
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

291

Manuscript received December 8 2006.
Manuscript revised December 25 2006.

Interoperability Mechanisms for Registration and
Authentication on Different Open DRM Platforms

Carlos Serrão†, Victor Torres††, Jaime Delgado††† and Miguel Dias††††

†ISCTE/DCTI/ADETTI, Ed. ISCTE, Instituto Superior de Ciências do Trabalho e da Empresa, Dep. Ciências e

Tecnologias de Informação, Av. Das Forças Armadas, 1600-082 Lisboa, Portugal
††UPF – Universitat Pompeu Fabra, Departament de Tecnologia, Pg. Circumvallació 8, E-08003 Barcelona, Spain

†††UPC – Universitat Polytècnica de Catalunya, Dept. AC, DMAG, Campus Nord Mòdul D6, E-08034 Barcelona, Spain
††††MLDC - Microsoft Language Development Center, Av. Dr. Anibal Cavaco Silva, Edificio qualidade C1-C2, Tagus Park, Porto

Salvo, Portugal

Summary
The DRM interoperability problem is a very complex problem.
Even big software companies have already admitted that DRM as
it is today is too complex – complex for end-users, complex for
content providers and complex for content handling devices
manufactures. There are different approaches to deal with this
problem and there are different levels to address the problem.
This article addresses the DRM interoperability issues from a
security point of view, and as an example the authors take two
open-specification DRM architectures – MIPAMS and
OpenSDRM – to identify a strategy to interoperate some of the
basic security mechanisms. In this article the authors will
concentrate in the DRM components and user’s registration,
authentication and verification process and will derive a
mechanism to handle and support both.
Key words:
DRM, interoperability, security, registration, authentication

1. Introduction

One of the most working examples of interoperability in
the IT world is the Internet. The Internet is a fairly
heterogeneous environment in terms of hardware,
architectures and systems; however every hardware device
or application can exchange information in a common and
clear way. This is only possible because there is a single
standard communication protocol (TCP/IP) on the network
that bounds everything together. This means that any
system or application willing to use the Internet has to
implement the mechanisms to comply with the TCP/IP
specifications.
 This is a fairly straightforward way of providing
interoperability; however a major requirement of it is that
everyone agrees to follow a single standard. This approach
works very well in the Internet case; however the same
approach cannot be applied in some other situations.
Multimedia is one of these. The multimedia World
presents a panorama where almost everything is

proprietary – content formats, media players, multimedia
content protection mechanisms and multimedia rights
management – and where no single standard exists that has
strictly implemented by everyone. Therefore
interoperability in multimedia and in particular in the case
of DRM is far more complex to handle than in the Internet
scenario.
 Some authors [1] have suggested a set of different
approaches to achieve DRM interoperability, based on
International Standards: full-format interoperability,
connected interoperability and configuration driven
interoperability. In the case of full-format interoperability
all protected content conforms to some unique globally
standardized format. This is hard to accomplish, since all
of the content providers and all the DRM software
manufacturers would have to have an agreement of the
same file format to use. This is, nevertheless the strategy
that’s being followed by OMA DRM – in OMA, the DRM
Content Format (DCF) is a format that each of the devices
need to know and implement and even by Microsoft with
the Windows Media Format (WMF). In the second
approach, translation third parties are used to translate
operations from one DRM regime to another. This seems
to have a more solid background and a set of translation
entities may actually exist on the future, for instance
implementing web-services that will allow the translation
between different DRM functionalities to accomplish the
same objective – to enable DRM interoperability between
different DRM providers. In this approach a peer-to-peer
architecture may need to be established in which each
node allow an interface to its peers, and if it can’t satisfy a
direct request them redirects the search to other peers.
Another approach is the “intermediated digital rights
management” [2] where are identified four tasks to be
carried by the intermediary in transferring content in the
format used by the content provider to the format required
by the end-user. Rights management tasks are executed by

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

292

a third party server (the intermediary) on behalf of the
content scripts and end-users. The third and final approach
for DRM interoperability upholds that by downloading
adequate tools any DRM system can get the ability to
process protected content on end users devices. This is
also a more valid and viable alternative for the DRM
interoperability problem allowing each device and each
digital content rendering application to “grow” its own
capabilities and functionalities to enable different DRM
regimes according to the ones governing the protected
content. For instance, this is the DRM interoperability
model that is uphold by MPEG-4 IPMP-Extensions [3].
 However, most of these approaches rely on the fact
that the DRM platforms have either own specifications
publicly open or that its source-code is available.
Nevertheless there are many aspects where these different
DRM platforms can differ. A first point of divergence
might be their architecture or even the operations
orchestration between the different components of that
architecture. Another fundamental point of difference is
the security aspects of the DRM platform, in particular
those related to the components and users registration,
validation and authentication. During this paper, the
authors will focus especially in this security-related
question on two open-specification and open-source DRM
platforms and we will point out some directions for
achieving interoperability between them. As we had the
opportunity to refer previously DRM interoperability is a
huge and complex problem and it needs to be solved by

different stages – the work we are presenting in this paper
is just one very small contribution for the overall problem.

2. Open DRM platforms

This section will focus both on open-specification and
open-source DRM platforms to identify and describe the
components and users registration and authentication
mechanisms that are provided by the different components
of DRM platforms. In this study, one open-source
implementation (OpenSDRM) and one open-specification
DRM platforms (DMAG/MIPAMS) were considered [17].

2.1 OpenSDRM – Open and Secure Digital Rights
Management

OpenSDRM is an open specification and an open-source
implementation of a DRM platform. It started being
developed for a project called MOSES [4], but since then
it has being evolved and initial functionalities have been
extended [5][6][7]. OpenSDRM relies on a distributed
philosophy in which each of the different components is
implemented in a self-contained way encapsulating a set of
specific functionalities. The components are in fact
web-services, with a public WSDL description, deployed
either in the same hardware platform or in several ones
remotely distributed. Messages exchanged between the
different components are SOAP-based over SSL –secured
and authenticated connections [13][16].

Fig. 1 OpenSDRM generic architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

293

 The OpenSDRM platform (Fig. 1) uses two important
concepts that will be largely referenced afterwards: Actors
and Components. An Actor is a person or an organization
that uses a Component. A Component is a set of software
and hardware tools cooperating for offering a set of
specific DRM-related functionalities.

2.1.1 Components Registration

From a security point of view OpenSDRM requires that
each of the DRM platform components to be registered
and certified as valid before interacting with any of the
other components of the platform. Since each of the DRM
components are installed on a web-server, each of these
components needs to be certified. The certification process
for each of the components involves the creation of a key
pair (KprivComp, KpubComp) and the generation of a new
X.509 digital certificate issued by a Certification Authority
(CertCA

Comp). The registration process works in the
following manner:
(a) The DRM component generates a new key pair

(KprivComp, KpubComp) and securely stores the
KprivComp protected with a password;

(b) The DRM component generates a Certificate Signing
Request (CSR) to be sent to a Certification Authority
(CA). This CA can be an internal CA, or a publicly
commercially available CA;

(c) The request is sent to the CA;
(d) The CA verifies the data included in the CSR and

registers the new DRM component. A X.509 digital
certificate is issued for the DRM component
(CertCA

Comp);
(e) The new certificate is sent to the DRM component;
(f) The DRM component stores the certificate and installs

it.

Fig. 2 Establishing a SAC between different DRM components.

2.1.2 Components Mutual Authentication

Each of the DRM components is certified by a CA. Each
of the DRM components will have a list of trustworthy
CAs, which will allow each component to trust each other.
This mechanism is used to establish a mutually secure and
authenticated communication channel (SAC) between the
different DRM components. This is crucial to ensure a first
secure communication layer. All further communications
within the DRM platform are handled over a mutually

authenticated and secure SSL channel (Fig. 2). Whenever a
function within a DRM component invokes another
function on other DRM component this SAC process is
repeated.

2.1.3 Actors and components registration

While the authenticated and secure communication
between the different DRM components is established like
what it was presented in the previous sections, each of the
DRM components can contain and represent different
functions in the overall DRM architecture. In OpenSDRM,
the interaction between the different functions of different
DRM components demands a new layer of authentication,
which is called application-level authentication. Also the
different actors that interact with the different functions of
the DRM components need to be registered and
authenticated.
 In OpenSDRM, there is a component called
Authentication Server that is responsible for handling both
the DRM component functions and the actors’ registration
and authentication.
 The Authentication Server (AUS) is used to register
and authenticate the Actors and the Components of the
system. Every time a new component enters the system, it
can only start interacting with other components after
being properly registered. Also every actor needs to be
registered with the system. The main functions of the
component are: (a) to register other components in the
system capable of providing different functionalities. This
also includes functionalities to update and to delete/revoke
components on the system; (b) allow the registration of the
users that will interact with some of the components in the
system. It is also used to update and delete/revoke users on
the system; (c) verify if a user has or not a valid installed
wallet on its system; and (d) verify and validate the
available payment gateways (mechanisms) that are
registered on the system.
 At this level, OpenSDRM uses a proprietary format of
digital certificates. It uses an X.509 certificate format
mapped into a specific XML structure. This XML structure
has the following composition: <certificate> <issuer>
<identifier/> <public-key> <n/> <e/> </public-key>
</issuer> <subject> <identifier/> <public-key> <n/>
<e/> </public-key> </subject> <validity>
<not-before/> <not-after/> </validity> <signature/>

</certificate>. This <certificate> XML structure
contains certain particularities:
(i) <issuer> corresponds to the AUS that signed and

issued the certificate;
(ii) <identifier/> is a unique identifier of the entity

(either <issuer> our <subject>) and corresponds to
the fingerprint of the public-key components;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

294

(iii) <n/> and <e/> are the components of the public-key
represented in hexadecimal or Base64 format
(modulus and public-key exponent);

(iv) <not-before/> contains the date and time in UTC
format, indicating the issuance date of the certificate;

(v) <not-after> contains the date and time in UTC
Format, indicating the expiry date of the certificate;

(vi) Finally, <signature/> contains the digital signature of
the <issuer> of all data within <issuer> and
</validity>, in hexadecimal or Base64 format.

 Also, OpenSDRM uses XML structures for
representing both the public (<public-key> <n/> <e/>
</public-key>) and private keys (<private-key> <n/>
<e/> <d/> <p/> <q/></private-key>). The private key
may be optionally ciphered, using a secret password and
contains the modulus, public-key exponent, private-key
exponent, and the original prime numbers selected.
 The process to register a functionality of a DRM
component is the following (this information is exchanged
using a previously established secure and authentication
channel between the DRM component and the AUS):
(i) DRM component creates a new key-pair (KprivFComp,

KpubFComp), and stores the private key protected by a
secret key (AES): Sk [KprivFComp]. This secret key is
created using the fingerprint of the pair (login and
password) used to setup the component;

(ii) The DRM component generates a unique identifier,
hashing (SHA1) the public-key components: <n/>
and <e/> (fingerprint)

(iii) The public-key and the unique identifier are sent to
the AUS requesting the certification: KpubFComp and
FCompid;

(iv) AUS verifies the received data, stores it and generates
a certificate (XML version) that contains the data that
was previously identified and sends it back to the
component: CertAUS

FCompA;
(v) The DRM component receives and stores it.
 The registration of Actors on the OpenSDRM system
is mediated through a broker called Wallet [12]. This
broker is the software responsible for interacting with the
other DRM components functions and in particular with
the AUS. The registration process of an Actor in AUS is
the following:
(a) The Actor selects a login and a password for the

Wallet broker. This login and password, together with
some special information retrieved from the Actor
device, are used to create a unique secret-key (128
bits MD5 hash value) that is used to create a secure
storage database to hold private information: MD5
(login, password, DeviceInfo) = Sk;

(b) The Wallet broker creates a key-pair, in XML format:
(KprivActor, KpubActor). The KprivActor is securely
stored on the database: Sk [KprivActor].

(c) The Wallet broker generates a unique identifier,
hashing (SHA1) the public-key components: <n/>
and <e/>;

(d) The public-key and the Actor unique identifier is sent
to the AUS requesting the certification: KpubActor and
Actorid;

(e) AUS verifies the received data, stores it and generates
a certificate (XML version) that contains the data that
was previously identified and sends it back to the
Wallet broker: CertAUS

Actor;
(f) The Wallet broker receives and stores the certificate.

2.1.4 Components and Actors Authentication

In this section, we will describe how OpenSDRM handles
Components (in terms of its functionalities) and Actors
authentication.
 Whenever a function in a DRM component wishes to
use another function in the same DRM component or on
an external DRM component, it sends his AUS certificate
as part of the message. This certificate is reviewed by the
remote DRM component function and is checked at the
AUS. This check is important to assure that the requesting
DRM component certificate has not been revoked by AUS
(Fig. 3).

DRM Component (A) DRM Component (B)

Function A Function B

SSL-based SAC

Invoking functions
securelly

AUS

Function C

SSL-based SAC

Parameters, CertAUSFCompA

SSL-based SAC

CertAUSFCompA, CertAUSFCompB
CertAUSFCompB, CertAUSFCompA

Fig. 3 Establishing a SAC between different DRM components.

 While invoking the DRM component function it may
be possible to request also the certificate from the remote
component, also to be sure that it has been certified. To
verify that the certificate is still valid and has not been
revoked the DRM component function may also contact
the AUS.
 Actors also need to authenticate to DRM components
when requesting some local or remote DRM
functionalities. The authentication is performed through
the AUS to ensure that the Actors credentials are not
revoked – this is similar to what happens with OCSP (Fig.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

295

4). The process that OpenSDRM uses to authenticate users
is the following:
(i) The Actor, uses its Wallet broker to access his

credentials: CertAUS
Actor;

(ii) The Actor requests the authentication or any other
operation on a DRM component using CertAUS

Actor;
(iii) The DRM component receives the Actor certificate

and connects to the AUS (that issued the Actor

certificate) to validate it. In the process it sends its
own certificate (CertAUS

FComp) and the Actor
certificate (CertAUS

Actor);
(iv) AUS validates both certificates: one to prove the

DRM component identification and the other to
check if the Actor certificate has not been revoked;

(v) The result is returned to the DRM component and the
operation is performed.

Actor
<<entity>>

Wallet broker
<<entity>> DRM Component AUS

1 : login + password()

2 : result()
3 : get credentials()

4 : certificate()

5 : authentication using certificate, operation()

6 : DRM component cert, Actor cert()

7 : validate credentials()

8 : valid credentials()

9 : operation()

10 : operation result()

Fig. 4 Actor’s authentication through the AUS

2.2 MIPAMS – Multimedia Information Protection
and Management System

The MIPAMS architecture was already described and
presented in several papers: [8], [9], [10]. This architecture
is used to manage multimedia information taking into
account digital rights management (DRM) and protection.
The architecture, also called DMAG-MIPAMS, which
includes the DMAG [11] research group acronym, consists
of several modules or services, where each of them
provides a subset of the whole system functionality needed
for managing and protecting multimedia content.
DMAG-MIPAMS is a service-oriented DRM platform and
all its modules have been devised to be implemented using
the web services approach, which provides flexibility and
enables an easy deployment of the modules in a distributed
environment, while keeping the functionality independent
from the programming language and enabling
interoperability.
 DMAG-MIPAMS encompasses an important part of
the whole content value chain, from content creation and
distribution to its consumption by final users. The
DMAG-MIPAMS architecture is depicted in Fig. 5.

Certification Server

Trusted
client

In
te

rm
ed

ia
ry

Content
Server

Adaptation
Server

Protection
Server

Certification
Authority

Governance
Server

Supervision
Server

Registration
Server

Fig. 5 MIPAMS generic architecture

 In this section of the paper we will also follow the
same approach as in OpenSDRM platform description
referring to the concepts of Component and Actor.

2.2.1 Component Certification

From a security point of view, MIPAMS requires that each
component to be verified and certified in the system before
being able to deploy it. Once certified, the component will
have a particular X.509 server digital certificate and a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

296

private key that will be useful to establish secure
communication with other components or actors in the
system. The certification process works in the following
manner:
(i) An actor’s requests the certification of the component

by submitting it to a verification process and
selecting a password for the generation of a
PKCS#12 package;

(ii) A verification process is performed over the
component to check that it follows the system
guidelines and acts as expected;

(iii) A certificate for the component is requested to the
Certification Authority (CA);

(iv) The CA generates the component key pair and
certificate and packs them together into a PKCS#12
package to be delivered to the component
certification requestor. The PKCS#12 is protected
with the password chosen by the requestor;

(v) The component certificate and private key can be used
to deploy the new component in the system.

 In this way, each component is verified and owns a
certificate issued by a common CA. A DRM component
will use the component certificate to authenticate itself as a
client or server when interacting with other components or
actors in the system. For that purpose, each component
owns a trust store file, which contains the CA certificates
on which the component will trust when any client
(component or actor) with a certificate signed by that CA
tries to establish a communication towards it.

2.2.2 User registration and authentication

The Supervision Server is used to register and authenticate
the Actors of the system. Any user must be registered in
the system in order to be able to interact with the different
components. User information is stored in the Supervisor
Server and is used for further verification purposes. Once
an Actor is registered, the corresponding CA is requested a
X.509 user certificate for the actor, which can be used to
authenticate himself. The main functions of Supervisor
Server component are: (a) authenticate Actors; (b)
authenticate installed tools; (c) verify client tool
installation attempts against registered tools features; (d)
register new installed client tools (tool and device
fingerprint); (e) request installed tool certificate to the
Certification Authority; (f) receive and store action reports.
 Every actor has associated a status in the Supervisor
component that is used to determine whether it is blocked
or not in the system when interacting with the server part.
The user status can be modified if some critical operation
attempt is detected.
 Any actor that uses a tool will need to select his user
certificate in the tool in order for the tool to know which
Actor it is dealing with. The client certificate is used to
extract the client information, as the user system unique

identifier, which is then included in any request that goes
from the client tool to the server part.
 The communication between the client tool and the
server part of the system is performed by means of a
secure channel established by means of a tool certificate
and the server component certificate. The tool certificate is
obtained during the first usage of the tool, after it is
installed in the client device, as explained in next sections.
Server components will trust on client tools by trusting on
the CA that signed their certificates. In order to
authenticate Actors, the client application will send in the
SOAP message the Actor user identifier, which is extracted
from the Actor client certificate. In this way, Supervisor
Server will authenticate the Actor in the system and verify
its status.
 The client certificate could be also used to provide
security at the application level, something which is
currently not present in MIPAMS architecture. By means
of a digital signature on the transmitted information we
could provide a second security layer at the application
level.

2.2.3 Tool Registration

All client Tools in the framework must be verified to
accomplish a series of guidelines, which are checked
before registration is done. Once verified, each tool is
registered for being potentially installed by Actors. During
registration phase, a fingerprint of the software tool is
estimated so that its integrity can be checked later when
the tool is installed and certified on a specific device, as
we will see in further sections.

2.2.4 Tool certification

The certification of an installed tool in MIPAMS is a
necessary step for that tool to work. Before an Actor is
able to run and use a tool, the tool must request the
Supervisor Server to be certified as an “installed tool”.
Before installation, the tool integrity will be checked by
comparing its fingerprint to the one stored during the tool
registration process. Once installed, some information
concerning the installation of the tool and the device (tool
fingerprint) where it is installed is extracted.
 Once an Actor successfully certifies a tool, any Actor
in the system who owns a valid user certificate can use it.
Blocked users cannot use tools in the system.
 In order to have a secure communication for the
certification request, the Actor client certificate is used.
The tool certification process, depicted in Fig. 6, is the
following: (1) An actor or the tool itself requests the
installed tool certification; (2) The tool computes a
hardware and software fingerprint; (3) The tool uses the
client certificate to request certification to Supervisor
Server; (4) Supervisor Server verifies the Actor credentials

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

297

and tool software fingerprint against registered tool
fingerprint; (5) Supervisor Server generates a tool unique
identifier; (6) Supervisor Server requests a tool certificate
to the CA by sending the tool identifier; (7) The CA
generates the tool key pair and the certificate with the tool
unique identifier as the CN; (8) The CA sends a PKCS#12
(tool certificate and private key) package to Supervisor
server, which is protected with the user ID as the
password; (9) Supervisor stores the installed tool

fingerprint for future verification purposes; (10)
Supervisor sends the PKCS#12 to the tool; (11) The tool
receives the certificate and private key, stores them and
activates itself; (12) The tool is finally certified.
 As we have already explained in previous sections,
the communication between the client tool and the server
part of the system is performed by means of a secure
channel established by means of the tool certificate and the
server component certificate.

Certification AuthorityTrusted module Supervision Server

8. result, PKCS12

10. result, PKCS12

3. certify

6. certify, tool ID

11. store Cert+Key

11. Enable Tool

2. estimate tool FP

4. verify user data

4. verify tool FP

2. estimate HW FP

1.certify

5. generate tool ID

7. tool key pair + cert

9. register tool and HW FP

12. certified

Fig. 6 MIPAMS client tool certification process

2.2.5 Actors and Client components authentication

Any actor in the system is authenticated in two manners,
as we have already mentioned: 1) by being able to select
its user certificate in the client application; 2) by means of
it user identifier, extracted by the application form the
certificate.
 Client components are authenticated in two ways: 1)
by using their tool certificate; 2) in the same manner as
users, by using their tool identifier.
 In this way, whenever a tool is blocked or revoked, it
will not be able to operate in the system, as Supervisor will
not authenticate it. The client application trusted module or
the intermediary are responsible for centralizing the
communications with other server modules, so after a first
authentication of the user against Supervisor component,
the intermediary, when needed, will send the user
identifier to other components, which will assume that it
has been already authenticated and verified.

User Tool

5. verify

8. authorise

14. authorised, protection info

15. unprotect song

2. unprotect

16. unprotected song

Trusted
Module

13. OK

12. store report

11. authorise

9. protection info?

Governance
Server

Protection
Server

Supervision
Server

User
Tool

1. play song

17. play song

10. protection info

3. extract local info

6. store report

4. verify

7. OK

Fig. 7 MIPAMS Content consumption Use Case

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

298

 Fig. 7 depicts a content consumption scenario, where
a user wants to play a protected song. At step 5, Supervisor
performs the authentication of the user and tool. If they
were not authenticated, then the trusted module would not
contact other components (steps 8 to 17) and the song
would not be unprotected.
 The blocking of an Actor or client Component in the
system supposes the modification of their associated status
flag in Supervisor component and also the revocation of
their corresponding certificates in the appropriate CA.

2.3 A comparison between OpenSDRM and
MIPAMS

On the previous sections the authors have analysed some
of the security features of two different open DRM
systems. In this new section we can determine some
common points and differences and provide some means
for them to interoperate at this level.
 Regarding component registration and certification,
we have seen that both systems enable different
mechanisms for the components registration in the system.
While OpenSDRM enables a fully automatic registration
and certification procedures, the MIPAMS platform uses a
non-automatic registration but an automatic certification
once the components are validated. This point is not a
difficult aspect to be overcome, as the result of the process
ends to be the same: a X.509 certificate for the component,
although in OpenSDRM X.509 certificates are used to
certify DRM components, while the different DRM
components functionalities are certified by another
different certificate [15]. In this way, independently of the
registration and certification processes, a component will
own a X.509 digital certificate in both systems. We just
need to issue compatible certificates for having compatible
components at this level.
 Regarding component mutual authentication processes,
we have presented and explained how both systems
perform a client-server mutual authentication based on
their component digital certificates. On one hand, both
systems include a list of trustworthy Certification
Authorities in their components. To ensure that the
components of both systems will be trusted, we just need
to be sure that they are issued by a common Certification
Authority or that the CA certificates used in both systems
are included in all components. On the other hand,
OpenSDRM enables any component to query the
Authentication Server for retrieving the component
credentials revocation status, whereas MIPAMS does not,
assuming that the server components will be controlled. In
order for MIPAMS components to be authenticated in
OpenSDRM they would need to be registered in the
Authentication Server. Something different happens with
client components in MIPAMS. Client tools, as we have
already explained, are certified and registered in the

Supervisor component, and authenticated in the same way
of Actors, by using their unique identifier.
 OpenSDRM partly uses the same authentication
process Actor and Component functions authentication,
querying the AUS to check for the revocation status of
their credentials. However in the specific case of Actor
authentication, there is software called Wallet broker that
is responsible for handling the Actor authentication
processes. In this sense, MIPAMS acts in a different
manner. MIPAMS Supervisor authenticates the user by his
identifier, which is extracted in the client application and
sent in the SOAP messages over the secured channel. In
this authentication mechanism, OpenSDRM always recurs
to the full credentials, which are sent to ensure a strong
authentication process.
 In terms of credentials format, there is also some
differences between OpenSDRM and the MIPAMS
platform. OpenSDRM uses both X.509 certificates for
DRM components certification and authentication and a
XML mapping of X.509 user certificates for DRM
functions and Actors certification and authentication,
whereas MIPAMS uses only X.509 certificates. The
differences in client authentication can be overcome by: 1)
Extracting the user identifier of OpenSDRM XML
certificates for authenticating users in MIPAMS; 2)
Perform an authentication based on the user identifier
instead of the whole XML certificate in OpenSDRM for
MIPAMS clients; 3) Using an alternative authentication
process based on SAML tokens in order to avoid multiple
authentications for the same user, based on digital
signatures.
 There is a strong difference between both platforms in
terms of security design. While in OpenSDRM two
security layers coexist to ensure both transport-level and
application-level security, MIPAMS depends only on one
transport-level security. At the application-level, in the
MIPAMS case, the different components assume that there
is a secure channel established and authentication
processes are somehow shortcut.

3. Interoperability between open DRM
systems

During the last few paragraphs we have described and
identified some security related aspects of two open DRM
architectures (open specification and/or open-source):
OpenSDRM and MIPAMS. Across this description the
authors have identified some common points and some
differences between architectures, which were also pointed
in the last section.
 In this section, we introduce some directions in terms
of interoperability between both DRM systems, on what
concerns the registration and authentication aspects.
Basically, what we will accomplish is a mechanism, based

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

299

on a brokerage architecture, which will be able to handle
the registration of components and actors from one DRM
on another, and also to handle both the authentication
mechanisms.

3.1 Registration Interoperability

Both the DRM systems require both the registration of
DRM components and Actors. Additionally, OpenSDRM
requires also that the DRM components functionalities to
the registered as well. Both OpenSDRM and MIPAMS
require the components to be registered through a
Certification Authority, capable of issuing X.509 digital
certificates.
 In terms of interoperability, the solution to allow both
DRM components to be registered and to obtain X.509

certificates in a common Certification Authority.
Nevertheless this is may not be a possible scenario in the
real world – many commercially available CAs already
exist and it is necessary to assure that DRM components
registered and certified on one CA can trust on
components registered by other CA. Currently,
web-browsers solve this problem in a limited way, by
having an internal trust CAs database, that allow them to
decide whether to trust or not on a presented X.509
certificate. This mechanism can also be used on both DRM
systems, once all DRM components may also have an
internal CA database, like web-browsers – if the
deployment scenario is more global. If the deployment, in
terms of interoperability is restricted or local, an
alternative solution may be used (Fig. 8).

Fig. 8 Scenarios for CA registration interoperation

 In a scenario where only MIPAMS and OpenSDRM
need to interoperate, one possible option is to have a cross
certification between MIPAMS and OpenSDRM
Certification Authorities, so that in the certification path of
the certificates issued by both they contain their
public-keys: CertOpenSDRM

CA-MIPAMS and
CertMIPAMS

CA-OpenSDRM. Any certificate issued by any of the
CAs would always refer the other and allow trust
relationships between components registered by one or the
other CA: CertOpenSDRM

CA-MIPAMS=>
CertCA-MIPAMS

DRMComponent and CertMIPAMS
CA-OpenSDRM=>

CertCA-OpenSDRM
DRMComponent.

 While considering broader scenarios, the process
presented in the previous scenario may not be very
effective. As an alternative it is possible to establish a
super CA (CA Broker) that will issue certificates to each of
the DRM CAs. Any DRM component registered and
certified on one CA would have a common trust point on

the certificate certification path: CertCABroker. Since the
certificates share a common CA, trust will be possible
between different DRM components:
CertCABroker

CA-MIPAMS=> CertCA-MIPAMS
DRMComponent and

CertCABroker
CA-OpenSDRM=> CertCA-OpenSDRM

DRMComponent.
 In the specific case of OpenSDRM, the DRM
functions inside the different DRM components need also
to be registered and have a credential. This digital
credential uses an XML specific format that maps a X.509
certificate in XML. Every time a DRM function inside a
DRM component is invoked this XML credential is passed
to authenticate the caller function. In MIPAMS this does
not exist, and therefore to achieve interoperability at this
level, the MIPAMS DRM components need to obtain such
certificate. There are two possible ways for this:
(i) DRM components perform their registration on the

OpenSDRM AUS component, and obtain an XML
certificate that must be used every time a MIPAMS

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

300

component wishes to invoke an OpenSDRM
function;

(ii) To use an external component (Certificate broker) that
will allow the translation between the MIPAMS
X.509 certificates and the XML format required by
OpenSDRM. This component would automatically
register the different MIPAMS components on
OpenSDRM AUS, as well.

The same occurs in the case of Actors registration – while
in MIPAMS they are assigned with an X.509 certificate, in
OpenSDRM they use an XML certificate. This allows that
the same mechanisms presented before, could also be used
in the Actors registration case, either by requesting the
MIPAMS actors to register in AUS as well or to use a
mapping/translating mechanism between X.509 and XML
(Fig. 9).

Fig. 9 Bridge between the X.509 and XML certificates

 The processes described here in this section cover the
main different registration and certification aspects for
both open DRM platforms. In the next section the aspects
related with the authentication interoperability will be
handled.

3.2 Authentication Interoperability

In terms of DRM components authentication, what was
referred in the previous section also applies here. So there
is the need to have a common authentication point between
both X.509 certificates that identify the different DRM
components (Fig. 8). Again, three possibilities are
presented:
1. Both open DRM platforms components have an
internal database of the trusted CAs, so that
CertTrutedCA

MIPAMS-DRMComponent and
CertTrutedCA

OpenSDRM-DRMComponent can be compared with that
internal database to ensure trust;
2. There is a limited number of open DRM in the
interoperability scenario and cross certificates can be used
between CAs. This would allow that trust between
CertOpenSDRM

CA-MIPAMS=> CertCA-MIPAMS
DRMComponent and

CertMIPAMS
CA-OpenSDRM=> CertCA-OpenSDRM

DRMComponent
because they both share the same CA;

3. A third option would use a super CA that will be the
broker between the different DRM CAs seeking
interoperability. This would allow trust to be established
between CertCABroker

CA-MIPAMS=> CertCA-MIPAMS
DRMComponent

and CertCABroker
CA-OpenSDRM=> CertCA-OpenSDRM

DRMComponent.
 An important aspect in the DRM component
authentication is certificates revocation (this may occur if
the private key is compromised, for instance). There are
many methods that can be used to ensure that a certificate
is still valid and has not been revoked. Certificate
revocation lists (CRLs) are usually used to accomplish this
function; however, on such dynamic systems as DRM
platforms, it is best to recur to the Online Certificate Status
Protocol (OCSP). This protocol will allow authenticating
DRM components to verify online with the CA if the
presented X.509 certificate has not been revoked.
 Other issue where authentication interoperability
should be discussed is on the Actors authentication on the
DRM platforms. Has we had the opportunity to enlighten
on the previous section, OpenSDRM and MIPAMS differ
on this aspect – both in terms of process and credentials
format. In terms of format, while in the MIPAMS platform,
the actors are authenticated through an X.509 certificate,
handled by a global Supervisor that acts on the Actor
behalf. An XML certificate is used in the OpenSDRM case.
In terms of process, they also differ. While in MIPAMS
there is a DRM component (Supervisor) that globally
handles the registration and authentication processes for
Actors, in the case of OpenSDRM, the Actors
authentication is handled through a Wallet broker that is
individually located at each Actor.
 The best way to provide interoperability between the
different authentication processes (both on the two
analysed open DRM platforms and on others) is to have an
external entity – a Certificate broker – that will bridge both
of the authentication mechanisms and also will carry the
necessary translations between the different certificate
formats (Fig. 10).
 To achieve Actors authentication interoperability for
DRM components an external Certificate broker is
established. Here are two of the many interoperability
scenarios: a) OpenSDRM Actor authenticates to a
MIPAMS DRM component and b) MIPAMS Actor
authenticates to an OpenSDRM DRM component:
(a) the Actor authenticates using a login and a password

to the Wallet, that reads from the secure repository
the Actor’s XML certificate (CertAUS

Actor). The
certificate is sent to the DRM component where the
authentication is to be performed – the DRM
component sends the Actor’s certificate to the
MIPAMS Supervisor to check its status. The
Supervisor checks that this is an OpenSDRM XML
certificate and therefore sends it to the Certificate
Broker to obtain its X.509 version. After this, the
authentication can be completed;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

301

(b) the actor authenticates to the DRM components using
its unique identifier and the Supervisior
acknowledges the DRM component of the
authentication result. In this case the Supervisor
component contacts the Certificate broker to obtain a
XML version of the X.509 certificate. This XML
certificate is then used to contact the OpenSDRM
AUS to perform the authentication.

 With this it is possible to authenticate Actors from one
open DRM platform on the other platform and vice-versa.
 Other authentication aspect to consider is the
authentication of the DRM functions in the OpenSDRM
case. MIPAMS does not require this. Therefore the
Certificate broker can be used to obtain an XML version of
the X.509 certificate to be used by MIPAMS while
invoking OpenSDRM DRM functions.

MIPAMS
Actor

OpenSDRM
Actor

DRM
Component

MIPAMS
Supervision

Server

MIPAMS
Actor

MIPAMS
Actor

OpenSDRM
Actor

OpenSDRM
Actor

Wallet
broker

Wallet
broker

Wallet
broker

OpenSDRM
AUS

OpenSDRM

MIPAMS

Certificate
Broker

Fig. 10 Interoperability in the Actors authentication

4. Conclusion

DRM is one complex technology that handles the
management of digital content usage. DRM is particular
complex especially by the fact that many different DRM
systems exist and they are incompatible among each other.
This is one of the aspects that make DRM as one of the
most “non-grata” technologies.
 This paper does not try to solve the problem. However
it presents some important directions on what concerns the
interoperability of certain DRM security-related functions,
such as registration/certification and authentication
between open DRM platforms. This is just one of the
many aspects that need to be solved before we have a truly
interoperable DRM scenario.
 For this article, we have considered two different open
DRM platforms: OpenSDRM is an open specification and
open-source implementation of a DRM platform, and
MIPAMS an open specification DRM platform.
 In this paper we have described the registration and
authentication processes in both platforms, and identified
the commonalities and differences between them. We have
concentrated our work mostly on the differences to derive

some processes to make them vanish and to allow
interoperability between them.
 Although some of the interoperability mechanisms
that we have identified refer only to the two studied open
DRM platforms, they can be generalized and applied to a
broader range of DRM platforms interoperability.
 We would like also to acknowledge that this work is
just a small step towards a more global and wider DRM
interoperability scenario that covers all the different
aspects of DRM interoperability and not only the ones
considered here.

References
[1] Koenen, R.H., et al, “The long march to interoperable digital

rights management”, in Proceedings of the IEEE,
92:883-897, 2004

[2] Schmidt, A, U,.et al “Interoperability challenges for DRM
systems”, in International Workshop for technology,
Economy, Social and Legal aspects of virtual Goods,
Ilmenau, Germany, 2004

[3] ISO/IEC 14496-1:2003, Information technology -- Coding
of Audio-Visual Objects -- Part 1: Systems, Amendment 3:
IPMP Extensions

[4] MOSES web-site, http://atlantis.tilab.com/projects/moses/,
as visited in 30.11.2006

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

302

[5] HICOD2000 web-site, http://www.hicod2000.org, as visited
in 30.11.2006

[6] WCAM web-site, http://www.ist-wcam.org, as visited in
30.11.2006

[7] MediaNet web-site, http://www.ist-medianet.org, as visited
in 30.11.2006

[8] Torres, V., Rodríguez, E., Llorente, S., Delgado, J. Use of
standards for implementing a Multimedia Information
Protection and Management System. In Automated
Production of Cross Media Content for Multi-Channel
Distribution (AXMEDIS 2005) (Florence, Italy, Nov. 30 –
Dec. 2, 2005). IEEE Computer Society, Los Alamitos
Washington Brussels Tokyo, 2005, 197-204

[9] Torres, V., Delgado, J., Llorente, S. An implementation of a
trusted and secure DRM architecture. In On the Move to
Meaningful Internet Systems 2006: OTM 2006 Workshops
(IS'06) (Montpellier, France, Oct. 30 – Nov. 1, 2006).
Lecture Notes in Computer Science (LNCS) 4277.
Springer-Verlag, Berlin Heidelberg New York, 2006,
312-321

[10] Delgado, J., Torres, V., et al. Rights and Trust in Multimedia
Information Management. In 9th IFIP TC-6 TC-11
Conference on Communications and Multimedia Security
(CMS 2005) (Salzburg, Austria, September 19-21, 2005).
Lecture Notes in Computer Science, vol. 3677.
Springer-Verlag, Berlin Heidelberg New York, 2005, 55-64

[11] Distributed Multimedia Applications Group (DMAG),
http://dmag.upf.edu, as visited in 30.11.2006

[12] Serrão C., Dias M., Delgado J., “Bringing DRM
interoperability to digital content rendering applications”,
In CISSE05 – The International Joint Conferences on
Computer, Information, and System Sciences, and
Engineering, Univ. Bridgeport, USA, 10-20 December
2005

[13] Serrão C., Dias M., Delgado J., “Using Web-Services to
Manage and Control Access to Multimedia Content”, In the
2005 International Symposium on Web Services and
Applications (ISWS05), Las Vegas, USA, 2005

[14] Serrão C., Dias M., Kudumakis P., “From OPIMA to MPEG
IPMP-X - A standard’s history across R&D projects”, In
“Special Issue on European Projects in Visual
Representation Systems and Services”, Image
Communications, Elsevier, 2005

[15] Serrão C., Serra A., Dias M., Delgado J., “Protection of
MP3 Music Files Using Digital Rights Management and
Symmetric Ciphering”, Proceedings of the 2nd
International Conference on Automated Production of
Cross Media Content for Multi-channel Distribution
(AXMEDIS2006), Leeds, UK, 13-15 December, 2006

[16] Serrão C., Fonseca P., Dias M., Delgado J., “The Web
Services growing importance for DRM interoperability”, In
Proceedings of the IADIS International Conference
Internet/WWW (ICWI2006), Murcia, Spain, 5-8 October,
2006

[17] Serrão C., Marques J., Dias M., Delgado J., “Open-source
software as a driver for digital content e-commerce and
DRM interoperability”, In Proceedings of the
Europe-China Conference on Intellectual Property in
Digital Media (IPDM06), Shangai, China, 18-19 October,
2006

Carlos Serrão received his B.Sc. (5
years degree) in Management and
Computer Science from ISCTE (Portugal)
in 1996 and his M.Sc. from ISCTE in 2001
(Information Systems Management). He is
currently lecturing at ISCTE and
participates in several national and
international R&D projects and on
standardization initiatives. Current research

interests involve information security, public-key infrastructures,
secure access to multimedia content, access control and digital
rights management. Author and co-author of several papers both
in Portuguese and international conferences. Co-author of
multiple European project deliverables. Author of several books
about PHP.

Victor Torres received his B.Sc. in
Telecommunication Engineering from
Universitat Politècnica de Catalunya
(Spain) in 2003 and his M.Sc. from
Universitat Pompeu Fabra (Spain) in 2005.
Since 2003 he is a member of the
Distributed Multimedia Applications
Group (DMAG) research group. He has
participated in the standardization of
MPEG-21 and in several European

projects (IP and NoE) in the area of digital rights management
(DRM). His research interest includes digital rights management
architectures, security, multimedia content and distributed
applications.

Jaime Delgado has a Ph. D. in
Telecommunication Engineering since
1987. Telecommunication Engineer since
1983. Since September 2006, Professor at
the Computer Architecture Department of
the Universitat Politècnica de Catalunya
(UPC) in Barcelona (Spain). Previously,
Professor of Computer Networks and
Computer Architecture at the Technology

Department, Universitat Pompeu Fabra (UPF), also in Barcelona,
since 1999. Head and founder of the Distributed Multimedia
Applications Group (DMAG) of the UPF and the UPC. Project
Manager of several European and national research projects in
the areas of electronic commerce, Digital Rights Management,
metadata, multimedia content, security and distributed
applications. Active participation, since 1989, in International
standardisation, as editor of standards and chairman of groups in
ISO/IEC, EWOS, ETSI, ITU-T and CEN/ISSS. Evaluator and
reviewer for the European Commission in different research
programs since 1989. Advisor for the Spanish Ministry of
Science. Author of more than 100 published papers and books,
and member or chairman of many Conference International
Programme Committees.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006

303

Miguel Dias holds a PhD (1998) in
Sciences and Information Technologies,
field of Computer Graphics and
Multimedia, at ISCTE. Holds a Msc
(1988) in Electrical and Computer
Engineering, area of Electronics, at
IST-UTL, Instituto Superior Técnico,
Universidade Técnica de Lisboa
(Technical University of Lisbon). Holds a
B.Sc. (1985) in Electrical Engineering,

field of Telecommunications and Electronics, at IST-UTL.
Director of MLDC, Microsoft Language Development Center
(since November 2005) Associated professor of the Department
of Sciences and Information Technologies at ISCTE; Past
President of ADETTI; Past Vice-President since 1988. Lectures
undergraduates and graduates at ISCTE in variety of courses. His
main research interests are: Multimodal User Interfaces, Speech
and Natural Language Computer Graphics namely, Augmented
and Mixed Reality, Digital Rights Management, JPEG2000
Digital Image Standard, Computer Vision. He is a member of the
editorial board of the on-line Virtual Journal, and of the
Eurographics Computer Graphics Educational Materials Source,
all dealing with Computer Graphics. He is the Vice-President of
the Eurographics Portuguese Chapter and he is member of
several Programme Committees of National and International
conferences in Computer Graphics, Virtual and Augmented
Reality. He is regularly commissioned by the EC for R&D
project evaluations and reviews. Since 1992, he has participated
in National and International R&D International research projects.
Author of 1 patent and more than 90 papers in national and
international conferences and journals, being 17 indexed in ISI.
Co-author of more than 70 European project deliverables.

