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 

Abstract—This paper proposes a two-stage high order intra 

block prediction method for light field image coding. This method 

exploits the spatial redundancy in lenslet light field images by 

predicting each image block, through a geometric transformation 

applied to a region of the causal encoded area. Light field images 

comprise an array of micro-images that are related by complex 

geometric transformations that cannot be efficiently compensated 

by state-of-the-art image coding techniques, which are usually 

based on low order translational prediction models. The two-stage 

nature of the proposed method allows to choose the order of the 

prediction model most suitable for each block, ranging from pure 

translations to projective or bilinear transformations, optimized 

according to an appropriate rate-distortion criterion. The 

proposed higher order intra block prediction approach was 

integrated into an HEVC codec and evaluated for both unfocused 

and focused light field camera models, using different resolutions 

and microlens arrays. Experimental results show consistent 

bitrate savings, which can go up to 12.62%, when compared to a 

lower order intra block prediction solution and 49.82% when 

compared to HEVC still picture coding. 

 

Index Terms—Light Field Image Coding, HEVC, High Order 

Intra Block Prediction, Geometric Transformations 

I. INTRODUCTION 

ight Field (LF) imaging technology available in lenslet LF 
cameras allows to jointly capture radiance data and angular 

information from the light rays hitting the camera’s sensor, by 

means of multiplexing the LF data in a 2D conventional sensor. 

This is achieved through an array of microlenses, placed 

between the main lens and the camera sensor. Each microlens 

creates a micro-image (MI) on the sensor, which is the 

microlens scene perspective being captured through the main 

lens. Therefore, a lenslet light field image tends to be like the 

output of an array of very small cameras.  

The additional knowledge of the scene angular information 

allows to perform various a posteriori image processing tasks, 

not straightforwardly possible with traditional cameras. 
Refocusing and change of perspective after the picture has been 

taken are the most common examples [1]. These functionalities, 

derived from the ability to capture the “whole observable” (LF) 

scene [1], may be advantageous for several applications, like 

3D Television [2], since by rendering several views from 
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different perspectives, 2D, 3D and multiview signals can be 

created; image recognition and medical imaging [3].  

Depending on the position of the camera sensor and the 

microlens array relatively to the main lens, different samplings 
of the light field can be performed, which define essentially the 

lenslet LF camera model [4]. Two main types of lenslet LF 

camera models exist, the unfocused [5] and the focused model 

[4]. In the classic unfocused camera model case, the sensor is 

one focal distance away from the microlens array. Thus, the 

microlens array is focused at infinity, i.e., the light rays that 

reach the microlens array are parallel [5]. Consequently, the 

microlens array is completely defocused from the main lens 

image plane. Therefore, each microlens only captures angular 

information, meaning that each pixel, within the MI, 

corresponds to a different angle, or viewpoint [5]. In the focused 
lenslet LF camera model, the sensor is away from the microlens 

array focal distance and the microlens array is focused on the 

main lens image plane, allowing for each microlens to generate 

a focused MI. This feature allows a higher spatial resolution for 

rendering, since more than one pixel can be extracted from each 

MI in the rendering process [4]. These models have been the 

base for the deployment of this technology, allowing an 

increasing number of applications and users. 

The growing interest in LF technology led the JPEG 

Committee to launch a new activity, known as JPEG Pleno, to 

address coding and representation of content generated by 

emerging imaging technologies such as LF, point-cloud and 
holographic technologies [6]. 

The large amount of data required to adequately represent a 

LF scene, when compared to the case of typical 2D pictures, 

calls for efficient techniques for both transmission and storage 

of this type of content. In this context, several authors proposed 

specific LF coding techniques, which can be applied directly to 

the lenslet LF images, in order to exploit the MIs redundancy. 

Alternatively, other techniques are applied to a different 

representation of the same LF, which comprises the view point 

images, also known as sub-aperture images (SAIs). The SAIs 

are generated by extracting at least one pixel, in a fixed position, 
from each MI and organizing them into a matrix. Each SAI 

represents a rendered image, from a different perspective, 

extracted from the LF image. 
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State-of-the-art LF coding schemes rely on block matching 

techniques to exploit the inherent spatial redundancy in lenslet 

LF images. However, these low order prediction (LOP) models 

use only two degrees of freedom (DoF), as only translations are 

used to describe the inherent LF image spatial redundancy.  
Due to the small baseline between MIs in lenslet LF images, 

the different MIs can be approximately related by changes in 

perspective, which require eight DoF to be described. To the 

best of authors’ knowledge, this characteristic has not been 

exploited by previous LF coding approaches described in the 

literature. This additional matching accuracy is important to 

develop a coding method able to cope with important features 

of the LF content, such as: 

1) The LF camera model, i.e., both focused and unfocused 

models should be handled;  

2) The type of microlens array structure, e.g., rectangular 

or hexagonal microlens layouts, creating rectangular, 
hexagonal or circular MIs; 

3) The MI size, i.e., a parameter that depends on the camera, 

and has a strong influence on the number of possible 

rendered points of view and their spatial resolution. 

High order prediction (HOP) models, e.g., using geometric 

transformations with more DoF, have been studied during the 

last two decades in traditional 2D and 3D image coding 

scenarios. Several geometric models, like translation, rotation, 

scale, shear and perspective changes have been used to improve 

the coding efficiency, by exploiting spatial [7], temporal [8]–

[13] and inter-view [14]–[17] redundancy. In most proposals, 
these models have been applied image-wise (instead of block-

wise), due to two main reasons: (i) high computational 

complexity in block-wise model parameter estimation, and (ii) 

significant additional bit rate required for parameter 

transmission. Despite these drawbacks, this paper demonstrates 

that block-wise HOP models can increase block matching 

accuracy and, thus, coding efficiency for lenslet LF images.  

The method proposed in this paper for encoding lenslet LF 

images relies on a two-stage block-wise HOP model, where 

each image block is intra predicted from a reference in the 

causal area of the image, i.e., containing pixels that were 

already encoded. Since this approach is applied block-wise, it 
is possible to optimize the HOP model (number of DoF) for 

each block to be encoded. Taking advantage of the extra DoF 

available in HOP models, it is possible to outperform state-of-

the-art coding techniques based on LOP models. 

The remainder of this paper is organized as follows: Section 

II presents a review of several relevant state-of-the-art 

solutions, regarding LF image coding; Section III describes the 

geometric transformations used in the proposed prediction 

method; Section IV presents the proposed HOP model; Section 

V presents the test conditions and experimental results; and, 

finally, Section VI concludes the paper. 

II. RELATED WORK ON LIGHT FIELD IMAGE CODING 

Several schemes to encode lenslet LF images are described 

in the literature, aiming to exploit the intra-LF image 

redundancy. These schemes rely on different LF image 

representations and coding techniques, which may be 

categorized according to the fundamental adopted approach as: 

transform-based coding, pseudo-video sequence coding, 

disparity-based coding and non-local spatial prediction coding.  

A. Transform-based coding 

Some LF coding schemes rely, essentially, on the use of a 

transform, mainly the discrete cosine transform (DCT) [18], 

[19] or the discrete wavelet transform (DWT) [20]. In [18], a 

3D-DCT is applied to a stack of MIs, to exploit the existing 

spatial redundancy within a MI, as well as the redundancy 

between adjacent MIs. In [20], a LF image is decomposed into 

SAIs, and a 3D-DWT is applied to a stack of these SAIs. The 

lower frequency bands are transformed using a two-
dimensional discrete wavelet transform (2D-DWT), while the 

remaining higher frequency coefficients are simply quantized 

and arithmetic encoded. These coding schemes are reportedly 

more efficient than JPEG, but not as efficient as HEVC still 

picture coding. 

B. Pseudo-video sequence coding 

This type of LF coding schemes represent the LF image as a 

set of MIs or SAIs, and re-organize them into a low resolution 

pseudo-video sequence (PVS), which is then compressed using 

a standard video encoder. Various scanning strategies to order 

the PVS are considered to better exploit the redundancy 

between MIs or SAIs. Dai et al. [21] propose to scan the SAIs 

using either a raster or a spiral scan and then encode the 

generated video sequence with H.264/AVC. Vieira et al. [22] 

used similar scanning strategy combined with several 

prediction structures supported by HEVC. In both cases it is 

possible to conclude that the spiral scan is more efficient than 
the raster scan. More recently, in the ICME light field 

compression challenge [23], Liu et al. [24] used a PVS scheme 

to organize the SAIs into layers, depending on the proximity to 

the central view, starting with the central SAI and moving on to 

the outer views. The more distant the SAI is from the center, the 

higher the value of the used quantization parameter (QP) should 

be. This scheme was implemented using both HEVC test model 

(HM) and JEM [25] software. Because the rate allocation is not 

uniform along the LF image, this method is prone to reconstruct 

views with different objective qualities.  

C. Disparity-based coding 

In this type of LF coding schemes the LF image is considered 

as a set of views captured by different cameras (either in the 

form of MIs or SAIs), which may be encoded exploiting inter-

view disparity. In [26], the authors propose a coding method 

that uses some SAIs to calculate a set of disparity maps prior to 

coding, which are then used to predict the remaining SAIs. The 
authors concluded that this approach is suitable to encode 

synthetic images, where disparity compensation alone can be 

enough to predict a SAI. A compression scheme that 

incorporates disparity compensation into 4D wavelet coding 

using disparity compensated lifting is proposed in [27]. The 

disparity information derived from an approximated model of 

the scene is applied to modify the update and prediction filters 

of the lifting procedure. In [28], the authors propose a scalable 

(two-layer) LF coding approach for the focused LF camera 

model, using a LF representation that consists of a sparse set of 
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MIs and associated disparity maps. Based on the sparse set of 

MIs and the associated disparity maps (first layer), a reference 

prediction LF image is obtained through a reconstruction 

method that relies on disparity-based interpolation and 

inpainting. This reconstructed LF image is then used to encode 

the original LF image (second layer), by encoding the 
prediction residue. This approach was later extended [29] with 

a third layer of scalability and the use of lossy encoded disparity 

maps, in contrast with the lossless transmission of the disparity 

maps, used in the first approach. Both versions of the work are 

able to outperform HEVC still picture coding.  

D. Non-local spatial prediction coding 

Several methods to exploit the non-local spatial redundancy 

were proposed as additional coding tools for existing video 

coding standards, like HEVC. In [30], a self-similarity 

compensated prediction is proposed to take advantage of the 

flexible partition patterns used by this video codec. In [31] this 

method was extended with a bi-directional mode to increase its 

coding efficiency. Additionally, in [32], an alternative non-

local spatial prediction method has been investigated, relying 

on a prediction mode based on locally linear embedding 

integrated in HEVC. Differently from the other schemes, that 

exploit non-local spatial redundancy, this method distributes 
the computational complexity between the encoder and the 

decoder, i.e., the locally linear embedding procedure must be 

replicated in the decoder. In [33] the authors developed a multi-

hypothesis coding method specifically for focused LF image 

and video. This method uses up to two hypotheses for 

prediction in both spatial and time domains, which outperforms 

single-hypothesis based prediction. For the unfocused camera 

model, the authors concluded that the rate-distortion efficiency 

is still much higher, compared to JPEG or HEVC, however the 

gains relatively to HEVC are smaller in this case when 

compared to the focused model [34]. 
The main advantage of this category is that, in most 

approaches, the lenslet LF images are encoded without the need 

of any pre-processing steps or any prior knowledge about the 

capturing device, e.g., the LF camera model, the microlens 

array structure and the MI size.  

III. GEOMETRIC TRANSFORMATIONS FOR HIGH ORDER 

PREDICTION 

In most state-of-the-art encoders, prediction between blocks 
of pixels is performed using very simple transformations, like 

translations. However, a lenslet LF image is comprised of MIs 

that are related by more complex transformations, resulting 

from the fact that each MI represents the scene being captured 

from slightly different perspectives. In such cases, it is 

advantageous to use geometric transformations that better 

exploit the features of the LF image and its MIs.  

A geometric transformation (GT) is able to map perspective 

changes from one view (generically associated to a 

quadrilateral) into another view, requiring up to eight DoF.  

Considering two different blocks, 𝐴 and 𝐴′, each one with its 

own coordinate system, (𝑢, 𝑣) and (𝑥, 𝑦), respectively, it is 

possible to define a generic relationship: 

 (𝑥, 𝑦) = (𝑋(𝑢, 𝑣), 𝑌(𝑢, 𝑣)), (1) 

where 𝑋 and 𝑌 are mapping functions for each coordinate. 

These functions create a point to point correspondence between 

images. Depending on the number of DoF used by the mapping 

functions in (1), different number of independent point to point 

correspondences are possible. To describe these mapping 

functions, some GTs may be used, namely, Projective, Bilinear 

or a simpler Affine GT, as illustrated in Fig. 1. 

A. Projective geometric transformation 

In order to simplify the mathematics used in this kind of GT, 

homogeneous coordinates are commonly used [35]. Thus, the 

Projective GT can be defined by a 3×3 matrix 𝑯 verifying (2): 

 [𝑥, 𝑦, 1] = [𝑢ℎ, 𝑣ℎ, ℎ]𝑯 . (2) 

The Projective matrix 𝑯 can be decomposed into three 

different submatrices, 𝑳𝒑, 𝑻𝒑 and 𝑷𝒑: 

 
𝑯 = [

𝑳𝒑 𝑷𝒑
𝑻𝒑 1

] 

𝑳𝒑 = [
𝑙00 𝑙01
𝑙10 𝑙11

], 𝑻𝒑 = [𝑡𝑥 𝑡𝑦], 𝑷𝒑
𝑻 = [𝑝𝑥 𝑝𝑦] 

(3) 

Each submatrix is responsible for a different elementary type of 

GT: 𝑻𝒑 is responsible for the description of translations, 𝑳𝒑 is 

able to define linear transformations such as rotation, scaling, 

and shearing, and 𝑷𝒑 describes perspective transformations. 

To fully exploit the capabilities of the projective matrix 𝑯, a 

four-point correspondence is necessary between blocks 𝐴 and 

𝐴′. In this case, the full transformation matrix corresponds to 

the following system of equations: 

 

{
 
 

 
 𝑥 = 𝑋(𝑢, 𝑣) =

𝑙00𝑢 + 𝑙10𝑣 + 𝑡𝑥
𝑝𝑥𝑢 + 𝑝𝑦𝑣 + 1

𝑦 = 𝑌(𝑢, 𝑣) =
𝑙01𝑢 + 𝑙11𝑣 + 𝑡𝑦
𝑝𝑥𝑢 + 𝑝𝑦𝑣 + 1

 (4) 

The system of equations (4) defines the necessary calculations 

for mapping the coordinates of every pixel of block A into the 

transformed block 𝐴′.  
The number of available DoF is directly related with the 

number of known points of correspondence which exist 

between both images. For less than four points of 
correspondence, simpler transformations can be represented by 

the perspective model. For example, if one point is known, the 

only component that can be possibly described is a translation, 

i.e., 𝑻𝒑 = [𝑡𝑥 , 𝑡𝑦], 𝑷𝒑 = [0,0]
𝑇 and 𝑳𝒑 = 𝑰. This case is defined 

by (5): 

Fig. 1 - Examples of possible GTs applied to block 𝐴: Projective (𝐴𝑃
′ ), 

Bilinear (𝐴𝐵
′ ) and Affine (𝐴𝑃

′ ). 
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 [𝑥, 𝑦, 1] = [𝑢ℎ, 𝑣ℎ, ℎ] [
𝑰 𝟎
𝑻𝒑 1], (5) 

which can be translated into the system of equations (6): 

 {
𝑥 = 𝑋(𝑢) = 𝑢 + 𝑡𝑥
𝑦 = 𝑌(𝑣) = 𝑣 + 𝑡𝑦

. (6) 

B. Bilinear geometric transformation 

The Bilinear GT is an alternative to the Projective GT, 

defined by a 4×2 matrix 𝑩 verifying (7): 

 [𝑥, 𝑦] = [𝑢𝑣, 𝑢, 𝑣, 1]𝑩, (7) 

where: 

 𝑩 = [
𝑷𝒃
𝑳𝒃
𝑻𝒃

] = [

𝑝𝑥 𝑝𝑦
𝑙00 𝑙01
𝑙10 𝑙11
𝑡𝑥 𝑡𝑦

], (8) 

The Bilinear GT matrix 𝑩 can represent similar GTs as the 

Projective GT, with the same number of DoF. However, it 

performs a non-planar transformation, which makes it more 
flexible. Thus, only horizontal and vertical lines, as well as 

equispaced points along these directions, are preserved [36]. 

Diagonal lines, on the other hand, are not mapped as lines but 

as quadratic curves. This feature is illustrated in Fig. 1, where, 

in the case of the Bilinear GT, points along vertical parallel lines 

are kept equispaced, while the points along diagonal lines are 

mapped onto a quadratic curve (block 𝐴𝐵). When the Projective 

GT (block 𝐴𝐴) is used, points along the parallel vertical lines do 

not stay equispaced but points along diagonal lines are also 

mapped along a line. Another property of this GT, when 
compared to the Projective GT, is the need for simpler 

calculations per pixel, given by (9): 

 {
𝑥 = 𝑋(𝑢, 𝑣) = 𝑢𝑣𝑝𝑥 + 𝑢𝑙00 + 𝑣𝑙10 + 𝑡𝑥
𝑦 = 𝑌(𝑢, 𝑣) = 𝑢𝑣𝑝𝑦 + 𝑢𝑙01 + 𝑣𝑙11 + 𝑡𝑦

. (9) 

C. Affine geometric transformation 

When using either the Projective or the Bilinear GT, eight 

DoF are available. However, a simpler case exists, which is 

known as the Affine GT, that is able to describe GTs up to six 

DoF. The Affine GT can be described as a particular case of 

Projective or Bilinear GTs, by using matrices 𝑯 and 𝑩 with 

𝑷𝒑
𝑻 = [0 0] and 𝑷𝒃 = [0 0], respectively. This GT only 

requires three points of correspondence between images, 

defined by (10): 

 {
𝑥 = 𝑋(𝑢, 𝑣) = 𝑙00𝑢 + 𝑙10𝑣 + 𝑡𝑥
𝑦 = 𝑌(𝑢, 𝑣) = 𝑙01𝑢 + 𝑙11𝑣 + 𝑡𝑦

. (10) 

IV. PROPOSED HIGH ORDER PREDICTION MODE 

This section proposes a LF image coding method, based on a 

high order prediction model, which is implemented as a block-

wise prediction mode in HEVC. This HOP mode is added to the 

set of HEVC Intra prediction modes, i.e., Planar mode, DC 

mode and the 33 intra Directional modes.  

The proposed HOP mode predicts each block by applying a 

GT between two quadrilaterals, the current block and a block in 

the reference region, the causal area of pixels already encoded. 

The algorithm for the proposed prediction mode can be 

described through the following steps: 

1) Selection of the next set of correspondence points to be 
evaluated: Selection of a quadrilateral in the causal area 

of pixels (from a set of pre-defined cases), with corners 
{𝑃𝑛

′}, that is mapped into the block which is being 

predicted, with corners {𝑃𝑛} (see left side of Fig. 2); 

2) Calculation of the GT parameters: Calculation of the 

transformation parameters that map the quadrilateral 

defined by {𝑃𝑛
′} into the one defined by {𝑃𝑛}; 

3) Inverse GT mapping: Mapping of the causal 

quadrilateral defined by {𝑃𝑛
′} to the one defined by {𝑃𝑛}, 

using an inverse mapping procedure with the parameters 

calculated in the previous step, in order to compute the 

block prediction error; error and the estimated number 

of bits to transmit the GT parameters; 

4) Estimation of the GT RD cost: Estimation of the rate-

distortion (RD) cost, J, associated to the GT that is being 

evaluated, considering the computed block prediction; 

5) Repeat the above steps to find the GT with minimum RD 

cost: Evaluate iteratively all the pre-defined 

combinations of correspondence points and choose the 

one that has the minimum RD cost 𝐽. 

Fig. 2 – Block prediction using a HOP model: generic single-stage HOP model mapping (left side), and proposed two-stage HOP model mapping (right side) 
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6) Encode the HOP mode information: The corner 

displacement between the quadrilateral in the causal area 
{𝑃𝑛

′} and the block which is being predicted {𝑃𝑛} is 

signaled to the decoder. 

The following sub-sections explain each step of the proposed 

HOP mode in more detail.  

A. Selection of the correspondence points 

The major challenges faced by the proposed algorithm are 

the computational complexity required to estimate the optimal 

set of GT parameters and the necessary bit-rate for transmitting 

this data. To tackle both problems, a rate-distortion-complexity 

tradeoff is defined. From Fig. 2 (left side) it can be inferred that, 

if all possible four-point correspondences between the 

prediction block and the current block to be encoded were 

evaluated, the number of tested transformations per block 

would be larger than (2𝑊2)4, i.e., for a search window (𝑊 =
128) more than 1.15×1018 correspondence possibilities per 

block exist. To reduce the number of tests to a practicable 

number, a two-stage minimization problem is proposed, aiming 
to determine a good approximation to the optimal HOP model, 

as illustrated in Fig. 2 (right side): 

1) LOP Model Estimation 

In the first stage, a pure translational LOP model (two DoF) 

is used. The result of this stage is, the bidimensional vector, 𝑻, 

with the lowest RD cost, pointing into the search window of the 

causal area (see the blue vector on the right side of Fig. 2). The 

search to determine 𝑻 is performed using a full search 

algorithm, as described in [30]. The LOP estimation stage of the 

proposed HOP mode is based on the Self Similarity (SS) 
prediction method. The prediction cost is minimized by testing 

all the possible positions inside the search window for a single 

vector that relates the current block to the prediction block. The 

𝑻 vectors, generated by the first stage, can be either encoded 

explicitly, similarly to motion vectors in HEVC or using the SS-

Skip mode, which creates a list of candidates that includes the 

𝑻 vectors used to encode neighboring blocks. If one candidate 

from this list is selected to encode the current block, it is only 

necessary to encode the its index, as in the HEVC merge mode. 

Additionally, some predetermined vectors are added to the 
candidate list, referred to as MI-based candidates [30]. These 

candidates correspond to vectors that are very likely to be 

selected by the SS prediction mode, such as, vectors pointing to 

the same spatial position of the current MI within the left, above 

and above-left MIs. 
2) HOP Model Estimation  

In the second stage, a HOP model (up to eight DoF) is used, 
employing as a starting point the result of the first stage (see, 

respectively, the red and blue quadrilaterals on the right side of 

Fig. 2). For this, a set of four vectors, {𝑣𝐻𝑂𝑃𝑛}, is computed, 

each of them defining the position of one corner of the reference 

quadrilateral, thus defining the 2D GT.  
To further reduce the computational complexity of the 

second stage of this minimization problem, a 2D logarithmic 

fast search method has been adopted, which is applied to each 

corner of the prediction block (blue rectangle). In this case, the 

maximum number of search steps has been set to 

𝑙𝑜𝑔2(𝑚𝑖𝑛(𝐵𝑥 , 𝐵𝑦)) − 1, depending on the size of the prediction 

block, i.e., 𝐵𝑥 (width) and 𝐵𝑦 (height). In each step, the 

searching points are defined according to a five-point small 

diamond-shaped basis pattern with an initial search step size 

equal to 𝑚𝑖𝑛(𝐵𝑥 ,𝐵𝑦)/4 [37], [38]. This 2D logarithmic fast 

search method using the five-point small diamond-shaped basis 

pattern is graphically represented in Fig. 3 across three search 

steps, represented, respectively, by black circles, green 

pentagons and yellow triangles. After each search step, the 

point that minimizes the RD cost function is set as the center of 

the next step and the search step size is halved until a unitary 
step value is reached. In the example of Fig. 3, in the first corner 

(𝑃0), the five points associated with the first step, represented 

by the black circles, are tested. The point that minimizes the RD 

cost function for the first search step is the black circle on the 

top. For the second and third search steps, the points on left, 

respectively, green pentagon and yellow triangle, are the points 

that yield the lowest RD cost. The final point is selected to 

define the red arrow that describes the corner displacement of 

the first corner of the block. 

Considering that the search procedure must be applied to all 

the corners of the prediction block over several search steps, 
there are two ways of implementing this second stage search: 

by jointly optimizing each step of the search procedure for the 

four corners or by independently optimizing each step of the 

search procedure. By considering five points for each of the S 

search steps of the 2D logarithm search, the required number of 

search points for each option is given by (5×𝑆)𝑛 or 5𝑛×𝑆, 

respectively where 𝑛 is the number of corners. In order to 

reduce the computational complexity, the second option was 

used, where each step is optimized individually. 

The stop condition for this search method is met when the 
corner step size reaches the unit. Therefore, the example shown 

in Fig. 3 represents the unitary steps as the yellow triangles. 

Since the underlying codec uses variable block sizes, 𝑆 will 

depend on the block size. The search window for each corner is 

limited to 𝑚𝑖𝑛(𝐵𝑥 , 𝐵𝑦) − 1, as illustrated in Fig. 3 (see the 

dashed red block).  

The quadrilateral used by the HOP model estimation may be 

scaled to increase pixel precision. Fig. 2 and Fig. 3 illustrate the 

second stage applied to a blue rectangle with the same size of 

the block being predicted (in black) to not overload the figures. 

However, in our implementation, a rectangle, twice the size of 

the original block, is used to determine the HOP model.  This 

Fig. 3 – Fast search method adopted for each corner of the prediction block 

(blue rectangle) used to estimate the HOP model (red quadrilateral). 



1932-4553 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2017.2721358, IEEE Journal
of Selected Topics in Signal Processing

IEEE Journal on Selected Topics in Signal Processing (JSTSP) - Special Issue on Light Field Image Processing 

 

6 

modification means that an integer pixel displacement in one of 
the corners of the large quadrilateral corresponds to a sub-pixel 

displacement in the area of the original rectangle. For a block 

twice the size of the original block, one extra search step is 

performed by the 2D logarithmic search algorithm that is used 

at the HOP stage. This occurs because the stopping condition 

for the search algorithm is the unitary step size. The pixel 

precision can be further extended by using a rectangle with 

sides four or eight times the size of the original blue rectangle, 

which increase, the number of search steps by one or two, 

respectively. After extensive testing, the best solution in a RD 

sense was adopted, that is increasing the blue rectangle to twice 
the original size, despite requiring one extra step.  

As the second stage of the HOP search can be biased by the 

first stage result, the global result of the search method also tests 

the 𝑻 vectors used in the previously encoded neighboring 

blocks (vector predictors), instead of considering only the best 

𝑻 vector from the first stage. Additionally, other 𝑻 vectors can 

be tested in conjunction with the HOP model estimation, e.g. 

top ten candidates from the first stage. However, it was 

experimentally verified by the authors that the vectors that are 

more RD cost efficient are the 𝑻 vector predictors. 
The proposed approach can be implemented using either the 

Projective GT defined in (3): 

 𝑯 = [
𝟎 𝟎
𝑻 0

] + [
𝑳𝒑
′ 𝑷𝒑

′

𝑻𝒑
′ 1

] = [
𝑳𝒑
′ 𝑷𝒑

′

𝑻 + 𝑻𝒑
′ 1

] (11) 

or the Bilinear GT defined in (8): 

 𝑩 = [
𝟎
𝟎
𝑻
] + [

𝑷𝒃
′

𝑳𝒃
′

𝑻𝒃
′

] = [

𝑷𝒃
′

𝑳𝒃
′

𝑻 + 𝑻𝒃
′

] . (12) 

Where 𝑻 is the vector estimated during the LOP stage and 𝑻′, 
𝑳′ and 𝑷′ are the GT parameters that describe the HOP stage. 

B. Calculation of the GT parameters 

After obtaining vector 𝑻 (see the right side of Fig. 2), it is 

possible to determine submatrices 𝑻′, 𝑷′ and 𝑳′ in equations 

(11) and (12), by using their width and height, 𝐵𝑥 and 𝐵𝑦, 

respectively, and the small vectors associated with the corner 

position change of the blue rectangle: 

 

{
 
 

 
 
𝑣⃗𝐻𝑂𝑃0 = (𝑢0, 𝑣0)

𝑣⃗𝐻𝑂𝑃1 = (𝑢1 − (𝐵𝑥 − 1), 𝑣1)

𝑣⃗𝐻𝑂𝑃2 = (𝑢2 − (𝐵𝑥 − 1), 𝑣2 − (𝐵𝑦 − 1))

𝑣⃗𝐻𝑂𝑃3 = (𝑢3, 𝑣3 − (𝐵𝑦 − 1))

 (13) 

Note that in the proposed two-stage approach, vectors  𝑣⃗𝑛, 

represented in the left of Fig. 2, correspond to the sum of vector 

𝑻 from the first stage, with the four smaller vectors from the 

second stage, i.e.,𝑣⃗𝑛 = 𝑇 + 𝑣⃗𝐻𝑂𝑃𝑛 , represented in the right of 

Fig. 2. If the Projective GT is used some auxiliary variables are 

defined: 

 

{
Δ𝑢1 = 𝑢1 − 𝑢2
Δ𝑢2 = 𝑢3 − 𝑢2
Δ𝑢3 = 𝑢0 − 𝑢1 + 𝑢2 − 𝑢3

 

{
Δ𝑣1 = 𝑣1 − 𝑣2
Δ𝑣2 = 𝑣3 − 𝑣2
Δ𝑣3 = 𝑣0 − 𝑣1 + 𝑣2 − 𝑣3

. 

(14) 

The Affine GT can be defined by any three of the four vectors 

(𝑣⃗𝐻𝑂𝑃). In this paper, the first three vectors, 𝑣⃗𝐻𝑂𝑃0, 𝑣⃗𝐻𝑂𝑃1and 

𝑣⃗𝐻𝑂𝑃2 are generated using the second stage of the proposed 

approach, where the remaining vector, 𝑣⃗𝐻𝑂𝑃3, is calculated 

assuming 𝛥𝑢3 =  𝛥𝑣3 = 0, thus resulting in 𝑣⃗𝐻𝑂𝑃3 = (𝑢0 −

𝑢1 + 𝑢2,  𝑣0 − 𝑣1 + 𝑣2 − (𝐵𝑦 − 1)).Using (14), the individual 

parameters in the submatrices can then be calculated by (15) for 

the Projective GT: 

 

𝑷𝒑
′ =

[
 
 
 
 
 1

𝐵𝑥−1

|
Δ𝑢3 Δ𝑢2
Δ𝑣3 Δ𝑣2

|

|
Δ𝑢1 Δ𝑢2
Δ𝑣1 Δ𝑣2

|

1

𝐵𝑦−1

|
Δ𝑢1 Δ𝑢3
Δ𝑣1 Δ𝑣3

|

|
Δ𝑢1 Δ𝑢2
Δ𝑣1 Δ𝑣2

|]
 
 
 
 
 

 and  

𝑳𝒑
′ =

[
 
 
 
𝑢1 − 𝑢0
𝐵𝑥 − 1

+ 𝑝𝑥𝑢1
𝑢3 − 𝑢0
𝐵𝑦 − 1

+ 𝑝𝑦𝑢3

𝑣1 − 𝑣0
𝐵𝑥 − 1

+ 𝑝𝑥𝑣1
𝑣3 − 𝑣0
𝐵𝑦 − 1

+ 𝑝𝑦𝑣3
]
 
 
 

. 

(15) 

Similarly, for the Bilinear GT, the corresponding 

submatrices are calculated by (16):  

 

𝑷𝒃
′𝑻 = [

𝑢0−𝑢1+𝑢2−𝑢3

(𝐵𝑥−1)(𝐵𝑦−1)

𝑣0−𝑣1+𝑣2−𝑣3

(𝐵𝑥−1)(𝐵𝑦−1)

] and  𝑳𝒃
′ = [

𝑢3−𝑢0

𝐵𝑦−1

𝑣3−𝑣0

𝐵𝑦−1

𝑢1−𝑢0

𝐵𝑥−1

𝑣1−𝑣0

𝐵𝑥−1

]. (16) 

For both cases we have:  

 
𝑻𝒑
′ = 𝑻𝒃

′ = [𝑢0 𝑣0]. (17) 

C. Inverse GT mapping 

As previously mentioned, a GT between two blocks 
corresponds to a mapping of every pixel within one block into 

the other block, e.g., the mapping functions (4) and (9) 

correspond to the Projective and Bilinear GT, respectively. 

When the mapping is performed from the rectangular block to 

Fig. 4 - Example of Direct Mapping and Inverse Mapping when a scale GT is 

applied. 
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be encoded to an arbitrary reference quadrilateral it is called a 

direct mapping, otherwise it is called an inverse mapping. An 

example of how both mapping procedures for a simple scaling 

GT can be found in Fig. 4. As can be observed in Fig. 4, when 

direct mapping is used the final quadrilateral shape (red block) 

does not match the desired reference block pixel grid, requiring 

to perform pixel interpolation prior to calculate the distortion 
between the transformed block and the reference block. For the 

sake of simplicity, an inverse mapping has been adopted, as it 

generates a rectangular prediction block with the same 

dimensions of the block to be encoded. 

Thus, regardless of the size of the quadrilateral used for 

estimation, (4) and (9) take as input the coordinates of the block 

to be encoded, i.e., 𝑢 ∈ [0,𝐵𝑥 − 1] and 𝑣 ∈ [0,𝐵𝑦 − 1], and 

generate as output the coordinates (𝑥, 𝑦) in the causal area, 

where the reference pixel value is going to be extracted from. 

Since 𝑥 and 𝑦 are typically fractional values, a bilinear 

interpolation filter is used to compute the actual pixel value. 

D. Estimation of the GT RD cost 

The optimal HOP model for each block is determined 

through RD optimization, minimizing the associated 

Lagrangian cost, 𝐽 = 𝐷 + 𝜆𝑅, over the entire set of pre-defined 

GT. 𝐷 refers to the distortion between the prediction block and 

the current block, 𝑅 is the estimated number of bits used to 

encode the block using the GT under evaluation, and 𝜆 is the 

Lagrange multiplier, computed as in HM version 15.0 for Intra-

coded frames. The parameter 𝜆 is the same for all prediction 

modes, including the intra modes, so no biases in terms of 

prediction mode selection are introduced. In this paper, 𝐷, is 

computed as the sum of absolute differences (SAD) in the pixel 

domain, in the first stage, and SAD in the Hadamard domain, in 

the second stage, as suggested in [39]. 

By using a two-stage method it is possible to evaluate if it is 

more advantageous to use LOP or HOP for each block, by 
comparing the associated costs, given by: 

 
𝐽𝐿𝑂𝑃 = 𝐷𝐿𝑂𝑃 + 𝜆𝑅𝐿𝑂𝑃 , and 

𝐽𝐻𝑂𝑃 = 𝐷𝐻𝑂𝑃 + 𝜆𝑅𝐻𝑂𝑃  , 
(18) 

where 𝑅𝐿𝑂𝑃 and 𝑅𝐻𝑂𝑃 are the estimated number of bits for the 

corresponding coding mode.  

The usage of LOP or HOP is conveyed to the decoder 

through a binary flag, 𝐹𝐻𝑂𝑃. When LOP is considered more 

efficient in a RD sense, 𝐹𝐻𝑂𝑃 = 0, and only 𝑻 is transmitted in 

the bitstream. On the contrary, if HOP is used, all the elements 

that describe 𝑻 are transmitted, followed by 𝐹𝐻𝑂𝑃 = 1 and the 

four additional 𝑣⃗𝐻𝑂𝑃𝑛 vectors. 

The number of bits required to signal the HOP mode, 𝑅𝐻𝑂𝑃, 

is the sum of 𝑅𝐿𝑂𝑃 and the estimated bits for encoding the four 

vectors, 𝑣⃗𝐻𝑂𝑃𝑛, that define the used HOP model. The rate of 

these small amplitude vectors is estimated using the same 

procedure as vector 𝑻. 

E. Encode the HOP mode information 

After finding the optimal HOP model, the cost of the HOP 

mode, 𝐽𝐻𝑂𝑃, is compared against the cost of the other intra 

prediction modes, i.e., DC, Planar and the 33 Directional 

modes, and the mode with the lowest RD cost is encoded. For 

this, the context adaptive binary arithmetic coding (CABAC) 

entropy coding method used by HEVC is used to encode the 

HOP mode information. The CABAC entropy coder is based 

on three steps: (i) binarization of syntax elements, (ii) context 

modeling, and (iii) binary arithmetic coding. In this 

implementation, these three steps have been maintained using, 

however, new contexts. Vectors 𝑻 and 𝑣⃗𝐻𝑂𝑃𝑛, and flag, 𝐹𝐻𝑂𝑃, 

are transmitted to the decoder using the HM approach for 

motion vectors and merge flags [40]. 

To encode 𝑻, the same syntax elements of HEVC for motion 

data are used, i.e., motion vector differences, MVP index, 

reference picture list (RPL) and RPL index.  

The way the HOP model information is conveyed to the 
decoder can highly influence the coding efficiency. One 

possible approach is to send the GT parameters, i.e., in the 𝑯 or 

𝑩 matrix, which need to be represented with high precision. 

Alternatively, as proposed in this paper, the encoder just sends 

the four vectors, 𝑣⃗𝐻𝑂𝑃𝑛, which can be represented with just a 

few bits. The major advantage of encoding the GT parameters 

matrix is that they do not need to be recalculated at the decoder 

side through equations (13) – (17). However, they need to be 

encoded with a very high precision because these values are not   

Fig. 5 - LF test images part of the experimental test setup. First row (from left to right): Plane and Toy (frame 0 and 150), Demichelis Spark (frame 0), 

Demichelis Cut (frame 0), Laura and Seagull. Second and third rows: sub-set of the LF EPFL dataset. 
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TABLE I 

BD-PSNR-Y AND BD-RATE RESULTS COMPARING HEVC, HEVC-SS (TWO DOF) AND HEVC-HOP, USING SIX DOF AND EIGHT DOF AND TWO DIFFERENT KINDS 

OF GEOMETRIC TRANSFORMATIONS 

Image 

HEVC-SS (2 DoF)  

vs HEVC 

HEVC-HOP-A (6 DoF) 

vs HEVC-SS (2 DoF) 

HEVC-HOP-P (8 DoF)  

vs HEVC-SS (2 DoF) 

HEVC-HOP-B (8 DoF) 

vs HEVC-SS (2 DoF) 

BD- 

PSNR-Y 
BD-RATE 

BD- 

PSNR-Y 
BD-RATE 

BD- 

PSNR-Y 
BD-RATE 

BD- 

PSNR-Y 
BD-RATE 

Plane and Toy, frame 0 (PT0) 0.90 dB -14.64 % 0.23 dB -3.93 % 0.27 dB -4.66 % 0.23 dB -4.02 % 

Plane and Toy, frame 150 (PT150) 1.44 dB -19.02 % 0.64 dB -9.44 % 0.75 dB -11.05 % 0.71 dB -10.50 % 

Demichelis Spark, frame 0 (DS) 1.09 dB -31.43 % 0.23 dB -7.41 % 0.26 dB -8.39 % 0.26 dB -8.31 % 

Demichelis Cut, frame 0 (DC) 1.05 dB -29.25 % 0.26 dB -8.06 % 0.30 dB -9.14 % 0.29 dB -8.83 % 

Laura (LAURA) 2.26 dB -30.35 % 0.15 dB -2.76 % 0.27 dB -4.78 % 0.32 dB -5.62 % 

Seagull (SEAGULL) 2.81 dB -42.78 % 0.22 dB -4.89 % 0.31 dB -6.82 % 0.43 dB -9.21 % 

Bikes (BIKES) 0.81 dB -18.50 % 0.11 dB -2.91 % 0.13 dB -3.34 % 0.11 dB -2.97 % 

Danger de Mort (DANGER) 0.61 dB -14.67 % 0.10 dB -2.72 % 0.11 dB -2.94 % 0.10 dB -2.75 % 

Flowers (FLOWERS) 0.17 dB -4.10 % 0.03 dB -0.75 % 0.03 dB -0.77 % 0.03 dB -0.67 % 

Stone Pillars (STONE) 0.25 dB -6.31 % 0.02 dB -0.61 % 0.02 dB -0.57 % 0.02 dB -0.57 % 

Vespa (VESPA) 0.89 dB -28.73 % 0.10 dB -3.90 % 0.14 dB -5.30 % 0.12 dB -4.89 % 

Ankylosaurus & Diplodocus (ANKY) 1.43 dB -45.35 % 0.05 dB -1.26 % 0.06 dB -4.46 % 0.05 dB -2.91 % 

Desktop (DESKTOP) 0.48 dB -13.73 % 0.26 dB -8.05 % 0.25 dB -7.78 % 0.29 dB -8.93 % 

Magnets (MAGNTES) 0.66 dB -22.95 % 0.06 dB -3.52 % 0.06 dB -5.19 % 0.05 dB -2.62 % 

Fountain & Vincent (FOUNTAIN) 1.49 dB -30.72 % 0.17 dB -4.39 % 0.20 dB -5.31 % 0.20 dB -5.28 % 

Friends (FRIENDS) 0.22 dB -8.10 % 0.05 dB -2.01 % 0.06 dB -2.21 % 0.06 dB -2.36 % 

Color chart (COLOR) 1.49 dB -42.84 % 0.27 dB -11.19 % 0.31 dB -12.30 % 0.32 dB -12.62 % 

ISO Chart (ISO) 1.42 dB -41.35 % 0.24 dB -9.28 % 0.27 dB -10.42 % 0.27 dB -10.47 % 

AVG. FOC 1.59 dB -27.91 % 0.29 dB -6.08 % 0.36 dB -7.47 % 0.37 dB -7.75 % 

AVG. UNF 0.83 dB -23.11 % 0.12 dB -4.22 % 0.14 dB -5.06 % 0.14 dB -4.75 % 

AVG. ALL 1.08 dB -24.71 % 0.18 dB -4.84 % 0.21 dB -5.86 % 0.21 dB -5.75 % 

very robust to quantization [11]. Consequently, encoding the 

vectors, 𝑣⃗𝐻𝑂𝑃𝑛, leads to higher compression efficiency. 

V. EXPERIMENTAL RESULTS 

In this section the performance of the proposed lenslet LF 

coding solution, incorporating the HOP mode, is evaluated in 

comparison with state-of-the-art coding solutions based on LOP 

approaches. First, this section describes the test conditions, 
including the used lenslet LF test images, the benchmark 

solutions and the relevant test parameters. Afterwards, 

experimental results comparing the RD performance of 

different types of prediction models are presented and 

discussed. These results are complemented with some statistical 

information about prediction mode usage and an evaluation of 

the quality of the rendered views, as proposed in [23], using the 

coded LF images. 

A. Test conditions 

In order to evaluate the RD performance of the proposed LF 

coding solution, two types of LF images were selected for the 

experimental test setup. The first type of images were acquired 

using LF cameras with a focused (FOC) optical setup [41], [42]. 

The second type of images were acquired using a Lytro Illum 

camera that is commercially available and uses an unfocused 

(UNF) optical setup. This second set of images constitutes the 

dataset used for the 2016 ICME Grand Challenge on LF image 
compression extracted from the EPFL dataset [23]. The central 

rendered views of all the test images are shown in Fig. 5, where 

the first row corresponds to the first type of images and the 

second and third rows correspond to the second one. This 

selection includes LF images with different resolutions, MI 

resolutions and types of microlens arrays, with different MI 

shape. Plane and Toy images have a resolution of 1920×1088 

(MIs 28×28); Demichelis images have a resolution of 
2880×1620 (MIs 38×38); Laura and Seagull have a resolution 

of 7240×5432 (MIs 75×75); EPFL images have a resolution of 

7728×5368 pixels (MIs 15×15).  

The proposed HOP mode was implemented into the HEVC 

test model version 15.0 (HM 15.0) as an additional intra 

prediction mode. This LF codec, corresponding to the proposed 

solution, will be referred to as HEVC-HOP, where HEVC using 

only the standard Intra modes is simply referred to as HEVC. 

Additionally, the work in [30] is used as benchmark for RD 

performance and it is referred to as HEVC-SS.  

The common HM test conditions were adopted, using QP 

values of 22, 27, 32 and 37. The causal window size 𝑊 is 128 

for both HEVC-HOP and HEVC-SS, for every encoded image. 

The number of available SS or 𝑻 vector predictors, used for 

coding, is 2. These 𝑻 vector predictors are used as additional 

vector 𝑻 candidates for the LOP model estimation stage. As 

mentioned in the previous section, these alternative vectors are 

tested in order to have a more unbiased result when estimating 

the HOP model. The number of candidates available for SS-

Skip is 5 in both HEVC-SS and HEVC-HOP.  

B. Experimental results 

All the LF images in Fig. 5 are encoded and decoded using 

the HEVC, HEVC-HOP and HEVC-SS codecs, and the RD  
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TABLE II 

AVERAGE PREDICTION MODE USAGE ACROSS THE FOUR QPS, IN PERCENTAGE 

OF PIXELS, FOR THE HEVC-HOP-P CASE 

Image 

DC, Planar 

and 

Directional 

Proposed prediction 

method 
SS-Skip 

[30] 
LOP stage  HOP stage 

PT0 57.76 % 3.32 % 22.81 % 16.12 % 

PT150 26.53 % 4.39 % 51.27 % 17.62 % 

DS 27.35 % 3.84 % 40.31 % 28.51 % 

DC 27.25 % 1.93 % 44.04 % 26.78 % 

LAURA 21.51 % 10.25 % 45.22 % 23.03 % 

SEAGULL 13.87 % 9.27 % 41.81 % 35.05 % 

BIKES 44.12 % 5.69 % 33.44 % 16.75 % 

DANGER 49.28 % 5.99 % 31.15 % 13.59 % 

FLOWERS 81.54 % 2.63 % 10.55 % 5.28 % 

STONE 82.66 % 2.75 % 9.60 % 4.99 % 

VESPA 38.42 % 7.94 % 30.03 % 23.61 % 

ANKY 24.39 % 10.89 % 30.26 % 34.46 % 

DESKTOP 57.50 % 2.67 % 15.68 % 24.14 % 

MAGNETS 28.88 % 9.57 % 28.42 % 33.14 % 

FOUNTAIN 30.12 % 8.38 % 37.66 % 23.84 % 

FRIENDS 78.01 % 3.08 % 11.35 % 7.57 % 

COLOR 15.62 % 8.94 % 38.14 % 37.30 % 

ISO 11.40 % 11.29 % 41.57 % 35.75 % 
 

TABLE III 

BD-PSNR-Y AND BD-RATE RESULTS COMPARING HEVC, HEVC-SS (2 DOF) 

AND HEVC-HOP-P (8 DOF) USING THE TESTING METHODOLOGY OF [23] 

Image 

HEVC-SS vs HEVC HEVC-HOP-P vs HEVC-SS 

BD-

PSNR-Y 

BD-

RATE 

BD- 

PSNR-Y 

BD- 

RATE 

BIKES 0.78 dB -20.83 % 0.08 dB -2.41 % 

DANGER 0.57 dB -16.08 % 0.08 dB -2.41 % 

FLOWERS 0.17 dB -4.67 % 0.02 dB -0.69 % 

STONE 0.27 dB -8.43 % -0.03 dB 0.95 % 

VESPA 0.66 dB -32.79 % 0.09 dB -5.34 % 

ANKY 1.48 dB -62.57 % 0.11 dB -6.87 % 

DESKTOP 0.33 dB -15.23 % 0.10 dB -5.19 %  

MAGNETS 0.64 dB -37.90 % 0.08 dB -5.97 % 

FOUNTAIN 1.22 dB -35.38 % 0.12 dB -4.34 % 

FRIENDS 0.15 dB -10.40 % 0.03 dB -1.72 % 

COLOR 1.26 dB -58.40 % 0.18 dB -12.86 % 

ISO 1.49 dB -45.39 % 0.26 dB -10.81 % 

AVG. 0.75 dB -29.01 % 0.09 dB -4.81 % 
 

TABLE IV  

CODEC COMPUTATIONAL COMPLEXITY COMPARISON 

Encoder HEVC 
HEVC-

SS  

HEVC-

HOP-A 

HEVC-

HOP-P 

HEVC-

HOP-B 

Run time (h) 0.06 3.88 5.88 26.54 20.30 

vs HEVC-SS 0.02 1 1.51 6.84 5.23 

Decoder HEVC 
HEVC-

SS 

HEVC-

HOP-A 

HEVC-

HOP-P 

HEVC-

HOP-B 

Run time (s) 1.70 33.56 30.54 29.98 28.56 

vs HEVC-SS 0.05 1 0.91 0.89 0.85 

 

performance is evaluated using a Bjøntegaard Delta Metric. 

Additionally, several variants of HEVC-HOP are tested. These 

variants of HEVC-HOP are referred to as HEVC-HOP-A, 

HEVC-HOP-P and HEVC-HOP-B, respectively for Affine (six 

DoF), Projective (eight DoF) and Bilinear (eight DoF) GTs. 

Table I shows the RD performance comparison between HEVC 

and HEVC-SS, and between HEVC-SS and the various HEVC-

HOP variants. 

1) Comparison between LOP and HOP 
Table I shows that HEVC-SS can outperform HEVC, for all 

tests, with bitrate savings up to 45.35%. Nevertheless, all 

versions of the proposed HEVC-HOP method are even more 

efficient than HEVC-SS to encode LF images. This increased 

performance, with bitrate savings up to 12.62% for certain 

images relatively to HEVC-SS (49.82% relatively to HEVC), 

comes from the use of a higher order prediction model. Since 

HEVC-SS is limited to two DoF, it is not able to accurately 

describe block transformations more complex than a simple 
translation. When comparing the results by means of comparing 

the effectiveness of adding prediction tools with more than two 

DoF, it is possible to notice that for the encoded LF images, the 

best case is when eight DoF are used. If eight DoF are available, 

i.e., when HEVC-HOP-P is being used, four points of 

correspondence are transmitted, which allows the description of 

not only translations, but also rotations, scaling, shearing and 

perspective changes. In this case, although extra information 

needs to be encoded, relative to the HEVC-SS case, the bitrate 

savings increases to 5.86% (28.81% relative to HEVC), in 

average, for all tested LF images. 

2) Comparison between the proposed GTs 
The proposed prediction mode HEVC-HOP-B, using a 

Bilinear GT, can achieve similar results to HEVC-HOP-P for 

most images, both in terms of average PSNR (BD-PSNR) and 

bitrate savings. However, comparing the average performance 

of each method regarding the type of camera models (AVG. 

FOC and AVG. UNF) it is possible to observe that HEVC-

HOP-P is slightly more efficient for the unfocussed model 

images and HEVC-HOP-B is slightly more efficient for the 

focused model images. In the case of HEVC-HOP-A only six 

DoF are available because only three points of correspondence 

are transmitted. When compared HEVC-HOP-A to HEVC-
HOP-P, the bitrate savings gains relatively to HEVC-SS are 

reduced to 4.84% (28.12% relatively to HEVC) on average 

considering all tested LF images, which may be due to the fact 

that HEVC-HOP-A is not able to compensate for perspective 

changes. However, in terms of computational complexity 

HEVC-HOP-A is approximately 4.5 times faster than HEVC-

HOP-P. Note that none of the implementations is optimized in 

terms of computational complexity; therefore, the reported 

values for comparison may vary. It is worthwhile mentioning 

that for some cases (e.g., STONE test image) HEVC-HOP-A 

can outperform both eight DoF GTs. In HEVC-HOP-P four 

correspondence points are always encoded, even if only three 
are necessary. Since in some cases, more information might be 

transmitted to describe the same GT, HEVC-HOP-P is, for this 

particular test image, less efficient than HEVC-HOP-A. 

Regarding the computational complexity, a study was 

performed using the image VESPA, from the EPFL dataset of 

LF images. This image was encoded and decoded using the 

codecs, HEVC, HEVC-SS, HEVC-HOP-A, HEVC-HOP-P and 

HEVC-HOP-B, with QP=32. These tests were performed using 

a PC equipped with an Intel Xeon CPU E3-1240 V2@3.4GHz 

and 24GB of RAM, running Ubuntu 16.04. The obtained 

running time to encode and decode each image is depicted in 
Table IV. The computational complexity of the proposed 

schemes must be compared to HEVC-SS, as it is used as 

reference. The HEVC-SS complexity is equivalent to encoding 

a P-Slice in HEVC [30]. As can be seen from Table IV, the 

proposed algorithm increases the computational burden at the 

encoder side, where HEVC-HOP-A, HEVC-HOP-P and 

HEVC-HOP-B are 1.51, 6.84 and 5.23 times more complex 

than HEVC-SS, respectively. However, at the decoder the 

running time is reduced in relation to HEVC-SS. As the 
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proposed method uses a more efficient prediction, the LF image 

encoder creates a lower number of partitions than the HEVC-

SS.  

One of the most important advantages of the proposed 

prediction method is the ability to choose between the LOP 

stage and the HOP stage for each image block. This decision is 

taken based on RDO criteria, which allows the proposed 

HEVC-HOP to outperform HEVC-SS in all cases. In Table II it 

is possible to observe that despite the HOP stage of the 

proposed prediction method being used more frequently than 

the LOP stage, there is always a considerable part of the image 
that is encoded using only the LOP prediction mode. However, 

the fact that the HOP stage is used more often than the LOP 

stage alone indicates that, although the proposed method 

HEVC-HOP-P requires additional overhead for transmitting the 

prediction information, i.e., one flag (𝐹𝐻𝑂𝑃) and four vectors 

({𝑣⃗𝐻𝑂𝑃𝑛}), it is very efficient in reducing the distortion between 

the current block and prediction block, therefore reducing the 

RD cost. An example of this can be seen in Fig. 6 where a 

comparison between the generated prediction block using either 
the LOP method or the proposed HOP method is shown. In this 

example, the prediction block generated using the proposed 

HOP stage has a lower RD cost (𝐽𝐻𝑂𝑃 = 5080) than the 

prediction block using LOP (𝐽𝐿𝑂𝑃 = 7851), despite the extra 

bits necessary to convey to the decoder the GT parameters 

({𝑣⃗𝐻𝑂𝑃𝑛} = {(3; 0), (4; 0), (2;−1), (2; 1)}).  

3) Experimental results for rendered SAIs 

To further evaluate the compression efficiency of the 

proposed HEVC-HOP-P, the objective quality of the SAIs 
extracted from the encoded LF images was tested. The 

experimental methodology adopted in [23] for the Lytro Illum 

unfocused camera setup was used. In this case, the PSNR-Y is 

calculated as an average of the PSNR-Y of 13×13 SAIs. This 

average PSNR-Y compares reference and reconstructed (i.e., 

encoded and decoded) SAIs. The processing chain designed to 

generate the SAIs consists in converting the hexagonal lenslet 

LF image to a square lenslet LF image (with 15x15 pixels per 

MI) and then, extracting one pixel, in a fixed position from each 

square MI, to render each SAI. For this case only the images 

from [23] have been used. The only difference to the 
methodology in [23] is that, instead of using fixed compression 

ratios, the results are calculated using the reconstructed images 

attained with fixed QPs (22, 27, 32 and 37), i.e., the number of 

bits is the same as in the previously used methodology.  

From the results presented in Table III it is possible to 

observe that there is a coherence between the results for the 

encoded LF images and the rendered SAIs. The average bitrate 

savings achieved by HEVC-HOP-P relative to HEVC-SS are 

very similar for both cases. Nevertheless, as the RD cost was 

not optimized on each SAI, the results are not exactly the same. 

As previously explained, when using the HEVC-HOP-P 

method the LF image is encoded “as is”, without the need to 
know any information about the used lenslet based LF camera. 

This may explain the bitrate increase for image STONE, as the 

proposed method calculates the RD cost based on the lenslet LF 

image, instead of the generated view or SAI. 

Additionally, a comparison between the proposed HEVC-

HOP-P and the state-of-the-art method [24] was performed. In 

[24], a comparison in relation to JPEG, using the EPFL dataset, 

reports a gain of 4.54 dB in the BD-PSNR. Similarly, this image 

set were encoded by the proposed HEVC-HOP-P, with QPs 

{22, 27, 32, 37}, achieving a BD-PSNR gain of 4.83 dB, in 

relation to JPEG. For a wider QP range {17, 22, 27, 32, 37}, the 

gain of HEVC-HOP-P decreases to 4.34 dB. Thus, it is fair to 
assume that the proposed HEVC-HOP-P has a very similar 

performance to the state-of-the-art method [24]. 

4) Results for different lenslet LF camera models 

In general, the bitrate savings across the different codecs 

when compared to HEVC are higher when encoding LF images 

captured with cameras using a focused LF camera model. This 

is possible to see when comparing the average bitrate savings 

for the LF images captured with an unfocused camera model or 

the focused camera model in Table II. This occurs because 

HEVC-SS and HEVC-HOP are based on matching prediction 

tools. In the focused images, the MIs are focused, therefore 
sharper than the unfocussed images. In sharper MI, more 

prominent features exist and therefore the block matching is 

more reliable [34]. Additionally, since the incident light in the 

camera’s sensor in the unfocused case is focused at infinity, the 

disparity between MIs tends to be zero, which means that 

theoretically no perspective compensation can be matched. This 

can be justified by the noticeable lower relative prediction mode 

usage, shown in Table II, for the proposed prediction method as 

well as SS-Skip for most LF images captured with unfocused 

camera models.  

The proposed HOP model is also more suited to adapt to non-

rectangular shape MIs, e.g., hexagonal and circular shape, when 
compared to LOP model based methods. This happens because 

the corners of the prediction blocks, when using the proposed 

HOP model, are flexible to adapt for different block shapes. 

VI. CONCLUSIONS 

In this paper, a HOP mode for LF image coding was 

proposed, using geometric transformations of up to eight DoF. 

The proposed HOP mode is a two-stage block-wise approach 

that is able to achieve RD efficiency gains, relative to a LOP 

state-of-the-art solution for LF image coding and HEVC. These 

gains occur, regardless of the LF camera model, MI and LF 

image resolution and microlens array type. Experimental results 

show average bitrate savings of 5.86% and 28.81%, when 

compared to a LOP state-of-the-art solution and HEVC, 

respectively, across different types of LF images, when using 

the Projective GT. It is also possible to conclude that, the GTs 

with eight DoF, namely Projective and Bilinear, are generally 

more efficient than Affine GT in a RD sense.  

An additional testing methodology, based on the SAI 

Fig. 6 - Comparison between the prediction block generated by LOP and HOP 

stages. 
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objective quality, was also used to confirm the bitrate savings 

when comparing HOP with LOP tools. In this case the average 

bitrate savings achieved is 4.81% and 31.77% when comparing 

the HOP mode with the state-of-the-art LOP solution and 

HEVC, respectively. 

Future work will include the investigation of GT parameter 

prediction techniques and optimal HOP model selection, 

aiming to combine them in the same codec. Additionally, 

entropy encoding improvements will also be considered, 

namely, the binarization of the HOP model vectors. 
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