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Dual Polarization Discrete Changes Model of
Inter-core Crosstalk in Multi-core Fibers

Ricardo O. J. Soeiro, Tiago M. F. Alves, and Adolfo V. T. Cartaxo

Abstract—The discrete changes model (DCM) of inter-core
crosstalk (ICXT) in weakly-coupled homogeneous multi-core
fibers (MCFs) is generalized to a dual polarization (DP) scheme.
This model provides theoretical expressions for the two polariza-
tion fields of the ICXT at the MCF output. Therefore, it may
be of particular interest in the design of direct-detection MCF
systems where the photodetected ICXT results mainly from the
beating between the ICXT field at the MCF output and the
carrier of the interfered core. The DP-DCM is validated by
comparison of the mean ICXT power and ICXT field amplitude
estimates with the ones obtained with a rigorous, yet much
more computationally demanding, model based on the coupled
local mode theory (CLMT). Good agreement between the mean
ICXT power estimates obtained with the DP-DCM and CLMT
is observed when the inter-core coupling coefficient variation
along the MCF is small. Good agreement is also observed when
comparing the probability density functions of the ICXT field
amplitude.

Index Terms—multi-core fibers, crosstalk, discrete changes
model, coupled local mode theory, dual polarization.

I. INTRODUCTION

HOMOGENEOUS multi-core fibers (MCFs), whose cores
have similar properties, have been reported as an attrac-

tive medium for signal transmission [1], [2]. However, ho-
mogeneous MCFs suffer from significant inter-core crosstalk
(ICXT) [2]. The ICXT can be reduced by appropriate MCF
design, e.g., by increasing the distance between cores, which
has the disadvantage of reducing the core count, or by en-
veloping each core in a trench [1]. Such constraints fueled
the proposal of several ICXT estimation models that take
into account the parameters of the MCF. In [3], a discrete
changes model (DCM), based on the coupled mode theory, was
proposed to estimate the ICXT while assessing its dependence
on the fiber bending, twist and length. The ICXT was re-
ported to result mostly from the discrete contribution of phase
matching points (PMPs), i.e. the points along the longitudinal
propagation direction for which the difference between the
effective refractive index of the interfering and interfered cores
is zero [3]. In [2] and [4], the DCM was upgraded to include
the dependence on the modulation frequency and difference
between the dispersion parameters of the cores, respectively.
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The interest in upgrading the DCM to make it a more general
model can be attributed to its computational efficiency when
compared to models that rely on solving the coupled-mode
equations numerically. In particular, the number of PMPs
required to estimate the ICXT with the DCM is much smaller
than the number of steps required to solve the coupled-mode
equations numerically [5]. The models proposed in [3]-[5] for
the ICXT field deal with a single polarization scheme. In [6],
the ICXT is modeled by a rigorous coupled local mode theory
(CLMT), accounting for the core birefringence. However, the
CLMT estimates are much more computationally demanding
when compared to the DCM, owing to the necessity of solving
the CLMT equations numerically. In [7] and [8], the mean
ICXT power is estimated from analytical expressions based on
the average power coupling coefficients. This approach allows
for quick mean ICXT power estimates but, unlike the models
reported in [3]-[6], it does not allow to model the probability
density functions (PDFs) of the time-varying ICXT field and
analyze the correlation between the in-phase and quadrature
components of the ICXT field.

In this paper, the DCM proposed in [5] is generalized to
a dual polarization (DP) scheme, for weakly-coupled MCFs.
This model enables obtaining the two polarization ICXT fields
at the MCF output and is particularly interesting for the
design of direct-detection MCF systems, in which the time-
varying photodetected ICXT results mainly from the beating
between the ICXT field component originated from the data
signal of the interfering cores and the optical carrier field
of the interfered core [9]. The DP-DCM is validated by
comparing the mean ICXT power and PDFs of ICXT field
with the ones obtained from the CLMT, which is much more
computationally demanding.

II. DCM FOR A DUAL-POLARIZATION SCHEME

In this section, a DP-DCM of ICXT is proposed. In Fig. 1,
a conceptual illustration of the DP-DCM is shown. Linear
propagation along a weakly-coupled two-core MCF is consid-
ered, where m and n are the interfering and interfered cores,
respectively. A linear combination of the field amplitudes
in two perpendicular polarization directions, x and y, at
the MCF input is considered. The slowly varying complex
amplitude of the field at the input of core m, Am(z=0),
where z is the longitudinal propagation direction, is distributed
between the two directions x and y. The power distribution
between the polarization directions is controlled by ζ∈{0, 1}
such that Am,x(0)=

√
ζ·Am(0) and Am,y(0)=

√
1− ζ·Am(0).

Fx,x, Fx,y, Fy,x, Fy,y are the functions that model the ICXT
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Fig. 1: Conceptual illustration of the DP-DCM.

from the input of core m to the output of core n, including
the impact of the MCF parameters such as the fiber bending
and twisting. In particular, Fx,x and Fy,x model the ICXT
from polarizations x and y of core m to the polarization x
of core n, respectively, and Fx,y and Fy,y model the ICXT
from polarizations x and y of core m to the polarization y
of core n, respectively. When no power is injected in core n,
An,x(L) and An,y(L), with L the MCF length, are the ICXT
fields of each polarization direction at the output of core n,
which, from Fig. 1, are given by:

An,x(L) =Am(0)·[
√
ζ·Fx,x +

√
1− ζ·Fy,x] (1)

An,y(L) =Am(0)·[
√

1− ζ·Fy,y +
√
ζ·Fx,y] (2)

From Eqs. (1) and (2), the mean ICXT power of each
polarization direction is given by:

〈XTx〉=
〈
|An,x(L)|2

|Am(0)|2

〉
=ζ·〈|Fx,x|2〉+ (1− ζ)·〈|Fy,x|2〉+

2<{〈Fx,x·F ∗y,x〉·
√
ζ(1− ζ)} (3)

〈XTy〉=
〈
|An,y(L)|2

|Am(0)|2

〉
=ζ·〈|Fx,y|2〉+ (1− ζ)·〈|Fy,y|2〉+

2<{〈Fy,y·F ∗x,y〉·
√
ζ(1− ζ)} (4)

where 〈.〉 is the expected value, <{.} is the real part operator,
and ∗ is the complex conjugate operator.

Three conditions, used in this section to determine the
functions F and validated in section III, are assumed: (i)
due to random polarization mixing, the mean ICXT power
of each polarization direction at the MCF output is the same
(〈XTx〉=〈XTy〉), regardless the power distribution at the
MCF input (∀ζ∈[0, 1]); (ii) the mean ICXT power of core
n, 〈XT 〉=〈XTx〉+〈XTy〉, is the same ∀ζ∈[0, 1]; (iii) the in-
phase and quadrature components of An,x(L) and An,y(L)
are uncorrelated.

In the extreme case where all the power is injected in one
of the polarizations at the MCF input (ζ = {0, 1}), Eqs. (3)
and (4) can be written as:

〈XTx〉 =

{
〈|Fx,x|2〉, ζ = 1

〈|Fy,x|2〉, ζ = 0
〈XTy〉 =

{
〈|Fx,y|2〉, ζ = 1

〈|Fy,y|2〉, ζ = 0

(5)

From Eq. (5), the mean ICXT power of core n is:

〈XT 〉 =

{
〈|Fx,x|2〉+ 〈|Fx,y|2〉, ζ = 1

〈|Fy,y|2〉+ 〈|Fy,x|2〉, ζ = 0
(6)

From the assumption that 〈XTx〉=〈XTy〉, Eq. (5) yields
〈|Fx,x|2〉=〈|Fx,y|2〉 and 〈|Fy,x|2〉=〈|Fy,y|2〉. In addition, if
〈XT 〉 is the same for ζ={0, 1}, then from Eqs. (5) and (6)
〈XT/2〉=〈XTx〉=〈XTy〉=〈|Fa,b|2〉, ∀a, b∈{x, y} and ζ =
{0, 1}. The condition 〈XT/2〉=〈XTx〉=〈XTy〉 is valid for
ζ∈[0, 1] as long as 〈Fx,x·F ∗y,x〉=〈Fy,y·F ∗x,y〉=0, i.e. as long
as Fx,x and Fy,x, as well as Fy,y and Fx,y , are uncorrelated,
which, by substituting Eq. (5) on the left-hand side of Eqs. (3)
and (4), yields 〈XT/2〉=〈XTx〉=〈XTy〉=〈|Fa,b|2〉,∀ζ∈[0, 1].

A complete description of the model entails also condi-
tion (iii). The ICXT polarization fields can be written as
An,x=An,x,I+jAn,x,Q and An,y=An,y,I+jAn,y,Q, where the
MCF length is omitted for the sake of simplicity, and I and Q
refer to the in-phase and quadrature components, respectively.
The correlation between An,x and An,y is given by 〈(An,x,I+
jAn,x,Q)·(An,y,I − jAn,y,Q)〉. From Eqs. (1) and (2) it
can also be expressed as |Am(0)|2·[

√
ζ
√

1− ζ(〈Fx,x·F ∗y,y〉+
〈Fy,x·F ∗x,y〉)+ζ·〈Fx,x·F ∗x,y〉+(1−ζ)·〈Fy,x·F ∗y,y〉]. Thus, one
way to guarantee that the in-phase and quadrature components
of An,x and An,y are uncorrelated regardless the value of
ζ is to impose that the functions F shown above are un-
correlated, i.e. 〈Fx,x·F ∗y,y〉 = 〈Fy,x·F ∗x,y〉 = 〈Fx,x·F ∗x,y〉 =
〈Fy,x·F ∗y,y〉=0.

The functions F can be obtained from Eq. (33) of [5],
for a single polarization DCM, and generalized to the DP-
DCM scheme by considering that the impact of the terms
referring to the polarization directions is averaged due to
random polarization mixing:

Fa,b =
−j√

2
· e−jβnL·K ′nm

N∑
k=1

e−j(βm−βn)·zke−jφ
(a,b)
nm,k (7)

where N is the number of PMPs, K
′
nm is the discrete coupling

coefficient obtained from Eq. (28) of [5] while substituting
the inter-core coupling coefficient, κnm, by the average inter-
core coupling coefficient of the polarizations, κnm = (κ

(x)
nm +

κ
(y)
nm)/2. βm and βn are the average of the propagation

constants of the polarizations in cores m and n, respectively,
i.e., βm = (β

(x)
m + β

(y)
m )/2 and βn = (β

(x)
n + β

(y)
n )/2 [10].

φ
(a,b)
nm,k is a random variable, uniformly distributed between 0

and 2π, that models random variations of the fiber parameters
[3]. The functions F are uncorrelated imposing that φ(a1,b1)nm,k

and φ(a2,b2)nm,k are uncorrelated for a1 6= a2 or b1 6= b2. From Eq.
(7) and Eq. (34) of [5], the mean ICXT power can be easily
estimated from: 〈XT 〉 = 2〈XTx〉 = 2〈XTy〉 = N |K ′nm|2.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the model proposed in section II is
validated through numerical simulation. In order to vali-
date the DP-DCM, we start by validating the three condi-
tions introduced in section II, which led to the conclusion
that 〈|Fx,x|2〉=〈|Fy,x|2〉=〈|Fy,y|2〉=〈|Fx,y|2〉. These condi-
tions are validated using the rigorous CLMT model [6]. The
coupling equations of the CLMT shown in [6] are solved
numerically for linear propagation to estimate the longitudinal
evolution of the slowly varying electric polarization field in
each core. Each core is modeled as series of birefringent
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segments where, at the beginning of each segment and MCF
output, the rotation matrix shown in Eq. (2) of [11] is
applied to the polarization fields of each core to guarantee
random polarization coupling and, consequently, similar mean
power distribution in the two polarization directions. Random
temporal fluctuations and longitudinal fluctuations of the bire-
fringence are considered as in [6]. In particular, the mean linear
birefringence of each core is fixed between 10−7, low birefrin-
gent (LB) core, and 10−4, high birefringent (HB) core [6], and
the birefringence standard deviation is 10−7. The fiber twisting
and bending is modeled by Eq. (19) of [6]. The inter-core
coupling coefficient has a longitudinal fluctuation given by
Eq. (12d) in [6]. The main parameters of the MCF considered
in this study are shown in Table I. The number of segments
considered for each core is 40 to guarantee a considerable
amount of random birefringent segments along the fiber, and
the mean ICXT power at the MCF output is estimated over
500 samples of MCF realizations. It was concluded that, with
the parameters of Tab. I and perfectly homogeneous MCF, a
larger number of segments or realizations leads to similar mean
ICXT power estimates. For each realization, the birefringence
of each segment is obtained from a Gaussian distribution [6].

TABLE I: 2-core MCF main parameters.

Parameter Value
Core radius 4 µm

Refractive index of cladding 1.4381
Refractive index of core n (nn) variable

Refractive index of core m (nm) 1.4453
Mean linear birefringence variable

Linear birefringence standard deviation 10−7

Distance between cores n and m (Λnm) 30 µm
Bending radius variable

Fiber twist frequency (fT ) 0.1 turns/m
Fiber length (L) 200 m

Wavelength 1550 nm

The mean ICXT power can be written in terms of the vari-
ance of the ICXT field amplitude of the I and Q components
of the polarization directions, σ2

m,i, where m = {x, y} and
i = {I,Q}, 〈XTx〉=σ2

x,I + σ2
x,Q, and 〈XTy〉=σ2

y,I + σ2
y,Q.

Thus, 〈XT 〉=σ2
x,I+σ2

x,Q+σ2
y,I+σ2

y,Q [12]. Fig. 2 shows σ2
m,i

for the two-core MCF and ζ = {0, 0.5, 1}, as a function of
the mean linear birefringence, for a bending radius of 0.2 m.
From Fig. 2, it is concluded that the variance of the ICXT
field amplitude is similar for all polarization directions, I
and Q components, mean linear birefringence and ζ, with
discrepancy not exceeding 1 dB. It follows from these results
that conditions (i) and (ii), introduced in section II, are
valid, showing consistency for a wide range of mean linear
birefringence. Similar conclusions were drawn for a 4-core
MCF with a central core interfered by three outer cores. The
PDFs of the I and Q components of the ICXT field amplitude
of the two polarization directions are shown in Fig. 2 as insets,
for ζ=1 and mean linear birefringence of 2×10−7. Those
insets show that the PDFs of the I and Q components of
the ICXT field amplitude of the two polarization directions
are Gaussian distributed, as assumed in [7], [8], and that the
DP-DCM provides estimates of the ICXT field amplitude in
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Fig. 2: Variance of the ICXT field amplitude, σ2
m,i, as a function

of the base-10 logarithm of the mean linear birefringence, obtained
by the CLMT. The PDFs of the I and Q components of the ICXT
field amplitude of the two polarization directions, obtained through
simulation, are shown as insets for ζ=1 and mean linear birefringence
of 2×10−7. (a) I component (CLMT); (b) I component (DP-DCM);
(c) Q component (CLMT); (d) Q component (DP-DCM).

good agreement with the CLMT. Similar conclusions were
drawn for other bending radii, mean linear birefringences and
ζ. It should be stressed that the DP-DCM proposed in this
work allows evaluating the ICXT field amplitude of each
polarization at the MCF output by using Eqs. (1), (2) and
(7). In contrast, the analytical expressions reported in [7], [8]
only allow to obtain the ICXT power. It was also observed
that the in-phase and quadrature components of An,x(L) and
An,y(L), obtained with the CLMT, are Gaussian distributed
and uncorrelated, for different ζ, bending radii and mean linear
birefringence. Thus, condition (iii) is validated.

Fig. 3 shows the mean ICXT power as a function of the
bending radius, for a two-core perfectly homogeneous MCF
(nn = nm). The results of Fig. 3 show that the mean ICXT
powers obtained with the CLMT model for the LB and HB
cases are similar, which agrees with the results of Fig. 2. More
importantly, excellent agreement between the mean ICXT
power estimates of the CLMT and DP-DCM is observed,
with the discrepancy between the mean ICXT power estimates
not exceeding 0.5 dB. This means that that the DP-DCM is
applicable, in perfectly homogeneous MCFs, to a wide range
of core birefringence and bending radii. Similar conclusions
were also obtained for fiber twists of 0.01 and 0.05 turns/m.

Fig. 4 shows contours of the mean ICXT power, in
decibel, for a two-core real homogeneous MCF [5], with
nn = nm(1 + ∆n

(N)
nm ). ∆n

(N)
nm is the normalized difference of

refractive indexes between the cores n and m, i.e. ∆n
(N)
nm =

(nn − nm)/nm. Very good agreement between the DP-DCM
(see Fig. 4(a)) and the CLMT (see Fig. 4(b)) occurs also for
real homogeneous MCFs, with the discrepancy between the
mean ICXT power obtained with the models not exceeding
0.6 dB. This small discrepancy is achieved for small variations
of κnm along the longitudinal direction of propagation, z,
induced by fiber bending and twisting. Further investigation
revealed that the discrepancy between the mean ICXT power
estimates obtained from the DP-DCM and the CLMT can
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Fig. 4: Contours of the mean ICXT power, in decibel, as a function
of the normalized difference of refractive indexes between cores
(∆n

(N)
nm ), in percentage, and bending radius. A mean birefringence

of 2×10−7 is considered and ζ = 1.

increase to 3-4 dB when the variation of κnm along z is
not negligible. In this case, the ICXT estimates of the DP-
DCM are not accurate and generalization of the model to
take into account the dependence of κnm on z is required.
This study is left for future work. It should be noted that the
bending radii shown in Figs. 4(a) and 4(b) are smaller than
the ones of Fig. 3 because the critical bending radius, Rth,
i.e. the maximum bending radius for which the DCM is valid,
is smaller for larger |∆n(N)

nm |, as Rth = Λnm/|∆n(N)
nm | [3],

[5]. Thus, we have Rth = 0.15 m, for |∆n(N)
nm | = 0.02%

and Λnm = 30 µm. It was concluded that, if a 4-core MCF
with 3 interfering cores with small κnm variations along z and
Rth = 0.25 m is considered, the discrepancy of mean ICXT
power estimates obtained with the CLMT and DP-DCM do
not exceed 1 dB for bending radii not exceeding 0.21 m. For
bending radii closer to Rth, the discrepancy may exceed 1 dB.

The results obtained with the CLMT model required solving
numerically a system of differential equations with a small
step. A maximum step of 10−4 m was considered in this
paper, although it can be of the order of the wavelength if
larger twisting rates are considered. In general, the number
of steps is given by L/∆z, where ∆z is the step size. In
comparison, the number of PMPs used in the DP-DCM, given
by 2fTL, is much smaller. For example, with ∆z = 10−4 m,
fT = 0.1 turns/m and L = 200 m, 2×107 steps are required.
The mean ICXT power estimates obtained with such a large
number of steps may take several days to obtain. In contrast,

only 40 PMPs are used in the DP-DCM, under the same
conditions, which allows for very fast estimates. Thus, the
DP-DCM is much less computationally demanding, allowing
for quick ICXT estimates without compromising accuracy.

IV. CONCLUSION

The DCM for ICXT estimation in weakly-coupled MCFs
was generalized to a DP scheme and validated by comparison
of the mean ICXT power and PDFs of the ICXT field
amplitude estimates with the ones obtained with a more
rigorous, yet much more computationally demanding, model
based on the CLMT. Good agreement between the estimates
of the mean ICXT power and of the PDFs of the ICXT field
amplitude components of the polarization directions obtained
from the DP-DCM and from the CLMT is observed for a small
inter-core coupling coefficient variation along the MCF. The
DP-DCM may be of particular interest for the performance
analysis of MCF transmission systems employing direct-
detection receivers, in which the time-varying photodetected
ICXT results mainly from the beating between the ICXT field
component of the interfering cores and the optical carrier field
of the interfered core.
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