei Gu. Who is peeping at your

passwords at starbucks? - To catch an evil twin access point. In

Proceedings of the International Conference on Dependable Sys-

tems and Networks, 2010.
125

References

[34] Songrit Srilasak, Kitti Wongthavarawat, and Anan Phonphoem.

Integrated wireless rogue access point detection and counterattack

system. In Information Security and Assurance, 2008. ISA 2008.

International Conference on, pages 326–331. IEEE, 2008.

[35] Erik Tews and Martin Beck. Practical attacks against WEP and

WPA. In Proceedings of the second ACM conference on Wireless

network security, pages 79–86. ACM, 2009.

[36] Achilleas Tsitroulis, Dimitris Lampoudis, and Emmanuel Tsek-

leves. Exposing WPA2 Security Protocol Vulnerabilities. Interna-

tional Journal of Information and Computer Security, 6(1), 2014.

[37] Mathy Vanhoef and Frank Piessens. Practical verification of

WPA-TKIP vulnerabilities. Proceedings of the 8th ACM SIGSAC,

2013.

[38] Stefan Viehböck. Brute forcing wi-fi protected setup. Wi-Fi Pro-

tected Setup, 9, 2011.

[39] D.; Villiers, I.; White. Manna from Heaven: Improvements in

Rogue AP Attacks, 2014.

[40] Georgia Weidman. Penetration testing: a hands-on introduction

to hacking. No Starch Press, 2014.

126

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Subject and Motivation
	1.2 Problem Description
	1.3 Research Questions
	1.4 Objectives
	1.5 Contribution
	1.6 Thesis Overview
	1.7 Research Methodology

	2 State of the Art
	2.1 Summary of the Evolution of Wi-Fi Security
	2.2 Wi-Fi Communications and Security
	2.2.1 Wi-Fi Client Behavior
	2.2.2 Wi-Fi Networks and Communication
	2.2.2.1 Open Networks
	2.2.2.2 WEP Protected Networks
	2.2.2.3 WPA-PSK Protected Networks
	2.2.2.4 WPA-Enterprise Protected Network

	2.2.3 Vulnerabilities and Attacks on Wi-Fi Communications
	2.2.3.1 Wi-Fi Client Behavior
	2.2.3.2 Open Networks
	2.2.3.3 WEP Protected Networks
	2.2.3.4 WPA-PSK Protected Networks
	2.2.3.5 WPA-Enterprise Protected Network

	2.3 Vulnerabilities and possible Exploitation Summary
	2.4 Wi-Fi Penetration Testing
	2.5 Tools of the Wi-Fi Hacking Trade
	2.6 Conclusions

	3 Proposed Solution and Implementation
	3.1 Review of needed features
	3.2 Choosing of Technologies and Justification
	3.3 Architecture and Design
	3.4 Technical and Detailed Description of the Evil-Twin Framework
	3.4.1 The "ConfigurationManager" Module
	3.4.2 The "SessionManager" Module
	3.4.3 The User Interface
	3.4.4 The "AirCommunicator" Module
	3.4.5 The "SpawnManager" Module
	3.4.6 The "ETFITM" Module
	3.4.7 Extensibility of the Evil-Twin Framework

	3.5 Additional Features

	4 Testing and Validation
	4.1 List of implemented features
	4.2 Feature coverage comparison between the State of the Art tools and the Evil Twin Framework
	4.3 Features and Attack validation in a test environment
	4.3.1 Test 1: Capturing a WPA 4-way handshake after a de-authentication attack
	4.3.2 Test 2: Launching an ARP replay attack and cracking a WEP network
	4.3.3 Test 3: Launching a catch-all honeypot
	4.3.4 Test 4: Capture 10,000 packets with caffe-latte attack

	5 Conclusion
	5.1 Result Summary
	5.2 Conclusions
	5.3 Future Work

	Bibliography

