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1. Introduction 

 

Access to water is essential for human civilizations. Thus groundwater, albeit hidden from view 

in most places, has been actively sought out since the earliest human settlements, especially in 

locations where surface water was insufficient or highly variable. There are historical records 

of water wells, built to reach groundwater, since 8600 BCE. Wells appeared independently in 

different continents as part of the primitive built water infrastructure, which also included 

ditches, canals, dams and embankments (Hassan, 2011). Water technology evolved along with 

other scientific advances and there have been significant developments in hydraulic 

engineering in the last two centuries which, combined with a growing population and 

increasing levels of economic activity, led to ever more groundwater being harnessed for 

human uses that encompass irrigation, households and industry.  

Notwithstanding the difficulties in assessing the global availability of groundwater, it is 

estimated that its volume dwarfs all other freshwater sources (Gleeson, Befus, Jasechko, 

Luijendijk, & Cardenas, 2016) whereas its abstraction accounts for around a quarter of total 

yearly water use (van der Gun, 2012). Yet it has also become clear that increasing pressures on 

this valuable resource imperil its sustainable use in many areas. Although numerous aquifers 

are renewable resources, recharge rates are often insufficient to replenish extractions (Wada 

et al., 2010), leading to a drop in water tables as aquifers get depleted, with direct 

consequences in terms of pumping costs as well as longer-term impacts that may be 

irreversible, such as land compaction. Additional problems emerge in the domain of water 

quality. While some contamination occurs naturally, a wide range of problems are caused by 

human activities, including salinity (through water intrusion in coastal aquifers or irrigation-

induced salt accumulation in the soil), chemical pollution and biological contamination 

(Giordano, 2009; Warner et al., 2016). Moreover, the quantity and quality of aquifers can be 

                                                           
1
 Professor and Director of ReSEES Laboratory, School of Economics, Athens University of Economics and 

Business; Director, International Center for Research on the Environment and the Economy  (ICRE8: 

www.icre8.eu); Senior Research Fellow, Grantham Research Institute, London School of Economics; Co-

Chair, United Nations Sustainable Development Solutions Network – Greece, emails: 

pkoundouri@aueb.gr; phoebe.koundouri@icre8.eu; financial support from GLOBAQUA research project 

(www.globaqua-project.eu/en/) European Union’s Seventh Programme for research, technological 

development and demonstration under grant agreement No 603629. 
2

 ISCTE – Instituto Universitário de Lisboa, Department of Economics and BRU-IUL, email: 

catarina.roseta@iscte.pt; financial support from FCT-Fundação para a Ciência e Tecnologia, 

(UID/GES/00315/2013) is gratefully acknowledged. 
3
 Lecturer, Department of Banking and Financial Management, University of Piraeus, Athens, Greece; 

Senior Researcher, International Center for Research on the Environmental and the Economy (ICRE8: 

www.icre8.eu), emails: englezos@webmail.unipi.gr, nikolaos.englezos@icre8.eu .     



interdependent, as depleted aquifers can suffer from higher pollutant concentrations (Roseta-

Palma, 2002).  

As more attention has been directed to the “invisible” resource, it has become clear that 

groundwater cannot be managed in isolation. Physically, aquifers are a piece of the broader 

hydrological cycle, absorbing percolation from precipitation, runoff and surface storage and in 

turn naturally feeding springs or wetlands, thereby contributing critically to many ecosystems. 

Aquifer use and degradation are also linked to social, economic and institutional systems, so 

that groundwater can be said to be “entrenched in a web of interdependencies” (van der Gun, 

2012, p. 3). Methods to understand and handle groundwater in all its complexity are therefore 

essential. A recent open-access book (Jakeman, Barreteau, Hunt, Rinaudo, & Ross, 2016) 

provides an excellent overview of the concepts and tools associated with integrated 

groundwater management, defined as “a structured process that promotes the coordinated 

management of groundwater and related resources (including conjunctive management with 

surface water), taking into account non-groundwater policy interactions, in order to achieve 

balanced economic, social welfare and ecosystem outcomes over space and time” (Jakeman et 

al. 2016, p.6). Nonetheless, each aspect must be understood properly before it is brought into 

a multifaceted model.  

This survey summarizes the developments in economic models relevant to groundwater 

management, advancing the understanding of key theoretical concepts and policy options. 

Economists of all hues deal with allocation in conditions of scarcity, and dynamic models of 

natural resource management have been applied to groundwater for decades (Burt 1964 and 

1967; Brown & Deacon 1972). Two aspects can be highlighted straight away: first, since 

groundwater stocks are carried over to future periods, dynamic analysis is essential and any 

costs and benefits included in the analysis will require discounting; second, the positive and 

normative aspects of management must be clarified at the outset, that is, models that are 

meant to be descriptive of actual situations are in general different from models that select a 

specific goal and use it to measure the success or desirability of outcomes. The difference is 

fundamental even if the results of the two model types sometimes turn out to be fairly close, 

as happens in Gisser & Sanchez (1980). This paper launched a whole strand of literature 

preoccupied with the question of whether policy interventions at least have the potential of 

improving groundwater management in a meaningful sense (see Koundouri 2004b for a 

survey). It is now apparent that the Gisser-Sanchez effect was linked to the simplified 

characteristics used in the model specification (Tomini, 2014). Moreover, given the well-

documented parlous state of many aquifers around the world today, the focus has mostly 

shifted from debating whether or not intervention is worthwhile to identifying the relevant 

features of complex groundwater systems, designing better policies and facilitating their 

successful implementation. 

The goal of economic analysis in groundwater is hence threefold: i) to understand the main 

drivers of user behavior, including demand and costs, within a given institutional framework; 

ii) to seek the best possible solution, in light of societal goals, given available knowledge and 

expected developments; and iii) to design policies whose implementation can lead to better 

outcomes, that is, policies which might lead situations described in i) closer to the ideal 

prescribed in ii).  



In the following section we provide a brief overview of the most basic aquifer model, stressing 

the need to be clear on the decision-making framework within which the model’s purpose is 

defined. We also indicate some directions in which the model has been extended that seek to 

increase its descriptive power, such as the links between water sources, benefit and cost 

functional forms, and interaction among users. In section three we discuss how uncertainty 

has been depicted in various groundwater models as well as alternatives to expected-utility 

theory that could be more commonly used. In section four we focus on the different methods 

applied to estimate the total economic value of the parameters used in groundwater models 

(direct and indirect values, option values, passive values) by categorizing these methods in 

revealed preference methods, stated preference methods, benefit transfers and laboratory 

experiments. In section 5 we take up the issue of real-world (as opposed to theoretical) policy 

choices and in section 6 we highlight the way forward. 

 

2. The building blocks of economic models for groundwater management 

 

At least two components must be present in all groundwater management models: a 

description of the hydrological aspects, whence the water supply will arise, and a module that 

either summarizes existing demand drivers (positive focus) or proposes goals that ought to be 

attained (normative focus). The simplest version of the latter is to establish that 

predetermined amounts of water must be supplied at least cost, in which case the allocation is 

said to be cost-effective. Achieving cost-effectiveness is a prerequisite for all types of allocative 

efficiency criteria, but it is by no means enough (for a thoughtful explanation of the efficiency 

concepts used in economics, see Griffin 2016, chap.2). 

The hydrological element in general does not depend on the model’s focus. The description of 

the groundwater resource comprises at least one water balance equation incorporating water 

stocks and flows, which in dynamic terms is commonly expressed through changes in either 

stock size or water-table height. For a single-cell unconfined aquifer4, also known as a 

“bathtub”, this could be: 

ℎ� =
������	
��

�

  with an initial value ℎ�  (1) 

where ℎ�  is the evolution of the water-table height in continuous time. Height increases with 

recharge Rt and decreases with water extraction wt, although part �  of this extraction 

percolates back to the aquifer. A is the aquifer area and S is the storativity coefficient. Note 

that equation (1) assumes that changes occur instantaneously and uniformly throughout the 

aquifer, which is not a faithful portrayal of actual aquifer dynamics. Additionally, in this simple 

model there is no explicit consideration of linkages between the groundwater stock and other 

water sources. Full-fledged hydroeconomic models include more realistic depictions of the 

hydrological component, through simulation models such as the US Geological Service’s 
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MODFLOW (McDonald & Harbaugh, 2003) or the European MIKE SHE (Abbott, Bathurst, 

Cunge, O’Connell, & Rasmussen, 1986a, 1986b). Simulation models can accommodate aquifer 

heterogeneity and the conjunctive use of groundwater and surface sources: they may take into 

account the network of natural or artificial links between water sources, boundary conditions 

for each stock and flow, uncertainty in recharge, discretization of the spatial domain, water 

quality modelling and significant impacts on related ecosystems (Harou et al., 2009; Pulido-

Velazquez, Marques, Harou, & Lund, 2016). Although a full review of such aspects is out of the 

scope of this work, some recent examples, mostly depicting irrigation since it is by far the 

largest consumptive water use5, do illustrate the vast impact of hydrological assumptions on 

economic model results. The importance of spatial analysis, with differentiated well yields, is 

underscored by several authors, who note that crop choices, pumping decisions and income 

distribution may vary significantly within the same aquifer area in ways that are not captured 

in single-cell models (Brozović, Sunding, & Zilberman, 2010; Edwards, 2016; Guilfoos, Pape, 

Khanna, & Salvage, 2013; Kovacs, Popp, Brye, & West, 2015; Pfeiffer & Lin Lawell, 2012). 

Bulatewicz et al. (2010) recognize the importance of building multidisciplinary tools and 

propose an Open Modeling Interface (Open MI) to improve links between hydrological, 

economic and agricultural models.  

 

In terms of economic features, it is expected that users who pump water are doing so in a way 

that maximizes their net gains– indeed, all positive models of groundwater extraction use 

some version of this setup. Individual gains will include both the benefit from water use, 

calculated from consumer surplus for household use or production revenues for farmers, 

utilities or industrial firms, and the cost, which will generally depend also on the aquifer size, 

since lower height increases the energy necessary to pump water to the surface. That is, at 

each point in time every individual user is considering a problem such as: 

Max ���, ℎ
 = ���
 − ���, ℎ
     (2) 

where both benefits and costs are measured in monetary terms. Individual users may be 

myopic, so that they are not considering the future consequences of decisions taken in a 

specific moment and essentially solve the static problem (2) at each moment, or they may take 

into account, albeit partially, the aquifer dynamics. If decisions are taken in a dynamic model, 

instantaneous net benefits will be aggregated across time periods considering the relevant 

private discount rate. The most common functional form for benefits is quadratic, implying 

that marginal benefits are linear, although for a good model fit demand should be estimated 

based on available data for each case study (Olmstead, 2010; Scheierling, Loomis, & Young, 

2006). As for costs, it is often assumed that the stock effect is multiplicatively separable from 

the quantity effect:  

���, ℎ
 = ��ℎ
�  (3) 

Krishnamurthy (2016) points out that this specification has two important properties: first, the 

marginal cost of pumping does not depend on the level of extraction; second, the stock effect 
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does not change within each period. The latter might be valid for applications where time is 

measured in small increments (in which case continuous-time models are better), but probably 

will not hold if time periods are entire growing seasons. Moreover, the author stresses that the 

separability assumption “has little theoretical or empirical support” (Krishnamurthy, 2016, p. 

7). He therefore proposes alternative specifications for discrete-time models that take into 

account both the lack of separability and the stock changes within a given season; moreover, 

the suggested cost functions can also allow for the cones of depression around wells, a 

relevant issue especially in confined aquifers. Foster et al. (2014) describe how more realistic 

depictions of the agricultural production function and the irrigation process, considering well 

yields and intraseasonality, can have dramatic impacts on pumping behavior. 

In the presence of multiple users, the most typical framework to study equilibrium outcomes is 

non-cooperative game theory, where each user individually tries to achieve her best result 

while taking into account other player’s actions. The relevance of applying game theory to 

common-property resources (CPR) has been noted at least since Hardin's (1968) paper on the 

tragedy of the commons, which has the structure of a Prisoner’s Dilemma since all users end 

up worse by acting independently. Nevertheless, within non-cooperative games solutions can 

still vary significantly depending on user strategies and aquifer properties (Madani & Dinar, 

2012b; Negri, 1989; Rubio & Casino, 2003; Soubeyran, Tidball, Tomini, & Erdlenbruch, 2014). 

The sensitivity of user behavior to spatial aquifer characteristics appears even in a laboratory 

setting (Liu, Suter, Messer, Duke, & Michael, 2014; Suter, Duke, Messer, & Michael, 2012). 

Moreover, in the simpler models, users are assumed to be homogeneous, although a few 

authors have considered user heterogeneity and highlighted the different results that strategic 

interactions can yield (Erdlenbruch, Tidball, & van Soest, 2008; Koundouri & Christou, 2006; 

Roseta-Palma & Brasão, 2004; Saleh, Gürler, & Berk, 2011). 

Dinar & Hogarth (2015) provide a survey of 294 game-theoretic applications related to water 

resource management, including an overview of historical trends in the use of non-cooperative 

and cooperative games. The latter assume from the outset coalitions among groups of players, 

namely the grand coalition of all players. While non-cooperative games model the strategic 

interactions between players, grand-coalition cooperative solutions seek the maximum 

aggregate benefit achievable. Such solutions are thus useful to assess the gains from 

cooperation and to search for alternative distributive rules (Madani & Dinar, 2012a), although 

it is not clear that they can adequately take into account third-party effects such as 

environmental damages. Also, simulating cooperative-game solutions alongside non-

cooperative ones somewhat obscures the difference between positive and normative work, 

which we believe should always be clearly stated. Furthermore, Dockner et al. (2000, p.32) 

point out that the predominant view among game theorists is that “if cooperation emerges, it 

should be as a Nash equilibrium outcome of a non-cooperative game”.  

At any rate, descriptive models of user interaction should attempt to reproduce the 

institutional arrangements prevalent in each situation. Enduring examples of successful 

collective action for common-property governance have been uncovered in the literature, 

which “demonstrate the feasibility (but obviously not the likelihood) of robust, self-governing 

institutions for managing complex CPR situations” (Ostrom, 1990, p. 103). In her Nobel Prize 

Lecture, Ostrom summarized Institutional Analysis and Development, a framework to analyze 



CPR that is compatible with game theory models of user behavior, and listed the core aspects 

that have been shown empirically to distinguish successful regimes from cases of failure. These 

aspects include clear identification of user and resource boundaries, adequate monitoring, 

collective-choice arrangements, sanctions and conflict-resolution mechanisms, among others 

(Cox, Arnold, & Villamayor-Tomás, 2010; Ostrom, 2009). Saleth & Dinar (2004) pinpoint 

relevant aspects of water institutions, organized in three linked categories: water law, policy 

and administration. Ross (2016) proposes an alternative framework for groundwater 

governance based on the Earth Systems Governance Project (Biermann et al., 2009), which 

distinguishes five classes of issues: architecture, access, accountability, adaptation and agency.  

So far we have discussed the building blocks of models that intend to simulate the evolution of 

groundwater resources without a centralized decision-maker, assuming that any optimization 

that occurs is that performed by individual users who are going about their pumping activities 

unimpeded. Such decentralized aquifer management will not achieve the most desired 

solution, the so-called “social-planner solution”, considering a normative measure of aggregate 

Pareto efficiency in which all the net benefits generated from a given resource are monetized, 

added and maximized (a much less common alternative is to look for Pareto frontiers using 

more than one goal, see Siegfried & Kinzelbach 2006; Salazar et al. 2007; Madani & Lund 

2011). In terms of water quantity, the optimal centralized solution mandates the equality 

between the marginal benefit gained from a unit of water and its marginal costs in each 

period, considering all users, now or in the future, and thus explicitly incorporating the 

dynamic path for the shadow value of water. Nonetheless, alternative normative goals can be 

proposed, based for instance on equity considerations or environmental constraints. 

There are several well-known reasons for the gap between the gains in centralized and 

decentralized solutions in common-property use. Essentially, the problem is that users do not 

fully account for the in situ value of groundwater and therefore extract too much. The 

externalities created by users lead the solution astray from the equality mentioned above. This 

is evident in the extreme case of myopic non-cooperative users, which completely ignore the 

future, but externalities are present to some extent in all decentralized situations. Provencher 

& Burt (1993) identify the pumping-cost externality, since users will face a higher pumping cost 

as the stock becomes lower, the stock externality, associated with the lost opportunity of using 

the water in the future, and the strategic externality, when players in a non-cooperative 

setting pump more in order to limit other users’ extraction. There might also be water-quality 

externalities, given the links between quantity and quality noted in the Introduction. 

Additional externalities arise from two other aspects that pertain to the in situ value of 

groundwater: the buffer value of groundwater, stemming from its role as a reservoir, backing 

up much more variable (and uncertain) surface water sources, and the environmental 

functions groundwater provides, namely supporting ecosystems, maintaining other water 

flows and preventing land subsidence and seawater intrusion, among others (van der Gun, 

2012). Sections 3 and 4 will develop these two points. 

A final point to consider is that in a dynamic setting there may be differences in private and 

social discount rates, with the former taking higher values due to individual users’ impatience. 

If social discount rates are lower, future benefits count more in the social planner model, 

leading to less optimal extraction today. Indeed, it has been said that “the discount rate is the 



most important parameter in dynamic decision making” (Griffin, 2016, p. 78). The larger the 

planning period the more significant the present bias – it is no coincidence that the discounting 

debate has raged most fiercely in climate-change assessments, where time periods of 

hundreds of years are not unheard of. In such cases uncertainty is rife and it might be best to 

apply declining discount rates (Groom et al. 2005; Groom et al. 2007; Gollier, Koundouri, 

Pantelides, 2008; Koundouri, 2009; Hepburn et al. 2009; Arrow et al. 2013; Arrow et al. 2014). 

For dynamic groundwater management, proper analysis ought at least to take into account a 

variety of possible discount rates, for example through sensitivity analysis. 

 

3. What if we are not sure? The impact of uncertainty in groundwater 

management 

 

Given the dynamic structure of natural resource management models, allocation decisions will 

have to be made based on beliefs about the future, which is by definition unknown. Various 

types of uncertainty are rife and the literature is accordingly vast, but recent summaries can be 

found in (Shaw, 2016; Tsur & Zemel, 2014). In the first, the authors begin by distinguishing 

between situations where decision makers are unsure about the values of natural or economic 

parameters (ignorance) and those where there are unpredictable fluctuations in resource 

evolution, for example due to weather variability (exogenous uncertainty)6. A basic dynamic 

model of deterministic natural-resource management, the “canonical” model, is presented, 

and its results are then compared with those obtained when there is uncertainty, coming from 

several alternative sources. In all cases, the view is that of a centralized planner wishing to 

maximize the expected present value of the net benefits from exploiting a resource stock. 

When uncertainty relates to the existence of a final period for resource use, for example due 

to a catastrophic event that makes exploitation unfeasible, the optimal extraction path, if 

decreasing, will certainly be more prudent than in the canonical model if the problem is 

ignorance. However, if the event trigger is random, yet the hazard rate that measures the 

event’s probability of occurrence depends negatively on the stock, the overall effect on 

extraction depends on the relative strength of two distinct effects: the implied higher discount 

rate means more impatience, hence faster resource consumption (why save if the resource will 

be lost in the future anyway?), while the endogeneity of the hazard rate encourages 

conservation.  

While catastrophic outcomes are liable to occur in certain aquifers (Tsur & Zemel, 2004), a 

second type of uncertainty, more widespread in groundwater management given the 

variability inherent to weather patterns and the hydrological cycle, is that of stochastic 

resource evolution. This may be introduced through random fluctuations in stock, modelled 

through a stochastic recharge in equation (1), following the general framework of Pindyck 

(1984). This approach is brought to bear in Zeitouni (2004), who finds that under certain 

conditions the optimal strategy is to aim for a certain stock level (pumping nothing if stock is 
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below this and the whole surplus if it is above). Another option is for recharge to be subject to 

discrete shocks. For example, in de Frutos Cachorro et al. (2014) there is a shock in recharge at 

an unknown date, which may be known or unknown beforehand. The authors conclude that, 

although optimal extraction may be higher in the short-run in the stochastic case, the long-run 

steady-state stock level is also higher.  

Another type of uncertainty identified in Tsur & Zemel (2014) affects the flow of net benefits 

attained in each period, as happens when groundwater demand is stochastic. Water demand 

can depend on climate aspects such as temperature levels and precipitation amounts. In 

conjunctive use systems, in particular, surface water flows that vary with weather fluctuations 

ought to affect the benefits to be gained from groundwater use since the sources are often 

substitutes. Tsur & Graham-Tomasi (1991) show that in this case the in situ value of 

groundwater is higher, because it can be used to compensate shortfalls in variable sources; 

this is known as the buffer value of groundwater. In essence, the resource stock provides a 

form of insurance against drought (Pérez Blanco & Gómez, 2014). However, the effects of 

groundwater availability in case of drought should be assessed both in the short run, where 

groundwater improves crop yields and decreases drought sensitivity, and in the long run, 

where more land might be allocated to “thirsty” crops which are more vulnerable to drought 

damages (for a historical illustration, see Hornbeck & Keskin, 2014). Furthermore, declining 

well-yields can limit the use of groundwater as an adaptation tool (T. Foster, Brozović, & 

Butler, 2015).  

It is also possible for several types of randomness to affect a particular resource. Brozovic & 

Schlenker (2011) combine stochastic stock evolution with a threshold for regime shifts, and 

results are non-monotonic, that is, initial increases in variance lead to more precaution while 

higher levels imply less (see also Zemel 2012; Leizarowitz & Tsur 2012). 

The presentation of uncertainty provided so far covers centralized decision models where a 

single objective function is maximized assuming risk neutrality, that is, only the expected value 

of net gains matters. A few authors have explored the consequences of risk-averse behavior in 

groundwater management (Knapp & Olson, 1996; Krishnamurthy, 2016). Extending the 

literature in that direction seems a worthwhile endeavor given that many studies point to risk 

aversion for farmers, who are the main users of groundwater in most areas (Just, 2003; 

Moschini & Hennessy, 2001; OECD, 2009). However, there is no guarantee that risk attitudes 

are the same for all individual users, nor is it clear that a social planner ought to exhibit risk 

aversion to a similar degree. Again, the difference between positive and normative analysis 

must be underscored.  

Shaw (2016) provides a detailed and insightful overview of many issues related to decision 

making under risk and uncertainty which are widely recognized in economics but are 

nonetheless overlooked in the resource management papers cited so far. Two conceptual 

matters that deserve more attention from groundwater researchers are the nature of 

uncertainty (what don’t we know, exactly?) and the characteristics of choice under uncertainty 

(how do people choose in such conditions?).  

On the extent of our knowledge, the traditional classification distinguishes between risk, when 

there is reliable information on possible outcomes and associated probability distributions, 



and uncertainty, which can be understood to encompass a spectrum of situations. Whenever 

there are doubts about appropriate probability distributions, the word ambiguity can also be 

applied. In such conditions, agents may form their own subjective probabilities, or just use 

alternative decision rules such as considering only the worst outcomes or minimizing regret. 

However, it is difficult to describe exactly what is going on in people’s choices, since the same 

set of empirical observations can be compatible with various models of preferences and 

expectations. Economists have tended to assume that agents have objective probabilities, 

thereby using data to infer only the properties of preferences. Yet this approach has led to “a 

crisis of credibility” (Manski, 2004, p. 1330), especially since several authors, many of them 

psychologists, have repeatedly exposed the flaws in the expected-utility model. Most 

famously, Tversky & Kahneman (1992) postulate that people systematically underestimate 

high probabilities and overestimate low ones, while also treating losses as more relevant than 

gains. In other work, numerous studies on risk perception note that an individual’s behavior in 

uncertain circumstances will depend on how she perceives risk, and this in turn varies with 

personal, social and cultural characteristics (Slovic 2000).  

Applications of these concepts in water management models are few and far between.7 

Roseta-Palma & Xepapadeas (2004) use the robust control methodology to analyze the 

emergence of precautionary behavior of a centralized water manager that faces multiple 

priors in the model specification of precipitation. Woodward & Shaw (2008) also study robust 

solutions to water management in a case where instream flows affect an endangered aquatic 

species. Howitt et al. (2005) offer an example of a positive approach, using data from a 

reservoir in California to estimate the revealed preferences of the reservoir manager. They 

conclude that there are indications of risk aversion and that a recursive-utility model provides 

a better fit than the standard model of time-additive separability. Another possibility is to 

consider one-sided risk measures such as downside risk, increasingly applied in finance, which 

focuses on variability in only the negative outcomes (Hanemann, Sayre, & Dale, 2016; Roseta-

Palma & Saglam, 2016), whether for the centralized problem or for individual decision makers.  

As we move forward into the fascinating world of non-expected utility modelling, the essential 

discussion to be had is, again, the positive vs normative one. That individual choices are not 

generally compatible with expected-utility predictions is old news.8 Thus the positive question 

is fairly settled, albeit still ignored in most empirical studies of water-using decisions. But 

should societal preferences reflect individual preferences towards risk or is there, as in 

discounting, an argument for social preferences to deviate from individual ones? Portney 

(1992) questions what should be done in fictional Happyville if the public perceives a risk of 

water contamination while scientific assessments disagree. Salanié & Treich (2009) use this 

scenario to compare the rational approach, which ignores unfounded consumer beliefs, to the 

strategies of a populist regulator, who decides based on the principle of consumer sovereignty 

(or her wish for re-election) and therefore may over- or under-regulate depending on 

consumers being pessimistic or optimistic. The authors also study a paternalistic strategy that 

takes into account consumer attitudes as well as the difference in beliefs. Interestingly, there 
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may be over-regulation in the latter case whether consumers are optimistic or pessimistic, a 

result which could provide yet another reason to apply the precautionary principle (see 

Randall, 2009). 

Climate change, due to the accumulation of greenhouse gases in the Earth’s atmosphere, will 

undoubtedly interfere with the hydrological cycle in many ways, some foreseen and others 

unexpected. This amplifies the need for water resource managers to seriously consider the 

issues described in this section. However, the increasing complexity of models leaves 

researchers with the thorny task of communicating uncertain results in a way that provides 

usable insights to policy makers and to the public. Guillaume et al. (2016) provides valuable 

guidance by covering various aspects: the model setup (“modelers and stakeholders need to 

work together to define a problem, in a manner cognizant of the uncertainty involved”, pg. 

716); the need for wide participation and for iteration; the methods to generate alternative 

model realizations; advice on the representation of uncertain outcomes, namely on choosing 

different levels of detail, from single outcomes (for example, averages), to distributions, to 

bounds (best and worst cases), to scenarios, to spelling out points of ignorance; and finally, 

communication, reminding us that “a groundwater scientist cannot expect that those needing 

to use the estimates will understand the academic terms and metrics. Therefore, translation of 

estimates into formats of direct use” (p.720) is essential.  

 

4. The value of groundwater, seen and unseen  

        

       Groundwater resources embody characteristics of a public good whose consumption by an 

individual does not reduce the amount of resourses available to others, making it a non-rival 

good, and cannot be excluded from those who cannot afford it, making it non-excludable as 

well. This leads to non-exclusive water resource property rights which result in the 

quantification of water total economic value (TEV) using non-market valuation methods. The 

knowledge of this value plays a vital role in policy and decision management towards socio-

economic efficiency, in terms of a cost benefit analysis (CBA) that imposes marginal benefits to 

equal marginal costs, since it allows the most efficient water allocation to prevent the 

excessive environmental pollution and depletion of the resource.  

 

       The TEV of a groundwater resource is categorized to the use value, derived from individuals via 

using the water resource, and the non-use value that arises from the water resource even if it 

is not used. A further classification of the use value refers to the direct use value, the indirect 

use value and the option value. The direct use value emanates from the direct consumption of 

the water resource such as drinking water, irrigation and industrial activity. On the other hand 

the water resource can benefit an individual indirectly, i.e. obtain an indirect use value, 

through a series of procedures such as flood control, nutrient retention, and income increase. 

Moreover, the option value comes from the maintenance of a water resource which may 

provide economic benefits to the humanity in the future.  

 

        As regards the non-use value, it consists of existence value, bequest value and altruistic value. 

Particularly, the existence value is related with the conservation of a water resource which its 



direct use is not the case for neither a current nor a future generation.  Furthermore, the 

bequest value refers to the opportunity of the future generations to have access to the water 

resource. Finally, the altruistic value is attributed to the water resource by individuals who may 

not even intend to use it but believe to its availability against the rest individuals of their 

generation.  

 

       In the existing literature, the TEV of water resources is estimated by a wide variety of methods 

which can be distinguished in three main categories: (i) revealed preference methods, (ii) state 

preference methods and (iii) benefit transfer methods. An extensive literature review is 

provided by Sudevi & Lokesh (2014), Birol et al. (2006) and Koundouri (2004a). 

 

 

4.1  Revealed preference methods 

 

       The revealed preference methods, also referred to as indirect valuation methods, are based on 

data which can be extracted by markets relevant to the natural resource in the sense of the 

latter being associated with a traded environmental good of a known value over space and 

time. The information, i.e. ‘preferences’, encapsulated in the behavior of the related markets is 

‘revealed’ and quantified via various statistical techniques to estimate the willingness to pay 

(WTP) of an individual that reflects the expected marginal benefit derived from the use of the 

resource. In what follows we shall present the most common methods employed to estimate 

the use value of the water resources which are implicitly traded in surrogate markets.    

        

       The first method is the hedonic pricing method (HPM), according to which the value of a 

composite (multi-attribute) good is related to the range of characteristics that identify the 

resource and to the levels these characteristics may take. This method is mostly applied to the 

real estate market where the price of a house is the reflection of its structural and 

neighborhood characteristics, i.e. size, number of rooms, number of people who can live in, 

parking slots, garden, level of crime etc, as well as it is connected with the shadow price of 

local environmental resources such as air quality, noise levels, aesthetic views, water quality 

and quantity. On the other hand, the main constraint of HPM is the quantification only of the 

direct use value of the water resources as it follows implicitly from the consumption of the 

public good at its market value. However, this method is unable to capture values of several 

services associated with the natural resource such as flood control, water quality 

improvement, habit provision of species, and groundwater recharge, which may benefit the 

individuals beyond its consumption (Boyer et al. 2004). Another limitation of HPM was pointed 

out by Koundouri & Pashardes (2003) who exhibited sample selection sensitivity of this 

method to the quality characteristics of a good. In particularly, considering a model of 

consumer demand for packaged goods, they assumed a land near to seaside which can be 

used as an input either in agricultural production or in the touristic development. Therefore 

the salinization of groundwater resources may reduce the productivity due to lower quality 

but simultaneously may increase the probability of the land usage to the lucrative (profitable) 

tourist market, leading to a valuation bias of the water salinity effect on agricultural land. In a 

similar vein Yusuf & Koundouri (2005), making use of empirical data from the Indonesian 



housing market and taking into consideration the sample selection bias, concluded that the 

households in urban areas value piped and pumped water access more than well water.  

 

       In the same hedonic framework, several recent studies have investigated the relationship 

between land prices and the accessibility to surface water in terms of both quality and 

quantity. Mahan et al. (2000) coped with the estimation of proximity effect to wetlands on the 

property values, obtaining that a decrease in the distance to the nearest wetland by 304.8m 

from an initial distance of 1 mile causes an increase in property values of 371.6 euros. Colby & 

Wishart (2002) showed that the sale price of a typical 2,000 square-foot property in the 

northeast Tucson metropolitan area is reduced by 6% as we move in distance from one-tenth 

of a mile to 1.5 miles away from Tanque Verde Wash. Using the value of the ambient water 

quality through data of St. Mary's River watershed in Maryland, Poor et al. (2007) investigated 

the implicit values of total suspended solids and dissolved inorganic nitrogen which are water 

quality variables. They showed that a one unit (mg/L) increase in either total suspended solids 

or dissolved inorganic nitrogen has a negative impact on average housing prices within the 

watershed of $1086 or $17,642, respectively. Higgins et al. (2009) estimated both the financial 

value of AU$900,000,000 and river management policies, derived from living close to 

Maroochy River against to residential property values, by employing an artificial neural 

networks method in conjunction with a large and complete dataset of properties for the 

Maroochy region.  

 

       The second method is the travel cost method (TCM) which is mainly used to get travel 

information about trips in particular sites or destinations. The WTP of an individual for 

accessing a site is inferred by the number of trips to the site and their ‘travel costs’, which 

capture travel expenses (fuel, hotels, etc), the distance from the final destination, frequency of 

travelling, and characteristics of the destination that concern among others water resource 

management. TCM was employed to estimate the recreational value of particular sites where 

people travel to hunt, fish, hike, swim or watch wildlife. In particularly, several studies tried to 

measure the welfare effects to changes in water quality such as Carr et al. (2003), McKeen et 

al. (2005), Shrestha et al. (2007) and Hosking (2011). El-Bekkay et al. (2013) conducted 480 

surveys and applied TCM to estimate the consumer surplus per person per visit at $US 65.36 in 

the RAMSAR recreation site of the estuary of Massa River. On the other hand, it is worth to 

point out that as in the HPM the travel cost studies can only partially evaluate the total value 

of a wetland, since they overlook all its public good aspects such as flood control and 

groundwater recharge or discharge that are unrelated to recreation.  

 

       The third method is the replacement cost method (RCM), which essentially values the benefits 

incured from the use of an environmental good via quantifying the ‘cost of replacing’ this good 

with an alternative that provides the same benefits and is at most of same value than the 

former. Due to this method,  Acuña et al. (2013)  performed a CBA on water purification by 

estimating the expenditures arising from replacing ecosystem services with artificial 

technologies. A drawback of this method is that each time applies only to a certain use of an 

environmental good, exhibiting limitations to capture the TEV of the good as a whole. 

 



       Finally, we have also the avertive expenditure method (ABM) which in the water resource 

framework focuses on the WTP of a household for drinking water safety. This is evaluated from 

the ‘expenditures’ of measures (e.g., buying bottled water, boiling water for cooking and 

drinking) undertaken by the household as a result of a developed ‘averting’ or defensive 

behavior towards increased degradation of the available water resources due to pollution. A 

general limitation of this method is that the averting expenses deduce only the minimum value 

one can attribute to increased pollution, since it is not possible to reflect all the costs related 

to pollution. Introducing a perception measure to the conventional ABM, Um et al. (2002) 

justified efficiently the inconsistencies between perceived risk beliefs and objective risk 

measures regarding water resource contamination in Pusan, Korea. Pattanayak et al. (2005) 

made use of a unique data set from a survey of 1500 randomly selected households in 

Kathmandu, Nepal, and employed a utility maximization household production model to 

assess coping costs and WTP as two complimentary components of households demand for 

improved water services. 

 

4.2  Stated preference methods  

 

The stated preference methods, also called direct valuation methods, aim to assess either the 

use or the non-use value of environmental resources for which no related market data are 

documented in any trading market. These methods employ structured surveys in order to 

collect the market data needed, as ‘stated preferences’ to a questionnaire, to estimate the 

WTP over different quantity and quality levels of particular aspects of a natural resource, and 

in turn the associated demand curves. The main categories of these methods are overviewed 

in what follows. 

The most popular state preference method is the contingent valuation method (CVM) which 

conducts surveys using questionnaires to elicit individuals’ preferences via their WTP for a 

specific change in the levels of quantity or quality of an environmental resource. This valuation 

technique is ‘contingent’ upon a hypothetical scenario which provides an explicit description of 

the natural resource and how it is becomes available in a hypothetical market, and it is tested 

on a sample of the total population via interviews. The questionnaires introduce the 

hypothetical scenario and include several types of questions regarding the levels of 

understanding of this scenario from the respondents, the attitude of the respondents to the 

natural resource of interest, the proper payment vehicle for capturing WTP (e.g. tax increase, 

surcharges, single payments), and finally the socioeconomic characteristics of the respondents 

(e.g. gender, age and income). Arranging consultation meetings with focused stakeholder 

groups of interest and relevant scientific experts is as crucial to the suitable design of the 

questionnaire as the pre-testing stage and the manner that the interviews will carry out (in 

person, via mail, e-mail or telephone surveys) is to its implementation. Eventually, the 

gathered sample data of TEV can be used as dependent variables against the aforementioned 

socioeconomic factors to assess the corresponding demand curves of the natural resource, as 

well as provide a mean value for its aggregate TEV in the total population.    



In CVM the survey designer is in total control of all the information and choices that are 

provided to the respondents, so that the results of the variables under investigation can be 

isolated from the effects of other factors and can be utilized to estimate use and non-use 

values of a natural resource. Nevertheless, the main drawback of this method is the 

hypothetical nature of the designed scenario and refers to how different the prices extracted 

from such surveys are in comparison with those coming from a real market. What is more, the 

approximating value of WTP is strongly criticized for its lack of validity and reliability since 

several types of bias may appear in different stages of the survey, including information bias, 

design-starting point bias, vehicle bias, Yea-saying bias, hypothetical bias, selection bias, 

protest bias, sequencing bias, elicitation bias, anchoring bias and embedding effects (see Birol 

et al. 2006, Sudevi & Lokesh 2014 and references therein).  

In case of water resources, Birol et al. (2008) showed that the respondents would be willing to 

pay different values according to whether they are users or nonusers in order to ensure the 

sustainable management of the Acrotiri wetland in Cyprus. In the same spirit, several 

researchers have recently conducted contingent valuation surveys in order to investigate 

people’s WTP for the improvement of a river water quality (see Alam 2006; Imandoust & 

Gadam 2007; Monarchova & Gudas 2009; Nallathiga & Paravasthu 2010; Tu 2013) and coastal 

water quality (see Hokby & Soderqvist 2003; Hanley et al 2003; and Zhai & Suzuki 2009).  

A stated preferences method more sophisticated than CVM is the choice experiment method 

(CEM), which now exposes the survey participants to several hypothetical scenarios of ‘choice’   

instead of one. All these alternative senarios cover a wide range of combinations between 

different states of the environmental resource at stake and different levels of prices of its 

investigated characteristics, formulating corresponding choice cards in which the marginal 

WTP of each isolated characteristic can be estimated through a random utility econometric 

model and all these shadow prices can be integrated to give the total WTP of the whole 

resource. This is realized with the use of particular ‘experiment’ design methods which ensure 

that all the selected characteristics of the resource are statistically independent to each other, 

so that colinearity leading to false estimates is avoided. These alternative scenarios should be 

easily comprehensive and produce choice cards that represent possible and realistic future 

events subject to uncertainty (e.g. climate change conditions), so as to get as many realistic 

responses as possible. Finally, the respondents state their preferences by either selecting a 

choice card or by ranking them in order of favorability (Bateman et al., 2003). An advantage of 

CEM is the fact that it can solve some of the bias problems that are presented in CVM, i.e. the 

strategic bias and yea-saying bias (cf. Birol et al. 2006), while the fact that it requires a more 

complex experimental design process is considered to be a limitation. 

 In the recent water related literature there are quite several applications of CEM, especially to 

value the improvement in groundwater water quality. As regards wetland quality, Koundouri 

et al. (2012) applied a CEM to estimate the economic value coming from the water 

improvement in Rokua wetland in Northern Finland with respect to water quantity, recreation, 

land income opportunities and investment on research, whose marginal WTP was in the 

ranges of 9.71-11.95 for recreation to 33.5-36.92 for research opportunities; see also Birol et 

al. 2007 and 2009. Studying decisions taken by couples regarding which beach to visit while on 

vacation in the Caribbean island of Tobago over different available scenarios of a CEM relevant 



to coastal water and beach quality, Borg et al. (2009) concluded that the individual preferences 

are rather different than the joint couple choice which usually coincides with the woman’s 

preferences. As regards river basin quality, Davila et al. (2017) used a CEM to rank and 

evaluate a set of proposed improvements in Asopos River Basin of Greece, towards sustainable 

river basin management, as per the prescriptions of the European Union-Water Framework 

Directive (2000); on river basin sustainable development see also Birol & Das (2010)  and  Tait 

et al. (2012). Brouwer et al. (2010) used a CEM to demonstrate the spatial preference 

heterogeneity effect of deriving different marginal values of WTP for water quality 

improvement across different parts of the Guadalquivir River basin in the south of Spain, 

where inhabitants in one subbasin also hold WTP values for other subbasins but attribute the 

higher one for their own subbasin with respect to everybody else’s. On spatial preferences 

heterogeneity in the ecological status of Asopos River Basin of Greece see also Koundouri et al. 

(2014).    

 

4.3  Benefit transfer methods and laboratory experiments 

 

The benefit transfer method (BTM) is the process of transfering existing data of environmental 

valuation for a given problem from an area with specific characteristics to a similar one. This 

method is a standard practice when it is not feasible to carry out primary research due to 

restrictions on the cost and time of implementation. The transfered value expresses the users 

preferences in the study area, subject to proper adjustments regarding different 

socioeconomic characteristics (income, prices, currency, etc.) between areas. Koundouri et al. 

(2016) used BTM to assess the value of four ecosystem services of the Anglian river basin in 

the UK, considering several other studies of different methods such as hedonic pricing and 

choice experiments. Another study by Koundouri et al. (2014) used this approach to estimate 

the benefits of mitigating industrial pollution, where the value of the change in water quality 

from “bad” to “very good”, as set by the Directive 2000/60/EC, was found to vary between 

88.28- 116.94 euros. In relation to this approach, several studies have combined their 

methodology with GIS (Geographical Information System) data to assess the economic value of 

conservation and restoration water related projects (e.g.  Jenkins et al. 2010; Naidoo & 

Ricketts 2006), to estimate the value of ecosystem services (Plummer, 2009) and to aggregate 

benefits from non-market environmental goods (Bateman et al. 2006) among others.  

Meta-analysis is an implementation technique of BTM which includes statistical analysis of 

combined results of previous studies. For example, Van Houtven et al. (2006) identified 300 

studies that are related to water quality improvements, most of which were stated preference 

studies, and  Johnston (2005) assessed the  relationships between the  nonuse components of 

WTP for water quality improvements and resource attributes associated with use values. 

Furthermore, as laboratory experiment we refer to a technique according to which 

participants make choices following a well-structured scenario in a controlled environment 

(laboratory). Drichoutis et al. (2014) implemented this technique by engaging respondents in a 

6 auction rounds (three of them were hypothetical and three real), where they had to choose 

whether they would exchange their endowment with an amount of a good from a river basin 



with good ecological status and a river basin with bad ecological status that could potential 

raise health concerns. The results indicated that people would bid higher for the goods 

produced in the region of good ecological status, showing aversion to potential health issues 

stemming from heavily polluted water. Another study by Carson et al. (2011) assessed the 

economic consequences of the effects of arsenic contamination on labor supply in Bangladesh. 

Hence, a labor supply model was estimated that used labor data from local households, which 

was matched with data on arsenic contamination. The results indicated that labor hours are 

lost, due to the fact that individuals try to hedge against contamination dangers.  

 

5. What can be done? Policy choices 

 

Once we move into the policy realm, the first step ought to be the establishment of policy 

goals. Decision makers should define their aims in a way that is transparent and clearly 

understood. This is a normative choice and several options might be considered, 

notwithstanding the widespread agreement on the need for an integrated framework of 

analysis independently of the chosen goals. In the European Union, for instance, the focus of 

recent water policy has been on the environmental objectives, albeit complemented by 

economic criteria: the Water Framework Directive (EU, 2000) aims for good ecological status 

for surface water and good quantitative and chemical status for groundwater, with goals for 

the latter further developed in the Groundwater Directive (EU, 2006). Yet there is generally 

more than one way to achieve goals, so the WFD also emphasizes the role of water pricing and 

the need for cost effectiveness in policy choices.  

Globally, the United Nations have strived for a comprehensive vision of water management. A 

recent resolution of the UN General Assembly (United Nations, 2016) declares an International 

Decade for Action, “Water for Sustainable Development”, 2018-2028, to focus on “the 

sustainable development and integrated management of water resources for the achievement 

of social, economic and environmental objectives […] in order to help to achieve 

internationally agreed water-related goals and targets, including those contained in the 2030 

Agenda for Sustainable Development”. Two of the UN’s Sustainable Development Goals are 

specifically dedicated to water issues: clean water and sanitation (nr. 6), and life below water 

(nr. 14). Here, too, there is a mention of the “importance of promoting efficient water usage at 

all levels”, extending the scope to the “water, food, energy, environment nexus”. 

At a practical level, another important aspect in setting the stage for policy intervention, 

whether for water extractions or pollution discharges, is to have a clear understanding of the 

legal regime for groundwater in each jurisdiction. As Nelson & Quevauviller (2016) note, the 

definition of groundwater itself can vary significantly across legal systems, from very narrow 

views of “percolating” groundwater or “underground streams” that have no scientific meaning 

but are used in some of the Western US states, to the far-reaching interpretation in Australia’s 

federal legislation, which encompasses all aspects that contribute to the environmental value 

of water resources. In terms of property rights, most jurisdictions have evolved to recognize 

that landowners can use the water beneath their land but do not own it outright, although 

there are a few exceptions. Such recognition allows for the implementation of public licenses 



or permits as well as the possibility of legal water trading, an approach that has been tried in 

several locations, such as Chile (Hearne, Donoso, & Dinar, 2014), Spain (Rey, Garrido, & 

Calatrava, 2014), the United States (Brozović & Young, 2014) and Australia (Wheeler, 

Schoengold, & Bjornlund, 2016). In principle trading can occur among different water sources, 

although specific regulation, monitoring and enforcement schemes must be in place for 

groundwater trading to be possible (Brozović & Young, 2014; Wheeler et al., 2016). Moreover, 

to guard against unintended effects and ensure efficient use, the links between surface and 

groundwater must not be overlooked.  

Water trading falls within the category of economic instruments, given its potential to increase 

allocative efficiency by conveying water to where its value is highest. Price signals of all hues 

work by providing users with an incentive to adjust their resource consumption. This is, 

indeed, the motivation behind the WFD water-pricing requirements (art. 9). Higher volumetric 

prices lead to lower use, whether the price signal reaches agents through trading, tariffs, 

incurred costs, taxes or other means. Although most groundwater users can rightfully claim 

that the cost of pumping is already incorporated into their decisions, none of the external 

effects described in section 2 nor the ecosystem values detailed in section 4 are included in 

that pumping cost. Therefore direct price regulation to internalize such costs, for example 

through water abstraction taxes, can be envisioned.  

However, in practice there may be several obstacles in the implementation of full-fledged 

groundwater pricing. Montginoul et al. (2016) point out that lack of information is a major 

issue in several groundwater areas. In particular, the most complete schemes require full 

metering (“who uses how much water in which place at different periods of the year”, pg. 

554), not to mention a thorough knowledge of interactions between groundwater and surface 

water and of the impact of extraction on groundwater-dependent ecosystems. Both Mulligan 

et al. (2014) and Guilfoos et al. (2016) warn that simpler policies, such as uniform water taxes 

or quotas, which are more likely to be implemented by policy makers, can underperform in 

real-world conditions where heterogeneity of both agents and aquifers is present. The latter 

concludes that local management areas might be more effective and can better take into 

account distributive effects on farmer’s incomes. The consequences of policy implementation 

also depend on when it occurs, namely, on the aquifer’s conditions. It is possible to have 

“windows of opportunity” where policy is beneficial (T. Foster, Brozović, & Butler, 2017). Taher 

et al. (2016) include climate change and policy scenarios and note the possibility of 

disproportionate costs on certain users.  

Users who are harmed by policies can be expected to resist their implementation, but 

opposition may also arise from prevailing social norms. Stakeholders may reject an approach 

based solely on centrally-defined economic instruments and favor solutions that entail user 

cooperation. Figureau et al. (2015) find that in France there appears to be a clear preference 

for decentralized solutions where economic instruments are combined with policies to 

promote social norms, such as solidarity, reciprocity and trust among users. Nøstbakken (2013) 

provides a theoretical model of quota enforcement in a common-property resource, 

concluding that higher fines for non-compliant agents can strengthen a norm of compliance, 

leading to less free riding and less overexploitation. A more complex framework for analysis, 

using Ostrom’s IAD methodology, is proposed in Rahman et al. (2012), although they present 



an application in fisheries, not groundwater. Dinar & Jammalamadaka (2013) address the role 

of institutions and social norms, in irrigated agriculture, in the context of climate change 

adaptation. 

De Stefano & Lopez-Gunn (2012) supply a useful overview of the issues surrounding 

unauthorized groundwater use, which is a major problem in many areas, even in developed 

countries. However, when aquifers are very large, with thousands of users, and when there are 

environmental externalities to boot (Esteban & Dinar, 2013), cooperation will be much harder 

to achieve.9 Additional complications are associated with the management of transboundary 

aquifers, of which the UN estimates there are approximately 300 (UN-Water, 2008). Game 

theory has been, again, a common framework of analysis in transboundary resources since at 

least Rogers (1969). In these cases it is necessary to establish an agreement, among the 

sovereign parties of different jurisdictions, on the goals of management, while the specific 

policies implemented by each party to reach such goals are established separately.10  

A final point concerns policies to improve technical water-use efficiency, which means, in 

broad terms, to reduce the amount of water that is necessary to attain a given outcome. In 

particular, subsidies to improve irrigation efficiency, for example through more modern 

irrigation infrastructure, have become increasingly popular (OECD, 2008). Although efficiency 

gains always sound like a good idea, several authors have warned that they may not lead to 

water conservation. Gómez & Pérez-Blanco (2014) present an analytical decomposition of 

efficiency impacts on water demand, highlighting that the direct technical effect of improved 

irrigation equipment might be overtaken by a rebound productivity effect, associated with the 

higher productivity of water, which leads farmers towards thirstier crops and/or an increase in 

irrigated area.11 The final outcome might well be more demand for water. An empirical 

illustration can be found in Peterson & Ding (2005). A recent survey by Lin Lawell (2016) covers 

the reasons that lead farmers to over extract groundwater, including externalities, as 

described earlier, but also the role of institutional incentives and irrigation-efficiency advances.  

 

6. The way forward. 

A recent leader in The Economist asserted that “water is scarce because it is badly managed” 

(The Economist, 2016). In many places this is clearly true, with water being underpriced, 

overexploited and even squandered. For groundwater, this survey has summarized typical 

complications ranging from a lack of clear information on the stock size, quality, evolution and 

linkages, to its features as a quintessential common-property resource. Given the importance 

of groundwater and the poor state of many aquifers, the critical question is no longer whether 

it is necessary to apply groundwater management policies, but rather what needs to happen 

                                                           
9

 Interestingly, some papers in the literature have explored the deeper links between water 

management regimes and democracy. Bentzen et al. (2016) find that historically irrigation has made 

authoritarian rule more likely. Uncontrolled groundwater extraction can be seen as anarchy (Shah, 

2009) or as liberation from the State (Kuper et al., 2016). 
10

 For an in-depth discussion of the issues related to transboundary water management, see (Dinar, 

Dinar, McCaffrey, & McKinney, 2007; Dombrowsky, 2007). 
11

 Such rebound effects have been widely discussed for energy services, see for example Sorrell & 

Dimitropoulos (2008). 



for management to improve. We have pointed out the importance of starting with a proper 

normative discussion of the goals to be achieved and a good understanding of the institutional 

framework, since both aspects will affect the choice of specific instruments to apply. Technical 

knowledge, monitoring and enforcement capabilities must also be given due consideration. It 

has become apparent that the textbook presentation of policy instruments as substitutes is 

lacking – often a combination of instruments is the better bet (Montginoul et al. 2016). Even if 

the formidable power of economic incentives, such as pricing or water trading, to affect water 

consumption levels at a large scale is recognized, they should not be expected to solve water 

scarcity single-handed.  

A particular complication emphasized in this survey is the dynamic and uncertain nature of the 

groundwater resource. Many of the future physical and socio-economic impacts hinge on 

climate trends, where increasing variability is predicted. This can be modelled in different 

ways, from relatively straightforward modifications of resource-stock evolution equations to 

full-blown scenario analysis. The latter strategy is common in climate-change research (IPCC, 

2014) and in the emergent field of sustainability science (Swart, Raskin, & Robinson, 2004), but 

there is scant evidence of its use in groundwater management, where its application could be 

fruitful.  

Phoebe can you add something about the importance of considering the TEV groundwater and 

its implications in terms of management models and/or policies? 

Considering the complexity of the resource and the multifaceted challenges it raises, no single 

management model is ideal, notwithstanding the significant advances witnessed in hydro-

economic modeling. The aims, assumptions and possibilities should be transparent, not only in 

theoretical research but also in policy proposals. Economists might usefully tone down 

idealized “optimal solutions” when engaging in real policy discussions, while defending the 

principles behind economic efficiency criteria. We could also avoid framing debate through 

oversimplified questions demanding clear-cut answers, such as whether user cooperation is 

better than pricing or whether intervention always beats no intervention. Pragmatism, 

multidisciplinary work and communication are essential, and stakeholder participation is highly 

desirable given the strong links - economic, social and even spiritual - that bind people to their 

water. There’s more to groundwater than meets the eye, and we will still be looking into the 

unseen resource for many years to come. 
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