
RESEARCH ARTICLE

Generic, scalable and decentralized fault

detection for robot swarms

Danesh Tarapore1,2*, Anders Lyhne Christensen3,4,5, Jon Timmis2

1 School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom,

2 York Robotics Laboratory and the Department of Electronic Engineering, University of York, Heslington,

York, United Kingdom, 3 Bio-inspired Computation and Intelligent Machines Lab, Lisbon, Portugal, 4 Instituto

Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal, 5 Instituto de Telecomunicações, Lisbon, Portugal

* d.s.tarapore@soton.ac.uk

Abstract

Robot swarms are large-scale multirobot systems with decentralized control which means

that each robot acts based only on local perception and on local coordination with neighbor-

ing robots. The decentralized approach to control confers number of potential benefits. In

particular, inherent scalability and robustness are often highlighted as key distinguishing

features of robot swarms compared with systems that rely on traditional approaches to mul-

tirobot coordination. It has, however, been shown that swarm robotics systems are not

always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential

to give systems the capacity to actively detect and accommodate faults. In this paper, we

present a generic fault-detection system for robot swarms. We show how robots with limited

and imperfect sensing capabilities are able to observe and classify the behavior of one

another. In order to achieve this, the underlying classifier is an immune system-inspired

algorithm that learns to distinguish between normal behavior and abnormal behavior online.

Through a series of experiments, we systematically assess the performance of our

approach in a detailed simulation environment. In particular, we analyze our system’s

capacity to correctly detect robots with faults, false positive rates, performance in a foraging

task in which each robot exhibits a composite behavior, and performance under perturba-

tions of the task environment. Results show that our generic fault-detection system is robust,

that it is able to detect faults in a timely manner, and that it achieves a low false positive rate.

The developed fault-detection system has the potential to enable long-term autonomy for

robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire

of upcoming applications in the area of distributed intelligent automation.

Introduction

Robot swarms have the potential to take on numerous real-world tasks [1]. In particular, tasks

that require sensing or action over large areas or at a high spatiotemporal resolution, such as

warehouse management, agriculture automation and environmental monitoring, are candi-

dates for application of future swarm robotics systems. In many cases, however, a system must
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be dependable and display a high degree of tolerance to faults before it can be deployed in real-

world scenarios.

The autonomous detection of faults in robotic systems is a challenging problem. For robot

swarms operating in real-world scenarios, we can not rely on any external observatory infra-

structure to directly detect presence of faults. Rather, the robots of the swarm have to employ a

more localized solution and execute fault-detection software onboard. The software must rely

on readings from the robots’ limited, imperfect sensors, to infer the presence of robots whose

behavior deviates from the normal or expected behavior. Such fault detection systems can be

divided into two categories: endogenous fault detection and exogenous fault detection. The aim

of endogenous fault detection is to enable a robot to detect the presence of faults in itself. Sev-

eral approaches to endogenous fault detection for autonomous robots have been proposed: in

model-based approaches, the actual behavior is compared to the predictions of either a single

model of normal behavior, or to a set of models of the robot in different operational states [2].

In data-driven approaches, normal behavior and faulty behavior are learned based on observa-

tions [3]. It has been demonstrated that endogenous fault detection approaches can enable a

robot to detect the presence of faults such as broken sensors and actuators, see [3–6] for exam-

ples. However, catastrophic faults, such as a malfunctioning power source or issues with the

onboard computational hardware usually cannot be detected endogenously as they render the

robot completely non-operational.

In multirobot systems, robots are not limited to detecting faults endogenously: robots also

have the opportunity to perform exogenous fault detection, that is, to detect the presence of

faults in one another. Exogenous fault detection has the potential to detect any type of fault,

including catastrophic faults. When endogenous fault detection and exogenous fault detection

are combined, it is sometimes referred to as multi-layered fault detection [7].

For tightly coupled multirobot systems, in which coordination is based on negotiation and

global knowledge, fault detection and fault accommodation can be an integral part of task allo-

cation. In ALLIANCE [8], for instance, robots communicate or observe one another’s progress

and allocate tasks based on priorities. Robots get impatient when there is a lack of progress in

critical tasks, and robots that are unsuccessfully executing a task, potentially due to a fault,

become increasingly likely to abandon the task over time. In market-based approaches [9, 10],

unresponsive robots do not participate in task negotiation and are therefore not allocated to

tasks, and robots underperforming due to faults may lose their assignment or be reassigned

[11]. However, scalability and communication issues, along with the reliance on global knowl-

edge, prevent such approaches from being applied in robot swarms.

In some of the simplest approaches to decentralized fault detection in robot swarms, robots

periodically communicate, either explicitly [12] or implicitly [13], that they are still alive and

operational. Absence of communication is indicative of a fault. Such an approach to fault

detection in robot swarms is one of the few that have been demonstrated on real robotic hard-

ware [13], but only complete failures (robot death) were considered.

Several model-based approaches to fault detection in decentralized multirobot systems

have been studied. In [14], for instance, an approach in which distributed fault detection based

on a bond-graph modeling framework for robots in a leader-follower formation was proposed.

Residuals, defined as the difference between model-predicted and actual measurement out-

puts, were used for the detection. To compensate for the noise and model imperfections, actual

trajectories were tracked using a scheme based on distributed, decentralized, extended Kalman

filters [15]. Millard et al. [16] proposed a fault detection approach for robotic swarms, in

which robots use onboard simulation to predict the behavior of nearby robots. Although the

approach has not yet been demonstrated on a swarm of real robots, exogenous, forward simu-

lation of behavior for a single real robot was studied in [17].

Fault detection for robot swarms
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Different data-driven approaches to fault detection in multirobot systems have been pro-

posed. In [7], for instance, robots that meet one another share their respective estimates on the

relative distance and direction to one another. Based on a comparison, robots can infer the

presence of faults in their onboard sonars and compass sensor. In [18], faults are inferred

based on a comparison of task performance rather than on behavior or specific sensor read-

ings. The rationale is that a fault would compromise a robot’s ability to perform the task, and

consequently its individual performance. In the approach, robots record their individual per-

formance and transmit it to nearby robots. To detect faults, each robot uses a statistical classi-

fier to determine if its performance is an outlier with respect to the performance of recently

encountered robots. In [18], the approach is assessed on robots performing a foraging task,

and it is demonstrated that faulty robots are detected even in environments with heteroge-

neous resource distributions and in environments in which the concentration of forageable

resources change over time.

Flexibility and adaptivity are important features in fault-detection systems, in particular, for

systems deployed in unknown and changing environments. In tasks where frequent perfor-

mance assessment is possible, local comparisons of performance indicators may be sufficient to

detect faulty units due to their inferior performance, such as in [18] discussed above. However,

when no easily quantifiable and frequently updated performance indicators are available, such

approaches cannot be applied. Model-based approaches, such as [14], and Millard’s et al.’s sim-

ulation-based approach [16], are not applicable in scenarios in which the robots’ behavior

changes over time due to adaptation or changing environmental conditions, given that detailed

knowledge about correct robot behavior is assumed to be available prior to deployment.

A recently proposed approach to fault detection was presented in [19], where the presence

of faults is inferred based on the detection of abnormal behavior. For the classification of nor-

mal vs. abnormal behaviors, the crossregulation model (CRM) [20–22] was used. The CRM

describes the dynamics of effector T-cell populations and regulatory T-cell populations during

interactions with antigen presenting cells. In the approach presented [19], behavior was repre-

sented as a fixed-length vector of binary behavioral features. The notion of normal and abnor-

mal behavior was learned online, and it was demonstrated that the fault-detection system

continued to display a high level of performance even when behaviors changed over time [19]

and when displaying composite behaviors [23]. While promising, the approach has so far only

been assessed in an simulated abstract toroidal environment, where the robots were idealized

point-sized entities with unrestricted sensing capabilities.

In this paper, we present and study a fault detection approach based on CRM-based abnor-

mality detection for robot swarms. The approach takes into account the limited sensing and

actuation capabilities of a real swarm robotics hardware platform, the e-puck [24]. Our study

presents three novel contributions, namely: (i) a distributed behavior observation model for

large-scale spatially distributed robot swarms, that allow a robot to characterize the behavior of

its neighboring robots using limited sensing capabilities and sporadic observations; (ii) fault

detection that can be parameterized to balance the trade-off between latency in identifying

faulty robots in the swarm, and the number of false-positive incidents; and (iii) a distributed

swarm coalition algorithm to transcend the decisions made by individual robots on their

neighbors to a robust swarm-level decision on the normal/faulty status of the robot, crucially

required to provide collective fault-recovery strategies for the swarm.

Materials and methods

In this section, we describe our exogenous fault-detection approach for large-scale robot

swarms (physical parameters of robot swarm in Table 1). The process of fault detection is

Fault detection for robot swarms
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divided into the following three phases (see Fig 1): (i) robots observe and characterize the

behavior of their neighbors over a period of time, and estimate the corresponding behavioral

features; (ii) every robot classifies the observed behaviors as normal/abnormal, where abnor-

malities are consequent to faults in the robot; and (iii) the robots form voting coalitions to con-

solidate their individual-level decisions on the detected behavioral abnormalities. The three

phases of robot fault detection are described below.

A. Robot behavior characterization

In the first phase of fault detection, every robot of the swarm executes Algorithm 1 (Phase A)

at the start of each control cycle to observe the behavior of its neighbors over a period of time,

and characterize their behaviors. Individual characterization is followed by an exchange of

behavioral characterizations between neighboring robots, and a voting scheme to select the

most likely characterization. The characterization of robot behavior is divided into three differ-

ent classes: (i) the robot’s immediate environment (sensors), (ii) the robot’s actions (actuators),

and (iii) the robot’s response to events (sensorimotor interactions). Behavioral features from

each class are used to characterize an observed robot’s behavior, with each feature encoded in

Boolean form (present = 1, absent = 0). Features are concatenated to form a binary string, the

feature vector. In our simulations, a feature vector comprises the concatenation of six features

(F1, F2, F3, F4, F5, F6), with two features from each class.

Table 1. Parameters of the robot swarm.

Parameter Description Value

|R| Number of robots in swarm 20

j~vmaxj Maximum linear speed of a robot 5 cm/s

j~vj Linear speed of a robot –

_omax Maximum change in heading of a robot 1.9 radians/s

_o Change in heading of a robot –

h Robot inter-wheel distance 5.3 cm

Δt Length of control-cycle 0.1 s

Ws Length of the time window for estimating change in heading of observed robot 5 s

Wl Length of the time window for feature-vector estimation of observed robot 10 s

https://doi.org/10.1371/journal.pone.0182058.t001

Fig 1. Overview of our distributed fault detection approach. A: Robots observe the behavior of their neighbors, and estimate the corresponding

behavioral features. B: Each robot executes an individual instance of the CRM to detect abnormal behaviors in the observations. C: Robots of the swarm form

voting coalition on the detected abnormalities to consolidate their individual-level decisions.

https://doi.org/10.1371/journal.pone.0182058.g001
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Algorithm 1 A robot’s control loop (fault-detection algorithm).

1: time 0 s
2: whiletime < ExperimentDurationdo
3: Incrementtime
4: {PhaseA: Estimatebehaviorsof neighboring robots,using the range-

and-bearing sensors}
5: Estimatebehavioral featurevectorsof all observedrobots(Eqs (1)–

(19),Algorithm2).
6: Communicatecharacterizedfeaturevectorsto neighboringrobots,and

similarlyreceivefeaturevectorsestimatedby neighbors(data-packet
details,see Fig 2a).

7: Deletefeaturevectorsfrom observations older than Wl s.
8: For each observedrobot rj, improvethe estimateon its featurevector

FVj, usinga simplemajorityvote on all receivedfeature-vectorinfor-
mationon rj.

9: {PhaseB: Classifybehaviorsof observedrobotsas normal/abnormal}
10: Executethe CRM instanceon all characterizedfeaturevectors(Algo-

rithm3).
11: if time partitionedin Wl s� Wl − 1s then
12: For each observedfeaturevector,updatethe numberof timesthe

observedfeaturevectoris reportednormal,and abnormal,by the CRM.
13: end if
14: {PhaseC: Form inter-robotcoalitionon detectedrobot abnormalities}
15: if time partitionedin Wl s > Wl − 1s then

Fig 2. Types of data packets for inter-robot communication. A depiction of the data packet (4 bytes) transmitted by the range-and-bearing device of the

robot. The first byte (shaded) identifies the header of feature vectors of observed robots, normal/abnormal votes on estimated feature vectors, and coalition

information on observed robots. The remaining three bytes comprise the actual message, corresponding to each observed robot (feature vector and coalition

packet types), and each observed feature vector (voter packet type).

https://doi.org/10.1371/journal.pone.0182058.g002
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16: Receivecoalitionpacketfrom neighbors(Fig 2c).
17: Updatelocal coalitionlist to includerobotsidentifiedin received

coalitionpackets.
18: For each observedrobot not on localcoalitionlist, communicatevote

on its behavioras normal/abnormal,basedon simplemajorityon num-
ber of past instancesit was detectednormal/abnormal.Similarly,
receivecommunicatedvotes from neighboringrobots(Fig 2b).

19: For each observedrobot not in localcoalitionlist, if numberof
receivedvotes exceeds5 (determinedempirically),add robotto
localcoalitionlist.

20: Send updatedcoalitionlist to neighbors.
21: end if
22: if time is at end of partitionedWl s time itervalthen
23: Clearthe local coalitionlist.
24: end if
25: end while

To estimate the behavioral features, we define:

1. R: the swarm of robots, ri, i = 1. . .|R|, with 2π radians field of view of the onboard range-

and-bearing sensors. Readings are noisy and have limited range of 1 m.

2. Oi(τ): a set of observable robots rj of ri, such that rj 2 R and rj is located within sensing

range of ri at time τ.

a. Observed range dij: 8rj 2 Oi(τ) the range of observed robot rj from robot ri, with dij 2
[0, 1] m.

b. Observed bearing fij: 8rj 2 Oi(τ) the bearing of observed robot rj from robot ri, with fij

2 [0˚, 360˚].

1. Features on observed robot’s immediate environment. The first two features F1
i
jðtÞ

and F2
i
jðtÞ at time τ pertain to the number of neighbors of robot rj as observed by ri.

For all the robots in the swarm rk 2 Oi(t), the distance between the observed robot rj and

neighbors rk (j 6¼ k) can be estimated by robot ri using the Law of Cosines as,

djk ¼ ðd2
ij þ d

2
ik � 2dijdik cos ð�ij � �ikÞÞ

1=2
.

Using the estimated distance djk at time τ, the neighbors rk of the observed robot rj (k 6¼ j),
in the inner range ([0, 15] cm), and the outer range ((15, 30] cm) are

NiijðtÞ � frkjrk 2 OiðtÞ ^ dkj 2 ½0; 15�cmg, and NoijðtÞ � frkjrk 2 OiðtÞ ^ dkj 2 ð15; 30�cmg,
respectively. Utilizing NiijðtÞ and NoijðtÞ, the features F1

i
jðtÞ and F2

i
jðtÞ of robot rj as observed

by ri, are estimated as follows:

F1
i
jðtÞ ¼ 1 if

Pt� Wl
t¼t

H½jNiijðtÞj�
Wl

> 0:5; otherwise F1
i
jðtÞ ¼ 0 ð1Þ

F2
i
jðtÞ ¼ 1 if

Pt� Wl
t¼t

H½jNoijðtÞj�
Wl

> 0:5; otherwise F2
j
iðtÞ ¼ 0 ð2Þ

where jNiijðtÞj and jNoijðtÞj are the estimated number of neighbors of rj as observed by ri in the

inner [0, 15] cm, and outer (15, 30] cm range, respectively, at time τ. Furthermore, H[.] is the

Heaviside step function, defined as 1 if its argument exceeds 0, and 0 otherwise. At time τ, the

features F1
i
jðtÞ and F2

i
jðtÞ are set, if the robot has at least one neighbor in range [0, 15] cm and

Fault detection for robot swarms
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(15, 30] cm, respectively, for the majority of the past observation time window Wl (parameters

in Table 1).

2. Features on observed robot’s action. The next two features F3
i
jðtÞ and F4

i
jðtÞ, pertain

to the motor actions of robot rj observed by ri.
The feature F3

i
jðtÞ encodes the distance traversed by the observed robot in the past observa-

tion time window Wl. We here consider the forward kinematics of the robot, a non-holnomic

differential-drive mobile robot. The robot’s local coordinate frame is placed at the center of the

robot’s axle, and its y-axis aligned with the forward driving direction. In the local coordinate

frame, the change in robot position and heading is estimated as follows (details in [25]):

Doi ¼
� vl þ vr

h
Dt ð3Þ

Dxi ¼
vl þ vr

2
Dt cos ðoi þ Doi=2Þ ð4Þ

Dyi ¼
vl þ vr

2
Dt sin ðoi þ Doi=2Þ ð5Þ

where Δωi and (Δxi, Δyi) is the change in heading ωi and position (xi, yi), respectively, of robot

ri in the time interval Δt. Additionally, vr and vl are the current linear speeds of the right and

left wheels (in cm/s), respectively, of the robot with inter-wheel distance h.

Algorithm 2 Subroutine to compute distance Dist[ri, rj, W] traversed by robot rj over time

window W, as estimated by observer robot ri.

1: {Sensethe rangedij and bearing�ij of rj with respectto ri}

2: {Estimatethe initialposition ~P1
j
i of robotrj with respectto ri}

3: ~P1
j
i  ðdijcosð�ijÞ; dijsinð�ijÞÞ

4: {Initialize headingand displacementvectorof observerri}
5: ωi 0 and~vi  ð0; 0Þ
6: {Iterateover observationtime windowof W seconds}
7: for t = currentto current+ W do
8: {Updatethe headingof the observerrobotri (Eq (3))}
9: ωi ωi + Δωi(t)
10: {Updatethe displacement vectorof the observerrobotri (Eqs(4) and (5))}
11: ~vi  ~vi þ ðDxiðtÞ;DyiðtÞÞ
12: end for
13: {Sensethe new rangedij and bearing�ij of rj with respectto ri}

14: {Estimatefinalposition ~P2
j
i of robotrj with respectto ri}

15:~P  ðdijcosð�ijÞ; dijsinð�ijÞÞ
16: {Transformestimatedpositionto robotri localframepriorto elapsed

Ws}

17: ~P2
j
i  ðPxcosðoiÞ � PysinðoiÞ; PxsinðoiÞ þ PycosðoiÞÞ þ ~vi

18: Return jj ~P2
j
i �

~P1
j
i jj

Using the relationship between the robot’s wheel speeds and the change in its position and

heading (Eqs (3)–(5)), the distance traversed by rj as observed by ri is estimated with Algorithm

2. Subsequently, the feature F3
i
jðtÞ of robot rj as observed by ri, is estimated as follows:

Fault detection for robot swarms
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The feature F3
i
jðtÞ at time τ denotes if the robot rj, observed by ri over observation time win-

dow Wl, is moving. It is estimated as,

F3
i
jðtÞ ¼ 1 if Dist ½ri; rj;Wl� > 0:15Wlj~vmaxj; otherwise F3

j
iðtÞ ¼ 0 ð6Þ

where the function Dist[ri, rj,Wl] estimates the distance traversed by robot rj as observed by ri
over time window Wl, and with maximum linear speed j~vmaxj. The feature F3

i
jðtÞ is set at time

τ, if the distance traversed exceeds 15% of the maximum distance that may be traversed by the

robot in Wl s. The 15% threshold is set to compensate for odometric noise in estimating the

observed robot position, from the range-and-bearing sensors and motor encoders of the

observer robot.

The second motor-action feature F4
i
jðtÞ encodes the proportion of observed instances the

robot rj alters its heading during motion, as observed by robot ri. For these interactions, a

robot’s motor response corresponding to an alteration in heading during motion, is character-

ized as follows:

Mi
jðtÞ ¼

1; if
€!jðtÞ

€!max|ffl{zffl}
proprioception

�
Dist ½ri; rj;Ws�

Wsj~vmaxj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
observation

0

B
B
B
@

1

C
C
C
A
> 0:1

0; otherwise

ð7Þ

8
>>>>>><

>>>>>>:

where €!jðtÞ=€!max is the normalized angular acceleration, proprioceptively computed by robot

rj and communicated to ri. The Dist ½ri; rj;Ws�=ðWsj~vmaxjÞ is the normalized distance traversed

by rj and observed by ri, over the short time window Ws. This observed distance is used to

robustly assess that the robot rj is indeed moving, and not stuck (e.g., due to wheel slippage)

while still registering a change in heading from its wheel encoders. A motor response for robot

rj is registered by ri, asMi
jðtÞ, if the product of its normalized angular acceleration (propriocep-

tively computed by rj and communicated to ri), and distance (observed by ri), exceeds 10% of

maximum normalized value of 1. The 10% threshold is set to compensate for odometric noise

in the proprioceptively computed angular acceleration, and in the estimated distance traversed

by the observed robot.

The Bayes estimator is applied to robustly estimate the prevalence of instances an observed

robot registers a motor response during its entire operation. Consider a robot rj that during its

entire operation has a fraction of control cycles θj, in which it alters its heading during motion.

The robot ri with a limited sample of observations of rj, has to infer the posterior probability

distribution of θj.
Let the robot ri have Di

jðtÞ observations of rj at time τ, Xi
jðtÞ of which involve an observed

change in the robot’s heading:

Di
jðtÞ � fMi

jðtÞjt 2 f0 . . . tg ^ rjðtÞ 2 OiðtÞg

Xi
jðtÞ � fMi

jðtÞjt 2 f0 . . . tg ^ rjðtÞ 2 OiðtÞ ^Mi
jðtÞ ¼ 1g

ð8Þ

The likelihood function P(D|θ), i.e. the probability model believed to have generated the

observations D(τ), can be defined as a binomial distribution jDj
jXj

� �
y
jXj
ð1 � yÞ

jDj� jXj
(robot and

time index notations removed for brevity). The prior probability distribution PðyijÞ is robot ri’s
a priori belief on the instances the observed robot rj changes its heading during operation.

Fault detection for robot swarms

PLOS ONE | https://doi.org/10.1371/journal.pone.0182058 August 14, 2017 8 / 29

https://doi.org/10.1371/journal.pone.0182058


With no information on θ it can be defined as a uniform distribution, specified as beta distri-

bution Beta(α0, β0), with α0 and β0 initialized to 1.

Bayes’ theorem states,

PðyijðtÞjD
i
jð0 : tÞÞ / PðyijðtÞjD

i
jð0 : t � 1ÞÞPðDi

jðtÞjy
i
jðtÞÞ ð9Þ

where PðyijðtÞjD
i
jð0 : tÞÞ is the posterior probability distribution after taking observations into

account.

Since the prior is defined as a beta distribution, and we apply a binomial likelihood func-

tion, the posterior is derived to be a beta distribution (for details see conjugate priors of expo-

nential family [26]), specified as follows:

PðyijðtÞjD
i
jð0 : tÞÞ ¼ Betaðao þ jXi

jðtÞj; b0 þ jDi
jðtÞj � jX

i
jðtÞjÞ ð10Þ

Using the closed-form expression of the posterior distribution (Eq (10)) to compute its

expected value, the feature F4
i
jðtÞ of robot rj as observed by ri is set if the expected proportion

of instances the observed robot rj alters its heading exceeds a threshold of 5% to compensate

for stochastic variation in robot behavior.

F4
i
jðtÞ ¼ 1 if EðyjiðtÞjD

i
jð0 : tÞÞ > 0:05; otherwise F4

j
iðtÞ ¼ 0 ð11Þ

where EðyjiðtÞjD
i
jð0 : tÞÞ is the expected value of the posterior distribution at time τ, defined

for Beta(α, β) as α/(α + β).

3. Features on observed robot’s sensorimotor interactions. The final two features,

F5
j
iðtÞ and F6

j
iðtÞ, pertain to the robot rj sensorimotor interactions, as observed by ri. For these

interactions, we define two sensorimotor interaction events Sm and Sn as follows:

Smi
jðtÞ ¼ H½jNiijðtÞ [ No

i
jðtÞj� ^M

i
jðtÞ ð12Þ

SnijðtÞ ¼ :H½jNiijðtÞ [ No
i
jðtÞj� ^M

i
jðtÞ ð13Þ

The above sensorimotor interaction event Smi
jðtÞ at time τ is set if observed robot rj alters

its heading in the presence of sensory input (one or more neighbors in range), and as observed

by ri. Similarly, SnijðtÞ is set if rj alters its heading in the absence of sensory input (no neighbors

in range).

Bayesian inference is applied to estimate the features F5 and F6, using the binomial likeli-

hood function and the beta prior and posterior probability distribution specifications. The

observations driving the posterior distributions (PðymjDmÞ for F5, and PðynjDnÞ for F6) are

defined as follows:

Dmi
jðtÞ � fSmi

jðtÞjt 2 f0 . . . tg ^ rjðtÞ 2 OiðtÞg

Xmi
jðtÞ � fSmi

jðtÞjt 2 f0 . . . tg ^ rjðtÞ 2 OiðtÞ ^ Smi
jðtÞ ¼ 1g

ð14Þ

DnijðtÞ � fSnijðtÞjt 2 f0 . . . tg ^ rjðtÞ 2 OiðtÞg

XnijðtÞ � fSnijðtÞjt 2 f0 . . . tg ^ rjðtÞ 2 OiðtÞ ^ SnijðtÞ ¼ 1g
ð15Þ

where at time τ,Dmi
jðtÞ and DnijðtÞ comprise the sample of past observations of robot rj as

observed by ri, with and without neighbors in range, respectively. Similarly, Xmi
jðtÞ and XnijðtÞ

comprise the sample of past observations of rj made by ri altering its heading, with and without

any neighbors in range, respectively.
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Using the data of past observations, and the binomial likelihood function, the posterior dis-

tribution is specified as follows:

Pðymi
jðtÞjDm

i
jð0 : tÞÞ ¼ Beta ðao þ jXmi

jðtÞj; b0 þ jDmi
jðtÞj � jXm

i
jðtÞjÞ ð16Þ

PðynijðtÞjDn
i
jð0 : tÞÞ ¼ Betaðao þ jXnijðtÞj; b0 þ jDnijðtÞj � jXn

i
jðtÞjÞ ð17Þ

where αo and βo are initialized to 1, specify the prior probability distribution Beta(α0, β0) as a

uniform distribution.

Utilizing Eqs (16) and (17), the features F5
i
jðtÞ and F6

i
jðtÞ of robot rj as observed by ri, is esti-

mated as follows:

F5
i
jðtÞ ¼ 1 if Eðymj

ijDmi
jð0 : tÞÞ > 0:05; otherwise F5

j
iðtÞ ¼ 0 ð18Þ

F6
i
jðtÞ ¼ 1 if EðynjijDnijð0 : tÞÞ > 0:05; otherwise F6

j
iðtÞ ¼ 0 ð19Þ

where the features F5
i
jðtÞ and F6

i
jðtÞ are set at time τ, if the observed robot rj alters its heading

at least 5% of the time, in the presence, and in the absence of sensory input, respectively. For

both the features, the 5% threshold is set to compensate for stochastic variation in robot

behavior.

Voting to improve estimation of behavioral features. We take advantage of the multi-

plicity of robots in large-scale robot swarms to increase the robustness of the estimation of

behavioral features. Robots share behavioral features observed up to Wl s in the past with their

neighbors. A voting scheme is then employed by each robot to select the most likely observed

feature value, for each of the six features.

At each simulated time-instance τ, every robot ri of the swarm R observes its neighbors rj 2
Oi(τ), to estimate its behavioral feature vector ðF1

j
iðtÞ; F2

j
iðtÞ; . . . ; F6

j
iðtÞÞ using Eqs (1)–(19).

Subsequently, ri communicates to all neighboring robots Oi(τ), voter packets comprising the

observed robot identifications (in range [1, |R|]) and their corresponding estimated feature

vectors (data-packet structure, see Fig 2a). The final feature vector for each observed robot is

then updated by a simple majority vote on the most recently received feature-vector informa-

tion in the past Wl s, counting each voter only once. In considering voter information up to Wl

s in the past, we assume that the robot behavior does not change within this time.

B. Detection of faulty robots

In the next phase of fault detection (Algorithm 1 Phase B), an instance of the CRM is run on

each robot to classify the observed behavioral feature vectors as normal/abnormal. The behav-

iors in the swarm that are persistent and abundant (performed by most of robots) are to be

treated as normal. By contrast, rare behaviors (exhibited by fewer robot) are to be classified as

abnormal. Below, we outline the CRM and describe its functioning, that are later embodied

distributedly in a multirobot system.

Algorithm 3 Subroutine to classify behavioral feature vectors of observed robots as nor-

mal/abnormal (simulation of a CRM instance).

1: Computethe distributionof estimatedfeaturevectorsFVj of the observed
robots.

2: Assignfeaturevectorsto APCs i.e., 8j, Aj = FVj.
3: 8j 2 {1, 2. . .M}, if Aj > 0, incrementTEj and TRj by IE and IR, respectively.
4: whiletime� S do
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5: 8i 2 {1, 2. . .M} and Ti > 0, and 8j 2 {1, 2. . .M} whereAj > 0, computethe number
of conjugatedcellsCij in quasi-steadystate.

6: Usingthe numberof conjugatedcells,computethe updatednumberof
effectorand regulatorycellswith the Euler-Heunadaptivestep method
[27].

7: Incrementtime
8: end while
9: For each featurevector,computethe sum of effectorand regulatorycells,

weightedby their affinity.
10: Toleratethe featurevectoras normalif totalregulatorycellsexceeds

effectorcells,else interpretit as abnormal.

Crossregulation model. The CRM describes the population dynamics of cells of the adap-

tive immune system, consisting of three mutually interacting cell types: (i) antigen presenting

cells (APCs) that present the antigen on their surface. Individual APCs have a fixed number of

conjugation sites (s) on which effector and regulatory T-cells can form conjugates; (ii) effector

cells TE that can potentially mount immune responses which, depending on receptor specific-

ity, may be directed to foreign pathogens or to body-antigens; and (iii) regulatory cells TR that

suppress proliferation of TE cells with similar specificities. Furthermore, APCs are classified

into different sub-populations of equivalent APCs, with each APC in a sub-population pre-

senting the same antigen on its surface. Similarly, effector and regulatory cells are also classi-

fied into different clones according to their specificity.

A mathematical formulation using ordinary differential equations, of the dynamics of inter-

actions between effector and regulatory cells, with APCs, is detailed in [19]. In this section, we

describe these inter-cellular interactions, introduce the important parameters, followed by the

algorithmic implementation of the model for a multirobot system.

Functioning of the model. The CRM implemented on each robot of the multirobot sys-

tem is as follows. The CRM provides a differential equation governing each of the clonal types

(i) of effector (TEi), and regulatory (TRi) T-cells. The sub-populations of each of these clonal

types is subject to the following: (i) a constant influx of new cells; (ii) growth by proliferation

(division of parent cells to two daughter cells) of their individual activated cells; and (iii)

shrinkage consequent to death of T-cells (see Table 2 for influx, proliferation and death rates

of TE and TR cells). All T-cell clones are generated with similar initial conditions i.e., 8i,
TEið0Þ ¼ TE0 and TRið0Þ ¼ TR0.

The density of activated TEi and TRi cells of each clonal type i, is dependent on their

interactions with APCs Aj of each sub-populations j. For example, let us consider the interac-

tions between the i-th T-cell clone and the j-th APC population. The resulting conjugates Cij is

subject to the following: (a) formation of new conjugates by the free T-cells of clone i with

available conjugation sites on APCs of sub-population j. This conjugation rate is also con-

trolled by the affinity between the T-cells clone i and APCs sub-population j; and (b) dissocia-

tion of existing conjugated T-cells from APCs (see Table 2 for the conjugation and

deconjugation rates, and the affinity between T-cells and APCs). The conjugation and decon-

jugation of T-cells from APCs are fast processes with respect to the overall T-cell clone dynam-

ics. Consequently, we solve analytically at each time step, the quasi-steady state values of the

conjugates. Finally, the density of activated effector and regulatory cells is computed from the

quasi-steady state densities of the conjugates, utilizing the Euler-Heun adaptive step method

[27]. The conjugated effector cells are activated in the absence of regulatory cells on the same

APC. In contrast, conjugated regulatory cells can only be activated if at least one effector cell is

simultaneously conjugated to the same APC.
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In the CRM, at low concentrations of APCs, the system always reaches a globally stable

state consisting solely of TE cells (immune response). By contrast, at higher concentrations of

APCs, the system exhibits bistable behavior, i.e., the system can evolve either into an equilib-

rium state composed predominantly of TE cells (immune response), or into a state consisting

mostly of TR cells (tolerant response). The system evolves into the TR cell dominated state,

provided that the seeding population has sufficient TR cells. The seed T-cell population den-

sity (TE0 and TR0) is chosen to ensure a tolerant response in the bistable parameter regime.

CRM in a multirobot system. In this section, we demonstrate how the CRM is imple-

mented on a distributed embodied multirobot system in order to give the system the capacity

to detect abnormally behaving robots, while maintaining a tolerance towards normal swarm

behavior.

In the model’s implementation, at each control cycle, every robot of the swarm computes

the distribution of estimated feature vectors: the number of its observed neighbors associated

with each its estimated feature vectors (FVj). In the robot’s internal CRM instance, APCs are

then generated corresponding to each of the feature vectors perceived. Each APC presents an

individual feature vector to the T-cells. The number of each type of the APCs generated Aj =

FVj, for j 2 {1, . . .,M}, whereM = 26 is the maximum number of different 6-bit feature vectors

perceived by the robot.

The T-cell clones (T1, T2, . . ., TM), each have a different receptor encoded as a binary string,

which determines their affinity to the APC population. The affinity between T-cell clonal i and

APC population j is denoted by θij:

yij ¼ exp �
DH½i; j�
c

� �

ð20Þ

where DH is the Hamming distance between the receptor of Ti and the feature vector pre-

sented by Aj, and c is the cross-reactivity between T-cells and APCs. The affinity θij decreases

with an increase in the dissimilarity between the T-cell receptor Ti and the feature vector

Table 2. Parameters of the crossregulation model.

Param. Description Value (a.u.)

Aj Density of APCs of sub-population j –

s Maximum number of T-cells that can bind to an APC 3

TE0 Seed density of effector cells 10

TR0 Seed density of regulatory cells 10

TEi Density of effector cells of clone i –

TRi Density of regulatory cells of clone i –

Ti Density of T-cells of clone i TEi þ TRi
Cij Density of conjugates between Ti and Aj –

γ Conjugation and deconjugation rates of T-cells and APCs 10−1

πE Proliferation rate of effector cells 10−3

πR Proliferation rate of regulatory cells 0.7 × 10−3

δ Death rate of effector and regulatory cells 10−6

M Maximum number of different 6-bit feature vectors 26

c Cross-reactivity between T-cells and APCs 0.15

IE Density of new effector cells introduced at each control-cycle 10

IR Density of new regulatory cells introduced at each control-cycle 10

S Time CRM instance is executed, in a single control-cycle 5 × 107

https://doi.org/10.1371/journal.pone.0182058.t002
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presented by Aj. The sharpness of this decrease in affinity is modulated by the cross-reactivity c
of the system. For instance, a high value of c would result in all T-cell clones having a high

affinity to all APC populations. By contrast, at low c, each T-cell clone Ti would have a high

affinity to only one distinct APC population Aj, for which DH[i, j] = 0 (for details on modeling

the cross-reactive immune response, see [28, 29]).

At the start of the simulation, the number of effector and regulator cells on each robot is ini-

tialized to TE0 and TR0 respectively. Following this, Algorithm 3 (parameters in Table 2) is exe-

cuted by the robots in each control cycle, allowing the robots to run their internal CRM

instance. The robots begin by computing the distribution of estimated feature vectors, and the

corresponding density of APCs. The CRM is then numerically integrated for time S, allowing

the system to respond to the different APCs. Finally, the robot decides the nature of each

observed feature vector FVj by first computing the following quantities:

TE ¼
XM

i¼1

yijTEi

TR ¼
XM

i¼1

yijTRi

ð21Þ

and tolerating the feature vector as normal if TR > TE. By contrast, if TE > TR, the feature vec-

tor is classified as abnormal.

Detection of abnormally behaving robots. A reliable detection of abnormally behaving

robots is obtained by accumulating the CRM output over a series of consecutive control cycles

instead of classifying the behavioral feature vectors based on the CRM output in a single con-

trol cycle. Depending on the relative cost of tolerating an abnormally behaving robot (false

negatives) and of incorrectly classifying a robot as behaving abnormally (false positives), the

output may be interpreted in one of several ways. A simple scheme involves storing the past n
outputs of the CRM-based abnormality detector and only detecting a robot as abnormal if its

feature vector has been classified as such for the majority of past n control cycles. If fault

accommodation is expensive, while the presence of abnormally behaving robots has a relatively

small impact on performance, n could be set to a relatively high value. Conversely, in critical

tasks where abnormal behavior can be catastrophic, n could be set to a relatively low value.

In our implementation, n is set to 90 (corresponding to 9 s), to provide a suitable trade-off

between the latency in the detection of the faulty robot, and the number of false-positive inci-

dents. The robot is detected as behaving abnormally iff its feature vector has been classified as

such for the majority of the past n control-cycles. Otherwise, the robot is treated as behaving

normally.

C. Distributed coalition formation on detected abnormal behavior

In order to accommodate an abnormally behaving or faulty robot, the robots of the swarm

have to first consolidate their individual decisions on their neighboring robots based on their

respective CRM instances, into a swarm-level decision on the normal/abnormal state of the

robots. Such a swarm-level agreement on the state of individual robots is formed via coalition

formation process, implemented distributedly in a multirobot system, and described below.

At the end of the 9 s interval, individual robots of the swarm accumulate their CRM output

to decide on the normal/abnormal status of their neighboring robots. Following this, Algo-

rithm 1 (Phase C) is executed to form coalitions on the status of individual robots, within the

duration of 1 s. All the robots of the swarm maintain an individual local coalition list of the

identification i of the robots on which coalition has been formed (i 2 [1, |R|]), and the result of
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the coalition (swarm’s decision on normal/abnormal status of i). During the 1 s interval allo-

cated to form coalitions, each robot votes (as normal/abnormal) on the behavioral feature vec-

tors of neighboring robots on which a coalition has not yet been formed, by communicating a

voter data packet (Fig 2b). The neighboring robots accumulate the votes received on the fea-

ture vectors, counting each voter only once. Robots that receive more than five votes (deter-

mined empirically, aiming to reduce false positive rate) on a behavioral feature vector add the

corresponding robot to their local coalition list, along with the results of the vote. The updated

local coalition list is subsequently propagated across the swarm, using coalition data packets

(Fig 2c). Finally, at the end of the allocated 1 s interval, every robot of the swarm clears its local

coalition lists, to allow new coalitions to be formed in response to changes in robot behavior.

Experimental setup

We use a physics-based, discrete-time multirobot simulator named ARGoS [30], designed to

realistically simulate complex experiments involving large swarms of robots. We simulate a

robot swarm composed of 20 e-puck robots [24] situated in an environment with a size of

3 × 3 m2. The e-puck robot has a diameter of 7.5 cm, a maximum speed of 10 cm/s, and a con-

trol cycle of 0.1 s (full list of robot parameters in Table 1). In our experiments, the e-puck

robot model is equipped with eight infrared proximity sensors for obstacle avoidance and two

actuators which control the robots movement speed and direction. Each robot is also equipped

with a range and bearing extension board [31], which enables a robot to estimate the relative

location and orientation of neighboring robots.

A faithful simulation of the physical e-puck is accomplished by adding noise to the values of

the sensor readings, and to the desired actuator speeds of the simulated robot, so as to simulate

the stochasticity inherently associated with real robots (detailed description of employed noise

model in [32]). Infrared proximity sensors on the robot have a limited range of 10 cm, register

a reading between [0, 1], and is subject to additive uniform noise within ±0.1. By contrast, the

range-and-bearing sensors of the robot have a higher range of up to 100 cm, and are simulated

with the addition of a noise vector to the sensor reading. The length of the added vector follows

a Gaussian distribution N[0 cm, 1 cm], and the angle of the vector is simulated with uniform

noise within ±π radians. The simulated robots motor encoders employ an additive uniform

noise within ±0.1 cm/s, applied on the readings of motor speed of the left and right wheels of

the robot. Finally, the motors driving the two wheels of the robot are simulated with a multipli-

cative noise model following a Gaussian distribution N[0, 0.1], and applied independently on

the desired left and right wheel speeds of the robot.

Swarm behaviors

In our fault-detection system, the behaviors of the robots in a swarm are classified as normal/

abnormal, where abnormalities are consequent to faults in the robot. For our experiments,

fault detection is evaluated for both homogeneous and heterogeneous normal swarm

behaviors.

Homogeneous swarm behaviors

In the homogeneous swarm behaviors, all the robots of the swarm execute an identical swarm

behavior during the entire duration of the simulation. The swarm behaviors simulated are (i)

dispersion, (ii) aggregation, (iii) flocking, and (iv) homing towards a stationary landmark. At

the start of the experiment, the robots are randomly placed in the 3 × 3 m2 environment. The

robot behaviors are implemented using a subsumption architecture [33]. In dispersion, the

robots move in the opposite direction of the center of mass of their neighbors. By contrast, in
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aggregation, the robots move towards the center of mass of surrounding neighbors, but dis-

perse away if too close to their neighbors to avoid collisions. Similarly, homing robots move

towards a single pre-specified stationary beacon that serves as a landmark, and move away if

too close to the landmark or to other robots. The position of the beacon for homing is selected

at random at the start of the experiment. Finally, in flocking, the robots continually adjust

their velocity to that of neighboring robots, where the velocity of the neighboring robots is esti-

mated over a time-window of Ws s. The flocking robots aggregate towards and disperse from

neighbors, if they are too far away or close by, respectively (for source code details see Section

A in S1 File).

Heterogeneous swarm behaviors

The heterogeneous swarm behaviors require the robots of the swarm to execute complex (or

composite) behaviors, thus entailing the robots of the swarm to often exhibit distinct behaviors

at any given time of the simulation. In swarm robotics, foraging serves as an metaphor for a

broad range of important problems involving: cooperative exploration, navigation, resource

localisation, and recruitment [34, 35]. Therefore, in our experiments, the heterogeneous

swarm behavior simulated is cooperative foraging, wherein the robots of the swarm have to

locate a randomly placed resource site, gather resources from this site, and return the foraged

resources to a designated nest area (Fig 3a). For successful foraging, the following repertoire of

different behaviors are exhibited by individual robots of the swarm: (i) searching for resource

site; (ii) signaling the presence of new resource; (iii) homing towards signaled resource site;

and (iv) collecting and returning foraged resource to the nest. A finite state machine architec-

ture is employed to control the robot foraging behavior (see Fig 3b). At the start of the experi-

ment, the robot swarm is positioned at a nest site located at one end of the foraging arena. The

robots begin foraging by exploring their environment, employing the dispersion swarm behav-

ior. Upon locating the resource site, and with no existing beacon robots in its vicinity, the dis-

coverer robot transitions into a beacon. The beacon robot transmits a foraging signal utilizing

Fig 3. Foraging experiment setup for heterogeneously behaving swarm of 20-e-puck robots. A: The 9 m2 arena comprising a nest site, and the

foraging space with a randomly placed resource site. B: Finite state machine diagram controlling each and every robot of the swarm.

https://doi.org/10.1371/journal.pone.0182058.g003
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its range-and-bearing sensors. Exploring robot in range of the beacon home towards the forag-

ing signal, and upon locating the resource site, simulate the gathering of resources by remain-

ing stationary at the resource site. Once the resources are gathered, the foraging robot returns

to the nest site. At the nest, robots simulate the depositing of resources by remaining stationary

at the nest site. Upon successfully depositing the foraged resources at the nest, the robots

return back to the exploration state.

Faulty behaviors

In our multirobot simulator, faults are simulated directly in the robots sensors and actuators.

Consequently, the resulting faulty behavior of the robot correspond to the actions performed

by its controller, that is either provided with input from faulty sensors, or whose commands to

actuators are not executed correctly by the underlying hardware. The faults simulated in our

experiments are representative of seven different scenarios involving permanent failure in the

e-puck robots sensor and actuator devices (fault types detailed in Table 3).

Infrared proximity sensors. For the infrared proximity sensors, the faults represent sce-

narios involving disconnected proximity sensors (fault type PMIN), obstructions (e.g., a piece

of dust) stuck on the proximity sensors (fault type PMAX), and scenarios in-between these

two extremes such as an obstruction on the proximity sensor is temporarily and partially dis-

lodged as the robot moved about the environment (fault type PRND).

Range-and-bearing sensors. The fault on the range-and-bearing sensors (fault type

PRAB) assumes that all the range-and-bearing receivers of the robot are identically affected by

the fault. Consequent to this fault, the strength of the received signal on the range-and-bearing

receivers is impeded so that objects that are near to the faulty robot appear to be far.

Actuators. The faults in the e-pucks motors occur when one or both motors of the robot

malfunction, or if the tire on the robot’s wheel rim wears out. This fault prevents the robot

from rotating the affected wheel (left wheel LACT, right wheel RACT, both wheels BACT).

Results

In this section, we assess the performance of our fault-detection algorithm in different scenar-

ios. We first evaluate the capacity of a multirobot system to detect robots behaving faulty for

different combinations of normal (homogeneous and heterogeneous) behaviors, and faulty

Table 3. Types of faults, simulated on one robot, selected at random from the swarm.

Fault type Description Fault simulation† Devices affected

Fixed value

sensor faults

One or few sensor fail permanently and

return a fixed value

The faulty sensors return either, the smallest possible sensory

value of 0 (PMIN), the largest possible sensory value of 1 (PMAX),

or a randomly selected value U[0, 1] for each control-cycle the fault

occurs (PRND).

Four frontal IR

proximity sensors of

the e-puck.

Sensor offset

faults

One or few sensor fail permanently and

return a reading offset by a random value

The faulty sensors returns the true reading (undamaged sensor

reading) altered by an additional value, randomly selected U[75

cm, 100 cm] for range and U[−π, π] on bearing for each control-

cycle the fault occurs (ROFS).

Range and bearing

sensors of the e-puck.

Motor faults The motors of the robot malfunction, thus

preventing the robot from rotating the

affected wheel(s).

The desired wheel speed corresponding to the faulty motor is set

to 0 cm/s when the fault occurs (left wheel LACT, right wheel

RACT, both wheels BACT); subsequent commands to change the

wheel speed are ignored.

Left, right, or both the

motors of the e-puck.

† Function U[a, b] returns a randomly selected value from a uniform distribution between a and b.

https://doi.org/10.1371/journal.pone.0182058.t003
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behaviors. We then evaluate how frequently normally behaving robots are misclassified as

behaving faulty, and the influence of transitions in normal behavior on performance. Finally,

we assess the importance of the different components of our algorithm for successful fault

detection.

Robot swarm detects almost all injected faults

We ran experiments with a swarm of 20 e-puck robots. In the swarm, 19 of the 20 robots per-

formed one of the normal behaviors, that is, the aggregation, dispersion, flocking, or homing

homogeneous behaviors, or the foraging heterogeneous behavior. The remaining one robot

performed one of the faulty behaviors, PMIN, PMAX, PRND, ROFS, LACT, RACT, and

BACT. We ran 20 replicates for each of the 35 combinations of 5 normal and 7 faulty behav-

iors. Each replicate lasted 6,000 cycles (corresponding to 600 s), and we recorded the propor-

tion of time during which the swarm formed a majority coalition identifying the faulty robot.

The results are presented in the box-plots in Fig 4 for homogeneous swarm behaviors, and

Fig 5 for heterogeneous swarm behaviors, with one box for each combination of normal and

faulty behavior.

Detection of faults injected in homogeneously behaving swarms. The results show that

the median proportion of the time that the faulty robot was detected is above 0.50 in 23 out of

the 28 experimental setups with homogeneous swarm behaviors (see Fig 4). The multirobot

system successfully detected the faulty robot exhibiting fault types PMAX, PRND, LACT,

BACT, and RACT, achieving a mean performance of 0.89±0.14 (across the four homogeneous

swarm behaviors). By contrast, the robots exhibiting fault types PMIN and ROFS were only

detected in 0.55±0.36 and 0.32±0.41 proportion of time, respectively.

The poor fault-detection performance of fault types PMIN and ROFS, for the normal

homogeneous swarm behaviors of aggregation, dispersion, flocking and homing, is ascribed to

the following: (i) the malfunctioning sensor/motor device is unused in the experimental setup,

and thus has not effect on the faulty robots behavior (condition termed UNUSED-DEVICE); (ii)

the normal behaving robots of the swarm compensate for the faulty robots behavior, thus pre-

venting a disruption of the swarms behavior (SWARM-COMPENSATE); and (iii) the initial random

placement and orientations of the robots in some experiment replicates, and the subsequent

interactions between normally behaving robots and the faulty robot, results in their behaviors

being indistinguishable (INITIAL-POSITION).

In Table 4, we explain the situations that caused the poor fault detection performance, in

the context of specific normal swarm behaviors.

Detection of faults injected in heterogeneously behaving swarms. The performance of

our fault-detection algorithm was not affected by the robot swarms performing composite

swarm behaviors (Fig 5). During cooperative foraging, the robots of the swarm spent 64%, 6%,

2%, and 28% of their time assigned to exploration, signaling, retrieval of resources at foraging

site, and returning foraged resource to the nest, respectively (mean across 20 robots, and 6,000

control-cycles). Despite the complexity of the task, the multirobot system successfully detected

the faulty robots exhibiting fault types PMIN, PMAX, PRND, LACT, BACT, and RACT,

achieving a mean performance of 0.84±0.13 (across six fault types). However, for the fault type

ROFS, the multirobot system suffered a poor fault-detection performance, detecting the

abnormally behaving robot only a proportion of 0.01±0.02 of the time.

For the fault type ROFS, the low proportion of time that the faulty robot is detected is con-

sequent to UNUSED-DEVICE. The range-and-bearing sensors are not being used by the foraging

robots during their search for resource sites, and in their return to the nest (explore and return
to nest states in Fig 4a). Consequently, malfunctions in the range-and-bearing sensors do not

Fault detection for robot swarms

PLOS ONE | https://doi.org/10.1371/journal.pone.0182058 August 14, 2017 17 / 29

https://doi.org/10.1371/journal.pone.0182058


affect the behavior of the faulty robot, and the faulty robot behavior is indistinguishable by the

swarm, from explorer robots and robots returning to the nest.

Robot swarm correctly tolerates normal swarm behaviors

The success of a fault detection system depends as much on its capacity to avoid false positives

and correctly classify normal swarm behaviors, as its capacity to detect the faulty robots. Con-

sequently, we evaluated our fault detection algorithm in a series of experiments in which all 20

Fig 4. Fault detection for homogeneously behaving robot swarm. Proportion of time the faulty robot is detected across 20 replicates, in each of the 28

distinct combinations of normal (aggregation, dispersion, flocking and homing) homogeneous swarm behaviors, and fault types (PMIN, PMAX, PRND, ROFS,

LACT, RACT, and BACT). On each box, the mid-line marks the median, and the box extends from the lower to upper quartile below and above the median.

Whisker outside the box indicate the maximum and minimum values, except in case of outliers, which are shown as crosses. Outliers are data points outside

of 1.5 times the interquartile range.

https://doi.org/10.1371/journal.pone.0182058.g004
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robots behaved normally, performing homogeneous and heterogeneous swarm behaviors. We

measured the proportion of time the robots were correctly classified by the multirobot system

as behaving normally (tolerated). In Fig 6, we have plotted the mean proportion of time that

robots are tolerated in each of 20 replicates of the five normal swarm behaviors (horizontal

axis), and the variation between the 20 robots observed in each replicate calculated as the dif-

ference between the maximum and minimum time tolerated (vertical axis).

The mean proportion of time that normally behaving robots were correctly classified was

high across all experiments, at 0.99±0.01 for aggregation, 0.98±0.01 for dispersion, 0.99±0.01

for flocking, 0.97±0.01 for homing, and 0.98±0.01 for cooperative foraging (Mean±SD). The

variation in time tolerated between the robots of the swarm, in individual replicates, is low

(less than 0.25), in all but two replicates of the robots performing the flocking behavior (see

Fig 5. Fault detection for heterogeneously behaving robot swarm. Proportion of time the faulty robot is detected across 20 replicates, in

each of the seven distinct combinations of normal (cooperative foraging) swarm behavior, and fault types (PMIN, PMAX, PRND, ROFS, LACT,

RACT, and BACT).

https://doi.org/10.1371/journal.pone.0182058.g005
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false positive FP1 and FP2 in Fig 6). In these two replications, the false positives were conse-

quent to one to five robots taking longer to join the flock (the particular robots random walked

between 40 s and 120 s before they encountered the flock; all the other robots had initiated

flocking by 30 s into the experiment). The detected robots thus were, in fact, behaving abnor-

mally, consequent to their initial positions in the swarm, and not because of any faults on the

robots.

Fault detection unaffected by dynamic transitions in robot swarm

behaviors

A principal advantage of our fault-detection algorithm is that the classification of normal/

abnormal behaviors, for the detection of the faulty robots, is continually learned online while

the robots operate in the task environment. Therefore, our fault-detection system has the

capacity to adapt to changes in the normal robot swarm behaviors, while avoiding the misclas-

sification of normal behaviors as faulty. The minimization of false positive incidents is essen-

tial, as the subsequent fault diagnosis and fault accommodation procedures may not only be

costly, but could lead to the exclusion of capable robots from the multirobot system.

We setup a series of experiments to assess our fault-detection system’s capability to avoid

false positives when transitions in normal behavior occurred over time. We conducted 20 rep-

licates in which all robots switched behavior. Each experimental replicate had a duration of

1,500 s. In each replicate, the robots started out by performing a particular normal behavior

for the first 500 s, then gradually switched to a second behavior within the next 500 s, and

finally reverted back to their original behavior within the remaining 500 s of the experiment.

The fault-detection system was evaluated with three different combinations of behaviors: (i)

aggregation to dispersion to aggregation, (ii) dispersion to flocking to dispersion, and (iii)

flocking to homing to flocking. Robots were selected at random (following a uniform distribu-

tion) to switch their behavior, and the time between robots switching behavior was 0 s (behav-

ior transitioned instantaneously across swarm), 12.5 s, and 25.0 s (in three separate and

Table 4. Experiment conditions resulting in false-negative incidents in the detection of faulty robots.

UNUSED-DEVICE

ROFS/dispersion: The dispersing robots do not using the range-and-bearing sensor. Consequently, their

behavior is unaffected by the malfunctioning sensor.

SWARM-COMPENSATE

PMIN/aggregation, flocking: The robot with malfunctioning proximity sensors moves close in proximity to its

neighbors using its range-and-bearing sensors, thus forming part of the robot aggregate. In the aggregate,

the neighboring robots move out of the way of the faulty robot, thus compensating for its abnormal behavior,

and preventing collisions between the robots. Similarly for flocking, as the range-and-bearing sensor is

used to join a flock, and once in a flock the neighboring robots move out of the way to avoid collisions,

flocking continues unhindered. When the abnormally behaving robot suffering from PMIN is temporarily

stuck moving against a wall, out of range of the aggregate, it is detected as faulty.

ROFS/flocking: For faults in robots manifested by introducing an offset in the range-and-bearing sensor

reading (selected at random at the start of each control cycle), due to the large size of the flocking swarm,

as long as the faulty robot heads in the general direction of the flock (control cycles where a small bearing

offset is introduced), it continues to follow in close proximity (approximately 15 cm from nearest neighbour

in flock).

INITIAL-POSITION

ROFS/homing: In the replicates when the homing beacon is positioned close to the arena wall, instead of

having all the robots of the swarm homing around the beacon, we have some dispersing robots continually

moving in and out of range of the beacon. The robot inflicted with the fault type ROFS behaves similarly to

these dispersing robots, and is therefore classified as normal by the swarm.

https://doi.org/10.1371/journal.pone.0182058.t004
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independent experimental setups, for each of the behavior combinations). The results, in

terms of the proportion false-positive incidents, for the different behavior combinations and

transition periods are shown in Fig 7.

Our fault-detection system achieved a low number of false-positive incidents for all three

behavior transition combinations evaluated. The mean proportion of reported false-positive

incidents sustained by the multirobot was no more than 0.01 for the aggregation–dispersion,

dispersion–flocking, and flocking–homing behavior transition combinations. Additionally,

the proportion of false-positive incidents incurred by the multirobot was not affected by the

robot swarm behavior switching times (Kruskal-Wallis test: number of false-positive incidents

not significantly different from each other, all p> 0.1).

Fig 6. Tolerance to normal robot swarm behavior. Mean and variation in proportion of time robots tolerated, across the 20 robots of the

multirobot system, in each of 20 replicates, and five normal behaviors: (A) aggregation (circles), (B) dispersion (crosses), (C) homing towards

stationary landmark (pluses), (D) flocking (squares), and (E) cooperative foraging (asterisks).

https://doi.org/10.1371/journal.pone.0182058.g006
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Fault detection resilient to perturbations in the robot swarm environment

Our fault-detection system’s capability to avoid false positives was also assessed when normal

behavior transitions were consequent to perturbations of the swarm’s task environment. The

foraging case study (Fig 3) was selected for these experiments, as the robots of the swarm are

required to adapt to changes in their environment. We conducted 20 replicates in which the

foraging environment was perturbed. Each experimental replicate had a duration of 3,000 s,

and comprised of three stages. In Stage 1, the foraging resource site was randomly located in

the 3 × 3 m2 arena (Fig 3a), at least 2 m from the nest site. Subsequently, in Stage 2, the

resource site was removed from the environment, to represent a scarcity of resources. In Stage

3 of the experiment, the resource site was quadrupled in size, and placed no more than 10 cm

from the nest site, to represent an abundance of resources. Each of the three stages lasted for

1000 s, to make sure all the robots of the swarm had adapted their behavior to the perturbed

foraging environment. The number of robots allocated to different foraging behaviors in each

Fig 7. Tolerance to changes in normal robot swarm behavior. Proportion of false-positive incidents across the 20 robots of the multirobot

system, in each of 20 replicates, and two transitions in normal behavior: (A) aggregation to dispersion to aggregation, (B) dispersion to flocking

to dispersion, and (C) flocking to homing to flocking. Robots transitioned between the swarm behaviors in intervals of 0 s (instantaneously

across the swarm), 12.5 s, and 25 s, in three separate and independent experimental setups.

https://doi.org/10.1371/journal.pone.0182058.g007
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of the three foraging environments, and the proportion false-positive incidents, are shown in

Fig 8.

In our experiments, perturbations to the foraging environment significantly affected the

number of robots allocated to exploration, signaling, resource retrieval and transportation to

the nest (Kruskal-Wallis test, p< 0.001 for all four behaviors; Fig 8a). The transition to an

environment with an absence of resources (Stage 1 to Stage 2) resulted on average in a 81.5%

increase in the number of explorer robots (searching for resources), a 89.4% decrease in the

number of robots returning foraged resources to the nest, and was accompanied by a complete

absence of robots signaling new resource locations, and retrieving further resources at foraging

sites. The subsequent perturbation to an environment with an abundance of resources (Stage 2

to Stage 3) translated into a 73.2% decrease in explorer robots, and a 12.4% increase in robots

returning foraged resources to the nest. Furthermore, in this environment, 16.7% and 2.8% of

the robots in the swarm exhibited signaling and resource retrieval behaviors, respectively. In

summary, the robots of the swarm allocated themselves to different behavior roles in conse-

quence to the nature of the perturbation in their environment.

Our fault-detection algorithm achieved a low number of false-positive incidents in all three

sequentially evaluated foraging environments (in Stage 1, Stage 2, and Stage 3, mean propor-

tion of false positives no more than 0.01, see Fig 8b). In perturbing the foraging environment

by removing resources (Stage 2), the robots accumulated a slightly higher proportion of false-

positive incidents at 0.03±0.02 (Mean±SD) during the behavior transition time-window

immediately following the perturbation (Kruskal-Wallis test while correcting for size of transi-

tion time-window of 140 s for robots to transport already foraged resources to the nest,

p< 0.001). However, environment perturbations did not always translate to an increase in

false-positive incidents. The subsequent perturbation to an abundant resource environment

(Stage 3) registered a negligible proportion of false-positive incidents at 0.001±0.003 in the

Fig 8. Tolerance to perturbations in the foraging environment. The robots were first perturbed to a foraging environment comprising an absence of

resources (Stage 1 to Stage 2), and subsequently to an environment with an abundance of resources (Stage 2 to Stage 3): (A) Median ± IQR of robots

exhibiting distinct behaviors of exploration, signaling, retrieval of resources at foraging site, and returning foraged resource to the nest, all during cooperative

foraging, and (B) the proportion of false-positive incidents across the 20 robots of the swarm, in each of 20 replicates.

https://doi.org/10.1371/journal.pone.0182058.g008
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behavior transition time-window (required to locate the newly introduced abundant resource

site, estimated empirically at 50 s) following perturbation. In summary, our fault-detection sys-

tem is largely resilient to environment changes. While some environment perturbations trans-

late to an increase in false-positives, the number of such incidents remains minuscule—even

during such perturbations.

Importance of different algorithmic components on robot swarm

performance in fault detection

The robot swarm in our experiment relies on the following three distinct algorithmic compo-

nents to perform fault detection: (i) Phase A—robots of the swarm estimate the behavioral fea-

tures of their neighbors, and subsequently employ an inter-robot voting scheme to select the

most popular feature values for each observed robot; (ii) Phase B—every robot detects abnor-

mally behaving neighbors, based on a simple majority on normal/abnormal behavior classifi-

cations of its CRM accumulated over a series of consecutive control cycles; and (iii) Phase C—

the robots form voting coalitions to consolidate their individual-level decisions on the detected

behavioral abnormalities. We assessed the importance of each of these three phase on the

fault-detection performance. Our results, detailed in Section B in S1 File, reveal that all three

phases of our implemented fault-detection system are necessary for the swarm to achieve good

performance. By employing our system, the robot swarm is not only capable of accurately

detecting faulty robots in the swarm, but is also able to avoid false positives in classifying nor-

mal/faulty behaviors, despite changes in normal behavior, and perturbations in the swarm’s

task environment.

Discussion

In this study, we presented a decentralized exogenous fault-detection system for robot swarms.

The process of fault detection follows three phases: (i) behavior observation, wherein robots of

the swarm observe the behaviors of their neighbors over a period of time, subsequently encod-

ing their observations as binary feature vectors; (ii) behavior classification, wherein an instance

of the CRM [19] is run by every robot of the swarm to classify observed behaviors as normal/

abnormal. Abnormalities are a symptom of faults in the observed robot; and (iii) coalition for-

mation, robot consolidate their individual decisions on the classified abnormal behaviors into

a swarm-level decision on the identity of the faulty robots.

Obtaining reliable inter-robot behavior observations in a distributed manner, the first

phase of our fault-detection process, is challenging in large-scale swarms, but crucial for accu-

rate fault detection. Robots observe the behaviors of their neighbors, using noisy sensors with

limited range, essentially constraining the observations to be brief and sporadic. In taking

advantage of the large number of robots in a swarm, multiple independent observation sources

of the robot’s behavior improves the robustness in the estimated behavioral features. In our

experiments, the range-and-bearing sensors onboard the e-puck robot are employed for

behavior observation. The range-and-bearing sensors are readily available on many swarm

robot platforms (e.g., see extension modules for Khepera III [36], eye-bot [37], foot-bot [38]

and e-puck robots [39]). In the absence of a dedicated range-and-bearing sensor, time-divi-

sion-multiplexed IR proximity sensors may provide the robots with equivalent sensor readings

[40]. Alternate observation sensors such as popular onboard camera sensors may also be used

for behavior observations, assisted by fiducial markers [41, 42] tagged on the robots of the

swarm [43].

In the second phase of our fault-detection process, the classification output of the CRM

abnormality detector is accumulated over a series of consecutive control cycles, prior to
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consensus formation on the detection of the faulty robot. Our results revealed that an increase

in the length of the accumulation time window always translated into a lower number of false-

positive incidents, accompanied however by a higher latency in the detection of faulty robots.

The cost of accommodating a faulty robot is an important consideration in deciding the length

of this accumulation time window. Scenarios wherein fault accommodation is expensive, and

the immediate detection of faulty robots is not crucial to success of the swarm’s mission, may

benefit from a high time window. By contrast, in critical tasks where faulty robot behavior may

be catastrophic, the length of the accumulation time-window may be set to a relatively low

value. While the fault accommodation cost may be valued based on prior knowledge of the

swarm’s environment [44, 45], the possibility of dynamically costing fault accommodation

remains an open question.

In our simulations, every robot of the swarm is synchronized in their fault-detection cycles.

However, as local synchronization between robots in close proximity is sufficient for our dis-

tributed approach to fault detection, synchronization may easily be enforced in experiments

with real robots (e.g., see synchronous flashing of fireflies [46], and bacterial quorum-sensing

[47] applied to distributedly synchronize robot swarms [13, 48–50]). Furthermore, in our

study, a relatively low degree of desynchronization of the robots internal clock did not severely

impact the swarm’s performance in fault detection. In preliminary experiments (detailed in

Table A in S1 File), a random perturbation of every robots internal clock following N(5 s, 2.5 s)
resulted in the faulty robot continuing to be detected in most experiment replicates

(Mean ± SD proportion of replicates, Sync.: 0.9±0.2, De-sync.: 0.8±0.2, Kruskal-Wallis test,

p< 0.001), requiring a relatively higher time latency for fault detection (Sync.: 51.4 ± 18 s, De-

sync.: 126.8 ± 35 s, p< 0.001). The impact of a more severe desynchronization of the robots on

the performance of the swarm in fault detection is to be studied further.

A multi-layered approach to fault detection [7] integrates both endogenous [3–6] and exog-

enous fault detection [8–10, 12–14, 18, 51] in their design, consequently benefiting from both

approaches. Robots employing a multi-layered approach can utilize the multitude of robots in

large-scale swarms for exogenous fault detection, while simultaneously relying on endogenous

fault detection when isolated, or in scenarios where a faulty robot’s neighbors may compensate

for its abnormal behavior (see Table 4, SWARM-COMPENSATE fault-negative incidents).

With a robot behavior observation model already in place, our exogenous fault-detection sys-

tem may be easily extended with the inclusion of an endogenous fault-detection component.

Such a component would allow robots to detect faults endogenously by comparing proprio-

ceptively computed behavioral feature vectors, with behavioral feature vectors communicated

by observing neighbors. In utilizing such an approach, false-negatives incidents due to the

robot swarm compensating for abnormally behaving robots, would be avoided.

Conclusions

Robot fault detection and fault tolerance represent two of the most important problems in the

field of multirobot systems. Robot swarms in many real world scenarios, operating in unstruc-

tured environments for instance, require a fault-detection system that can adapt to temporal

variations in the robots behavior and perturbations to the environment [52, 53]. The fault-

detection system presented in this study demonstrates these capabilities. Namely, our fault

detection system provides the following significant contributions for robot swarms:

• Distributed behavior observation model, which is resilient to sensory noise and intermittent

and sporadic robot observations. Unlike previous work (e.g., [7]), our robots do not have to

interrupt their task to observe each other for fault detection.
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• Normal/faulty behavior-classification system [19] which can be tuned to balance the trade-

off between latency in faulty detection and the number of false-positive incidents.

• A consensus algorithm to transcend normal/faulty decisions made by individual robots to a

robust swarm-level decision on the status of the robot. Such a robust collective decision is

critical to extend our algorithms to provide fault-recovery strategies for a robot swarm.

• Our resulting behavior-driven fault detection system operates independently of the control-

ler architecture employed to execute the swarm behavior.

While our experiments have been performed in simulation, largely due to the high cost of

individual e-puck robots, noise has been added to simulate the degree of stochasticity inher-

ently associated with real robots. In ongoing work, we are investigating the deployment of our

fault-detection system on a relatively small swarm of real mobile robots, and the potential for

using our fault-detection system in more challenging outdoor scenarios.

Supporting information

S1 File. Electronic supplements of robot swarm simulation souce code and the ablation

analysis of the fault-detection system.

(PDF)
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