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A robust closed-form estimator for the GARCH(1,1) model

ABSTRACT

In this paper we extend the closed-form estimator for the GARCH(1,1) proposed by Kris-

tensen and Linton (2006) to deal with additive outliers. It has the advantage that is per
se more robust that the maximum likelihood estimator (ML) often used to estimate this
model, it is easy to implement and does not require the use of any numerical optimization
procedure. The robustification of the closed-form estimator is done by replacing the sample
autocorrelations by a robust estimator of these correlations and by estimating the volatility
using robust filters. The performance of our proposal in estimating the parameters and
the volatility of the GARCH(1,1) model is compared with the proposals existing in the
literature via intensive Monte Carlo experiments and the results of these experiments show
that our proposal outperforms the ML and quasi-maximum likelihood (QMLE) estimators
based procedures. Finally, we fit the robust closed-form estimator and the benchmarks to
one series of financial returns and analyze their performances in estimating and forecasting
the volatility and the Value-at-Risk.

JEL-Classifications: C22; C53; C58

Keywords: Additive Outliers; Autocorrelations; Robustness; Value-at-Risk; Volatility Fore-
casting

1. Introduction

Return series of financial assets typically exhibit high kurtosis, higher order dependence and
volatility clustering. The generalized autoregressive conditional heteroscedastic model (GARCH)
is the most popular model in parameterizing the higher order dependence and the evolution of
volatility. Since its proposal in the literature by Bollerslev (1986), it has been extended in several
directions. The first extension, proposed by Bollerslev (1987), allows the error of the GARCH
model to follow a Student-t distribution in order to accommodate the high kurtosis of the data.
However, it has been observed that the estimated residuals from this extended model still register
excess kurtosis (see Baillie and Bollerslev, 1989; Teräsvirta, 1996). One possible reason for this
occurrence is that some observations on returns are not fitted by a Gaussian GARCH model
and not even by a t-distributed GARCH model. These observations may be influential (see
Zhang, 2004, for a detailed definition of influential observation) since they can affect undesirably
the estimation of parameters (see for example Fox, 1972; Van Dijk et al., 1999; Verhoeven and
McAleer, 2000), the tests of conditional homoscedasticity (see Carnero et al., 2007; Grossi and
Laurini, 2009), the out-of-sample volatility forecasts (see for instance Ledolter, 1989; Chen and
Liu, 1993; Franses and Ghijsels, 1999; Grané and Veiga, 2010) and the risk measures (Grané
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and Veiga, 2014). When this is the case, some authors denote them by outliers and distinguish
between additive and innovational (or innovations) outliers. The first type is classified into two
categories: additive level outliers (ALO), which exert an effect on the level of the series but
not on the evolution of the underlying volatility, and additive volatility outliers (AVO), that also
affect the conditional variance (see Hotta and Tsay, 2012; Sakata and White, 1998). Innovational
outliers contrarily to additive outliers are outliers that may have a long-run effect on modeling
the volatility. Less studies have focus on the effect of innovational outliers due mainly to the fact
they are transmitted by the same dynamics of the series which makes their effect less relevant
(see Carnero et al., 2007; Peña, 2001).

In the literature, there are two ways of dealing with outliers, either identify these observations
and correct them before estimating the parameters and the volatility of the GARCH model or use
robust methods. In this paper, we follow the second alternative and deal with additive outliers by
robustifying the closed-form estimator for the GARCH(1,1) proposed by Kristensen and Linton
(2006). This estimator has several advantages in comparison with the ML estimator often used
to estimate the GARCH(1,1) model that are: it is easy to implement, it does not require the use
of any numerical optimization procedure and initial starting values. The use of starting values
might be a drawback since it can generate different outputs across popular packages (Brooks et al.,
2001; McCullough and Renfro, 1999). Our proposal follows that of Kristensen and Linton (2006)
and it is based on the autorregressive moving average (ARMA) representation of the squared
GARCH model and on the use of the implied autocovariance and autocorrelation functions to
obtain closed-form estimators of the parameters. The difference regarding the original estimator
is that we replace the sample autocorrelation function by a robust estimator of this function. Very
recently, Prono (2014) proposed a closed-form estimator that is based on second-order covariances
and cross-order covariances that are also affected by the presence of outliers. Therefore, the
robustification of Prono (2014)’s closed-form estimator would require robust measures of the
cross-order covariances. We use the proposal of Teräsvirta and Zhao (2011) that is based on
applying the Huber’s and Ramsay’s weights to the sample variance and autocovariances. In the
time series literature, it is well known the importance of using robust estimators for measuring
the time series dependence. The volatility is estimated by using robust filters proposed by Muler
and Yohai (2008) and Carnero et al. (2012). Furthermore, the small sample properties of our
proposal in the estimation of parameters and volatility are analyzed via intensive Monte Carlo
experiments and compared to those of the existing alternatives in the literature. The results
of these experiments show that our proposal is robust to the presence of additive outliers and
outperforms the alternatives in terms of volatility estimation independently if the outliers are
either isolated or patches, large or small. Finally, we illustrate our results empirically by fitting
the robust closed-form estimator and the benchmarks to one series of financial returns in order
to forecast the volatility and compute the Value-at-Risk (VaR) forecasts.

The remainder of the paper is organized as follows. In Section 2 we robustify the closed-form
estimator by Kristensen and Linton (2006) and in Section 3 we propose to estimate its volatility
by applying a robust filter. In Section 4, we perform intensive Monte Carlo experiments and
show that in the presence of additive outliers the robust closed-form estimator provides more
accurate estimates of the volatilities. Section 5 illustrates the performance of the new estimator
in an empirical application, and finally, Section 6 summarizes our conclusions.
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2. A robust closed-form estimator

In this Section, first we present the closed-form estimator of Kristensen and Linton (2006) that
is based on the ARMA representation of the GARCH(1,1) model and on the use of the implied
autocovariance and autocorrelation functions. Second, we propose to robustify this estimator by
replacing the sample autocorrelation function by a robust estimator of this function. We use the
robust estimator of the autocorrelations proposed by Teräsvirta and Zhao (2011) which is based
on applying the Huber’s and Ramsay’s weights to the sample variance and autocovariances.

2.1. An ARMA representation of the GARCH(1,1) model

Let the GARCH(1,1) process be defined as:

yt = σtεt (1)

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1, (2)

where εt is an i.i.d process with mean zero and variance 1. Defining xt ≡ y2t we can write that

xt = α0 + φxt−1 + ηt + θηt−1, (3)

where ηt = xt − σ2
t is a martingale difference sequence, φ = α1 + β1 > 0 and θ = −β1 < 0. From

equation (3), we observe that xt is an ARMA(1,1) with parameters φ and θ, respectively. In
order the ARMA process to be stationary it is imposed that φ < 1.

The autocorrelation function of an ARMA(1,1) is given by:

ρ(1) =
(1 + φθ)(φ+ θ)

1 + θ2 + 2φθ
(4)

and

ρ(k) = φρ(k − 1), k = 2, 3, ... (5)

(see Kristensen and Linton, 2006, for more details). Therefore, equation (4) can be expressed as
a quadratic equation in θ as:

θ2 + bθ + 1 = 0, (6)

with b ≡ φ2+1−2ρ(1)φ
φ−ρ(1) . Given that φ < 1, φ 6= ρ(1) and β1 > 0, b > 2 is well defined and a solution

to equation (6) is

θ =
−b+

√
b2 − 4

2
. (7)

Finally,

α0 = σ2(1− φ), (8)

and σ2 ≡ E(y2t ). Equations (4), (7) and (8) can be used to obtain closed-form estimators of α0,
α1 and β1. Kristensen and Linton (2006) estimated φ using the sample autocorrelations of order
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1 and 2, that is, φ̂ = ρ̂(2)/ρ̂(1), where ρ̂(k) = γ̂(k)/γ̂(0) is the sample autocorrelation of order k
and γ̂(k) is the corresponding sample autocovariance of order k with

γ̂(k) =
1

T − k

T−k∑
t=1

(xt+k − σ̂2)(xt − σ̂2) (9)

and

σ̂2 =
1

T

T∑
t=1

xt. (10)

Replacing φ̂ into equation (7), Kristensen and Linton (2006) obtain an estimator of θ, that is
given by

θ̂ =
−b̂+

√
b̂2 − 4

2
, b̂ ≡ φ̂2 + 1− 2ρ̂(1)φ̂

φ̂− ρ̂(1)
,

with b̂ ≥ 2. Finally, this leads to the following estimators of the GARCH(1,1) model1:

α̂1 = θ̂ + φ̂, β̂1 = −θ̂, α̂0 = σ̂2(1− φ̂). (11)

2.2. The robustification

Our proposal is to replace the sample estimate of ρ(·) by a robust estimator that is the weighted
autocorrelation function of xt provided by Teräsvirta and Zhao (2011), that is,

ρ̂w(k) =
γ̂w(k)

γ̂w(0)
, (12)

where

γ̂w(k) =

∑T−k
t=1 (xt+k − σ̂2

w)(xt − σ̂2
w)wt+kwt∑T−k

t=1 wt+kwt
, k = 0, 1, 2, .... (13)

and

σ̂2
w =

∑T
t=1 xtwt∑T
t=1wt

. (14)

We use as weighting function that proposed by Ramsay (1977) that has the form

wt = exp

(
−a |xt − σ̂

2|
σx

)
,

where σx =
√

1
T−1

∑T
t=1(xt − σ̂2)2 and a = 0.3 (see Teräsvirta and Zhao, 2011; Carnero et al.,

2014, for a similar value of a). Now the robust closed-form estimator for the GARCH(1,1) model

are: α̂KLr0 , α̂KLr1 and β̂KLr1 with

1See Kristensen and Linton (2006) for dealing with estimates of φ that are in the intervals ]−∞; 0[ and ]1; +∞[.

4



α̂KLr0 = σ̂2
w(1− φ̂w), α̂KLr1 = θ̂w + φ̂w, β̂KLr1 = −θ̂w, (15)

where φ̂w = ρ̂w(2)/ρ̂w(1) and

θ̂w =
−b̂w +

√
b̂2w − 4

2
, b̂w ≡

φ̂2
w + 1− 2ρ̂w(1)φ̂w

φ̂w − ρ̂w(1)
.

We have also tried other robust estimator by replacing the means in the sample autocorrela-
tions and autocovariances by the corresponding medians, but we have decided not present them
here due to the poorness of the results.2 We analyze all the methods of estimation using the
mean squared error (MSE) as in Kristensen and Linton (2006) and the biases in the estimation
of the volatility as in Carnero et al. (2012).

3. Robust estimation of the volatility

There are in the literature some robust volatility estimators for the GARCH(1,1) model. The
first is provided by Muler and Yohai (2008) and is given by:

σ̂2
t = α̂0 + α̂1rc

(
y2t−1
σ̂2
t−1

)
× σ̂2

t−1 + β̂1σ̂
2
t−1, (16)

where

rc =

{
x, |x| < c
c, |x| ≥ c

and α̂0, α̂1 and β̂1 are estimated using the BM estimator (see Muler and Yohai, 2008, for details
about this estimator).

Iqbal and Mukherjee (2010) propose a large class of M-estimators for estimating the param-
eters of an asymmetric GARCH model. We have not considered this class of estimators since
it is based on an iterative algorithm that depends crucially on the starting values and accord-
ing to Tinkl (2010) performs similarly to that proposed by Muler and Yohai (2008) in terms of
asymptotic convergence.

The third is proposed by Carnero et al. (2012) and replaces the rc in equation (16) by

rcpr =

{
x, |x| < c
1, |x| ≥ c.

The parameters of the GARCH model are estimated, in this case, by maximizing the Student-t
log-likelihood. We denote this estimator QMLE − t.

Our proposal is to estimate the volatility using:

σ̂2KLr
t = α̂KLr0 + α̂KLr1 rcpr

(
y2t−1
σ̂2KLr
t−1

)
× σ̂2Klr

t−1 + β̂KLr1 σ̂2KLr
t−1 , (17)

where the parameters are estimated with the robust closed-form estimator.

2Results are available from the authors upon request.
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4. Monte Carlo experiments

In this section we present the results of two intensive Monte Carlo experiments. The aim of the
first experiment is to evaluate the finite sample properties of the robust closed-form estimator in
comparison to those of the benchmarks in estimating the parameters and the marginal variance.
The second experiment has as aim to evaluate the performance of all estimators in estimating
the volatility.

Regarding the first experiments, we have generated 1000 series of sizes T = 500, 1000 and
5000 with a GARCH(1,1) with parameters α0 = 0.1, α1 = 0.1 and β1 = 0.8 (see Carnero
et al., 2012, for similar parameter values). The simulated series are contaminated either with
one isolated additive level outlier (ALO) or multiple isolated ALOs or patches of three outliers
of sizes ωAO = 0, 5, 10 and 15 standard deviations of the original simulated series. In this
experiment the outliers are placed randomly in the simulated series. Notice that the conditional
mean equation of the GARCH(1,1) contaminated by ALOs is defined as:

y∗t = ωAO IT (t) + σtεt,

where εt is defined as before, ωAO represents the magnitude (or size) of the additive level outlier
and IT (t) = 1 for t ∈ T and 0 otherwise, representing the presence of the outlier at a set of times
T . Equation (2) of the conditional variance remains the same, since this type of outliers only
affect the level of the series.

Tables 1–3 reports the Monte Carlo means, standard deviations of the parameter and marginal
variance (mv = α0/(1 − α1 − β1)) estimates, obtained with the closed-form estimators and the
several alternatives based on QMLE, and the Monte Carlo MSE. Here, QMLE is equivalent to the
Maximum Likelihood estimator since we assume that the error is Gaussian. In order to estimate
the GARCH(1,1) by QMLE we use the Econometrics toolbox of Matlab R2013b. Regarding the
QMLE based methods and the parameters α1 and β1, the methods tend to overestimate these
parameters and the QMLE− t provides the smallest MSEs. The closed-form estimators provide
the largest biases and MSEs for the parameter estimates. However, if we increase the sample size
above T = 5000, these biases almost disappear.3 On the other hand, if we focus on the estimates
of the marginal variance the closed-form estimators beat always the QMLE based estimators for
T = 5000. The exceptions are when we contaminate the series with multiple ALOs or patches
of outliers of moderate and large sizes and the sample size is small. In these cases, the robust
QMLE based estimators provide estimates of the marginal variance with smaller bias.

Carnero et al. (2012) provide evidence that the estimator that reports the smallest biases for
the parameters is not necessarily the one that leads to good volatility estimates. The authors
argue that the most relevant key for the accurate estimation of the volatility is the accurate
estimation of the marginal variance. As in Carnero et al. (2012), the error in the estimation of
σ2
t when there is an isolated outlier at time t = τ is given by:

εt = σ̂2
t − σ2

t

= (α̂0 − α0) + (α̂1 − α1)y
∗2
t−1 + (β̂1 − β1)σ2

t−1 + β̂1(σ̂
2
t−1 − σ2

t−1)

=
(α̂0−α0)(1−β̂t−1

1 )

(1−β̂1)
+ (α̂1 − α1)

∑t−2
i=0 β̂

i
1y

2
t−1−i + (β̂1 − β1)

∑t−2
i=0 β̂

i
1σ

2
t−1−i

+α̂1

∑t−2
i=0 β̂

i
1(y
∗2
t−1−i − y2t−1−i) + β̂t−11 (σ̂1

1 − σ2
1).

(18)

3Results are available from the authors upon request.

6



The expected error depends on the parameter biases, covariances, expectations of non-linear
functions of the estimator and the initial estimate of σ2

t , σ̂
2
1, that it is often set equal to the

estimate of the marginal variance. Given that the presence of outliers affects the estimation
of the autocorrelation function of the squared observations, the closed-form estimators of the
parameters are affected and consequently the estimate of the marginal variance (see Carnero
et al., 2007, for more details). In the simulations reported in Tables 1–3, we observe that, in
general, closed-form estimators tend to overestimate α0 and α1 and underestimate β1, as the
ML parameter estimators. Yet, for moderate and large sample sizes, the closed-form estimators
estimate better the marginal variance. So, we expected that (a) the closed-form estimators and,
in particular, the robust closed-form estimator would perform the best in estimating the volatility
for these sample sizes and (b) the expected error in the estimation of σ2

t is positive at the moment
that occurs the outlier. In fact, at period τ + 1, y∗2τ is large but σ2

τ is still not affected by the
outlier and given the parameter biases, we expect that the error ετ is positive.

The second experiment provides evidence on this issue by generating 1000 series of size
1000 with parameter values similar to those used in the first Monte Carlo experiment. The
series are contaminated at t = 500 and we consider isolated ALOs and patches of ALOs of size
ωAO = 0, 5, 10 and 15 standard deviations of the original simulated series.

In Figure 1, we plot the Monte Carlo means of the volatility biases (σ̂t−σt). From the Figure
we observe that all robust methods are better in estimating the volatility than the QMLE. The
closed-form estimator of Kristensen and Linton (2006) presents also small volatility biases than
the QMLE, and the QMLE−t performs better than the procedure proposed by Muler and Yohai
(2008) (see Carnero et al., 2012, for similar results). Finally, the robust closed-form estimator
performs the best in the presence of ALOs and patches of ALOs, except in one situation when
the patch of ALOs is of size 15. In this case, the volatility estimated by the QMLE − t reacts
less around the location of the patch of outliers. However, when the sample size increases till
T = 5000 the robust closed-form estimator beats all the estimators in estimating the volatility.4

4Results are available from the authors upon request.
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Table 1

Finite sample properties of the estimators

Monte Carlo means, standard deviations of the parameter and marginal variance (mv) estimates for the GARCH(1,1) model and mean

square error (MSE). True parameters are: α0 = 0.1, α1 = 0.1, β1 = 0.8 and mv = α0/(1−α1−β1) = 1. KL stands for the closed-form

estimator proposed by Kristensen and Linton (2006), MY for the robust estimator proposed by Muler and Yohai (2008), RTZKL for

the robust closed-form estimator using the proposal of Teräsvirta and Zhao (2011) and QMLE − t for the robust QMLE-t proposed

by Carnero et al. (2012).

T Estimation methods

QMLE KL MY RTZKL QMLE − t

MSE MSE MSE MSE MSE

α0 0.001 0.010 0.396 0.259 0.231 0.075 0.265 0.173 0.136 0.009

500 α1 0.104 0.056 0.045 0.213 0.132 0.079 0.041 0.163 0.112 0.014

β1 0.698 0.056 0.577 0.213 0.666 0.079 0.694 0.163 0.765 0.014

mv 18.554 >1000 1.061 0.024 1.367 13.461 1.040 0.021 1.161 0.076

α0 -0.000 0.010 0.263 0.112 0.155 0.025 0.122 0.050 0.119 0.004

1 ALO size 5σy 1000 α1 0.101 0.016 0.056 0.113 0.126 0.026 0.046 0.061 0.106 0.007

β1 0.762 0.016 0.687 0.113 0.746 0.026 0.833 0.061 0.785 0.007

mv 8.585 >1000 1.031 0.010 1.373 0.757 1.018 0.009 1.122 0.050

α0 0.000 0.010 0.141 0.022 0.114 0.001 0.085 0.005 0.108 0.001

5000 α1 0.100 0.001 0.076 0.034 0.116 0.001 0.076 0.011 0.106 0.002

β1 0.795 0.001 0.783 0.034 0.792 0.001 0.840 0.011 0.793 0.002

mv 0.000 1.004 1.006 0.002 1.260 0.089 1.001 0.002 1.078 0.015

α0 0.002 0.010 0.716 0.672 0.230 0.075 0.579 0.520 0.142 0.011

500 α1 0.144 0.183 0.113 0.407 0.133 0.078 0.094 0.361 0.115 0.014

β1 0.513 0.183 0.300 0.407 0.667 0.078 0.402 0.361 0.766 0.014

mv 120.189 >1000 1.226 0.078 1.361 12.670 1.166 0.052 1.269 0.149

α0 -0.001 0.010 0.481 0.347 0.154 0.023 0.264 0.189 0.119 0.004

1 ALO size 10σy 1000 α1 0.124 0.095 0.031 0.244 0.126 0.026 0.025 0.161 0.108 0.005

β1 0.634 0.095 0.531 0.244 0.747 0.026 0.723 0.161 0.788 0.005

mv -52.966 >1000 1.113 0.024 1.383 0.767 1.082 0.017 1.177 0.063

α0 0.000 0.010 0.165 0.034 0.114 0.001 0.082 0.006 0.107 0.001

5000 α1 0.102 0.002 0.043 0.037 0.116 0.001 0.045 0.015 0.105 0.002

β1 0.785 0.002 0.795 0.037 0.792 0.001 0.874 0.015 0.796 0.002

mv -0.001 1.006 1.022 0.002 1.265 0.093 1.015 0.002 1.091 0.018

α0 0.002 0.012 0.790 0.929 0.232 0.077 0.734 0.806 0.148 0.012

500 α1 0.211 0.259 0.197 0.423 0.133 0.080 0.185 0.434 0.118 0.015

β1 0.406 0.259 0.272 0.423 0.664 0.080 0.276 0.434 0.763 0.015

mv 1260.833 >1000 1.490 0.281 1.354 13.124 1.363 0.166 1.335 0.231

α0 -0.001 0.011 0.716 0.686 0.156 0.024 0.575 0.521 0.120 0.004

1 ALO size 15σy 1000 α1 0.167 0.203 0.100 0.397 0.126 0.026 0.075 0.344 0.109 0.005

β1 0.491 0.203 0.323 0.397 0.745 0.026 0.432 0.344 0.789 0.005

mv 793.996 >1000 1.246 0.075 1.384 0.789 1.181 0.046 1.207 0.073

α0 0.000 0.010 0.215 0.066 0.114 0.001 0.081 0.009 0.106 0.001

5000 α1 0.108 0.007 0.017 0.053 0.116 0.001 0.018 0.021 0.105 0.002

β1 0.766 0.007 0.778 0.053 0.791 0.001 0.904 0.021 0.798 0.002

mv -0.003 1.010 1.049 0.004 1.264 0.093 1.035 0.003 1.100 0.019
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Table 2

Finite sample properties of the estimators

Monte Carlo means, standard deviations of the parameter and marginal variance (mv) estimates for the GARCH(1,1) model and mean

square error (MSE). True parameters are: α0 = 0.1, α1 = 0.1, β1 = 0.8 and mv = α0/(1−α1−β1) = 1. KL stands for the closed-form

estimator proposed by Kristensen and Linton (2006), MY for the robust estimator proposed by Muler and Yohai (2008), RTZKL for

the robust closed-form estimator using the proposal of Teräsvirta and Zhao (2011) and QMLE − t for the robust QMLE-t proposed

by Carnero et al. (2012).

T Estimation methods

QMLE KL MY RTZKL QMLE − t

MSE MSE MSE MSE MSE

α0 0.000 0.010 0.588 0.501 0.257 0.096 0.494 0.426 0.155 0.015

500 α1 0.100 0.130 0.074 0.323 0.135 0.096 0.062 0.292 0.120 0.016

β1 0.609 0.130 0.425 0.323 0.640 0.096 0.505 0.292 0.761 0.016

mv -1.486 >1000 1.193 0.063 1.425 3.128 1.161 0.050 1.405 0.337

α0 0.000 0.010 0.365 0.216 0.159 0.027 0.198 0.127 0.125 0.005

3 ALOs size 5σy 1000 α1 0.098 0.040 0.037 0.165 0.130 0.028 0.031 0.115 0.109 0.007

β1 0.716 0.040 0.626 0.165 0.740 0.028 0.779 0.115 0.785 0.007

mv 0.002 1.025 1.097 0.020 1.399 0.325 1.079 0.016 1.225 0.081

α0 0.000 0.010 0.146 0.026 0.114 0.001 0.084 0.006 0.108 0.001

5000 α1 0.099 0.001 0.065 0.036 0.122 0.001 0.064 0.013 0.106 0.002

β1 0.791 0.001 0.791 0.036 0.789 0.001 0.853 0.013 0.796 0.002

mv 0.001 1.001 1.019 0.002 1.314 0.126 1.014 0.002 1.099 0.018

α0 0.001 0.012 0.887 1.219 0.259 0.098 0.811 1.065 0.169 0.017

500 α1 0.143 0.260 0.243 0.448 0.135 0.099 0.242 0.455 0.132 0.015

β1 0.421 0.260 0.235 0.448 0.637 0.099 0.247 0.455 0.761 0.015

mv -3666.542 >1000 1.691 0.532 1.424 2.874 1.582 0.385 1.819 1.474

α0 -0.001 0.011 0.765 0.801 0.158 0.024 0.673 0.673 0.134 0.006

3 ALOs size 10σy 1000 α1 0.134 0.250 0.118 0.400 0.130 0.027 0.084 0.360 0.117 0.007

β1 0.430 0.250 0.314 0.400 0.741 0.027 0.391 0.360 0.782 0.007

mv 1711.356 >1000 1.346 0.136 1.399 0.326 1.291 0.099 1.397 0.254

α0 0.000 0.010 0.206 0.069 0.114 0.001 0.082 0.010 0.107 0.001

5000 α1 0.106 0.007 0.022 0.057 0.123 0.001 0.022 0.022 0.106 0.001

β1 0.758 0.007 0.785 0.057 0.789 0.001 0.900 0.022 0.799 0.001

mv 0.002 1.000 1.069 0.007 1.327 0.136 1.057 0.005 1.132 0.026

α0 0.002 0.014 0.873 1.629 0.263 0.102 0.788 1.472 0.188 0.024

500 α1 0.123 0.214 0.375 0.414 0.135 0.102 0.420 0.466 0.140 0.017

β1 0.451 0.214 0.271 0.414 0.633 0.102 0.230 0.466 0.755 0.017

mv 6009.059 >1000 2.491 2.346 1.433 3.219 2.256 1.674 2.136 2.413

α0 -0.003 0.013 0.914 1.284 0.159 0.026 0.848 1.131 0.140 0.007

3 ALOs size 15σy 1000 α1 0.165 0.301 0.244 0.448 0.130 0.028 0.221 0.442 0.122 0.007

β1 0.351 0.301 0.234 0.448 0.740 0.028 0.260 0.442 0.780 0.007

mv -5318.376 >1000 1.746 0.585 1.399 0.326 1.627 0.418 1.506 0.345

α0 0.001 0.010 0.366 0.240 0.114 0.001 0.147 0.085 0.107 0.001

5000 α1 0.123 0.048 0.007 0.148 0.123 0.001 0.008 0.074 0.106 0.001

β1 0.678 0.048 0.673 0.148 0.789 0.001 0.859 0.074 0.800 0.001

mv 0.002 1.017 1.149 0.024 1.328 0.136 1.125 0.018 1.151 0.030
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Table 3

Finite sample properties of the estimators

Monte Carlo means, standard deviations of the parameter and marginal variance (mv) estimates for the GARCH(1,1) model and mean

square error (MSE). True parameters are: α0 = 0.1, α1 = 0.1, β1 = 0.8 and mv = α0/(1−α1−β1) = 1. KL stands for the closed-form

estimator proposed by Kristensen and Linton (2006), MY for the robust estimator proposed by Muler and Yohai (2008), RTZKL for

the robust closed-form estimator using the proposal of Teräsvirta and Zhao (2011) and QMLE − t for the robust QMLE-t proposed

by Carnero et al. (2012).

T Estimation methods

QMLE KL MY RTZKL QMLE − t

MSE MSE MSE MSE MSE

α0 0.001 0.010 0.563 0.240 0.356 0.137 0.620 0.415 0.160 0.017

500 α1 0.180 0.157 0.428 0.511 0.176 0.156 0.238 0.442 0.130 0.020

β1 0.484 0.157 0.098 0.511 0.515 0.156 0.223 0.442 0.748 0.020

mv -0.005 1.067 1.191 0.062 1.390 20.906 1.160 0.050 1.437 0.392

α0 0.000 0.010 0.482 0.166 0.204 0.039 0.473 0.219 0.129 0.006

1 patch of size 5σy 1000 α1 0.143 0.047 0.377 0.411 0.143 0.045 0.261 0.342 0.115 0.008

β1 0.645 0.047 0.182 0.411 0.685 0.045 0.299 0.342 0.777 0.008

mv -0.001 1.015 1.096 0.020 1.415 12.883 1.078 0.016 1.242 0.104

α0 0.000 0.010 0.330 0.068 0.121 0.001 0.277 0.039 0.108 0.001

5000 α1 0.108 0.002 0.211 0.138 0.121 0.002 0.191 0.082 0.106 0.002

β1 0.776 0.002 0.465 0.138 0.782 0.002 0.535 0.082 0.794 0.002

mv -0.001 1.005 1.019 0.002 1.268 0.092 1.014 0.002 1.099 0.017

α0 0.001 0.012 0.844 0.576 0.294 0.121 0.883 0.844 0.182 0.024

500 α1 0.257 0.338 0.496 0.635 0.140 0.127 0.307 0.526 0.144 0.020

β1 0.296 0.338 0.003 0.635 0.600 0.127 0.134 0.526 0.743 0.020

mv -1397.157 >1000 1.686 0.523 1.506 20.955 1.578 0.380 1.838 1.272

α0 -0.001 0.011 0.660 0.325 0.169 0.029 0.731 0.568 0.137 0.007

1 patch of size 10σy 1000 α1 0.188 0.179 0.501 0.630 0.132 0.033 0.274 0.507 0.122 0.008

β1 0.465 0.179 0.007 0.630 0.730 0.033 0.160 0.507 0.776 0.008

mv 0.001 1.047 1.344 0.135 1.499 12.989 1.289 0.099 1.415 0.256

α0 0.000 0.010 0.509 0.172 0.118 0.001 0.485 0.167 0.107 0.001

5000 α1 0.115 0.004 0.489 0.590 0.127 0.002 0.409 0.475 0.107 0.001

β1 0.752 0.004 0.034 0.590 0.783 0.002 0.132 0.475 0.798 0.001

mv -0.002 1.008 1.069 0.007 1.350 0.148 1.057 0.005 1.135 0.027

α0 0.001 0.017 1.247 1.355 0.279 0.113 1.228 1.607 0.201 0.031

500 α1 0.373 0.414 0.497 0.640 0.135 0.115 0.363 0.560 0.153 0.022

β1 0.225 0.414 0.000 0.640 0.619 0.115 0.091 0.560 0.737 0.022

mv 812.080 > 1000 2.479 2.301 1.545 25.414 2.247 1.648 2.185 2.613

α0 -0.001 0.012 0.866 0.598 0.162 0.029 0.888 0.854 0.143 0.008

1 patch of size 15σy 1000 α1 0.251 0.302 0.502 0.639 0.130 0.030 0.322 0.525 0.126 0.008

β1 0.341 0.302 0.001 0.639 0.739 0.030 0.133 0.525 0.774 0.008

mv 75.501 > 1000 1.741 0.578 1.521 14.888 1.624 0.414 1.533 0.404

α0 0.000 0.010 0.569 0.222 0.115 0.001 0.560 0.285 0.108 0.001

5000 α1 0.124 0.012 0.504 0.639 0.129 0.002 0.361 0.513 0.107 0.001

β1 0.723 0.012 0.001 0.639 0.785 0.002 0.139 0.513 0.799 0.001

mv -0.004 1.015 1.148 0.024 1.386 0.170 1.124 0.018 1.157 0.034
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Figure 1. Monte Carlo means of the biases in the volatility estimated using a GARCH(1,1)

model fitted to series of size T=1000.

Therefore, our findings reinforce the conclusions of Carnero et al. (2012) that the estimation
methods that lead to accurate volatility estimates are those that estimate better the marginal
variance.

5. Empirical application

In this section we analyze one daily financial time series of returns to illustrate the different
volatility estimates of the volatility under the methods analyzed before via simulation. The
series considered is the Nasdaq composite index. The data was collected from Yahoo Finance
website (http://finance.yahoo.com) and spans the period of January 2, 1987–November 25, 2014.

Figure 2 depicts the return series, yt = (log pt − log pt−1) · 100, where pt is the value at time
t of the corresponding index and Table 4 reports some summary statistics and the results of the
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Kiefer and Salmon (1983) test, which is a formal test of normality in the context of conditional
heteroscedastic series.5 The test confirms the non Gaussianity of the two return series.
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Figure 2. Returns in percentage of the Nasdaq composite index.

Table 4

Descriptive statistics

Stock index returns Nasdaq

Mean 0.0370

Variance 2.1168

Skewness -0.2323∗∗∗

Kurtosis 10.5421∗∗∗

KSS -20.2497

KSK 640.7303

∗∗∗ means that the skewness and kurtosis are significant at all

relevant levels of significance.

Looking at Figure 2 and Table 4, we may appreciate several extreme observations that can
be the cause of excess of kurtosis presented by the return series.

5The Kiefer and Salmon (1983) test is given by KSN = (KSS)2 + (KSK)2, where KSS =√
T
6

[
1
T

∑T
t=1 y

·3
t − 3

T

∑T
t=1 y

·
t

]
, KSK =

√
T
24

[
1
T

∑T
t=1 y

·4
t − 6

T

∑T
t=1 y

·2
t + 3

]
and y·t are the standardized returns.

If the distribution of y·t is conditional N(0, 1), then KSS and KSK are asymptotically N(0, 1) and KSN is

asymptotically χ2(2).
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Table 5 reports the estimation of the parameters and the in-sample MSE and MAE of the
volatility obtained with each of the estimation methods. The method proposed by Kristensen
and Linton (2006) and its robustification provide quite similar parameters, although the second
reports low estimated values for α0 and α1 and a high estimate for β1. Yet, the estimated marginal
variance of yt is slightly smaller for the robust closed-form estimator. In order to compare the
models’ goodness-of-fit, we calculate the in-sample MSE and MAE of the volatility assuming
the squared returns as a proxy of the true nonobservable σ2

t . Regarding the in-sample MSE,
the robustified closed-form estimator provides the smallest value of this measure followed by the
closed-form estimator of Kristensen and Linton (2006). Yet, if we compare the in-sample MAEs,
we observe that the closed-form estimator of Kristensen and Linton (2006) provides the smallest
MAE followed closely by its robustified version. Therefore, we may conclude that the closed-form
estimators provide the best fit to the data and the QMLE the worst.

Table 5

Estimation of the GARCH(1,1) parameters

Parameters Estimation methods

QMLE KL MY RTZKL QMLE − t
α0 0.0189 0.0021 0.0037 0.0018 0.0094

α1 0.1105 0.0265 0.0676 0.0245 0.0900

β1 0.8816 0.9725 0.9308 0.9746 0.9082

MSE 21.4321 15.5273 17.5932 14.9189 16.9960

MAE 3.9026 3.6680 3.8268 3.6875 3.7977

MSE and MAE are the in-sample mean squared error and the mean absolute error of

the volatility, respectively. The nonobservable σ2
t is proxied by the squared returns.

On the other hand, when we consider the QMLE based estimators, the estimates of α0 and
α1 are larger for the basic QMLE in comparison to the robust QMLE based estimators, while
the estimate of β1 is smaller.

Figure 3 depicts the estimated volatilities and the biases regarding the volatility obtained
with the robust closed-form estimator. Looking at the Figure, we observe that the estimators
KL and RTZKL are those that provide smaller estimates of the volatility, being the volatility of
the second slightly smaller (see panel seven of Figure 3). The volatility estimated by the basic
QMLE is the largest. The other robust QMLE based estimators provide smaller estimates of
the volatility but larger than those of the closed-form estimators.

The implications of these results are important either for options pricing or risk management
given that estimating volatility with robust estimators leads to smaller volatility estimates and
consequently lower risk. In the case of options pricing lower volatility estimates indicate smaller
expected fluctuations in underlying price levels and consequently lower option premiums for puts
and calls.
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Figure 3. Estimated volatilities σ̂t and biases.

5.1. Forecasting performance

In this subsection we perform an out-of-sample comparison of several GARCH(1,1) estimation
proposals to calculate the one-day-ahead VaR of the daily Nasdaq returns. We split the sample
in an in-sample period that ranges from January 2, 1987 to May 8, 2002 and an out-of sample
period that spans the period May 9, 2002 to September 19, 2006. We obtain 1100 one-day-ahead

14



VaR forecasts as
V aRα

t+1|t = σ̂t+1|tqα, (19)

with α = 1%, qα is the 1% quantile of the standard Normal distribution and σ̂t+1|t is the one-
day-ahead volatility forecast. We use a recursive expanding window to calculate the VaRs.

In order to evaluate the performance of the methods in forecasting the VaR, Table 6 reports
the failure rates for the 1100 VaR forecasts, the p-value of the conditional coverage test by
Christoffersen (1998)6 and the p-value of the dynamic quantile test (DQtest) by Engle and
Manganelli (2004)7. Since the calculation of the empirical failure rate defines a sequence of ones
(VaR violation) and zeros (no VaR violation), we can test if the theoretical failure rate, f , is

6The first tests for the unconditional coverage (denoted LRuc) and it is a standard likelihood ratio test (known

also as Kupiec (1995)’s test) given by

LRuc = −2log [L(p; I1, I2, ..., In)/L(π̂; I1, I2, ..., In)]
asy∼ χ2(1),

where {It}nt=1 is the indicator sequence, p is the theoretical coverage, π̂ = n1/(n0 +n1) is the maximum likelihood

estimate of the alternative failure rate π, n0 is the number of zeros and n1 is the number of ones in the sequence

{It}nt=1.

The second tests for the independence part of the conditional coverage hypothesis (denoted LRind) and it is

also a likelihood ratio test

LRind = −2log
[
L(Π̂2; I1, I2, ..., In)/L(Π̂1; I1, I2, ..., In)

]
asy∼ χ2(1),

where

Π̂1 =

(
n00/(n00 + n01) n01/(n00 + n01)

n10/(n10 + n11) n11/(n10 + n11)

)
, Π̂2 =

(
1− π̂2 π̂2

1− π̂2 π̂2

)
,

nij is the number of observations with value i followed by j and π̂2 = (n01 +n11)/(n00 +n10 +n01 +n11). Finally,

the third is a joint test of coverage and independence (denoted LRcc) given by:

LRcc = −2log
[
L(p; I1, I2, ..., In)/L(Π̂1; I1, I2, ..., In)

]
asy∼ χ2(1).

7For computing Engle and Manganelli (2004)’s Dynamic Quantile test, Ht(α) is defined as Ht(α) = It(α)− α
where I(α) is a vector composed by ones (VaR violations) and zeros (VaR no violations).

By the definition of VaR, we expect that the conditional expectation of Ht(α) given the past information must

be zero. This assumption can be tested with the following linear regression model:

Ht(α) = β0 +

P∑
i=1

βiHt−i(α) +

K∑
j=1

γjgj(zt−j) + εt, (20)

where εt is an i.i.d process with zero mean and g(·) is a function of the past exceedances and of variable zt.

Consider H0 : β0 = β1 = · · · = βP = γ1 = · · · = γK = 0, and denote Ψ = (β0, β1, . . . , βP , γ1, . . . , γK)T the

vector of the P +K + 1 parameters of the model. The statistics test are given by

DQ =
Ψ̂TXTXΨ̂

α(1− α)

L−→ χ2 (P +K + 1)

where X denotes the covariates matrix in equation (20). In our study, we select P = 4, K = 4 and g(zt) = V aRt

to account the influence of past exceedances up to four days (see Chen and Lu, 2012, for more details).
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equal to 1%, i.e., H0 : f = 1% vs. H1 : f 6= 1%. According to Christoffersen (1998), testing
for conditional coverage is important in the presence of higher order dynamics and this author
proposed a procedure that is composed of three tests.

Table 6

Failure rates and p-values for the null hypotheses f = 1%

Failure rates LRuc LRind LRcc DQtest

QMLE 0.019 0.007 0.366 0.017 0.006

KL 0.014 0.251 0.519 0.414 0.067

MY 0.019 0.007 0.366 0.017 0.002

RTZKL 0.015 0.092 0.465 0.183 0.072

QMLE − t 0.022 0.001 0.301 0.002 0.000

LRuc, LRind, LRcc stand for the LR test of unconditional cover-

age, the LR test of independence and the joint test of coverage

and independence, respectively.

Looking at Table 6, we conclude that the VaR forecasts that are closer to the 1% nominal value
are those obtained with the closed-form estimators. The VaR forecasts obtained with QMLE
based methods tend to overreject and therefore the null hypotheses of the Christoffersen (1998)
and Engle and Manganelli (2004) tests are rejected. The main conclusion is that the closed-form
estimators seem to perform quite well in forecasting the volatility and the Value-at-Risk.

6. Conclusion

In the financial econometrics literature, it is well known that outliers affect the estimation of
parameters and volatilities when using the traditional GARCH model and several robust alter-
natives have been actively investigated. All of them are based on QMLE methods and therefore
are based on the use of numerical optimization procedures and starting values which might lead
to different parameter and volatilities estimates.

In this paper we extend the closed-form estimator of the GARCH(1,1) proposed by Kristensen
and Linton (2006) for dealing with additive level outliers by replacing the estimators of the sample
autocorrelations by robust estimators of these autocorrelations. Moreover, we also use robust
filters that exist in the literature to estimate the underlying volatility.

The Monte Carlo experiments together with the empirical application show that the closed-
form estimators and in particular the robust closed-form estimator are more robust in terms of
volatility estimation and Value-at-Risk forecasting than the basic ML estimator and some based
robust QMLE estimators.
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