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We consider the group SL2(K), where K is a local non-archimedean field of characteristic two.

We prove that the depth of any irreducible representation of SL2(K) is larger than the depth of

the corresponding Langlands parameter, with equality if and only if the L-parameter is essentially

tame. We also work out a classification of all L-packets for SL2(K) and for its non-split inner form,

and we provide explicit formulae for the depths of their L-parameters.
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1. Introduction

Let K be a non-archimedean local field and let Ks be a separable closure of K. A central
role in the representation theory of reductive K-groups is played by the local Langlands
correspondence (LLC). It is known to exist in particular for the inner forms of the groups
GL

n

(K) or SL
n

(K), and to preserve interesting arithmetic information, like local L-functions
and ✏-factors.

Another invariant that makes sense on both sides of the LLC is depth. The depth d(⇡) of
an irreducible smooth representation ⇡ of a reductive p-adic group G was defined by Moy and
Prasad [13] in terms of filtrations G

x,r

(r 2 R�0) of its parahoric subgroups G
x

. The depth
of a Langlands parameter � is defined to be the smallest number d(�) � 0 such that � is
trivial on Gal(F

s

/F )r for all r > d(�), where Gal(Ks/K)r is the r-th ramification subgroup
of the absolute Galois group of K.

Let D be a division algebra with centre K, of dimension d

2 over K. Then GL
m

(D) is an
inner form of GL

n

(K) with n = dm. There is a reduced norm map Nrd: GL
m

(D) ! K

⇥

and the derived group SL
m

(D) := ker(Nrd: G ! K

⇥) is an inner form of SL
n

(K). Every

1
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inner form of GL
n

(K) or SL
n

(K) is isomorphic to one of this kind. When n = 2, the only
possibilities for d are 1 or 2, and so the inner forms are, up to isomorphism, GL2(K) and
D

⇥, and SL2(K) and SL1(D).
The LLC for GL

m

(D) preserves the depth, that is, for every smooth irreducible repre-
sentation ⇡ of GL

m

(D), we have d(⇡) = d('
⇡

), where '
⇡

corresponds to ⇡ by the LLC [1,
Theorem 2.9].

The situation is di↵erent for SL
m

(D). All the irreducible representations in a given L-
packet ⇧

�

have the same depth, so the depth is an invariant of the L-packet, say d(⇧
�

). We
have d(⇧

�

) = d(') where ' is a lift of � which has minimal depth among the lifts of �, and
the following holds:

d(�)  d(⇧
�

) (1.1)

for any Langlands parameter � for SL
m

(D) [1, Proposition 3.4 and Corollary 3.4]. Moreover
(1.1) is an equality if � is essentially tame, that is, if the image by � of the wild inertia
subgroup P

K

of the Weil group W
K

of K lies in a maximal torus of PGL
n

(C).
We observe that this notion of essentially tameness is consistent with the usual notion

for Langlands parameters for GL
n

(K). Indeed, any lift ' : W
K

! GL
n

(C) of �, is called
essentially tame if its restriction to P

K

is a direct sum of characters. Clearly ' is essentially
tame if and only if '(P

K

) lies in a maximal torus of GL
n

(C), which in turn is equivalent to
�(P

K

) lying in a maximal torus of PGL
n

(C).
We denote by t(') the torsion number of ', that is, the number of unramified characters

� of W
K

such '�

⇠= '. Then � and ' are essentially tame if and only if the residual
characteristic p of K does not divide n/t(') [4, Appendix].

In this article we take K to be a local non-archimedean field K of characteristic 2. In pos-
itive characteristic, K is of the form K = F

q

((t)), the field of Laurent series with coe�cients
in F

q

, with q = 2f . This case is particularly interesting because there are countably many
quadratic extensions of F

q

((t)). These quadratic extensions are parametrised by the cosets in
K/}(K) where } is the map, familiar from Artin-Schreier theory, given by }(X) = X

2
�X.

We first show that equality holds in (1.1) only if � is essentially tame (i.e., t(') = 2):

Theorem 1.1. Let K be a non-archimedean local field of characteristic 2, and let ⇡ be an
irreducible representation of an inner form of SL2(K), with Langlands parameter �. If � is
not essentially tame then we have

d(⇡) > d(�).

Let ' be a lift of � with minimal depth among the lifts of �. In the proof we distinguish
the cases where ' is imprimitive, respectively primitive.

An irreducible Langlands parameter ' : W
K

! GL2(C) is called imprimitive if there
exists a separable quadratic extension L of K and a character ⇠ of L

⇥ such that ' '
indWK

WL
(⇠). Then the depth of ' and � may be expressed in terms of that of ⇠ and ⇠

2,
respectively, as

d(') =
�
d(⇠) + d(L/K)

�
/2 and d(�) =

�
d(⇠2) + d(L/K)

�
/2,

where p

1+d(L/K)
K

is the relative discriminant of L/K. Let T(') be the group of characters
� of W

K

such that � ⌦ ' ' '. As in [3, 41.4], we call ' totally ramified if T(�) does not
contain any unramified character. If ' is not essentially tame, then it is totally ramified. We
check that if this case we have d(⇠) > d(⇠2), and hence d(⇧

�

) > d(�).



December 22, 2016 20:51 WSPC/INSTRUCTION FILE LADS˙AMPS˙2016

On L-packets and depth for SL2(K) and its inner form 3

We obtain in Proposition 3.2 the following characterization of L-packets for SL2(K) or
SL1(D): an L-packet is a minimal set of irreducible representations from which a stable
distribution can be constructed.

Next we give the explicit classification of the L-packets for both SL2(K) and SL1(D).
In particular, to each biquadratic extension L/K, there is attached a Langlands param-

eter � = �

L/K

, and an L-packet ⇧
�

of cardinality 4. The depth of the parameter �
L/K

depends on the extension L/K. More precisely, the numbers d(�) depend on the breaks in
the upper ramification filtration of the Galois group Gal(L/K) = Z/2Z ⇥ Z/2Z. Let D be
a central division algebra of dimension 4 over K. The parameter � is relevant for the inner
form SL1(D), which admits singleton L-packets.

Theorem 1.2. Let L/K be a biquadratic extension, let � be the Langlands parameter �
L/K

.
If the highest break in the upper ramification of the Galois group Gal(L/K) is t then we have
d(�) = t. For every ⇡ 2 ⇧

�

(SL2(K)) [⇧
�

(SL1(D)) these integers provide lower bounds:

d(⇡) � d(�).

Depending on the extension L/K, all the odd numbers 1, 3, 5, 7, . . . are achieved as such
breaks.

This contrasts strikingly with the case of SL2(Qp

) with p > 2. Here there is a unique bi-
quadratic extension L/K, and a unique tamely ramified discrete parameter � : Gal(L/K)!
SO3(R) of depth zero.

Let E/K be the quadratic extension given by

E = K(}�1($�2n�1))

with $ a uniformizer and n = 0, 1, 2, 3, . . . and let �
E

be the associated L-parameter. We
prove in Subsection 3.4 that the depth of �

E

is given by

d(�
E

) = 2n+ 1.

For the L-packets considered in this article, the depths d(⇡) can be arbitrarily large.
Section 4 is devoted to aspects of the Artin-Schreier theory. This section goes a little

further than the exposition in [8, p.146–151] and the article of Dalawat [6]. We have occasion
to refer to this section at several points in our article.

We thank Chandan Dalawat for a valuable exchange of emails and for bringing the
reference [6] to our attention.

2. Depth of L-parameters

The field K possesses a central division algebra D of dimension 4 and, up to isomorphism,
only one. The group D

⇥ is locally profinite and is compact modulo its centre K

⇥, see [3,
p.325]. Let Nrd denote the reduced norm on D

⇥. Define

SL1(D) = {x 2 D

⇥ : Nrd(x) = 1}.

Then SL1(D) is an inner form of SL2(K). The articles [11,2] finalize the local Langlands
correspondence for any inner form of SL

n

over all local fields.

Depth of an L-parameter for GL2(K). Let W
K

denote the Weil group of K, and let
�(GL2(K)) be the set of L-parameters ' : W

K

⇥ SL2(C) ! GL2(C) for inner forms of
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GL2(K). Let t be a real number, t � 0, let Gal(Ks/K)t be the t-th ramification subgroup
of the absolute Galois group of K. We define

�
t

(GL2(K)) := {' 2 �(GL2(K)) : Gal(Ks/K)t ⇢ ker(')}. (2.1)

Notice that �
t

0(GL2(K)) ⇢ �
t

(GL2(K)), if t0  t. It is known that the set of t’s at which
Gal(F

s

/F )t breaks consists of rational numbers and is discrete [14, Chap. IV, §3]. In partic-
ular there exists a unique rational number d('), called the depth of ', such that

' /2 �
d(')(GL2(K)) and ' 2 �

t

(GL2(K)) for any t > d('). (2.2)

Depth of an L-parameter for SL2(K). The depth of an L-parameter � : W
K

⇥SL2(C)!
PGL2(C) for an inner form of SL2(K) is defined as:

d(�) = inf{t 2 R�0 | Gal(Ks/K)t+ ⇢ ker�}, (2.3)

where

Gal(Ks/K)t+ :=
\

r>t

G

r

.

Each projective representation � : W
K

! PGL2(C) lifts to a Galois representation

' : W
K

! GL2(C).

For any such lift ' of � we have ker(') ⇢ ker�, so

d(') � d(�). (2.4)

Let ' : W
K

! GL2(C) be a 2-dimensional irreducible representation of W
K

, and let
T(') be the group of characters � of W

K

such that � ⌦ ' ' '. Then ' is primitive if
T(') = {1}, simply imprimitive if T(') has order 2, and triply imprimitive if T(') has order
4, as in [3, 41.3]. Comparing determinants, we see that every nontrivial element of T(') has
order 2.

As in [3, 41.4], we call � and ' unramified if T(')\{1} contains an unramified character,
and totally ramified if T(') \ {1} does not contain any unramified character. By definition,
a primitive representation is totally ramified. Thus every imprimitive irreducible represen-
tation of dimension 2 of W

K

which is not totally ramified is essentially tame.
Let � : W

K

⇥ SL2(C) ! PGL2(C) with trivial restriction to SL2(C), and such that '
is a lift of �. If ' is essentially tame and has minimal depth among the lifts of �, then we
have d(�) = d(') [1, Theorem 3.8]. Thus we are reduced to computing the depths of the
projective representations of W

K

which lift to totally ramified representations.

We recall how the depth of an irreducible representation (', V ) of W
K

can be computed.
Put E = (Ks)ker', so that � factors through Gal(E/K). Let g

j

be the order of the ramifi-
cation subgroup Gal(E/K)

j

(in the lower numbering). The Artin conductor a(') = a(V ) is
given by

a(') = g

�1
0

X

j�0

g

j

dim
�
V/V

Gal(E/K)j
�
2 Z�0. (2.5)

Since (', V ) is irreducible and Gal(E/K)
j

is normal in Gal(E/K), V Gal(E/K)j = 0 whenever
g

j

> 1. Thus (2.5) simplifies to the formula [10, (1)]:

a(') =
dimV

g0

X

j�0:gj>1

g

j

= dimV +
dimV

g0

X

j�1:gj>1

g

j

(2.6)
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It was shown in [2, Lemma 4.1] that

d(') :=

8
<

:
0 if I

F

⇢ ker(�),
a(')
dimV

� 1 otherwise.
(2.7)

Let ' : W
K

! GL2(C) be a totally ramified irreducible representation. Let � : W
K

!

PGL2(C) be its projection. We will show that d(') > d(�). To this end we may and will
assume that ' has minimal depth among the lifts of �.

Theorem 2.1. Let ' be an irreducible totally ramified representation W
K

! GL2(C), let
� : W

K

! PGL2(C) be its projection. Then we have

d(') > d(�).

Proof. Primitive representations. Let ' be primitive. Put E = K

ker�
s and E

+ = K

ker'
s .

By [3, §42.3] there exists a unique intermediate field K ⇢ L ⇢ E such that E/L is a wildly
ramified biquadratic extension. Then �(Gal(E/L)) is a subgroup of PGL2(C) isomorphic
to the Klein four group. Up to conjugacy PGL2(C) has only one such subgroup. After a
suitable change of basis, we may assume that it is

D2 :=
�
( 1 0
0 1 ) , (

0 i

i 0 ) ,
��i 0

0 i

�
,

�
0 1
�1 0

�  
⇢ PGL2(C). (2.8)

The three subextensions of E/L are conjugate under Gal(E/K) because the conjugation
action of A4 on its normal subgroup V4 of order four is transitive on the nontrivial elements of
V4. Hence there is a unique r 2 Z such that Gal(E/L)

r

= Gal(E/L) and Gal(E/L)
r+1 = {1}.

In section 4.2 we will see that r is odd. We call this r the ramification depth of E/L.
The nontrivial elements of Gal(E/L) are the deepest elements of Gal(E/K) outside the

kernel of �, and therefore the depth of � can be expressed in terms of r.
Let us compare this to what happens for the lift ' of �. Since SL2(C) ! PGL2(C) is a

surjection with kernel of order 2, the pre-image of �(W
K

) in SL2(C) has order 2|�(WK

)|.
The matrices in (2.8) do not yet form a group in GL2(C), for that we really need the
nontrivial element of ker(SL2(C) ! PGL2(C)). In other words, SL2(C) contains a unique
subgroup of order 2[E : K] which projects onto �(W

K

). As ' has minimal depth among
the lifts of �, '(W

K

) is precisely this subgroup. Thus [E+ : E] = 2 and Gal(E+
/K) is a

nontrivial index two central extension of Gal(E/K). In particular Gal(E+
/L) is isomorphic

to the quaternion group of order eight.
Choose a subset {w1 = 1, w2, w3, w4} ⇢ Gal(E+

/L) which projects onto Gal(E/L). We
may assume that the '(w

i

) are ordered as in (2.8). As ker(GL2(C)! PGL2(C)) is central,

['(w3),'(w4)] = [
��i 0

0 i

�
,

�
0 1
�1 0

�
] =

��1 0
0 �1

�
2 GL2(C).

Write

z = [w3, w4] 2 Gal(E+
/L), (2.9)

so that '(z) =
��1 0

0 �1

�
. It follows from the definition of r and the condition on ' that

Gal(E+
/L)

r

= Gal(E+
/L) and Gal(E+

/L)
r+1 = Gal(E+

/E).

By [14, Proposition IV.2.10] z 2 Gal(E+
/L)2r+1. Now z /2 ker(') and it lies deeper in

Gal(E+
/K) than w2, w3 and w4. On the other hand, z does lie in the kernel of �, which

explains why ' has larger depth than �.
In the sequel of this section, we assume that the depth of the element z defined in (2.9) is

exactly 2r+1. This is allowed because, in the above setting, it constitutes the worst possible
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case for the theorem.

Octahedral representations. Let ' be octahedral, that is, it is primitive and �(W
K

) ⇠= S4.
Let Ad denote the adjoint representation of PGL2(C) on sl2(C) = Lie(PGL2(C)). Then Ad��
is an irreducible 3-dimensional representation of W

K

. Since PGL2(C) is the adjoint group
of sl2(C), Ad�� has the same kernel and hence the same depth as �.

By [3, Theorem 42.2] L/K is Galois with automorphism group S3 and residue degree 2.
Thus Ad(�(I

K

)) ⇢ Ad(�(W
K

)) is a normal subgroup of index two, isomorphic to A4. As
L/K has tame ramification index 3, the image of the wild inertia subgroup P

K

under Ad��
equals the image of Gal(E/L). By our convention (2.8) it is Ad(D2). By the definition of r
as the ramification depth of E/L, we have

g0 = 12, g1 = · · · = g

r

= 4 and g

r+1 = 1

With the formula (2.6) we find

a(Ad � �) =
3

12
(12 + r · 4) = 3 + r,

and from (2.7) we conclude that

d(�) = d(Ad � �) = r/3.

On the other hand, ' is an irreducible two-dimensional representation of W
K

, and we must
base our calculations on the Galois group of E+

/K. The numbers

g

j

= |Gal(E+
/K)

j

| = |'(Gal(E+
/K)

j

)|

can be computed from those for � by means of the twofold covering '(W
K

)! �(W
K

). We
find

g0 = 24, g1 = · · · = g

r

= 8 and g

r+1 = · · · = g2r+1 = 2.

Assuming that the depth of z is precisely 2r+1 (see above), we can also say that g2r+2 = 1.
Then (2.6) gives

a(') =
2

24
(24 + r · 8 + (r + 1) · 2) = 2 +

5r + 1

6
.

Now (2.7) says that

d(') = (5r + 1)/12.

We note that this is strictly larger than d(�) = r/3. As a(�) 2 Z�0, we must have r�1 2 6Z.
This means that above not all biquadratic extensions can occur.

Tetrahedral representations. Let ' be tetrahedral, that is, it is primitive and �(W
K

) ⇠=
A4. By [3, Theorem 42.2] L/K is a cubic Galois extension. It is of prime order, so either it
is unramified or it is totally ramified.

First we consider the case that L/K ramifies totally. Then I
K

surjects onto Gal(E/K),
so '(I

K

) = '(W
K

). This means that within I
K

everything is similar to octahedral repre-
sentations. The same calculations as above show that

d(�) = r/3 < d(') = (5r + 1)/12.

Now we look at the case where L/K is unramified. Then

�(I
K

) = �(Gal(E/K)) = D2.
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To compute the depth, we replace � by the 3-dimensional representation Ad�� of W
K

on
sl2(C). With r as before, g0 = · · · = g

r

= 4 and g

r+1 = 1. With (2.6) and (2.7) we calculate

a(Ad � �) =
3

4
((r + 1) · 4) = 3(r + 1),

d(�) = d(Ad � �) =
3(r + 1)

3
� 1 = r.

Like in the octahedral case, the numbers Gal(E+
/K)

j

for ' are related to those for � via
the twofold covering SL2(C)! PGL2(C). We find

g0 = · · · = g

r

= 8 and g

r+1 = · · · = g2r+1 = 2.

Moreover g2r+2 = 1 if we assume that the depth of z is 2r + 1. Now (2.6) says

a(') =
2

8

�
(r + 1) · 8 + (r + 1) · 2

�
= 5(r + 1)/2 2 Z,

and from (2.7) we obtain

d(') =
5(r + 1)

2 · 2
� 1 =

5r + 1

4
.

Again, this is larger than d(�) = r.

Imprimitive representations. Consider an imprimitive totally ramified representation ' :
W

K

! GL2(C). By [3, §41.4] there exists a separable totally ramified quadratic extension
L/K and a character ⇠ of W

L

such that ' = indWK
WL

(⇠). Let p1+d(L/K)
K

be the discriminant of
L/K. If L ⇠= K[X]/(X2+X+b), then one deduces from [3, §41.1] that d(L/K) = �⌫

K

(b) > 0.
From the proof of [3, Lemma 41.5] one sees that the level of ' equals d(⇠)+ d(E/F ). By

construction the level of a n-dimensional irreducible representation of W
K

equals n times
its depth, so

d(') =
�
d(⇠) + d(L/K)

�
/2. (2.10)

As before we assume that ' is minimal among the lifts of �. Then [3, §41.4] says that
d(⇠) > d(L/K), and in particular d(⇠) � 2. Since Gal(Ks/L)2 is a pro-2-group, the image of
⇠ in C⇥ is a subgroup of even order.

Let � be the nontrivial element of Gal(L/K), so that the restriction of ' toW
L

is ⇠��(⇠).
If ⇠(w) = �1, then also ⇠(�(w)) = �1. As ⇠(W

L

) is even, this means that
��1 0

0 �1

�
2 �(W

L

).
We note that, as every W

K

\W
L

interchanges ⇠ and �(⇠), the kernel of � equals the kernel
of ⇠��(⇠) composed with the projection GL2(C)! PGL2(C). Thus the kernel of � contains
the kernel of ' with index two. More precisely

ker(�) = (⇠ � �(⇠))�1
�
( 1 0
0 1 ) ,

��1 0
0 �1

�  
= ⇠

�1
{1,�1} = ker(⇠2).

By the same argument as above also ker(indWK
WL

⇠

2) = ker(⇠2). Hence � and indWK
WL

(⇠2) have
the same kernel, and in particular the same depth. With (2.10) we can express it as

d(�) =
�
d(⇠2) + d(L/K)

�
/2. (2.11)

The depth (or level) of ⇠ is the least l such that ⇠ (or rather its composition with the Artin
reciprocity isomorphism) is nontrivial on the higher units group U

l

L

= 1+p

l

L

⇢ L

⇥. For l > 0

the group U

l

L

/U

l+1
L

has exponent 2, so ⇠(Ud(⇠)
L

) = {1,�1}. Consequently U

d(⇠)
L

⇢ ker ⇠2 and
d(⇠2) < d(⇠). Comparing (2.10) and (2.11), we get

d(')� d(�) =
�
d(⇠)� d(⇠2)

�
/2 > 0.
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3. L-packets

According to a classical result of Shelstad [15, p.200], for F of characteristic zero all the
L-packets ⇧

'

(SL2(F )) have cardinality 1, 2 or 4. We will check below, after (3.3), that the
same holds for the L-packets for SL2(K). It will follow from the classification in this section
that L-packets for SL1(D) have cardinality 1 or 2.

Theorem 3.1. [1] Let � : W
K

⇥ SL2(C) ! PGL2(C) be an L-parameter for SL2(K), and
let ' : W

K

⇥SL2(C)! GL2(C) be a lift of minimal depth. For any ⇡ in one of the L-packets
⇧
'

(GL2(K)), ⇧
'

(GL1(D)), ⇧
�

(SL2(K)) and ⇧
�

(SL1(D)):

d(�)  d(') = d(⇡).

Moreover d(�) = d(') = d(⇡) if ' is essentially tame, in particular whenever ' is unramified.

We define the groups

C(�) := ZSL2(C)(im �),

S

�

:= C(�)/C(�)� = ⇡0(ZSL2(C)(�)),

Z

�

:= Z(SL2(C))/Z(SL2(C)) \ C(�)�,

S

�

:= ⇡0(ZPGL2(C)(�)).

(3.1)

The group S

�

is abelian, S
�

can be nonabelian, and there is a short exact sequence

1! Z

�

! ⇡0(ZSL2(C)(�))! ⇡0(ZPGL2(C)(�))! 1. (3.2)

It is easily seen that |Z

�

| = 2 if and only if � is relevant for SL1(D). By [2, Theorem 3.3]
there are bijections

Irr
�
⇡0(ZPGL2(C)(�))

�
 ! ⇧

�

(SL2(K)),

Irr
�
⇡0(ZSL2(C)(�))

�
 ! ⇧

�

(SL2(K)) [⇧
�

(SL1(D)).
(3.3)

We remark that for SL2(F ) with char(F ) = 0, (3.3) was shown in [9, Theorem 4.2] and [11,
Theorem 12.7]. Recall that T(') is the abelian group of characters � of W

K

with '⌦� ⇠= '.
By [9, Theorem 4.3] and by [2, (21)]

T(') ⇠= ⇡0(ZPGL2(C)(�)). (3.4)

By [3, Proposition 41.3], and by the classification of L-parameters for the principal series in
Subsection 3.2, T(') has order dividing four. This shows that all L-packets for SL2(K) have
order 1, 2 or 4.

3.1. Stability

Before we proceed with the classification of L-packets, some remarks about the stability
of the associated distributions are in order. In this subsection K can be any local non-
archimedean field. Recall that a class function on an algebraic K-group G(K) is called
stable if it is constant on the intersection of any G(K

s

)-conjugacy class with G(K). For an
invariant distribution on G(K) one would like to use a similar definition of stability, but that
does not work well in general. Instead, stable distributions are usually defined in terms of
stable orbital integrals. But, whenever an invariant distribution � on G(K) is represented by
a class function on an open dense subset of G(K), we can use the easier criterion for stability
of functions to determine whether or not � is stable.
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Harish-Chandra proved that the trace of an admissible representation is a distribution
which is represented by a locally constant function on the set of regular semisimple elements
of G(K), see [7]. So the study the stability of traces of G(K)-representations, it su�ces to
look at (regular) semisimple elements of G(K).

For semisimple elements in GL2(K) conjugacy is the same as stable conjugacy, it is de-
termined by characteristic polynomials. Hence every irreducible (admissible) representation
of GL2(K) defines a stable distribution.

The semisimple conjugacy classes in GL1(D) are naturally in bijection with the ellip-
tic conjugacy classes in GL2(K), i.e. those semisimple classes for which the characeristic
polynomials are irreducible over K. Moreover any irreducible essentially square-integrable
representation of GL2(K) is already determined by the values of its trace on elliptic el-
ements. These observations constitute some of the foundations of the Jacquet–Langlands
correspondence [12]. In fact the Jacquet–Langlands correspondence can be defined as the
unique bijection between Irr(GL1(D)) and the essentially square-integrable representations
in Irr(GL2(K)) which preserves the traces on elliptic conjugacy classes, up to a sign. Conse-
quently the trace of any irreducible representation ⇡ of GL1(D) is the restriction of a stable
distribution on GL2(K) to the set of elliptic elements. In particular the trace of ⇡ is itself a
stable distribution.

Theorem 3.2. Let � be a L-parameter for SL2(K).

(a) Write ⇧
�

(SL2(K)) = {⇡1, . . . ,⇡m}. The trace of ⇡ := ⇡1 � · · · � ⇡

m

is a stable
distribution on SL2(K). Any other stable distribution that can be obtained from
⇧
�

(SL2(K)) is a scalar multiple of the trace of ⇡.
(b) Suppose that � is relevant for SL1(D) and write ⇧

�

(SL1(D)) = {⇡

0
1, . . . ,⇡

0
m

0}. The
trace of ⇡0 := ⇡

0
1 � · · · � ⇡

0
m

0 is a stable distribution on SL1(D). Any other stable
distribution that can be obtained from ⇧

�

(SL1(D)) is a scalar multiple of the trace
of ⇡0.

Proof. (a) Since the restriction of irreducible representations from GL2(K) to SL2(K) is
multiplicity-free [5, §1], ⇡ = ⇡1� · · ·�⇡m is the restriction of some irreducible representation
of GL2(K). If ' : W

K

⇥ SL2(C) ! GL2(C) is any lift of �, the image of � under the local
Langlands correspondence is such a representation. We denote this representation of GL2(K)
again by ⇡. By the above remarks, its trace is a stable distribution on GL2(K), and hence
also on SL2(K).

The di↵erent ⇡
i

are inequivalent, but they are GL2(K) conjugate, because ⇡ is irreducible.
If a linear combination

P
m

i=1 �itr(⇡i) is a stable distribution, then it must be invariant under
conjugation by GL2(K). Hence all the �

i

2 C must be equal.
(b) The restriction of representations from GL1(D) to SL1(D) can have multiplicities,

but still every constituent will appear with the same multiplicity [9, Lemma 2.1.d]. So there
exists an integer µ such that µ⇡0 = µ⇡

0
1� · · ·�µ⇡

0
m

0 lifts to an irreducible representation of
GL1(D). The L-parameter of such a representation is a lift of �, so we can take JL(⇡), the
image of ⇡ under the Jacquet–Langlands correspondence.

As remarked above, tr(JL(⇡)) is stable distribution on GL1(D) and by restriction also
on SL1(D). Thus tr(⇡0) = µ

�1tr(JL)(⇡) is also a stable distribution on SL1(D). By the same
argument as for part (a), any linear combination of the tr (⇡0

i

) which is stable, must be a
scalar multiple of tr(⇡0).

We remark that Theorem 3.2 also holds for inner forms of SL
n

(F ) with n > 2. The proof
is the same, one only has to replace the elliptic conjugacy classes by the conjugacy classes
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that correspond to elements of that particular inner form.

3.2. L-packets of cardinality one

First we consider the case that ' : W
K

! GL2(C) is irreducible, so the L-packet consists
of supercuspidal representations. By (3.4) and (3.3), ⇧

�

(SL2(K)) is a singleton if and only
if ' is primitive. The L-parameter � is relevant for SL1(D), so ⇧

�

(SL1(D)) is nonempty. It
follows from (3.3) and (3.2) that Z

�

⇠= ⇡0(ZSL2(C)(�)) ⇠= Z/2Z, and then from (3.3) that
⇧
�

(SL1(D)) is also a singleton. Any primitive representation of W
K

is either octahedral or
tetrahedral, as in Section 2. See [3, §42] for more background.

Suppose now that ' : W
K

! GL2(C) is reducible, so � is a L-parameter for the principal
series of SL2(K). If �(W

K

) = 1 and �|SL2(C) : SL2(C)! PGL2(C) is the canonical projec-
tion, then � is relevant for SL1(D). In this case ⇧

�

(SL1(D)) is just the trivial representation
of SL1(D), and ⇧

�

(SL2(K)) consists of the Steinberg representation of SL2(K) – the unique
irreducible square-integrable, non-supercuspidal representation.

All other principal series L-parameters are trivial on SL2(C)) and are irrelevant for
SL1(D). By conjugating �, we may assume that its image is contained in the diagonal torus
of PGL2(C). One checks that ZPGL2(C)(�) is connected unless the image of � is {1,

��1 0
0 1

�
}.

Whenever ZPGL2(C)(�) is disconnected, its L-packet has two elements, see Subsection 3.5.
If ZPGL2(C)(�) is connected, then ⇧

�

(SL2(K)) consists of precisely one principal series
representation. Let T be the diagonal torus of SL2(K), and let �

�

be the character of T
determined by local class field theory. Then ⇧

�

(SL2(K)) is the Langlands quotient of the
parabolic induction of �

�

, and the depth of that representation equals the depth of �
�

.

3.3. Supercuspidal L-packets of cardinality two

For such L-parameters (3.4) shows that

T(') ⇠= ⇡0(ZPGL2(C)(�)) ⇠= Z/2Z.

The L-parameter � is relevant for SL1(D), so by (3.2) |⇡0(ZSL2(C)(�))| = 4. Then
⇡0(ZSL2(C)(�)) is either Z/4Z or (Z/2Z)2. In any case, it is abelian and has precisely four
inequivalent characters. Now (3.3) says that

|⇧
�

(SL1(D))| = |⇧
�

(SL2(K))| = 2.

Now we classify the discrete L-parameters � for which the packet ⇧
�

(SL2(K)) is not
a singleton. We note that every L-parameter for a supercuspidal representation of SL2(K)
has to be trivial on SL2(C). For if it were nontrivial on SL2(C), then the image of W

K

would be in the centre of PGL2(C), and we would get the L-parameter for the Steinberg
representation, as discussed in the previous subsection. Since we want � to be discrete, it
has to be an irreducible projective two-dimensional representation of W

K

.
Let ' be an irreducible two-dimensional representation of W

K

which lifts �. By (3.4)
and (3.3) the associated L-packet ⇧

�

(SL2(K)) has more than one element if and only if ' is
imprimitive. By [3, §41.3] ' is imprimitive if and only if there exists a separable quadratic
extension E/K and a character ⇠ of E⇥ such that ' ⇠= Ind

E/K

⇠. By the irreducibility ⇠� 6= ⇠,
where � is the nontrivial automorphism of E over K.

Lemma 3.3. Let � and ' ⇠= Ind
E/K

⇠ be as above.
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(a) Suppose that the character ⇠�⇠�1 of E⇥ has order two. Then ' is triply imprimitive
and there exists a biquadratic extension L/K such that ker(�) = W

L

and L � E.
(b) Suppose that ⇠�⇠�1 has order > 2. Then ' is simply imprimitive.

Proof. Let �
E

be the unique character of W
K

with kernel W
E

. Then �

E

2 T('), this
holds in general for induction of irreducible representations from subgroups of index two. In
particular |T(')| 2 {2, 4}. From [3, Corollary 41.3] we see that T(') = {1,�

E

} if and only
if the character ⇠�⇠�1 of W

E

cannot be lifted to a character of W
F

. Since the target group
C⇥ is divisible, this happens if and only if ⇠�⇠�1 does not equal

(⇠�⇠�1)� = ⇠⇠

�� = (⇠�⇠�1)�1
.

We conclude that the representation ' = Ind
E/K

⇠ is triply imprimitive if ⇠�⇠�1 has order
two and is simply imprimitive otherwise.

Now we focus on the triply imprimitive case. By local class field theory there exists a
unique separable quadratic extension L/E such that ⇠�⇠�1 is the associated character �

L

of E⇥. We consider it also as a character of W
E

. Then

W
L

= ker(�
L

) = {w 2W
K

: '(w) 2 Z(GL2(C))}.

Hence W
L

= ker(�) is a normal subgroup of W
K

, which means that L/K is a Galois exten-
sion. The explicit form of ' entails that the image of � is the Klein four group. Consequently

Gal(L/K) ⇠= W
K

/W
L

⇠= �(W
K

) ⇠= (Z/2Z)2, (3.5)

which says that L/K is biquadratic.
We remark that the depth of ' = Ind

E/K

⇠ can be computed in the same way as for the
imprimitive representations in Section 2, see in particular (2.10).

3.4. Supercuspidal L-packets of cardinality four

We continue with the case when ' is triply imprimitive, as in (3.5). This means that we
have a biquadratic extension L/K and the Langlands parameter

� : W
K

! Gal(L/K) ⇠= (Z/2Z)2 ⇢ PGL2(C). (3.6)

We also have

ZPGL2(C)(im�) = ⇡0(ZPGL2(C)(im�)) = S

�

⇠= (Z/2Z)2.

This implies, by (3.3), that ⇧
�

(SL2(K)) is a supercuspidal packet of cardinality 4.
We note the isomorphism PGL2(C) = PSL2(C), and the morphism

SL2(C)! PSL2(C).

As in [16, §14], the pull-back S

�

of S

�

is isomorphic to the group of unit quaternions
{±1,±i,±j,±k}. This group admits four characters and one irreducible representation of
degree 2. Only the two-dimensional representation ⇢0 has nontrivial central character.

The parameter � creates a packet with five elements, which are allocated to SL2(K) or
SL1(D) according to central characters. So � gives rise to an L-packet ⇧

�

(SL2(K)) with 4
elements, and a singleton packet to the inner form SL1(D).

Theorem 3.4. Let L/K be a biquadratic extension, let � be the Langlands parameter (3.6).
If t is the highest break in the upper ramification of Gal(L/K) then d(�) = t. The allowed
values of d(�) are 1, 3, 5, 7, . . . except in Case 2.2 (see 4.2 in Section 4), when the allowed
values are 3, 5, 7, . . ..
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Proof. From the inclusion L ⇢ K

s

we obtain a natural surjection

⇡

L/K

: Gal(K
s

/K)! Gal(L/K).

Let Kur be the maximal unramified extension of K in K

s

and let Kab be the maximal
abelian extension of K in K

s

. We have a commutative diagram, where the horizontal maps
are the canonical maps and the vertical maps are the natural projections

1 //
I

Ks/K

↵1

✏✏

◆1 // Gal(K
s

/K)

⇡1

✏✏

p1 // Gal(Kur/K)

id

✏✏

// 1

1 //
I

Kab/K

↵2

✏✏

◆2 // Gal(Kab/K)

⇡2

✏✏

p2 // Gal(Kur/K)

�

✏✏

// 1

1 // I
L/K

◆3 // Gal(L/K)
p3 // Gal(L \Kur/K) // 1

In the above notation, we have ⇡
L/K

= ⇡2 � ⇡1. Let

· · · ⇢ I(2) ⇢ I(1) ⇢ I(0) ⇢ G = Gal(L/K) (3.7)

be the filtration of the relative inertia subgroup I(0) = I
L/K

of Gal(L/K), I(1) is the wild
inertia subgroup, and so on. Note that I(r) is the restriction of the filtration G

r of G =
Gal(L/K) to the subgroup I

L/K

, i.e, I(r) = ◆3(Gr). Let

· · · ⇢ I

(2)
⇢ I

(1)
⇢ I

(0)
⇢ G = Gal(K/K) (3.8)

be the filtration of the absolute inertia subgroup I

(0) = I

Ks/K
of Gal(Ks

/K), I(1) is the
wild inertia subgroup, and so on.

We have

(8r) ⇡
L/K

I

(r) = I(r) (3.9)

This follows immediately from the above diagram. Here, we identify I

(r) with ◆1(I(r)) and
I(r) with ◆3(I(r)). (Note that ↵ is injective. Therefore, by (3.9), we have

�(I(r)) = 1 () (↵ � ⇡
L/K

)(I(r)) = 1 () ↵(I(r)) = 1 () I(r) = 1.

The highest break t has the property that I

(t+1) = 1 and I

(t)
6= I

(t+1). It follows that
d(�) = t.

Case 1: There are two ramification breaks occurring at �1 and some odd integer t > 0:

{1} = · · · = I(t+1)
⇢ I(t) = · · · = I(0) = I

L/K

⇢ Gal(L/K), d(�) = t.

The allowed depths are 1, 3, 5, 7, . . ..

Case 2.1: One single ramification break occurs at some odd integer t > 0:

{1} = · · · = I(t+1)
⇢ I(t) = · · · = I(0) = I

L/K

= Gal(L/K); d(�) = t.

The allowed depths are 1, 3, 5, 7, . . ..

Case 2.2: There are two ramification breaks occurring at some odd integers t1 < t2 (with
I(0) = I

L/K

) :

{1} = · · · = I(t2+1)
⇢ I(t2) = · · · = I(t1+1)

⇢ I(t1) = · · · = I(0) = I
L/K

= Gal(L/K);

d(�) = t2.

The allowed depths are 3, 5, 7, 9, . . ..
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Theorem 3.4 contrasts with the case of SL2(Qp

) with p > 2. Here there is a unique
biquadratic extension L/K, and the associated L-parameter � : Gal(L/K) ! SO3(R) has
depth zero.

3.5. Principal series L-packets of cardinality two

Recall from Subsection 3.2 that a principal series L-parameter whose L-packet is not a
singleton has image {1,

��1 0
0 1

�
} in the diagonal torus T_ of PGL2(C). Thus it comes from

a character W
K

! C⇥ of order two. Define

W
K

⇥ SL2(C)! K

⇥

to be the projection (g,M) 7! g followed by the Artin reciprocity map

a
K

: W
K

! K

⇥
.

Let E/K be a quadratic extension and let �
E

be the associated quadratic character of K⇥.
Consider the map

K

⇥
! PGL2(C), ↵ 7!

✓
�

E

(↵) 0
0 1

◆

The composite map

�

E

: W
K

⇥ SL2(C)! K

⇥
! PGL2(C)

is then an L-parameter attached to �
E

. For the centralizer of the image, we have

ZPGL2(C)(im�

E

) = NPGL2(C)(T
_), S

�

⇠= S

�

= {1, w},

where w generates the Weyl group of the dual group PGL2(C). As there are two characters
1, ✏ of W = {1, w}, (3.3) says that the L-packet has cardinality two. There are two enhanced
parameters (�

E

, 1) and (�
E

, ✏), which parametrize the two elements in the L-packet ⇧
�E =

⇧
�E (SL2(K)). We will write

⇧
�E = {⇡

1
E

,⇡

2
E

}. (3.10)

If � 2 K

s

is a root of X2
�X � � 2 K[X], the quadratic extension K(�) is denoted also by

K(}�1(�)), with � 2 K, where }(X) = X

2
�X. So the quadratic character

�

n,j

= (�, u
j

$

�2n�1 + }(K)]

is associated with the quadratic extension E = K(}�1(u
j

$

�2n�1)), see (4.2) in Section 4.
Let E/K be a quadratic extension. There are two kinds: the unramified one E0 = K(�0)

and countably many totally (and wildly) ramified E = K(�). The unramified quadratic
extension has a single ramification break for t = �1.

Let E/K be a quadratic totally ramified extension. According to [6, Proposition 11, p.411
and Proposition 14, p.413], there is a single ramification break for t = 2n + 1. Each value
2n + 1 occurs as a break, with n � 0, 1, 2, 3, . . .. By Theorem 3.4, adapted to the present
case, we have

d(�
E

) = 2n+ 1.

Fix a basis B = {u1, . . . , uf

} of F
q

/F2 and let u
j

2 B. The next result shows how to realise
the extension E/K.
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Theorem 3.5. If E = K(}�1(u
j

$

�2n�1)) then

d(�
E

) = 2n+ 1

with n = 0, 1, 2, 3, 4, . . ..

Proof. Let a
K

: W
K

! K

⇥ be the Artin reciprocity map. Then we have [1, Theorem 3.6]:

a
K

(Gal(Ks/K)l) = U

dle

for all l � 0, where dle denotes the least integer greater than or equal to l, and U

i

K

is the
ith higher unit group.

We are concerned here with the quadratic character � = �

E

and the associated L-
parameter � = �

E

. The level `(�) of � is the least integer n � 0 for which �(Un+1
K

) = 1.
Call this integer N . For this integer N , we have

N < l  N + 1 =) a
K

(Gal(Ks/K)l) = U

dle
K

= U

N+1
K

on which� is trivial

N � 1 < l  N =) a
K

(Gal(Ks/K)l) = U

dle
K

= U

N

K

on which� is nontrivial

The L-parameter � will factor through K

⇥ and we have to consider its depth d(�). Recall:
the depth of � is the smallest number d(�) � 0 such that � is trivial on Gal(Ks/K)l for all
l > d(�). Then d(�) = N in view of the above two implications. We infer that

`(�
E

) = d(�
E

). (3.11)

If � is the unramified quadratic character given by �(x) = (�1)valK(x) then we will have
to allow N = �1 in which case � has negative depth.

If E = K(}�1(u
j

$

�2n�1)) then �
E

= �

n,j

and so we have

`(�
E

) = `(�
n,j

). (3.12)

We now compute the level of the quadratic character �
n,j

defined in (4.2). Every ↵ 2 U

i

K

has the form ↵ = 1 + "$

i, with " 2 o, and can be expanded in the convergent product

↵ =
Y

i�1
(1 + ✓

i

$

i)

for unique ✓
i

2 F
q

. As we can see in the proof of Theorem 4.2,

d

$

(1 + ✓2n+1$
2n+1

, u

j

$

�2n�1) = TrFq/F2
(u

j

✓2n+1)

and

d

$

(1 + ✓

i

$

i

, u

j

$

�2n�1) = 0

if i - 2n + 1. There exists, therefore, an element ↵ 2 U

2n+1
K

such that �
n,j

(↵) 6= 0 and
�

n,j

(U2n+2
K

) = 1. We infer that

`(�
n,j

) = 2n+ 1. (3.13)

The theorem now follows from (3.11), (3.12) and (3.13).
We conclude that, if E = K(}�1(u

j

$

�2n�1)) , then

d(⇡i

E

) � 2n+ 1

with i = 1, 2.
It follows that the depths of the irreducible representations ⇡1

E

,⇡

2
E

in the L-packet ⇧
�E

can be arbitrarily large. For representations of enormous depth, such as the ones encoun-
tered in this article, the term hadopelagic commends itself, in contrast to the currently ac-
cepted term epipelagic for representations of modest depth, see en.wikipedia.org/wiki/

Epipelagic.
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4. Artin-Schreier symbol

Let K be a local field of characteristic p with finite residue field k. The field of constants
k = F

q

is a finite extension of F
p

, with degree [k : F
p

] = f and q = p

f . Let o be the ring
of integers in K and p ⇢ o the maximal ideal. A choice of uniformizer $ 2 o determines
isomorphisms K

⇠= F
q

(($)), o ⇠= F
q

[[$]] and p = $o

⇠= $F
q

[[$]]. The group of units
is denoted by o

⇥ and ⌫ represents a normalized valuation on K, so that ⌫($) = 1 and
⌫(K) = Z.

Following [8, IV.4 - IV.5], we have the reciprocity map

 
K

: K⇥
! Gal(Kab/K)

We define the map (Artin-Schreier symbol)

(�,�] : K⇥
⇥K ! F

p

by the formula

(↵,�] =  
K

(↵)(�)� �

where � is a root of the polynomial Xp

�X � �. The polynomial Xp

�X is denoted }(X).
According to [8, p.148] the pairing (�,�] determines the nondegenerate pairing

K

⇥
/K

⇥p

⇥K/}(K)! F
p

. (4.1)

Let us fix a coset �+}(K) 2 K/}(K). According to (4.1), this coset determines an element
of Hom(K⇥

/K

⇥p

,F
p

).
Now specialise to p = 2. We will identify the additive group F2 with the multiplicative

group µ2(C) = {1,�1} ⇢ C. In that case, the elements of Hom(K⇥
/K

⇥2
,F2) are precisely

the quadratic characters of K

⇥. Since the pairing (4.1) is nondegenerate, the quadratic
characters are parametrised by the cosets � + }(K) 2 K/}(K). Now the index of }(K) in
K is infinite; in fact, the powers {$�2n�1 : n � 0} are distinct coset representatives, see [8,
p.146].

Lemma 4.1. For K = F2(($)) the set of powers {$

�2n�1 : n � 0} is a complete set of
coset representatives.

That is not the case when K = F
q

(($)) has residue degree f > 1. Let B = {u1, . . . , uf

}

denote a basis of the F2-linear space F
q

. Then,

{u

j

$

�2n�1 : n � 0, j = 1, . . . , f}

is a complete set of coset representatives of K/}(K), see §5 and §6 of [6].
The pairing (4.1) creates a sequence of quadratic characters

�

n,j

(↵) := (↵, u
j

$

�2n�1 + }(K)] (4.2)

with n � 0 and j = 1, . . . , f .

4.1. Explicit formula for the Artin-Schreier symbol

In [8, Corollary 5.5, p.148], the authors introduce the map d

$

which we now describe.
Let $ be a fixed uniformizer. Using the isomorphism K = F

q

(($)), where q = 2f , every
element ↵ 2 K can be uniquely expanded as
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↵ =
X

i�ia

#

i

$

i

, #

i

2 F
q

. (4.3)

Put

d↵

d$

=
X

i�ia

i#

i

$

i

, res
$

(↵) = #�1.

Define the pairing

d

$

: K⇥
⇥K ! F2 , d

$

(↵,�) = TrFq/F2
res

$

(�↵�1 d↵

d$

) (4.4)

By [8, Theorem 5.6. p.149], the pairing (�,�] coincides with the pairing defined in (4.4). In
particular, d

$

does not depend on the choice of uniformizer.
We conclude that every quadratic character �

n,j

from (4.2) is completely described by

d

$

(↵, u
j

$

�2n�1) = TrFq/F2
res

$

(u
j

$

�2n�1
↵

�1 d↵

d$

) , n � 0. (4.5)

We seek a formula more explicit than (4.5).

By [8, Proposition 5.10, p. 17], for every ↵ 2 K

⇥ there exist uniquely determined k 2 Z
and ✓

i

2 F
q

for i � 0 such that ↵ can be expanded in the convergent product

↵ = $

k

✓0

Y

i�1

(1 + ✓

i

$

i) (4.6)

We have

d

$

($k

✓0

Y

i�1

(1 + ✓

i

$

i), u
j

$

�2n�1) =

d

$

(✓0$
k

, u

j

$

�2n�1) + d

$

(
Y

i�1

(1 + ✓

i

$

i), u
j

$

�2n�1)

Now, d
$

(✓0$k

, u

j

$

�2n�1) is easy to compute:

d

$

(✓0$
k

, u

j

$

�2n�1) = TrFq/F2
res

$

(u
j

$

�2n�1
✓

�1
0 $

�k

d(✓0$k)

d$

)

= TrFq/F2
res

$

(ku
j

$

�2n�2)

= 0.

On the other hand,

d

$

(
Y

i�1

(1 + ✓

i

$

i), u
j

$

�2n�1) =
X

i�1

d

$

(1 + ✓

i

$

i

, u

j

$

�2n�1)

=
2n+1X

i=1

d

$

(1 + ✓

i

$

i

, u

j

$

�2n�1)

since d
$

(1+✓
i

$

i

, u

j

$

�2n�1) = 0 if i > 2n+1 (see [8, p. 150], proof of Corollary). Moreover,
by the same proof of Corollary in [8, p. 150], we have

d

$

(1 + ✓2n+1$
2n+1

, u

j

$

�2n�1) = TrFq/F2
((2n+ 1)u

j

✓2n+1)

= TrFq/F2
(u

j

✓2n+1).
(4.7)

This last formula is a particular case of a more general formula we are about to prove.



December 22, 2016 20:51 WSPC/INSTRUCTION FILE LADS˙AMPS˙2016

On L-packets and depth for SL2(K) and its inner form 17

In order to compute d

$

(1 + ✓

i

$

i

, u

j

$

�2n�1) for i = 1, . . ., 2n+ 1, we need to find the
Laurent series expansion of (1 + ✓

i

$

i)�1. This can be done by expanding the geometric
series

(1 + ✓

i

$

i)�1 =
X

j�0

(�✓
i

$

i)j = 1� ✓
i

$i+ ✓

2
i

$2i� ✓3
i

$3i+ · · ·

We have

u

j

$

�2n�1(1 + ✓

i

$

i)�1 d

d$

(1 + ✓

i

$

i) =

iu

j

✓

i

$

�2n�1+i�1(1� ✓
i

$

i + ✓

2
i

$

2i
� ✓

3
i

$

3i + · · ·+ (�1)r✓r
i

$

ri + · · · )

The residue will be nonzero if

�2n� 1 + i� 1 + ri = �1, r =
2n+ 1

i

� 1

Hence, d
$

(1 + ✓

i

$

i

, u

j

$

�2n�1) = 0 if i - 2n+ 1. In particular, i must be odd.
We have:

d

$

(1 + ✓

i

$

i

, u

j

$

�2n�1) =

(
0 , if i - 2n+ 1

TrFq/F2
(u

j

✓

(2n+1)/i
i

) , if i|2n+ 1

In particular, we recover formula (4.7) by taking i = 2n+ 1.

From the above, we have established the following explicit formula.

Theorem 4.2. Let K be a local function field of characteristic 2 with residue degree f , and
let �

n,j

denote the quadratic character from (4.2). Then we have the explicit formula

�

n,j

(↵) =
X

i|2n+1

TrFq/F2
(u

j

✓

(2n+1)/i
i

)

where ↵ = $

k

✓0
Q

i�1(1 + ✓

i

$

i) 2 K

⇥, n � 0 and j = 1, . . . , f .

For example, we have

�0,1(↵) = TrFq/F2
✓1, �1,1(↵) = TrFq/F2

(✓31 + ✓3), �2,1(↵) = TrFq/F2
(✓51 + ✓5),

where {1, u2, . . . , uf

} is a basis of F
q

/F2.

4.2. Ramification

Quadratic extensions L/K are obtained by adjoining an F2-line D ⇢ K/}(K). Therefore,
L = K(}�1(D)) = K(�) where D = span{� + }(K)}, with �

2
� � = �. In particular, if

�0 2 o\p such that the image of �0 in o/p has nonzero trace in F2, the F2-line V0 =
span{�0+}(K)} contains all the cosets �

i

+}(K) where �
i

is an integer and so K(}�1(o)) =
K(}�1(V0)) = K(�0) where �20 � �0 = �0 gives the unramified quadratic extension, see [6,
Proposition 12, p. 412].

Biquadratic extensions are computed the same way, by considering F2-planes W =
span{�1 + }(K),�2 + }(K)} ⇢ K/}(K). Therefore, if �1 + }(K) and �2 + }(K) are F2-
linearly independent then K(}�1(W )) := K(�1, �2) is biquadratic, where �21 � �1 = �1 and
�

2
2 � �2 = �2, �1, �2 2 K

s. Therefore, K(�1, �2)/K is biquadratic if �2 � �1 62 }(K).
A biquadratic extension containing the line V0 is of the form K(�0, �)/K. There are

countably many biquadratic extensions L0/K containing the unramified quadratic exten-
sion. They have ramification index e(L0/K) = 2. And there are countably many biquadratic
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extensions L/K which do not contain the unramified quadratic extension. They have rami-
fication index e(L/K) = 4.

So, there is a plentiful supply of biquadratic extensions K(�1, �2)/K.
The space K/}(K) comes with a filtration

0 ⇢1 V0 ⇢f

V1 = V2 ⇢f

V3 = V4 ⇢f

· · · ⇢ K/}(K) (4.8)

where V0 is the image of o
K

and V

i

(i > 0) is the image of p�i under the canonical surjection
K ! K/}(K). For K = F

q

(($)) and i > 0, each inclusion V2i ⇢f

V2i+1 is a sub-F2-space
of codimension f . The F2-dimension of V

n

is

dimF2Vn

= 1 + dn/2ef, (4.9)

for every n 2 N, where dxe is the smallest integer bigger than x.

Let L/K denote a Galois extension with Galois group G. For each i � �1 we define the
i

th-ramification subgroup of G (in the lower numbering) to be:

G

i

= {� 2 G : �(x)� x 2 p

i+1
L

, 8x 2 o

L

}.

An integer t is a break for the filtration {G

i

}

i��1 if G
t

6= G

t+1. The study of ramification
groups {G

i

}

i��1 is equivalent to the study of breaks of the filtration.
There is another decreasing filtration with upper numbering {G

i

}

i��1 and defined by
the Hasse-Herbrand function  =  

L/K

:

G

u = G

 (u).

In particular, G�1 = G�1 = G and G

0 = G0, since  (�1) = �1 and  (0) = 0.
Now, in analogy with the lower notation, a real number t � �1 is a break for the filtration

{G

i

}

i��1 if

8" > 0, Gt

6= G

t+"
. (4.10)

We define

G

t+ :=
\

r>t

G

r

. (4.11)

Then t is a break of the filtration if and only if Gt+
6= G

t. The set of breaks of the filtration
is countably infinite and need not consist of integers.

If G is abelian, it follows from Hasse-Arf theorem [8, p.91] that the breaks are integers
and (4.10) is equivalent to

G

t

6= G

t+1
.

Let G2 = Gal(K2/K) be the Galois group of the maximal abelian extension of exponent 2,
K2 = K(}�1(K)). Since G2

⇠= K

⇥
/K

⇥2 , the nondegenerate pairing (4.1) coincides with
the pairing G2 ⇥K/}(K)! Z/2Z.

The profinite group G2 comes equipped with a ramification filtration (Gu

2 )u��1 in the
upper numbering, see [6, p.409]. For u � 0, we have an orthogonal relation [6, Proposition
17, p.415]

(Gu

2 )
? = p

�due+1 = Vdue�1 (4.12)

under the pairing G2 ⇥K/}(K)! Z/2Z.

Since the upper filtration is more suitable for quotients, we will compute the upper breaks.
By using the Hasse-Herbrand function it is then possible to compute the lower breaks in
order to obtain the lower ramification filtration.
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According to [6, Proposition 17], the positive breaks in the filtration (Gv)
v

occur precisely
at integers prime to p. So, for ch(K) = 2, the positive breaks will occur at odd integers. The
lower numbering breaks are also integers. If G is cyclic of prime order, then there is a unique
break for any decreasing filtration (Gv)

v

(see [6], Proposition 14). In general, the number of
breaks depends on the possible filtration of the Galois group.

Given a plane W ⇢ K/}(K), the filtration (4.8) (V
i

)
i

on K/}(K) induces a filtration
(W

i

)
i

on W , where W

i

= W \ V

i

. There are three possibilities for the filtration breaks on a
plane and we will consider each case individually.

Case 1: W contains the line V0, i.e. L0 = K(}�1(W )) contains the unramified quadratic
extension K(}�1(V0)) = K(↵0) of K. The extension has residue degree f(L0/K) = 2 and
ramification index e(L0/K) = 2. In this case, there is an integer t > 0, necessarily odd, such
that the filtration (W

i

)
i

looks like

0 ⇢1 W0 = W

t�1 ⇢1 W

t

= W.

By the orthogonality relation (4.12), the upper ramification filtration on G = Gal(L0/K)
looks like

{1} = · · · = G

t+1
⇢1 G

t = · · · = G

0
⇢1 G

�1 = G

Therefore, the upper ramification breaks occur at �1 and t.

The number of such W is equal to the number of planes in V

t

containing the line V0 but
not contained in the subspace V

t�1. This number can be computed and equals the number
of biquadratic extensions of K containing the unramified quadratic extensions and with a
pair of upper ramification breaks (�1, t), t > 0 and odd. Here is an example.

Example 4.3. The number of biquadratic extensions containing the unramified quadratic
extension and with a pair of upper ramification breaks (�1, 1) is equal to the number of
planes in an 1 + f -dimensional F2-space, containing the line V0. There are precisely

1 + 2 + 22 + · · ·+ 2f�1 =
1� 2f

1� 2
= q � 1

of such biquadratic extensions.

Case 2.1: W does not contains the line V0 and the induced filtration on the plane W

looks like

0 = W

t�1 ⇢2 W

t

= W

for some integer t, necessarily odd.
The number of such W is equal to the number of planes in V

t

whose intersection with
V

t�1 is {0}. Note that, there are no such planes when f = 1. So, for K = F2(($)), case 2.1
does not occur.

Suppose f > 1. By the orthogonality relation, the upper ramification filtration on G =
Gal(L/K) looks like

{1} = · · · = G

t+1
⇢2 G

t = · · · = G

�1 = G

Therefore, there is a single upper ramification break occurring at t > 0 and is necessarily
odd.

For f = 1 there is no such biquadratic extension. For f > 1, the number of these
biquadratic extensions equals the number of planes W contained in an F2-space of dimension
1 + fi, t = 2i� 1, which are transverse to a given codimension-f F2-space.
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Case 2.2: W does not contains the line V0 and the induced filtration on the plane W

looks like

0 = W

t1�1 ⇢1 W

t1 = W

t2�1 ⇢1 W

t2 = W

for some integers t1 and t2, necessarily odd, with 0 < t1 < t2.
The orthogonality relation for this case implies that the upper ramification filtration on

G = Gal(L/K) looks like

{1} = · · · = G

t2+1
⇢1 G

t2 = · · · = G

t1+1
⇢1 G

t1 = · · · = G

The upper ramification breaks occur at odd integers t1 and t2.
There is only a finite number of such biquadratic extensions, for a given pair of upper

breaks (t1, t2).
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