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Online evolution of behavioural control on real robots is an
open-ended approach to autonomous learning and adaptation:
robots have the potential to automatically learn new tasks
and to adapt to changes in environmental conditions, or to
failures in sensors and/or actuators. However, studies have
so far almost exclusively been carried out in simulation
because evolution in real hardware has required several
days or weeks to produce capable robots. In this article, we
successfully evolve neural network-based controllers in real
robotic hardware to solve two single-robot tasks and one
collective robotics task. Controllers are evolved either from
random solutions or from solutions pre-evolved in simulation.
In all cases, capable solutions are found in a timely manner
(1 h or less). Results show that more accurate simulations may
lead to higher-performing controllers, and that completing
the optimization process in real robots is meaningful, even if
solutions found in simulation differ from solutions in reality.
We furthermore demonstrate for the first time the adaptive
capabilities of online evolution in real robotic hardware,
including robots able to overcome faults injected in the motors
of multiple units simultaneously, and to modify their behaviour
in response to changes in the task requirements. We conclude
by assessing the contribution of each algorithmic component
on the performance of the underlying evolutionary algorithm.

1. Introduction
Robots have significant potential to replace manned machines
and to carry out tasks in environments that are either remote or
hazardous, such as space, underground or deep sea. However,
to create intelligent, reliable, mobile robots that can effectively
operate in a wide variety of environments, the issue of limited
learning ability of robots must be addressed [1]. The control system

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
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of mobile robots is typically based on predefined rules that remain fixed during task execution, regardless
of what robots encounter in the environment. As a result, mobile robots tend to be brittle: they are
unable to adapt to unforeseen changes in environmental conditions (e.g. changes in terrain or unexpected
obstacles) or internal conditions (e.g. drift or permanent failure in sensors and/or actuators), which limits
their versatility and usefulness. The capacity to learn and adapt during task execution is therefore crucial
for mobile robots.

One radical and open-ended approach to learning and adaptation in robotic systems is online evolution.
Online evolution employs evolutionary computation, a nature-inspired approach that mimics Darwinian
evolution. Instead of a robot engineer manually programming the robots to carry out a mission, an
evolutionary algorithm is executed on board each robot in order to create and continuously optimize its
behavioural control logic. The evolutionary algorithm is executed autonomously without any external
supervision or human interaction. Online evolution thus has the potential to automatically generate the
artificial intelligence that controls each robot, which can give robots the capacity to cope with unforeseen
changes.

Despite the potential for automatic robot learning, online evolution is not frequently employed in
real-robot scenarios for a number of reasons. First, online evolution typically requires several hours or
days to synthesize solutions to any but the simplest of tasks [2]. Second, one common assumption in
the field is that online evolution enables continuous learning and adaptation to previously unforeseen
circumstances. However, successful demonstrations that this assumption holds true are scarce. In
simulation, only a small number of ad hoc experiments have been carried out [3–6]. On real robots,
successful demonstrations of the adaptive capabilities of online evolution have been limited to changing
the position of a light source in a dynamic phototaxis task [3].

In this article, we focus on two key aspects: (i) if and how online evolution can enable autonomous
learning and adaptation in real single robots and multi-robot systems and (ii) how to enable effective
online evolution of behavioural control, including coordinated behaviours when groups of robots are
considered, that is, whether or not robots can learn to solve different classes of tasks within a time
frame of 1 h or less. We carry out online evolution on real Thymio II robots, and we use the odNEAT
evolutionary algorithm [4], which simultaneously optimizes the weights and the topological structure of
artificial neural network-based controllers.

Our first research question refers to how to best seed online evolution so that controllers can be
efficiently evolved. We assess how online evolution from an initial random population in real robotic
hardware compares with online evolution seeded with controllers pre-evolved in simulations with
varying degree of fidelity. We then assess the relations between simulation fidelity, task complexity
and the effort required to readapt online controllers that do not transfer well from simulation to reality.
Although online readaptation of controllers was hinted at in the 1990s [7], it was only studied in an ad hoc
manner. Particularly, online readaptation was investigated without regard to how accurate a simulation
needs to be in order to provide an effective bias, and in a single task (navigation and obstacle avoidance
by a single robot). Our second research question is related to the unexplored adaptation and learning
potential of online evolution. We therefore set up a series of adaptation experiments, in which we change
the task requirements during the experiment, and we inject simulated faults in the motors of multiple
robots simultaneously.

We study two single-robot tasks: (i) integrated navigation and obstacle avoidance, and (ii) homing
towards a target area; and one collective robotics task, namely aggregation. The integrated navigation
and obstacle avoidance task is used to analyse the performance of online evolution when two conflicting
objectives have to be learned. The task implies an integrated set of actions, and thus a trade-off between
avoiding obstacles and maintaining speed and forward movement. Navigation and obstacle avoidance
is therefore essential for autonomous robots operating in real-world environments, and it provides the
basis for more complex behaviours such as path planning [8].

The second task, homing, is an extension of navigation tasks in which a single robot starts from a
random position, and must search for and navigate to a small target area located in the centre of the
environment. The third task, aggregation, is a multi-robot task in which dispersed robots must move
close to one another so that they form and remain in a single group. Aggregation thus combines different
aspects of collective robotics tasks, namely distributed search, coordinated movement and cooperation.
Aggregation is also related to a number of real-world robotics tasks. For instance, self-assembly and
collective transport of heavy objects require the robots to aggregate at the site of interest [9]. In our
aggregation task, we divide the arena into three equally sized areas. A group of three robots must then
aggregate in one of the two areas at the extremes of the arena, similarly to collective decision-making
scenarios used to investigate the best-of-n decision problem in robot collectives [10].
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We show that our approach to online evolution enables efficient synthesis of controllers from random

solutions in real robotic hardware, and readaptation of controllers after they are transferred from
simulation to reality. We also demonstrate for the first time the adaptive capabilities of online evolution
in real robotic hardware, as robots effectively learn new behaviours and adapt to faults in the motors so
as to carry out the required tasks. To conclude, we analyse how our results are influenced by the choice of
the underlying online evolution algorithm, and we show that the performance of odNEAT is supported
by evolutionary mechanisms seldom adopted in online evolution algorithms, such as explicit speciation
of solutions with differing complexity, and recombination of controllers with different structure [4]. In
summary, our research is a contribution towards scaling online evolution to real-world applications, in
which robots have to take on tasks in potentially dynamic environments, and to the development of more
effective online evolution algorithms.

2. Material and methods
Our experimental methodology is defined by three key components, namely: (i) specification of the task
setup, (ii) evolution in simulation, and (iii) evolution in real hardware. Each component is described
below. Experiments were carried out in a square arena. The size of the simulated arena for evolution of
the seed controllers and of the real arena was chosen to be 100 × 100 cm. The real arena was surrounded
by wooden walls. Each simulated robot and each real robot was controlled by a discrete time recurrent
neural network [11]. The inputs of the neural network were normalized sensor readings, and the outputs
of the network controlled the robot’s actuators. Every 100 ms, robots executed a control cycle, in which
they updated sensor readings and actuation values.

Specification of the task setup:

(i) Construction of the environment for the real-robot experiments, and modelling of an
environment with similar characteristics in simulation.

(ii) Configuration of the robots’ sensors and actuators, particularly the processing of raw sensory
data to extract information that can be fed to the robots’ neural controllers.

(iii) Modelling of robot sensors and actuators in simulation. As sensors are often the main source
of stochasticity in robots [7], we used three complementary methods to model sensory inputs:
taking samples from the real robots’ sensors [12], introducing a conservative form of noise in
simulated sensors [12] and perfect readings, that is, without any stochasticity associated. For the
simulated actuators, we built a differential-drive kinematics model, adjusted the model based
on observations of the motor speeds of real robots and applied a conservative amount of noise.
Noise in simulated sensors and actuators corresponded to a random Gaussian component within
5% of the sensor saturation value or of the current actuation value. It should be noted that our
approach to modelling robot sensors and actuators in simulation does not preclude the use
of more elaborate methodologies, such as the transferability approach [13]. The transferability
approach relies on multiobjective optimization in which controllers are evaluated based on
their performance in simulation and on the real robots; it uses a surrogate model that is
updated periodically by evaluating candidate solutions in real hardware. The goal is to learn
the discrepancies between simulation and reality, and to constrain evolution in order to avoid
behaviours that may not transfer effectively from simulation to reality.

(iv) Definition of the fitness function. In our experiments, we resorted to internal fitness
functions [14], which are based on information that is available to the robot (e.g. through its
sensors or state of the motors). In this way, fitness assessment is self-contained, as an individual
robot does not require any external devices to determine its performance.

Evolution in simulation: Our simulation-based experiments were conducted using JBotEvolver [15], an
open-source, multi-robot simulation platform and evolutionary framework. Each robot was controlled
by an artificial neural network. To optimize controllers in simulation, we used the NEAT algorithm [16],
a widely adopted generational evolutionary algorithm that simultaneously optimizes the connection
weights and the topological structure of neural networks. A full description of the algorithm is given
in [16]. We conducted experiments in nine evolutionary setups (three complementary methods to
model sensory inputs for each of the three tasks). Each evolutionary setup consisted of 30 independent
evolutionary runs conducted in simulation. In each simulation-based run, the evolutionary process
optimized a population of 100 controllers for 100 generations. At each generation, a controller’s
performance was given by the mean fitness of 10 simulations with varying conditions (e.g. randomized
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Figure 1. Real robotic platform. Each Thymio II robot is extendedwith a Raspberry pi 2 B single-board computer. The Thymio II robot has
seven infrared proximity sensors (five in the front, two in the back) and two infrared ground sensors, among others.

initial position and orientation, amount of noise injected at every simulation step in sensors and/or
actuators). After each evolutionary run ended, we carried out a post-evolution evaluation. The top
controller of each generation was evaluated in 100 simulations (total of 3000 controllers evaluated
without evolution) to obtain a more precise estimate of the performance. Based on the post-evolution
evaluation results, we identified the highest performing controller of each evolutionary setup.

Evolution in real hardware: To conduct our real-robot experiments, we used Thymio II robots (figure 1).
Each robot was extended with a Raspberry Pi 2 B single-board computer. In multi-robot experiments,
the robots formed an IEEE 802.11g ad hoc wireless network, and communicated with one another by
broadcasting UDP datagrams. For controller evolution, we used the odNEAT algorithm [4], which we
describe in the following section.

In the experiments presented in this article, online evolution was either conducted from random
solutions on real robotic hardware, or seeded with controllers previously evolved in simulation. For each
real-robot experimental setup, five independent runs were conducted. Each run lasted 1 h. Individual
controller evaluations on real robots lasted 30 s in the navigation and obstacle avoidance task, and 25 s in
the homing and aggregation tasks (individual evaluations in these two tasks were preceded by a 5 s long
random walk), allowing for a total of 120 evaluations per experiment.

2.1. Online evolution of control with odNEAT
odNEAT is distributed across multiple robots that exchange candidate solutions to the task. Specifically,
the evolutionary process is implemented according to a physically distributed island model. Each robot
optimizes an internal population of genomes (directly encoded artificial neural networks) through intra-
island variation, and genetic information between two or more robots is exchanged through inter-island
migration. The genomes are probabilistically exchanged between robots at every control cycle. The
exchange procedure promotes the propagation of genomes representing networks with novel forms of
topological structure and competitive performance levels (see [4] for details). In this way, each robot is
potentially self-sufficient and the evolutionary process opportunistically capitalizes on the exchange of
information between multiple robots for collective problem solving [4].

odNEAT starts with fully connected artificial neural networks with no hidden neurons, that is, with
each input neuron connected to every output neuron. Throughout evolution, topologies are gradually
complexified by adding new neurons and new connections through mutation. In addition, the internal
population of each robot implements a niching scheme comprising speciation and fitness sharing, which
allows the robot to maintain a healthy diversity of candidate solutions with distinct topologies [4]. New
controllers are synthesized via selection of a parent species and two genomes from that species (the
parents), crossover of the parents’ genomes and mutation of the offspring. Mutation is both structural
and parametric, as it adds new neurons and new connections, and optimizes parameters such as
connection weights and neuron bias values.

 on January 8, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


5

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160938

................................................
(a) (b)

Figure 2. Real environment for the homing experiments (a), and for the aggregation and adaptation experiments (b). The environment
for the aggregation and adaptation experiments is composed of three areas, namely a black area (top), a grey area (middle) and a white
area (bottom).

2.2. Navigation and obstacle avoidance
In the navigation and obstacle avoidance task, a robot has to simultaneously move as straight as possible,
maximize wheel speed and avoid obstacles. In a confined environment, such as our enclosed arena, this
task implies an integrated set of actions, and consequently a trade-off between avoiding obstacles and
maintaining speed and forward movement.

The input layer of a neural network-based controller for the navigation and obstacle avoidance task
has seven neurons. The input neurons receive the readings from the seven horizontal infrared sensors
for obstacle detection (five in the front, two in the back), normalized to the interval [0, 1]. The output
layer is composed of two neurons. The values of the output neurons are linearly scaled from [0, 1] to
[−1, 1] to set the signed speed of each wheel. The fitness score fnav of a controller is given by Floreano &
Mondada [17]:

fnav =
T∑

i=1

V ·
(

1 − √
�v

)
· (1 − do)

T
, (2.1)

where T is the length of an experiment in control cycles, V ∈ [0, 1] is the normalized absolute sum of
rotation speeds of the two wheels, �v ∈ [0, 1] is the normalized absolute value of the algebraic difference
between the signed speed values of the wheels and do is the highest activation value of the infrared
sensors for obstacle detection. We see that do takes values from 0 (no obstacle in sight) to 1 (collision
with an obstacle). The three components encourage, respectively, motion, straight line displacement and
obstacle avoidance.

2.3. Homing
Homing is an extension of navigation tasks in which a robot must move towards a point of interest in the
environment. In our homing task, a single robot has to actively search for and navigate to a small target
area located in the centre of the environment. The target area has a radius of 5 cm. To allow Thymio
robots to sense the target area, we sampled the ground sensors’ response to different colour components,
and created a circular grey gradient surrounding the target area (figure 2a). This configuration allows a
robot to sense the target area at a distance of up to 25 cm.

The input layer of a controller for the homing task has eight neurons. The input layer receives the
normalized readings of the seven horizontal infrared sensors and the robot’s proximity to the target
area, scaled to a value between 0 (target area not in range) and 1 (robot is in the target area). The
proximity value is computed based on the mean value of the readings from the two infrared ground
sensors. Similarly to the navigation and obstacle avoidance task, the output layer contains two neurons
for setting the signed speed of each wheel.

The position of the robot is randomized at the beginning of every evaluation by executing a 5 s long
random walk. Controllers are then scored based on the robot’s proximity to the exterior part of the target
area, up to 25 cm, for the remaining 25 s of the evaluation period:

fhoming =
T∑

i=1

pt

T
, (2.2)
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where T is the maximum number of control cycles and pt is the robot’s proximity to the target area (linear
inverse of the distance).

2.4. Collective decision-making: aggregation in a non-determined area
In an aggregation task, dispersed robots must move close to one another so that they form a single group.
In the aggregation task used in our study, we divide the arena into three equally sized areas (figure 2b).
A group of three robots must aggregate in one of the two areas at the extremes of the arena, denoted as
area A and area B.

The input layer of each controller for the aggregation task is composed of 11 neurons: seven neurons
receive the normalized readings of the horizontal infrared sensors for obstacle detection; two neurons
receive binary inputs indicating whether the robot is in area A or not, and whether in area B or not; and
two neurons receive the ratio of other robots in area A and in area B. The binary inputs are computed
based on the mean value of the readings from the two infrared ground sensors. Each robot additionally
broadcasts these inputs to other robots, which allows receiving robots to compute the ratio of robots in
area A and in area B. As in the previous two tasks, the output layer is composed of two neurons that
control the speed of the wheels.

Similarly to the homing task, the position of robots is randomized at the beginning of each controller
evaluation. A controller is scored according to the area in which it is located and the areas in which other
robots are located:

fagg =
T∑

i=1

foption

T
, foption =

{
1 + �area if robot is in area A or area B,

0 otherwise,
(2.3)

where T is the duration of the experiment in number of control cycles and �area is the number of other
robots in the same area.

2.5. Adaptation experiments
Task adaptation experiments: In these experiments, we first evolve controllers to solve the aggregation task,
in which robots must aggregate either in area A or in area B, and we then change the task so that robots
have to aggregate in the centre of the arena (figure 2b). A controller is scored based on

fagg_centre =
T∑

i=1

fcentre

T
, fcentre =

{
1 + �centre if robot is in centre area,

0 otherwise,
(2.4)

where T is the duration of the experiment in number of control cycles and �centre is the number of other
robots in the centre area. While intuitively simple, this change in the task requirements forces robots to
radically modify their response to key sensory inputs.

Fault injection experiments: The ability to tolerate and/or actively overcome faults is essential for
improving the reliability of robot systems [18]. In the fault injection experiments, we simulate faults
in the motors of real robots evolved to solve the aggregation task. We conduct three sets of experiments,
in which we inject faults in the motors of N = {1, 2, 3} robots. The fault injection procedure consists of:
(i) selecting the required number of robots, (ii) randomly choosing either the left or the right wheel of each
of the N robots and (iii) randomly limiting the wheel speed to 50–75% of its maximum value. Such faults
are analogous to failures in servo drives and motor-amps of mobile robots operating for long periods of
time [19].

In both the task adaptation and the fault injection experiments, we resume the evolutionary process
after the respective changes take place. Specifically, robots first evolve for one hour to solve the initial
version of the aggregation task, as described in the previous section. We then select the group of real
robots with highest fitness on average, and allow the robots to evolve for another hour in order to adapt
to changes.

2.6. Performance analysis and treatments
We compare results along three dimensions: (i) fitness, that is, the performance or quality of a controller,
(ii) percentage of successful controller evaluations per experiment, and (iii) behaviour distance, that is,
how distinct the actions performed during task execution by one or more reference controllers are with
respect to the actions performed by other controllers. As robots are repositioned from one evaluation to
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the next, the percentage of successful evaluations is a more consistent metric than the traditional number
of evaluations until the first successful controller evaluation, thus providing more accurate indications
of the ability of robots to learn and adapt.

We have empirically determined performance-based criteria to distinguish between successful
controller evaluations and failed controller evaluations. In the integrated navigation and obstacle
avoidance task, a controller evaluation is considered to be successful if the fitness score fnav of the
controller is above 0.5 (e.g. the robot effectively avoids obstacles and navigates at least at half of the
maximum speed, or moves at maximum speed and can avoid obstacles before they are at a distance
of half of the sensor range). In the homing task, a controller evaluation is considered successful if the
robot is able to find the target area, and stay in it for at least three consecutive seconds. Similarly, an
evaluation in the aggregation task is considered successful if all robots in the group can coordinate and
remain in the same area for at least three consecutive seconds. In the homing task and in the aggregation
task, the controller success versus failure analysis is, respectively, complemented by the amount of
time that a robot has spent in the target area, and by the amount of time that a group of robots has
spent aggregated.

To compare behaviours and thus compute behaviour distances, a characterization of individual
controllers according to behaviour is needed [2,20]. We resorted to a domain-independent behaviour
characterization based on the mapping between sensors and actuators. Specifically, the behaviour metric
is based on the set of sensor readings and actuation values ϑ normalized into [0,1]. The binary version
ϑbin of ϑ is then computed such that each ϑbin(i) ∈ ϑbin is defined as 1 if ϑ(i) > 0.5 and 0 otherwise. The
distance between two behaviours is computed as the Hamming distance between them. This metric has
shown to be at least as efficient as domain-dependent behaviour metrics [21]. A complete description
of the method is given in [21]. To analyse how the evolutionary process proceeds, we construct two-
dimensional behaviour–fitness maps, which relate behaviour distance with task performance. It should be
noted that our concept of behaviour-fitness map differs from the concept of behaviour performance map
presented in [22], which is used to record the highest-performing individual found during evolution for
each point in a discretized version of the behaviour space.

We use the two-tailed Mann–Whitney test to compute significance of differences between sets of
results because it is a non-parametric test, and therefore no strong assumptions need to be made about
the underlying distributions. When multiple comparisons are performed, we adjust the ρ-value using the
two-stage Hommel method [23]. Success rates are compared using the two-tailed Fisher’s exact test [24].

3. Results
The presentation of experimental results is divided into three subsections. In the first subsection, we
report on how to best seed online evolution in real hardware. In the second subsection, we describe if
and how online evolution can enable adaptation to changes in the task requirements and to faults injected
in the motors of multiple robots. In the third subsection, we detail and discuss how the properties and
different algorithm components of odNEAT influence controller synthesis.

3.1. Evolution of control in real robotic systems
In this section, we evaluate how online evolution from an initial random population in real hardware,
henceforth called baseline evolution, compares with online evolution seeded with controllers pre-evolved
in simulation. We address three key research questions: (i) to what extent the online evolutionary process
can be accelerated by being seeded with controllers pre-evolved in simulation, (ii) how accurate a
simulation needs to be in order to provide an effective bias, and (iii) how much evolutionary effort
is required to adapt pre-evolved controllers that do not transfer well from simulation to real robotic
hardware.

We evolved seed controllers in simulations with varying degree of fidelity by using three
complementary methods to model sensory inputs: relying on samples taken from the real robots’
sensors [12]; introducing a conservative form of noise in simulated sensors [12]; and perfect readings, that
is, without any noise or stochasticity associated. The highest performing controller of each simulation-
based setup (real samples, conservative noise, no noise) is subsequently used in a set of real-robot
experiments, in which it is specified as the initial controller in the online evolution algorithm [4] (see
electronic supplementary material, Text S1, for experiments on how the highest performing controllers
found in simulation transfer to real robotic systems).
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Figure 3. Behaviour–fitnessmap for the navigation and obstacle avoidance tasks. Behaviour distance is relative to the initial controllers:
a randomly generated controller for the baseline setup (a), and the seed controller for the no-noise setup (b), conservative noise setup
(c) and real samples setup (d). The fitness score of a controller is a linear combination of two components, specifically fast and forward
movement, and avoiding obstacles in sensor range. The two components are normalized in the interval [0, 1] and measured over all
control cycles of the robot (for a given evaluation). We empirically determined that fitness scores higher than 0.9 cannot be obtained
in our enclosed arena.

3.1.1. Influence of the seeding process on controller evolution and readaptation

In the navigation and obstacle avoidance task, the mean percentage of successful controller evaluations
per robot is 38.0 ± 16.1% for the baseline setup, 9.5 ± 9.0% for the no-noise setup, 6.5 ± 12.3% for
the conservative noise setup and 85.8 ± 3.6% for the real samples setup. The percentage of successful
controllers evolved with the real samples method is significantly superior to the percentage of successful
controllers evolved with other methods (ρ < 0.0001); the baseline method also outperforms the no-noise
method and the conservative noise method (ρ < 0.0001).

Figure 3 shows two-dimensional behaviour–fitness maps, which relate behaviour distance with task
performance, for the four setups of the navigation and obstacle avoidance task (baseline, controllers pre-
evolved in simulations using perfect sensor readings, a conservative form of noise in simulated sensors,
and samples from real robots). To elucidate on how evolution proceeds in the behaviour space, behaviour
distance is relative to the initial controllers. The maps show that the progress of the online evolutionary
process through the behaviour space is strongly influenced by the choice of seeding method. In the
baseline setup, the evolutionary process mainly discovers a certain class of behaviours (those with
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behaviour distance between 80 and 100; figure 3a,c). In the no-noise setup, evolution synthesizes
behaviours at varying distances from the seed controllers, but can rarely reach high-fitness regions.
This result indicates that seeding evolution with controllers from the no-noise setup biases the search
towards uninteresting regions of the behaviour space. In these regions, high-performing controllers are
challenging to synthesize, hence the comparatively low rate of successful controller evaluations.

If evolution is seeded with controllers from the conservative noise setup, it performs similarly to
when it is seeded with controllers from the no-noise setup. However, the evolutionary process performs
a more localized search for solutions in behaviour space (behaviour distances approx. between 50 and
100). This result indicates that the bias induced by seed controllers is stronger, which in turn increases
the readaptation effort required to evolve effective controllers. The final map shows that if evolution is
seeded with controllers from the real samples setup, it is able to consistently synthesize high-performing
solutions to the task (figure 3a).

The results presented in this section indicate that simulations with different sensor models impose
distinct constraints on the online evolutionary and readaptation process. In the following sections, we
assess if and how the results generalize to more challenging tasks (e.g. that require searching for a target
area or group coordination), specifically the homing task and the aggregation task.

3.1.2. Challenging the reality gap with online evolution

In the homing task, the mean percentage of successful evaluations per robot is 3.7 ± 0.7% for the baseline
setup, 6.3 ± 2.0% for the no-noise setup, 3.8 ± 2.9% for the conservative noise setup and 4.2 ± 1.7% for
real samples setup. Differences are not statistically significant across any comparison (ρ > 0.05). While
the mean percentages of successful evaluations per robot are comparatively lower in the homing task
than in the integrated navigation and obstacle avoidance task, the online evolutionary process is still
able to consistently synthesize a considerable set of effective controllers in every run: approximately four
to eight solutions to the task per 1 h experiment.

Figure 4a shows the amount of time spent in the target area by the controllers that can successfully
carry out the homing task. The median amount of time in the target area is 12 of 25 s in the baseline set-
up, and 9 of 25 s for other setups. These combined results furthermore show that: (i) effective solutions
to the task can be evolved from random solutions on real robots and (ii) online evolution is able to
readapt controllers that do not transfer well from simulation to real robotic hardware. Importantly,
the fact such readaptation actually occurs in one hour or less, which is the time frame considered in
our experiments, challenges the view that completing the optimization process in a real robot is only
meaningful if solutions found in simulation are close to solutions in reality, that is, if the reality gap is
sufficiently narrow.

3.1.3. Evolution of collective behaviours

In the aggregation task, the mean percentage of successful evaluations per group of robots is 11.5 ± 4.0%
for the baseline setup, 14.8 ± 11.2% for the no-noise setup, 8.7 ± 5.3% for the conservative noise setup and
9.0 ± 3.2% for the real samples setup. Differences are not statistically significant across all comparisons
(ρ > 0.05). Every 1 h experiment therefore consists of 10–18 groups of controllers able to simultaneously
coordinate the behaviour of the respective robots in order to reach collective decision-making, namely
aggregation in a non-determined area.

Figure 4(b) shows the amount of time that groups of three robots able to carry out the aggregation
task spent in the same area. The median amount of time aggregated is approximately 8 of 25 s for all
experimental setups. The highest performing groups of controllers, that is, those that aggregate the
longest, are typically synthesized either in the baseline setup or in the real samples setup. These results
demonstrate that online evolution allows robots to effectively evolve solutions to the aggregation task.
To the best of our knowledge, this experiment is the first instance of online evolution of collectively
coordinated behaviours with real robots. Previous studies involving multiple robots have been limited
to individual tasks such as phototaxis [25], dynamic phototaxis [3], foraging [26], and a combination
of foraging and phototaxis (robots can use a moving light source as an environmental aid) in which
controllers are evolved in an on-board simulator [27].

3.2. Behaviour adaptation and fault tolerance in real robotic systems
In this section, we assess if and how robots can adapt and learn new behaviours when task requirements
change and when faults are injected in the motors. The aggregation task is arguably the most
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Figure 4. Successful controllers for the homing and aggregation tasks. (a) Time spent in the target area by the controllers that can
successfully carry out the homing task. (b) Amount of time that successful aggregation controllers spent in the same area.

challenging of the three tasks for evolution to find a solution for. Using the aggregation task, we
devised two experimental setups to assess the ability of online evolution to adapt behavioural control,
namely: (i) task adaptation experiments, in which we change the configuration of the aggregation task
so that robots have to aggregate in the centre of the arena after learning to successfully aggregate in
one of the extremes, which forces robots to respond to sensory information in a radically different
way, and (ii) fault injection experiments, in which simulated faults analogous to failures in servo
drives and motor-amps [19] are injected in the motors of N = {1, 2, 3} of three robots after they
have learned to solve the initial version of the aggregation task. The different configurations of
the fault-injection experiments are called the one-fault setup, the two-fault setup and the three-fault
setup.
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3.2.1. Task adaptation results

The mean percentage of successful evaluations per group of robots is 11.7 ± 8.8% for the task adaptation
experiments, which is comparable to that of the baseline setup, despite a higher standard deviation:
11.5 ± 4.0% of successful evaluations. Differences in successful controller evaluations are not statistically
significant (ρ > 0.05). Importantly, the online evolutionary process maintains a comparable rate of
successful groups of controllers before and after changes to the task take place, approximately 14 groups
of controllers, which indicates effective readaptation.

The analysis of the amount of time that robots spent aggregated in the different adaptation
experiments (figure 5) indicates that robots are able to effectively adapt to the new circumstances. In the
task adaptation experiments, robots reach performance levels similar to those of baseline experiments:
they learn to effectively aggregate in the centre area and thus to solve a new instance of the aggregation
task. Importantly, the evolutionary process focuses mainly on optimizing a certain class of behaviours
in order to readapt controllers to the new task (see electronic supplementary material, figure S3 for
details).

3.2.2. Fault injection results

The mean percentage of successful evaluations per group of robots is 3.0 ± 1.3% for the one-fault setup
(four groups of successful controllers), 11.3 ± 9.9% for the two-fault setup (14 groups) and 14.7 ± 7.9% for
the three-fault setup (18 groups). Interestingly, the fault injection progressively leads to more successful
evaluations as the number of faults increases. Successful controller evaluations are significantly higher
in the baseline setup, two-fault setup and three-fault setup than in the one-fault setup (ρ < 0.0001).

In the fault injection experiments, successful controllers cause robots to aggregate for a shorter amount
of time when compared with the baseline setup (figure 5). The reason is that faulty robots, even after they
learn to cope with a faulty wheel, are still limited in the speed they can achieve (from 50% to 75% of the
maximum speed). As a result, robots require more time to find one another and aggregate. In the one-
fault setup, only one robot is in a faulty state. The faulty robot has to learn to overcome the fault by itself,
as controllers evolved by the other two robots in the group are optimized for non-faulty wheels, and
cause the faulty robot to move in circles. In this way, the one-fault setup yields a comparatively lower
percentage of successful controller evaluations per group of robots.

In the two-fault setup, the stochasticity of the fault injection causes the evolutionary process to
commonly optimize behavioural control for a group of robots in which there is: (i) one non-faulty robot,
(ii) one robot with a simulated fault in its left wheel and (iii) one robot with a simulated fault in its right
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wheel. Consequently, evolution focuses on behaviours that differ more from the initial controllers than
those evolved in the one-fault setup (see electronic supplementary material, figure S3 for the behaviour–
fitness map). The increased behaviour exploration is beneficial, as the performance levels of robots
increase with respect to the one-fault setup both in terms of the successful controller evaluations, and
of the amount of time that the group of robots was aggregated. The results of the three-fault setup are
similar to those of the two-fault setup. Although the amount of time aggregated is comparable, both
the percentage of successful controller evaluations and the behaviour distance to initial controllers are
higher in the three-fault setup than in the two-fault setup.

3.3. Ablation studies
One key component in our experimental methodology is the underlying online evolution algorithm,
odNEAT [4], which has been shown to outperform other state-of-the-art algorithms in simulation-
based experiments [4]. odNEAT employs techniques seldom adopted in online evolution, including:
(i) genotypic diversity mechanisms, particularly speciation and fitness sharing, which allow the
algorithm to maintain a healthy diversity of genomes representing differing structures and network
complexities throughout evolution, (ii) crossover between genomes representing networks with different
topologies, which is supported by historical markers to enable meaningful recombination and (iii) a
hybrid, island-model-like evolutionary structure: each robot optimizes an internal population of
genomes through intra-island variation, and genetic information between two or more robots is
exchanged through inter-island migration.

Using the aggregation task, we have ablated the main algorithm components of odNEAT. We
conducted experiments in four distinct experimental setups: (i) without the genotypic diversity
mechanisms (no niching), (ii) without the crossover operator (no crossover), (iii) with no exchange of
genomes between robots and (iv) with a minimal population of size 1, which combines ablations (i), (ii)
and (iii) because the internal population of each robot can only hold the genome corresponding to the
controller that is executing. The minimal population ablation transforms odNEAT into a variation of
the (1 + 1)-online algorithm [28], which was proposed after the classic (1 + 1) evolutionary strategy, and
upon which multiple online evolution algorithms are based [3,4].

The mean percentage of successful evaluations per group of robots is 11.5 ± 4.0% for baseline
evolution (non-ablated odNEAT, 14 groups of successful controllers), 5.7 ± 1.7% when the niching
scheme is ablated (seven groups), 3.2 ± 1.8% when the crossover operator is ablated (four groups),
2.5 ± 1.0% when the exchange of genomes is ablated (three groups) and 1.5 ± 1.5% when the ablations
are combined (minimal population ablation, two groups). The non-ablated version of odNEAT enables
successful controller evaluations significantly more often than every ablated version (ρ < 0.05).
Furthermore, the non-ablated version of odNEAT generates more effective controllers, which are able
to form and remain in a single group for a larger amount of time (figure 6). The main conclusion is thus
that each component of odNEAT has a significant contribution to the algorithm’s performance as an
efficient online evolution algorithm.

4. Discussion
In our real-robot experiments, we successfully evolved behavioural control online to solve two single-
robot tasks and one collective robotics task. In addition, we have demonstrated for the first time
the adaptive benefits of online evolution in real robotic hardware: we have successfully shown
that robots can adapt to changes in the task requirements and to faults in the motors. In this
respect, follow-up studies of our contribution could conduct experiments similar to ours in laboratory
conditions to investigate, for example, how pre-evolution in simulation influences not only learning
to solve a given task (as in our first set of experiments), but also readaptation in the case of
changes in environmental conditions and/or faults (as in our second set of experiments). However,
in order to scale online evolution to real-world applications, the issues discussed below need to be
addressed.

4.1. Increasing the performance of online evolution
In our experiments, we have considered a time frame of one hour for successful controller evolution
in real robotic hardware, which allowed for a total of 120 controller evaluations per experiment. In the
homing task, the mean percentage of successful controller evaluations is comparatively lower than in

 on January 8, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


13

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160938

................................................

15

aggregation

ablation experiments—successful aggregation controllers

method

method baseline no niching no exchange no crossover minimal population

10

tim
e 

ag
gr

eg
at

ed
 (

s)

5

0

baseline

no niching

no exchange

no crossover

minimal population

Figure 6. Successful controllers for the ablation experiments. Amount of time that robots have spent aggregated. The baseline setup, in
which non-ablated odNEAT is used, yields five outliers above 18 s, namely 20 s, 23 s, 23.5 s, 23.5 s and 25 s (not shown for better reading
of the plot).

the other two tasks considered: from approximately 3.7% to 6.3% of successful controller evaluations,
which corresponds to a set of four to eight successful solutions to the task per 1 h experiment. While
the online evolutionary process is able to consistently synthesize a set of solutions to the homing
task, there are different options to potentially increase the performance of evolution in terms of the
percentage of successful controllers. In recent simulation-based contributions, we have developed two
complementary approaches, namely: (i) a racing technique to cut short the evaluation of poor controllers
based on the task performance of past controllers [29] and (ii) a novel paradigm called online hyper-
evolution [30,31], which can both combine the benefits of different algorithms for controller generation
over time, and construct algorithms by selecting which algorithmic components should be employed
for controller generation (e.g. mutation, crossover, among others). Similarly to traditional evolutionary
robotics approaches, online hyper-evolution can employ fitness-based search, behaviour-based search
(novelty and/or diversity) and combinations of the two. Future work should assess how such techniques
fare in real-robot online evolution of control.

4.2. Self-supervised behaviour learning
In the vast majority of online evolution algorithms, the evolutionary process takes place at regular
intervals: each controller is assessed for a fixed, predefined amount of time, after which a new
controller is generated. However, for online evolution to scale to real-world applications, more
sophisticated techniques to control the evolutionary process and determine when robots should learn
new behaviours are necessary. In real-world tasks, continuously producing new controllers can
potentially harm individual task execution, because evaluation of inferior controllers amounts to poor
task performance, and disrupt group behaviours (e.g. one robot changes from a high-performing
controller to a low-performing controller when a robot collective is pushing an object towards a target
area) [4].

A potential solution is enabling robots to autonomously enter new evolutionary and adaptation
periods by self-supervising their behaviour learning process. One field of research from which inspiration
can be sought is that of artificial curiosity [32], in which agents have an internal drive that pushes them
towards situations in which, for example, reward-based learning progress is maximized. Originally
introduced in the reinforcement learning domain, the artificial curiosity framework has been used for
active learning tasks [33].
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4.3. Scaling the evolutionary process to more complex tasks
Online evolution is well-aligned with a long-standing goal in artificial intelligence and robotics:
synthesizing agents that can effectively learn and adapt online throughout their lifetime. However, one
concern in evolutionary robotics, and thus in online evolution, is scaling to tasks that require higher
behavioural complexity [2]. For general-purpose robots capable of learning a variety of different skills
for different tasks to become feasible, it is required that they can learn new skills while retaining old skills.
However, such an objective remains elusive because robots and artificial agents tend to forget previously
learned information in a catastrophic manner [34] when multiple skills are required.

One solution to allow robots to accumulate skills throughout their lifetime is to rely on modular control
systems in which different skills are represented as building blocks of the system, and then combined in
order to solve more complex tasks. In recent work [35], we have taken the first steps towards this goal by
developing an approach in which building blocks are evolved or preprogrammed and then seamlessly
specified in the neural structure. The building blocks are optimized together with the neural networks’
weights and topology in a unified manner. Future work should explore the usage of this and similar
techniques to enable accumulation of learned behaviours, as well as techniques to effectively evolve
complex individual skills [36].

5. Conclusion
In this article, we reported successful evolution on neural network-based controllers in real robotic
hardware to solve two single-robot tasks and one collective robotics task. Controllers were evolved
either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions
were found in one hour or less. Results showed (i) that the fidelity of the simulation imposes different
types of constraints on online evolution in real robots, (ii) that more accurate simulations may lead to
higher-performing controllers, and (iii) that completing the optimization process in real robots is an
effective approach, even if solutions found in simulation differ from solutions in reality. We furthermore
demonstrated the adaptive capabilities of online evolution in real robotic hardware, including a robot
collective able to overcome faults injected in the motors of multiple robots simultaneously. To conclude,
we showed that each of the main algorithmic components of odNEAT contributes to the algorithm’s
performance.
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