
Department of Information Science and Technology

The use of Sensor Networks to
create smart environments

André Filipe Xavier da Glória

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Telecommunications and Computer Engineering

Supervisor

Prof. Dr. Francisco António Bucho Cercas, Full Professor
ISCTE-IUL

Co-Supervisor

Prof. Dr. Nuno Manuel Branco Souto, Assistant Professor
ISCTE-IUL

June, 2017

Resumo

A Internet of Things está a atingir o mundo de modo a tornar-se a próxima
grande revolução depois da Internet, com quase todos os objectos a estarem ligados
para recolher dados e permitir o controlo através de dispositivos móveis. Mas esta
revolução depara-se com vários desafios devido à falta de standards no que toca a
comunicações ou sensores.

Nesta dissertação apresentamos uma proposta para um sistema dedicado a
criar ambientes inteligentes usando redes de sensores, com uma aplicação prática
desenvolvida para oferecer automação, eficiência e versatilidade, permitindo uma
monitorização e controlo remoto seguro em tempo real de qualquer objecto ou
ambiente, melhorando assim a experiência do utilizador e a eficiência das tarefas
levando a redução de custos. O sistema desenvolvido, que inclui software e hard-
ware, usa algoritmos adaptáveis com Inteligência Artificial e dispositivos IoT de
baixo custo, utilizando os melhores protocolos de comunicação, permitindo que
o mesmo seja apropriado e facilmente adaptado para qualquer especificação por
qualquer pessoa.

Avaliamos os melhores métodos de comunicação e dispositivos necessários para
a implementação e demonstramos como criar todos os nós da rede, incluindo a
construção de IoT Gateway e Sensor Node personalizados. Demonstramos também
a eficácia do sistema desenvolvido através da aplicação do mesmo em casos reais.

As principais contribuições do nosso estudo passam pelo desenho e implemen-
tação de uma nova arquitectura para projectos adaptáveis de IoT com foco na
eficiência do objecto, incluindo a demonstração pratica, tal como um estudo com-
parativo sobre os melhores protocolos de comunicação para dispositivos IoT de
baixo custo.

Palavras-chave: Internet of Things, Redes de Sensores, Ambientes Inteligentes,
Comunicações, Sistemas Embebidos, Eficiência.

iii

Abstract

Internet of Things is taking the world in order to be the next big thing since
the Internet, with almost every object being connected to gather data and allow
control through mobile and web devices. But this revolution has some barriers
with the lack of standardization in communications or sensors.

In this dissertation we present a proposal of a system dedicated to creating
smart environments using sensor networks, with a practical application developed
to achieve automation, efficiency and versatility, allowing real-time monitoring
and remote control of any object or environment improving user experience, tasks
efficiency and leading to costs reduction. The developed system, that includes
software and hardware, is based on adaptive and Artificial Intelligence algorithms
and low cost IoT devices, taking advantage of the best communication protocols,
allowing the developed system to be suited and easily adapted to any specification
by any person.

We evaluate the best communication and devices for the desired implementa-
tion and demonstrate how to create all the network nodes, including the build of
a custom IoT Gateway and Sensor Node. We also demonstrate the efficiency of
the developed system in real case scenarios.

The main contributions of our study are the design and implementation of
a novel architecture for adaptive IoT projects focus on environment efficiency,
with practical demonstration, as well as comparison study for the best suited
communication protocols for low cost IoT devices.

Keywords: Internet of Things, Sensor Networks, Smart Environments, Com-
munications, Embedded Systems, Efficiency.

v

Acknowledgements

I would like to thank my advisers Professor Francisco Cercas and Professor
Nuno Souto for accepting my challenge to do an out of the box project, for all the
knowledge and inspiration to complete this dissertation.

Although not part of the project, a special thanks is necessary for Professor
Pedro Sebastião for all the help given throughout the time, not only in academic
but also in professional and personal matters.

To my family, especially my parents, Sandra and Paulo, that always done the
possible and the impossible for providing me the opportunity to reach my goals,
for the support and understanding my choices. Without them it was not possible
to get all these achievements and for that I will forever be grateful.

To my good friends André Marques and Daniel Fernandes, who for 5 years
accompanied me in the various challenges that brought us where we are today.

Also to my friends António Raimundo, José Serro, Manuel Oliveira and Pedro
Romano, that in some way help me through this project, and to the rest of my
friends and colleagues.

Last, and because there is always that one person that influence you to reach
for the stars, an exceptional thanks for my 1st grade Professor Fandy. Thanks for
teaching that little kid that used to bring toy cars to play under his desk during
class time how to read and do maths, and for always remind me not to give up
and that grades does not define who you are. Although you are not here to see it,
I know that you would be proud of the outcome.

vii

Contents

Resumo iii

Abstract v

Acknowledgements vii

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1
1.1 Objectives . 2
1.2 Scientific Contribution . 3
1.3 Structure of the Dissertation . 4

2 State of the Art 7
2.1 Internet of Things . 7
2.2 Sensor Networks . 9
2.3 Communication protocols . 10

2.3.1 Wired Network Technologies 11
2.3.1.1 Serial Peripheral Interface 11
2.3.1.2 Inter-Integrated Circuit 12
2.3.1.3 Universal Asynchronous Receiver and Transmitter . 13
2.3.1.4 Power Line Communication 14

2.3.2 Wireless Network Technologies 14
2.3.2.1 IEEE 802.11 (Wi-Fi) 15
2.3.2.2 IEEE 802.15.1 (Bluetooth) 16
2.3.2.3 IEEE 802.15.4 (ZigBee) 17
2.3.2.4 LoRaWAN . 18

2.3.3 Internet . 19
2.3.3.1 Message Queuing Telemetry Transport 20
2.3.3.2 Constrained Application Protocol 21

2.3.4 Remarks . 22
2.4 Controlling Platforms . 22

ix

Contents

2.4.1 Arduino . 23
2.4.2 ESP8266 . 24
2.4.3 Raspberry Pi . 25
2.4.4 BeagleBone . 26
2.4.5 Intel Edison . 26
2.4.6 Remarks . 27

2.5 Related Work . 28
2.5.1 IoT Gateway . 28
2.5.2 Visualization Platforms . 30

3 Communications Tests 31
3.1 Server side communications . 31

3.1.1 Test Scenario . 32
3.1.2 Results . 32

3.2 Network side communications . 35
3.2.1 Setup Complexity . 36
3.2.2 Test Scenario . 38
3.2.3 Results . 39

3.3 Discussion . 44

4 System Architecture 45
4.1 Software . 46

4.1.1 Visualization Platforms . 46
4.1.1.1 Monitoring and Control 48
4.1.1.2 Rules . 49
4.1.1.3 Notifications . 50
4.1.1.4 Personal Area . 51

4.1.2 Support Scripts . 51
4.1.2.1 Visualization Platform 52
4.1.2.2 Server . 53
4.1.2.3 Aggregation Node 53
4.1.2.4 Sensor Node . 55

4.1.3 Network Security . 56
4.2 Hardware . 57

4.2.1 Sensor Node . 58
4.2.2 IoT Gateway . 59

5 Application Scenarios 65
5.1 Implemented Environments . 66

5.1.1 Solar Panel Control . 66
5.1.1.1 Results . 68

5.1.2 Class Room Control . 69
5.1.2.1 Results . 71

5.1.3 Vertical Garden . 72
5.1.4 ISCTE Satellite Station . 73

x

Contents

5.1.4.1 Results . 74
5.2 Other Environments . 76
5.3 Discussion . 77

6 Conclusions 79
6.1 Future Work . 80

Appendices 83

A Communications Tests Assembly 85

B Nodes Assembly 87

C Scientific Articles Published 89

Bibliography 105

xi

List of Figures

2.1 IoT elements . 8
2.2 Sensor network nodes . 9
2.3 SPI bus topologies . 12
2.4 I2C connection between devices . 13
2.5 IBSS and ESS configurations of Wi-Fi networks. 16
2.6 Bluetooth topology . 17
2.7 IEEE 802.15.4 topologies . 18
2.8 LoRaWAN topology . 19
2.9 MQTT Publish/Subscribe process 20
2.10 CoAP message Types . 21
2.11 Arduino boards . 23
2.12 ESP8266 components . 24
2.13 Raspberry Pi boards . 25
2.14 BeagleBone Black . 26
2.15 Intel Edison module and Kit for Arduino 27

3.1 Server side communication test scenario 33
3.2 HTTP POST Wireshark packet capture 33
3.3 MQTT QoS 0 Wireshark packet capture 33
3.4 MQTT QoS 2 Wireshark packet capture 34
3.5 Bandwidth consumption comparison 34
3.6 Transaction RTT comparison . 34
3.7 Arduino Wireless Protoshield with XBee S2 37
3.8 XBee Explorer . 37
3.9 Adafruit RFM69HCW . 37
3.10 Wired test example . 38
3.11 Test Scenario Model . 38
3.12 Test scenario grounds . 39
3.13 Wireless Test example . 39
3.14 I2C Delay vs Distance results . 40
3.15 RS232 Delay vs Distance results . 40
3.16 ZigBee Delay vs Distance results 41
3.17 LoRa Delay vs Distance results . 41
3.18 I2C Throughput vs Distance results 42
3.19 RS232 Throughput vs Distance results 42

xiii

List of Figures

3.20 ZigBee Throughput vs Distance results 43
3.21 LoRa Throughput vs Distance results 43

4.1 System Architecture . 46
4.2 Database relational design . 47
4.3 Screenshot of the web platform . 47
4.4 Top section with sensor and actuator information 48
4.5 Bottom section with actuator schedule 49
4.6 Bottom section with sensor information 49
4.7 General Information Cell . 49
4.8 Bottom section with rules information 50
4.9 Rules Bootstrap Modal . 50
4.10 Notification Bootstrap Modal . 51
4.11 Screenshot of the personal area . 51
4.12 Visualization Platform Tasks pending MQTT Message Received . . 52
4.13 Scheduled Actions Management . 53
4.14 Value and rules process on aggregation node 54
4.15 Network and User authentication process and initial process 55
4.16 Data and Actions exchange . 56
4.17 Breaduino implementation . 58
4.18 IoT Gateway first prototype . 60
4.19 RS232 network connection . 60
4.20 LoRa network connection . 61
4.21 IoT Gateway second prototype . 61
4.22 IoT Gateway PCB implementation 63
4.23 IoT Gateway with Wireless Communication 63

5.1 Solar node implementation . 67
5.2 Solar Panel Results . 68
5.3 Room Control scenario . 70
5.4 Motion sensor view . 70
5.5 Room Control result . 71
5.6 Vertical Garden implementation . 72
5.7 ISCTE Satellite Station Architecture 73
5.8 ISCTE Satellite Station Hardware 74
5.9 CPU Usage comparison between systems 75
5.10 Bandwidth Usage comparison between systems 75

A.1 I2C connections . 85
A.2 RS232 connections . 86
A.3 LoRa connections . 86

B.1 Sensor Node Connections . 87
B.2 IoT Gateway Connections . 88
B.3 IoT Gateway PCB Projection . 88

xiv

List of Tables

2.1 Major Wired communication protocols characteristics 11
2.2 Major Wireless communication protocols characteristics 15
2.3 Major IoT devices characteristics 28

xv

Abbreviations

ACK Acknowledgement

AP Access Point

API Application Programming Interface

BSS Basic Service Set

CoAP Constrained Application Protocol

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CSS Chirp Spread Spectrum

DSSS Direct Sequence Spread Spectrum

FSK Frequency-Shift Keying

IBSS Independent Basic Service Set

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

I2C Inter-Integrated Circuit

I/O Input/Output

IoT Internet of Things

LAN Local Area Network

LR-WPAN Low-Rate Wireless Personal Area Network

M2M Machine-to(2)- Machine

MQTT Message Queuing Telemetry Transport

OTA Over The Air

PAN Personal Area Network

PLC Power Line Communication

QoS Quality of Service

RTC Real Time Clock

xvii

Abbreviations

RTT Round-Trip Time

SDK Software Development Kit

SoC System on Chip

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver and Transmitter

UDP User Datagram Protocol

VPS Virtual Private Server

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network Network

xviii

Chapter 1

Introduction

Nowadays the urge to connect everything to the Internet is growing, not just to

send information to servers for processing and storage but also to provide full

control of physical devices over the web. While humans will continue to connect

their devices to the Web in greater numbers, by 2020 more than 200 billion smart

devices are expected to be connected to the Internet, making Machine-to-Machine

(M2M) communications up to 45% of the whole Internet traffic [1, 2, 3].

Examples such as Smart Homes, where users can control their thermostats

or lights with a smartphone, are the basis for Internet of Things (IoT). IoT was

designed to play a great role improving our quality of life and its applications are

present in many of our day to day experience such as transportation, health care

and industrial automation.

IoT has the ability to transform a simple physical device into a smart one,

using the embedded technology and computational power. With the sensors and

actuators available to guarantee the features of the device, it is possible to share

information between devices and to put them to work together to improve the

user experience. This will contribute to a bigger explosion coming from “things”

connected to the Web that were not connected before, or didn’t exist, and now

use their connection as a core feature.

1

Chapter 1. Introduction

People living in a smart world will be served by smart devices and IoT projects

have the ability to do more than just connect the device to the Internet, they can

be a big part of improving the efficiency or even adding new features such as

Artificial Intelligence, transforming every common objects into connected ones,

keeping track of people’s cyber, physical and social aspects interconnecting them

and intelligently creating a better experience.

But for every product of different companies there is an app or standard that

can not be used outside those products. For example, in the smarthomes business

there are hundreds of smart bulbs available and for each one there is an app, some

of them paid, or a communication standard that does not work on or in connection

with other devices, offering to the average user, that have multiple products from

different manufactures, little or no flexibility, reduced scalability, high complexity

and prices. Beside all the solutions available, that cover almost every topic, there

is not a solution that singly gives all the information and allows full control.

1.1 Objectives

The goal for this project is to create an IoT system that can be applied to any

object or environment, with little or none modifications, offering the user an easy

full remote control over objects. With this project it will be possible for objects

that require manual control and that can only be accessed locally, to have fully

remote control via an online platform.

The system, which will be built from the ground up, will be developed in order

to be based on three critical areas: automation, efficiency and versatility.

In the automation area, it will allow the user to have full remote and secure control

and monitoring of sensor networks, being able to see current and past data from

sensors and allow control over actuators, all over a web platform, anywhere in

the world. The efficiency area is critical, because automation does not lead to

efficiency, e.g. an automatic irrigation system will turn on even if it is raining, so

with the use of rules set by the user and Artificial Intelligence algorithms, that

2

Chapter 1. Introduction

see if the actions are really needed at that moment, it allows a more effective

and cost saving functionality, leading to potential gains, such as energy or water

savings. Last but not least, the versatility area will allow the system to adapt to

any non-smart object or environment and user specifications with a simple and

easy process.

To achieve this goal, it is necessary to develop a set of specific modules that,

when connected, create a system that can be applied to fulfill any requirements.

For each module there is a set of target features:

1. Visualization Platform: Development of an Online Platform that connects

the user to the sensor network, allowing data visualization and control over

the network;

2. Sensor Network: Design and specification, including the study of the best

architecture, to each node incorporated in the system;

3. Communications: Evaluation of the best communication methods, using

wired or wireless techniques, to connect the several nodes in the system

(server – aggregation node; aggregation node – sensors).

Although the main goal is to create a low cost system that is flexible in the

sense that it can be easily adapted to any specification, the practical functionality

will be tested and evaluated in a solar panel, garden and room control applications,

through previously determined specifications.

1.2 Scientific Contribution

This dissertation presents the following contributions:

• Reviews and evaluates which communication schemes to use in order to en-

sure maximum flexibility, availability, energy efficiency and implementation

simplicity;

3

Chapter 1. Introduction

• Introduce a new solution to sustain and control a full intelligent system using

embedded platforms and sensor networks;

• Demonstrates the successful application of the system on real case studies;

The results obtained within the development of this project result into two

scientific articles published in international telecommunications conferences, thus

contributing to its dissemination to the scientific community.

• A. Glória, F. Cercas and N. Souto, “Design and implementation of an IoT

gateway to create smart environments”, The 8th International Conference

on Ambient Systems, Networks and Technologies (ANT 2017), 2017;

• A. Glória, F. Cercas and N. Souto, “Comparison of Communication Protocols

for Low Cost Internet of Things Devices”, The 2nd International South-East

European Design Automation, Computer Engineering, Computer Networks

and Social Media Conference (SEEDA-CECNSM 2017), 2017;

Also, during our research the project was presented in several technological

events, resulting in four keynote presentations and one demonstration:

• "The use of Wireless Sensor Networks to create smart environments" - Gen-

uino Day Lisbon 2016 & IoT Summit 2016 & 22nd RTCM Meeting;

• "Smart Environments using Raspberry Pi" - Raspberry JAM (November

2016);

• "Create Smart Environments using Arduino" - Arduino Day Lisbon 2017.

1.3 Structure of the Dissertation

In Chapter 2, we review various approaches and solutions studied for creating

smart environments using sensor networks. In Chapter 3, we discuss the results of

4

Chapter 1. Introduction

our communication and devices research. In Chapter 4, we present our developed

system architecture, with details on how to design and develop all the nodes. In

Chapter 5, we experiment the solution created in real case scenarios and discuss

the implementation results. Finally, in Chapter 6, we discuss the overall result of

the dissertation and how this project can be improved.

5

Chapter 2

State of the Art

While IoT is becoming a day-by-day experience for everybody, it has proven chal-

lenging to create a single solution that can work in any object or environment

allowing the user to fully control it. In this chapter, we review the various ap-

proaches that have been studied for creating smart environments using sensor

networks. In Section 2.1, we start by comprehending how IoT is organized. In

Section 2.2, we define what is a sensor network and how we can use it. In Section

2.3, we focus on the communication techniques used in our experiments. In Sec-

tion 2.4, we compare the controllers. Finally, in Section 2.5, we discuss the main

challenges faced by researchers in the mixed fields of IoT, sensor networks and

smart environments, what solutions have been proposed, and how our approach

differs.

2.1 Internet of Things

The Internet is one of the most important development of mankind and IoT will

represent the next evolution of the Internet [2, 3]. With the capability of gathering,

analyzing and distributing the data, IoT consists in the connection between the

Internet and a range of devices and sensors.

7

Chapter 2. State of the Art

IoT, as shown in Figure 2.1, can be divided in six elements [4] that help us

understanding its real meaning and functionality, i.e, identification, sensing, com-

munication, computing, services and semantics.

Figure 2.1: IoT elements

Identification is needed in IoT to name and match services with their demand.

IoT objects need to be addressed so it is critical to know the difference between

object ID, such as “Lum1” for a particular luminosity sensor, and its address within

the network.

Sensing is the ability to gather data from the environment and sending it to be

analyzed. Data can be temperature, luminosity or anything that can be measured.

Communication connects objects to trade data and perform specific services.

For IoT, the most usual are Wireless communication protocols but Wired protocols

are also used.

Computing represents the brain and computational ability of IoT, using hard-

ware processing (e.g, microcontrollers, microprocessors, system on chips (SoCs))

and software applications to perform tasks.

Services in IoT are divided in four categories: identify-related services, that lay

the ground to others services since every real world object needs to be identified

in the virtual world; information aggregation services, that gather and summa-

rize the raw information which needs to be processed; collaborative services, that

uses the obtained data to make decisions; and ubiquitous services, that offer the

collaborative-aware services to anyone on demand, anytime and anywhere.

8

Chapter 2. State of the Art

Semantics is the ability to collect knowledge intelligently so as to provide the

required services, including discovering resources, utilizing resources, modeling

information, recognizing and analyzing data.

There are still some barriers [2] that can prevent the fast development of IoT

such as the introduction of IPv6, with the need of sensors to have a unique address

and the shortage of IPv4 address; the need of common standards, especially in the

areas of security and communications; and power consumption, as the sensors

require power it will be necessary to create energy from the environment. But

given the potential of IoT, it is only a matter of time for resolving these issues.

2.2 Sensor Networks

IoT relies on the ability of gathering, transporting and processing data so the need

of sensor networks its crucial. These networks can be any device equipped with

sensors, from smartphones and cars to hobbyist microcontrollers such as Arduinos.

Sensor Networks [5] are composed by a number of sensing nodes communicating

in a multi-hop fashion. As presented in Figure 2.2, there are three types of sensing

nodes [6]:

Figure 2.2: Sensor network nodes

1. Sensor Node: The lowest level of a Sensor Network is simply composed by a

sensor and a communication mechanism. They gather the information and

pass it to another node.

9

Chapter 2. State of the Art

2. Data Node: Data nodes are sensor nodes that store data besides sending

it to another one. Data storage can be used to perform autonomous tasks

or keep track of information when communications are down. These nodes

require additional devices with more capabilities, such as storage, where SD

cards or databases are usually used.

3. Aggregation Node: These nodes don’t read sensors, they typically have a

communication device and a gateway to the server. They’re used to collect

data from one or more sensor nodes and send it to the servers.

Sensor Networks are design to be energy efficient, because energy is the hardest

resource to find in the locations where the network is installed; scalable, given the

high number of nodes that a network can have; reliable, in some situations the

network can send warnings in case something is wrong; and robust, since sensor

nodes can be exposed to failures or environmental hazards [5].

2.3 Communication protocols

As mentioned before, communication is one of the main elements of IoT, as the

need to trade data between devices is crucial to the efficiency of an IoT project.

Besides the word Internet being part of IoT, not all the situations rely on Internet

related protocols. With the increased use of Sensor Networks and applications in

the most diverse environments, the need of different protocols, both wired and

wireless, is growing.

In this section we will discuss and compare, in detail, the various protocols

including the major features of each one, in order to choose the best one for each

point of communication.

10

Chapter 2. State of the Art

2.3.1 Wired Network Technologies

Wired protocols are still used to connect devices in places with none or little

Internet access, since they are more reliable, secure and can transfer data at higher

rates. The most common wired technologies are Serial Communication or UART,

mainly in the form of USB, RS232 or RS485, and also SPI, I2C and PLC. Beside

these, CAN bus can be used for networks that need a higher reliability.

Table 2.1 shows some key characteristics of the most common wired protocols.

A more detailed description, as well as advantages and disadvantages, of each one

can be found in the following subsections.

Table 2.1: Major Wired communication protocols characteristics

Feature SPI I2C RS232 RS485 PLC CAN

Data Rate [Mbps] 20 3.4 0.02 10 14 1

Range [m] 100 10 15 60 3000 40

Nodes 3 1024 256 256 x 127

Complexity Medium Low Low Low Medium High

2.3.1.1 Serial Peripheral Interface

SPI was introduced by Motorola in 1979, being a protocol designed for commu-

nication between integrated circuits and slow communication with on-board pe-

ripherals [7]. It uses four wires to connect to microcontroller peripherals, each one

associated to a signal line, as shown in Figure 2.3:

• SCLK: a clock signal sent from the bus master to all salves. This synchronize

all SPI signals;

• SSn: a slave select signal for each slave, used by the master to select the

slave to communicate;

• MOSI: a data line from master to slave;

• MISO: a data line from salve to master.

11

Chapter 2. State of the Art

Figure 2.3: SPI bus topologies [7]

As a single master communication protocol, SPI has one central device that

starts all the communications with the slaves. To send data to a specific slave, the

master pulls the corresponding SS line low, activating a clock signal in a frequency

usable for both. The MOSI line is used by the master to put information while

sampling the MISO line to get information from slaves.

The SPI protocol does not define a maximum data rate or addressing scheme

and does not have an acknowledgment mechanism. I/O voltages and standard

used by the devices are not important for the SPI protocol [8].

Advantages Disadvantages
- Offers a variety of data rates; - Configuration done manually;

- Cost-effective; - Limited number of nodes;

- Low power consumption; - Require extra hardware for
each slave

2.3.1.2 Inter-Integrated Circuit

I2C was developed in 1982 by Philips with the purpose of easily connecting a

CPU to a peripheral chip in a television [7]. As SPI, this protocol was design

for communication between integrated circuits and slow communication with on-

board peripherals.

In order to reduce the number of wiring printed in the PCB and avoid addi-

tional logic, I2C uses just two wires for connecting the peripherals to the micro-

controller, called Serial Data (SDA) and Serial Clock (SCL) [8]. In this two lines

it is possible to connect multiple masters and slaves, making I2C a multi-master

12

Chapter 2. State of the Art

protocol. For this, the protocol defines an unique 7-bit slave address for each de-

vice, used to connect to the bus, 8 bytes containing data and a few bytes for the

communication control. As in Figure 2.4, besides this two lines, physically, the

bus also needs a ground connection. Both active lines are bi-directional making

the device that starts the data transfer on the bus a master, being the other slaves.

Figure 2.4: I2C connection between devices

I2C has a range of data rates [7] in which we can choose to transmit. Standart

mode, at 100 kb/s, fast mode, at 400 kb/s, and high speed mode, at 3.4 Mb/s, are

the main data rates for I2C. But some variants of the protocol add low speed mode,

at 10 kb/s, and fast mode +, at 1 Mb/s, as valid speeds.

Advantages Disadvantages
- Easy to connect - Does not support long distance
- Widely supported or High Speed communication

- Automatically configured - Number of nodes is limited by
- Low power consumption the address space on the bus

2.3.1.3 Universal Asynchronous Receiver and Transmitter

The UART is a programmable integrated circuit capable of interfacing serial de-

vices [9]. This interface provide operations such as converting the bytes to a single

serial bit stream for outbound transmission, taking bytes of data and transmits

them in a sequential fashion of individual bits, that will then be re-assembled in

the destination by a second UART, adding a start and stop bits to signal the

beginning and end of a data word, and a parity bit for error detection, with no

need for a clock signal since UART is asynchronous but with both ends of the line

operating with the same baud rate [9, 10, 11].

There are four different standarts for UARTs: RS232, RS423, RS422 and

RS485. The RS232 has a Simplex or Full Duplex operation, being able to achieve

13

Chapter 2. State of the Art

up to 15 meters at 20 kbits/s; as for the RS485 has an Half-Duplex differential

capable of achieving up to 60 meters at 10MBits/s [10].

Advantages Disadvantages
- Widely supported - Limited size of 9 bits

- No clock signal needed
- Robust to errors

2.3.1.4 Power Line Communication

PLC is a technology for carrying data as well as electric power on power lines. It

does not require a separate communication line, since power lines are established

widely, giving the devices an easy connection simply through plugging the power

cord into an electrical outlet [12]. The use of power line cables for transporting

data is possible with the application of certain modulation techniques that allow

high speed communication with minimal interference [8]. Typically PLC devices

operate using X10 protocol, that modulates a digital signals in a carrier wave of

120 kHz into the electric wiring at the transmitter, during zero crossings. To send

a command to a receiver, each is assign an address within the system, and first

the address is sent followed by the command, all through signals transmitted over

the household wiring and decoded at the receiver [13].

Advantages Disadvantages
- Preexisting connections allows
low cost setup with no additional

hardware;

- Data signals are susceptible to
attenuation and to

electromagnetic interference;
- High Data transfer;

2.3.2 Wireless Network Technologies

Wireless communication protocols, offer all what is needed to work with the advan-

tage of a wireless low space environment. The most common wireless technologies

are Wi-Fi, ZigBee, Bluetooth, with new technologies like 6LoWPAN, LoRa and

even LTE-A being increasingly used.

Present in Table 2.2 are some key characteristics of the most common wireless

protocols. A more detailed description, as well as advantages and disadvantages,

of each one can be found in the following subsections.

14

Chapter 2. State of the Art

Table 2.2: Major Wireless communication protocols characteristics

Feature Wi-Fi Bluetooth ZigBee LoRa

Based Data

Rate [Mbps]
11 1 0.25 0.011

Carrier

Frequency

[GHz]

2.45 2.45 2.45 0.433

Range [m] 1-100 10 10-100 20000

Nodes 32 7 65540 -

Power

Consumption

[mA]

100-350 1-35 1-10 1-10

Complexity High Medium Low Medium

Security WPA/WPA2 128 bit 128 bit 128 bit

2.3.2.1 IEEE 802.11 (Wi-Fi)

Wi-Fi, a standard which conforms to IEEE 802.11, is a bidirectional radio fre-

quency wireless protocol with the aim to connect devices inside the wireless local

area network (WLAN). Approved in 1997, the IEEE 802.11 has seen some changes

since the initial signal rate of 1Mbps, with standard b and g getting up to 11 and

54Mbps at 2,4GHz, respectively, the introduction of 5GHz on Europe with stan-

dard h and speeds up to 1Gbps at 5GHz in standard ac [14]. Also standards i and

n brought new functionalities such as new encryption and MIMO physical layer.

The IEEE 802.11 architecture is composed by a number of components that

interact providing aWLAN that can support station mobility, using a Basic Service

Set (BSS), making devices capable of communicating directly within BSS range.

Based on these, the IEEE 802.11 is also capable of implementing independent

BSS (IBSS) where devices can connect directly without an access point (AP), an

operation called ad hoc network, since the LAN is formed without pre-planning

and is only active for the time needed. Also an extended form of network built

15

Chapter 2. State of the Art

with multiple BSSs can be created, with multiple APs controlled by a distribution

system (DS) being used to interconnect the BSSs, allowing the creation of an ESS

network with arbitrary size and complexity.

Figure 2.5: IBSS and ESS configurations of Wi-Fi networks

Communication over Wi-Fi inside a WLAN mostly occur with TCP/IP pack-

ets, being each device identified by its IP or MAC address.

Advantages Disadvantages
- Highly secure connection, with

128-bit AES encryption;
- Consumes a significant amount

of power;
- Supports networking over

power lines, coaxial cables and
phone lines;

2.3.2.2 IEEE 802.15.1 (Bluetooth)

Introduced in 1994 by Ericsson Mobile Communications, Bluetooth is a standard

for wireless communication based on short-range radio system (WPAN). It was

approved in 2005 as an IEEE standard, the 802.15.1 [14].

Bluetooth defines not only the radio interface but also the communication stack

that allows devices to find each other. A Bluetooth device can operate either as

a master or a slave, up to 7 nodes plus the master, in a star topology, as shown

in Figure 2.6. Masters and slaves can switch roles in order to participate and

interconnect with other networks, being slaves only capable to communicate with

their master in a point-to-point fashion, starting by listening for an already run-

ning master and letting him know his address, whereas the master’s transmissions

may be either point-to-point or point-to-multipoint, that also defines the unique

16

Chapter 2. State of the Art

frequency sequence and synchronize the network with its clock [14, 15]. In order

to reduce power consumption a slave can be in the parked or stand-by modes.

Figure 2.6: Bluetooth topology

Bluetooth is currently in version 4.0 or Bluetooth Low Energy, a short range ra-

dio with minimal amount of power to operate for longer periods of time compared

with previous versions. Besides the low power consumption, the main feature of

BLE is that have 10 times more range that normal Bluetooth, about 100 meters,

making BLE a good candidate for IoT [4]. Some test are already made for ver-

sion 5.0, and previous versions allow several types of connection, with different

combinations of available bandwidth, error protection and quality of service.

Advantages Disadvantages
- One coordinator can control a
numerous amount of slaves;

- Pairing all the network can be
a bit complex;

- Widely supported; - Only has star topology;
- Self-organizing network; - Limited number of nodes;

2.3.2.3 IEEE 802.15.4 (ZigBee)

Introduced in 2002, ZigBee implements the IEEE 802.15.4 protocol. Created for

low-rate wireless private areas networks (LR-WPAN) it is one of the most used

communication protocols for IoT and WSNs due to is low power consumption,

low data rate, low cost and high message throughput. It can also provide high

reliability, security, with both encryption and authentication services, working

with different platforms and handling up to 65000 nodes [4, 8]. The IEEE 802.15.4

works in three frequencies, with a DSSS method, capable of transferring data at

17

Chapter 2. State of the Art

250 kbps at 2.4 GHz, the most usual. To ensure that collisions are avoid, it uses

the CSMA/CA protocol [4].

This standard can support two types of network nodes, Full Function Device

(FFD) and Reduced Function Device (RFD). The FFD can serve as a PAN co-

ordinator, a coordinator or just a normal node, and it is responsible for creating,

controlling and maintain the network. They also store the routing table, being

able to connect with every node using all network topologies. The RFD are simple

nodes with low resources, being just able to communicate with the coordinator

in a star topology [4, 15]. ZigBee topologies, as shown in Figure 2.7, are formed

using a combination of specific nodes.

Figure 2.7: IEEE 802.15.4 topologies. (a) Star, (b) Peer-to-Peer, (c) Cluster-
tree

Advantages Disadvantages
- Low power consumption; - Requires additional hardware;

- One coordinator can control a
numerous amount of slaves

- Low packet size, only 127 bytes
per message (250 kbps)

- Self-organizing network
capabilities

- Is incompatible with other
network protocols

- Highly secure, with 128-bit
AES encryption

and lacks Internet Protocol
support

2.3.2.4 LoRaWAN

LoRaWAN is a bidirectional communication protocol that uses the LoRa physical

layer in order to provide low power long-range communications. To achieve this,

LoRa is based on CSS modulation that have the same low power characteristics

as FSK modulation (present in great part of the other wireless communication

protocols) but with a significant increase in the communication range. With a

single base station it is possible to cover up to hundreds of square kilometers [16].

18

Chapter 2. State of the Art

LoRaWAN uses a star topology in order to maintain the low power long com-

munication viable, reducing complexity and increasing network capacity and life-

time as opposed by a mesh topology. This is possible by using an adaptive data

rate and multichannel multi-modem transceiver in the gateway, providing the ca-

pability to receive simultaneous messages [16].

As presented in Figure 2.8, the nodes are not associated with a specific gate-

way. As said the data is transmitted to multiple gateways, that then forward the

received packets from the end-node to the network server, that will then filter

the redundant packets, do security checks and tell a specific gateway to send the

acknowledgment [16].

Figure 2.8: LoRaWAN topology

Advantages Disadvantages
- Low power consumption; - Low packet size, only 55
- Long communication range bytes per message (11 kbps);
- Highly secure, with 128-bit

AES encryption

2.3.3 Internet

In order to transfer the data from the sensors to the servers, where they will be

stored and analyzed, and with the servers mostly out-seas or in cloud, without

the option to use wired or wireless protocol, it is necessary to have a protocol

that support Internet connection. With the main function of this protocols being

the communication between the server and the aggregation node and given the

low size of the packets, the chosen protocols must have good performance, low

19

Chapter 2. State of the Art

bandwidth consumption and latency. With this in mind, we select MQTT and

CoAP, both design for IoT, as the Internet protocols.

2.3.3.1 Message Queuing Telemetry Transport

MQTT is a messaging protocol [4, 17, 18] created in 1999 and standardized in

2013 at OASIS, that aims at connecting embedded devices and networks with

applications and middleware. Built on top of the TCP protocol, it uses a pub-

lish/subscribe pattern, with a routing mechanism (one-to-one, one-to-many, many-

to-many), to provide flexibility and simplicity transition making MQTT an opti-

mal connection protocol for the IoT and M2M, being suitable for small, cheap,

low power and low memory devices with low bandwidth networks. Compared to

HTTP, MQTT is designed to have a lower protocol overhead.

MQTT consists of three components: subscriber, publisher and broker. A

device registers as a subscriber for specific topics of interest in order to get the

information published to that topic. The publisher acts as a generator of data for

some topics, transmitting that information to the subscriber through the broker.

Figure 2.9 illustrates the process used by MQTT in the subscribe/publish method.

Figure 2.9: MQTT Publish/Subscribe process

To ensure that MQTT is reliable it uses three Quality of Service (QoS) levels

[19]. In level 0 the message is delivered at most once and no acknowledgment

of reception is required. In level 1 the message is delivered at least once and

confirmation of message reception is required. In level 2, a four-way handshake

mechanism is used for the delivery of a message exactly once. To provide the best

20

Chapter 2. State of the Art

communication between clients MQTT protocol uses a set of features [18], for

example, the Keep Alive time, in order to keep unused connections from wasting

data; a durable session, that stores messages when the subscriber is disconnected;

and a will, sent to all subscribers when the publisher leaves.

2.3.3.2 Constrained Application Protocol

CoAP is an application layer protocol [4] created in 2013 by the IETF Constrained

RESTful Environments working group for IoT applications. It is based on REST

on top of HTTP functionalities, representing a simpler way to exchange data be-

tween clients and server over HTTP. It is a re-design of HTTP functions taking

into account that embedded devices have low processing power and energy con-

sumption [18]. Also bearing in mind these type of devices, CoAP is built on top

of UDP, which as a lower overhead that TCP. CoAP includes a built-in pub/sub

mechanism which allows a client to subscribe and receive notifications to resources

in the server. For this, it uses two layers [4, 18]: the transaction layer, which is

responsible for detecting duplicates and providing reliable communications over

UDP; and the request/response layer, that handles the REST communications.

With this dual layer approach, CoAP does not need to use TCP protocol to en-

sure reliability and congestion control, with a process illustrated in Figure 2.10.

Also, CoAP enables asynchronous communication which helps web applications

where servers are not able to respond to request immediately.

Figure 2.10: CoAP message Types

21

Chapter 2. State of the Art

One of the main goals of CoAP was to minimize the packet fragmentation,

making typical CoAP message size between 10 to 20 bytes. To ensure the best

communication CoAP uses a set of features [4, 18], such as security, using DTLS

to guarantee integrity and confidentiality of exchanged messages; and resource

discovery, as the server uses known URI to provide resource discovery for the

client.

2.3.4 Remarks

As device to device communications, after the description in the previous sections,

the advantages and disadvantages presented and without the possibility to test ev-

ery protocol and with a specification requiring a low-cost, low-power, high range,

multi-node communication protocol that also has a low complexity hardware con-

figuration, the chosen protocols to do further tests are I2C, RS232, ZigBee and

LoRaWAN.

As for the device to server communication, after the description in the previous

sections, the advantages and disadvantages presented, and bearing in mind that

we need a good performance, low bandwidth consumption and latency suitable

for low power, low memory and low bandwidth devices, and capable of running

in a JavaScript client environment the chosen protocol to do further tests and

implementations on the system is MQTT.

2.4 Controlling Platforms

IoT relies on group of devices connected over a network controlled by an applica-

tion using a communication protocol. These devices can be anything capable of

retrieving and storing data, but the most usual are microcontrolers or SoC devices.

SoC [20] is a replacement for a computer, based on an electronic chip or integrated

circuit containing the whole computing system. With this approach the cost of

producing a computing system has dropped making this devices much cheaper for

22

Chapter 2. State of the Art

the end consumer. The most common examples of this platforms are the Arduino

or ESP8266 based boards, the Raspberry Pi or BeagleBone microcomputers and

the Intel Edison.

2.4.1 Arduino

Arduino, created in Italy in 2005 [21], is an open-source electronics single board

based on easy implementable hardware and software [22, 23]. It is a simple in-

put/output board and a Processing language development environment [24], with

several programming ways and languages, being the most common its own Inte-

grated Development Environment (IDE) and C++ language.

The most common Arduino boards are based on the ATMega microcontroller,

eg. the Uno and the Mega. These boards, on Figure 2.11, are capable of inter-

facing different peripherals, sensor and wireless communication devices through

input/output pins, providing a simple and low cost platform for Research and

electronic projects.

Figure 2.11: Arduino boards

According to [24, 21], Arduino boards are unique in nature because of features,

that justify their adaptability, such as Open Source Software and Hardware, cross-

platform compatible, easy to program via the Arduino IDE and USB which is

flexible and robust for all sort of users and projects. Arduino boards have the dis-

advantages of low memory, single thread operation and are not capable of running

an OS.

23

Chapter 2. State of the Art

2.4.2 ESP8266

The ESP8266 chip is a low-cost WiFi module capable of providing full-stack

TCP/IP and a microcontroller unit, produced by Espressif Systems in 2014. This

module when connected to other devices, such as an Arduino board, allows a

connection to an WiFi network and simple TCP/IP data transaction [25].

There are several releases of the chip, with different features, but the most

usual is the ESP-12 [26], a WiFi module based on the ESP8266 core processor,

providing the ability to interface with sensors and actuators through I/O pins

and offering a complete and self-contained WiFi (IEEE802.11 b/g/n) networking

solution as a low-power, low-cost and minimal space device.

Although the chip can work by itself, pinout is not compatible with most

breadboard or PCB formats, so it is usual to see the chip integrated in a breakout

board, as seen in Fig. 2.12. The Adafruit Huzzah ESP8266 Breakout is designed

to allow an easy access to the ESP-12 chip and also adds voltage regulator, FTDI

pinout to program the chip, among other features.

Figure 2.12: ESP8266 components: a) ESP-12 chip; b) Adafruit Huzzah
ESP8266 breakout

It is a great solution when an WiFi connection is needed on a microcontroller

project, being the main choice due to its low-cost, low consumption and reduced

size, but it has the disadvantage of needing additional hardware to make it user-

friendly.

24

Chapter 2. State of the Art

2.4.3 Raspberry Pi

The Raspberry Pi [6, 20] is a single board credit card size computer created by

Raspberry Pi Foundation in the United Kingdom in 2009. These boards are a

low-cost computer with enough processing power and memory, that support pro-

grammable I/O ports and the use of standard peripherals. As a computer, the

Raspberry Pi has an Operating System running on a SD card, mainly a Linux OS

but more recently it can also run an IoT version of Windows 10.

The Raspberry Pi was design to facilitate the computer science, providing an

inexpensive way to allow full control and customization over a piece of hardware.

There are already several releases of the board, being last ones the Raspberry Pi 3,

with integrated WiFi and BLE and a low-power functionality, and the Raspberry

Pi Zero W, offering the same functionalities as the 3 but with a low-size and even

more low-power.

Figure 2.13: Raspberry Pi boards

The low cost, low size computer with several programmable pins and com-

munication capabilities are the major advantages for Raspberry Pi boards. As a

disadvantage Raspberry Pi has the lack of analog ports.

25

Chapter 2. State of the Art

2.4.4 BeagleBone

BeagleBone was created by group of passionate individuals, including several em-

ployees of Texas Instruments, who wanted to create a powerful, open-source em-

bedded device. Therefore BeagleBone boards are low-cost single-board computers

based on low-power Texas Instruments processors with an ARM Cortex-A series

core with all of the expandability of today’s desktop machines [27].

BeagleBone is capable of running several Linux distributions or even Android

and is also capable of acting like and Arduino through I/O pins, making their

boards simplified physical computers and/or networked-enabled devices with a

super-simple out-of-box learning experience.

Figure 2.14: BeagleBone Black

2.4.5 Intel Edison

The Intel Edison module is a SD-card-sized computing chip based on the Intel

Atom processor, designed for IoT and wearable projects. Launch in 2014 by Intel,

it contains a high-speed, dual-core processing unit with integrated WiFi, Bluetooth

low energy, storage and memory, and a range of I/O options [28].

Because of its small footprint and low power consumption it is meant to be

embedded in devices or development boards, but due to his 70-pin DF40 Series

26

Chapter 2. State of the Art

header connector connectivity with most boards must be done using a special piece

of hardware. For this, Intel provides the Intel Edison Kit for Arduino that allows

a quick and easy conversion to an Arduino like board, with exposed headers for

I/O pins [28].

Figure 2.15: Intel Edison module and Kit for Arduino

The Edison module provides a small, low-power solution with a big processing

power, but the need to have additional hardware and price makes it a more unlikely

solution.

2.4.6 Remarks

As stated, there are multiple choices for IoT devices capable of creating sensor

networks. Bearing in mind that the system needs to be low-cost, low-power con-

sumption and capable of adapting to multiple necessities, like environmental, user

specifications, different sensors, actuators or communication protocols, these are

the main focus when choosing a board to integrate in the system. Also features

like dimensions, programming language, available firmware and online support are

points to have in mind.

27

Chapter 2. State of the Art

Table 2.3: Major IoT devices characteristics [29, 30, 31, 32, 27, 33, 34]

Parameter Arduino
Uno

Arduino
Mega

RPi Zero
W RPi 3 BeagleBoard

Black
Huzzah
ESP8266 Intel Edison

Processor ATmega328P ATmega1280 BCM2836 32
bits

BCM2837
ARM

Cortex-A53
64 bits

AM3358
ARM

Cortex-A8
ESP8266 Intel Atom

Operating
System - - Debian

(Linux)
Debian
(Linux)

Debian
(Linux) - -

Programming
Language

C++
(Arduino
IDE)

C++
(Arduino
IDE)

Any language Any language Any language

MicroPython,
NodeMCU,

C++
(Arduino
IDE)

C++
(Arduino
IDE),

Python,
Node.js,

JavaScript
Integrated

Communication
Protocols

UART, SPI,
I2C

UART, SPI,
I2C

UART, SPI,
I2C, WiFi,

BLE

UART, SPI,
I2C, WiFi,

BLE

UART, SPI,
I2C, CAN

Bus

UART, I2C,
SPI, WiFi

UART, SPI,
I2C, WiFi,

BLE
Analog Pins 6 16 0 0 7 1 6
Digital pins 14 54 40 40 65 9 20

Power
Consumption 1 50mA 50mA 100mA 300mA 210mA 56mA 50mA

Dimensions 68.6 x 53.4 x
17 mm

101.6 x 53.34
x 17 mm

65 x 30 x 5
mm

85.60 x 56.5 x
17 mm

86.36 x 53.34
x 17 mm

25 x 38 x 5
mm

127 x 72 x 12
mm

Price 2 20 35 11 39 44 14 85

After the description in the previous sections, the advantages and disadvan-

tages presented, the information on Table 2.3 and knowing that the system re-

quires at least one aggregation, capable of connection to the Internet, and one

sensor node, capable of retrieving sensor data, both analog and digital, with both

nodes needing a various communication protocol adaptation, the chosen platforms

to do further tests are the Raspberry Pi 3 and the Huzzah 8266, for the aggregation

node, and the Arduino Uno for the sensor node. There is also a possibility to use

the Raspberry Pi Zero W or the Arduino Mega, as a substitute for the previous

stated, when space or more pins are required.

2.5 Related Work

2.5.1 IoT Gateway

IoT gateways [35] are dedicated hardware applications used to connect the user

to the network, allowing the conversion of data between the short distance com-

munication protocols to the traditional communication network. The gateway is
1Average on idle
2Price according to official reseller, without VAT

28

Chapter 2. State of the Art

supposed to support different types of sensor nodes, multiple communication pro-

tocols, both wireless or wired, and provide a set of unified information for the

application or user, making these only responsible for data processing. The main

challenge on creating an IoT gateway is the lack of standards, being that each sen-

sor node can communicate with a different protocol that is not compatible with

others. This makes the development of a general purpose gateway a complicated

task, which explains why it is common to find gateways developed for specific ap-

plications. Nevertheless, all have the same key requirements: low-cost hardware,

easy implementation and extensibility and an application layer support.

R. Gerstendorf in his article [36] examines ten platforms for creating smart

homes, from ZigBee to the Apple HomeKit. All ten are market solutions available

to consumers as a ready-to-use product in order to control smart devices through

a gateway. Each one has a communication protocol, proprietary characteristics

and a range of pros and cons.

In the literature it is possible to find several proposals [23, 37, 38] for IoT gate-

ways implemented using low-cost hardware devices, such as Arduino and Rasp-

berry Pi. Most of them use these devices to support the web server, which difficults

its access from outside the network. Other solutions were found [39, 40], that use

wireless communication protocols for specific applications and little to none IoT

gateways were designed to use wired protocols. Only one of these [41] did it, where

the authors used the gateway with the RS485 protocol to control end-devices from

the Internet. This makes all of these solutions limited in flexibility and adaptation

to other environments.

The literature presented a similar concept for a multi-communication protocol

IoT gateway. In this [42], the authors present a heterogeneous IoT gateway capable

of using the same board to communicate with multiple wireless protocols as well

as support for a large amount of communication buses, in a modularity basis.

29

Chapter 2. State of the Art

2.5.2 Visualization Platforms

The IFTTT [43] platform is also a service that allows users to create chains of

simple conditional statements, connecting their devices to other services. For

example with IFTTT it possible to turn on a light bulb with a tweet or Facebook

post, or automatically send an email every time a door or a window is open. This

platform works with all major controllers and several major brand services. But it

is impossible to keep track of the information and compare all the devices, because

statements created are based in a single device, keeping out the option to connect

every device with a single action.

Also available is Amazon AWS IoT [44], a cloud based platform capable of

interfacing with end point devices, to monitor and control, providing the capability

of creating rules mechanisms and additional features such as Machine Learning or

storage. To interface with this solution, all devices must implement the AWS

IoT Device SDK, in order to communicate with the platform through MQTT or

HTTP. The main disadvantage of AWS IoT is that it is a paid service.

The most similar solution found was myDevices Cayenne [45], an IoT drag

and drop project builder. With similar functionalities, like remote monitoring

and control, use of rules, a web platform for data display, this project allows the

user to connect to their devices using MQTT or LoRaWAN. The range of devices

supported by the platform includes all Arduino and Raspberry Pi boards and a

limited number of sensors, being this one of the disadvantages of the platform.

The main difference from our project to Cayenne, is that the last aims to the

hobbyist market and not to the custom and plug and play solution market.

30

Chapter 3

Communications Tests

One of the purposes of our research was to identify the best communication proto-

col for connecting all the system nodes, not only to guaranty the best data transfer

but also an easy implementation with low cost and power efficiency. There are

two main communication parts in the system, the server side communications,

that connect the server to the network devices, and network side communications,

that connects the devices inside the network. The following sections introduce the

tests done to encounter the best solution for our system.

3.1 Server side communications

When connecting devices to servers, it is usual to use standard HTTP connec-

tions, with POST and GET requests, but, as we see in Chapter 2.3, the MQTT

protocol is best suited for our system requirements, since it has a lower bandwidth

consumption and latency, being ideal for IoT networks.

To ensure that the best communication protocols were used in the system,

a set of tests was applied to the network nodes to prove the MQTT advantages

facing standard HTTP. These tests focused on the exchange of strings of data

between the aggregation node and the server, simulating a normal operation of the

system. For these, three different tests were made in order to see the following:

31

Chapter 3. Communication Tests

(i) Communication Pattern; (ii) Bandwidth usage; (iii) Latency. To obtain and

evaluate the results the Wireshark3 software was used.

For the first test, the aggregation node sends a typical system message, i.e

"sensor:temp1,20", in order to see the transaction packets exchange needed to get

the message to the server.

In the second one, a similar method is used, but this time 100 messages were sent

with the purpose of getting the bandwidth used per second.

The last one uses the same test done for bandwidth, but evaluating the average

RTT value.

Since MQTT has multiple levels of reliability, that imply different amounts

of packets per transaction, all the tests have been done using QoS level 0 and 2

messages. Also, all tests were performed assuming that the MQTT connection was

already established, including the subscription process, and with an SSL encrypted

connection.

3.1.1 Test Scenario

The tests were performed using a Raspberry Pi 3, as the aggregation node, running

a Python script that uses the requests library to send HTTP POST messages or

the Eclipse Paho Python Client [46] library for publishing MQTT messages; and

a Virtual Private Server (VPS) with a PHP script that receives the HTTP POST

message and that also hosts the MQTT Broker and a Python script with the

previous stated library to subscribe and receive the MQTT message. Figure 3.1

shows this test scenario.

3.1.2 Results

As displayed in Figures 3.2, 3.3 and 3.4, it is possible to notice that the HTTP

POST requires 28 packets to transmit the message while MQTT only requires
3https://www.wireshark.org/

32

Chapter 3. Communication Tests

Figure 3.1: Server side communication test scenario

2 for QoS 0 or 3 for QoS 2. On the HTTP POST is possible to see that the

SSL certificate requires several packets, light grey packets on Figure 3.2, and that

the MQTT secure connection with SSL does not require additional ones. The

only difference between MQTT messages is in the amount of packets required to

improve reliability, with QoS 2 requiring an additional published message that

piggybacks with the ACK from the server and then the ACK to that message

from the aggregation node, due to a four-way handshake mechanism that is used

to guarantee the message is delivered.

Figure 3.2: HTTP POST Wireshark packet capture

Figure 3.3: MQTT QoS 0 Wireshark packet capture

33

Chapter 3. Communication Tests

Figure 3.4: MQTT QoS 2 Wireshark packet capture

Figure 3.5 shows the bandwidth consumption for each of the 3 messages sent.

With these results it is possible to prove that MQTT has a better bandwidth con-

sumption with less 98% consumption facing the standard HTTP POST. Compar-

ing both MQTT QoS and as concluded in the previous test, the QoS 2 transaction

has more packets consequently wasting more bandwidth, with an increase of 40%

in bandwidth usage facing QoS 0.

Figure 3.5: Bandwidth consumption comparison

Figure 3.6: Transaction RTT comparison

Latency was evaluated with the RTT between the sent message and the ACK.

The results are shown in Figure 3.6, where it is possible to see that MQTT has a

34

Chapter 3. Communication Tests

better latency with almost 500ms of difference facing the standard HTTP POST.

Comparing both MQTT QoS, the QoS 2 has a lower latency, about 40 ms, since it

implements a reliability method to ensure the message was delivered, meaning that

the transaction is only completed when the ACK is sent to confirm the message.

In QoS 0, the transaction is concluded without the need of an ACK to confirm

it. Although the server confirms the QoS 0 message with an ACK, since is not

necessary, the deployment of the ACK is done with a slight delay, rather than the

QoS 2 ACK messaneeded is deployed immediately after the r of the message, thus

justifying the difference.

3.2 Network side communications

While it is possible to use almost every communication protocol available, some

environments require specific adaptation and as we see in Chapter 2.3, the best

suited protocols for our requirements are the I2C and RS232, for wired protocols,

and ZigBee and LoRa, for wireless protocols. Also in Chapter 2.4, we concluded

that the Raspberry Pi 3, ESP8266 and Arduino Uno are the best boards for each

node available in the network.

To ensure that the best communication protocols were used in the system, a

set of tests was applied to the network nodes in order to choose the best one.

These tests focus on the exchange of strings of data between the aggregation

node, the master, and the sensor node, the slave. The main goal was to see if the

communication protocol can work with these platforms, how well they perform

when increasing the distance between nodes and also to compare the results with

theoretical ones.

For these, three different tests were made in order to see the following values:

(i) Throughput; (ii) Message Delay; (iii) Efficiency. Also the setup complexity for

the system to work and master slave combination were evaluated.

35

Chapter 3. Communication Tests

For the first test, the master sends a continuous amount of data packets, with

no interval between them, and the slave just receives them, registers the timestamp

and increases the number of packets received. Then we see how many packets the

slave can process in a second, in order to obtain the true system throughput.

In the second one, a similar method is used, but this time only 100 packets are

sent with an interval of one second. The slave receives the packets and registers

the time between packets. Then the average time is calculated, in order to achieve

the delay, over one second, that the system needs to receive the packets.

In the last one, 1000 packets were sent to the slave and the slave only increased

the number of received packets if the data was equal to the one sent. This way it

is possible to see how many packets were lost or contain errors.

All the tests have been done with a distance of 1, 2, 5, 10, 20 and 50 meters

between nodes and with the following board combination, as both master and

slave: Raspberry Pi - Arduino, Arduino - Arduino, ESP8266 - Arduino, in order

to evaluate every scenario possible.

3.2.1 Setup Complexity

For I2C and RS232, the Arduino, ESP8266 and Raspberry Pi platforms have

native pins to use these protocols, so no additional hardware is needed. ZigBee

and LoRa need the external radio interfaces in order to communicate. For ZigBee

a pair of XBee S2 and Arduino Wireless Proto Shield, Figure 3.7, and XBee

Explorer, Figure 3.8, were used to connect everything. For LoRa only a pair of

Adafruit RFM69HCW, Figure 3.9, is required. The connections between boards

and modules can be found in Appendix A.

In terms of software, for I2C in the Raspberry Pi the smbus library was used and

in the Arduino and ESP8266 the Wired library. For a correct communication only

the slave address needs to be set on both platforms as well as the callbacks on both

ends. I2C does not allow the Raspberry Pi to be a Slave, so some modifications to

the code were needed in order to set the Arduino as a Master. Also a minimum

36

Chapter 3. Communication Tests

Figure 3.7: Arduino Wireless Pro-
toshield with XBee S2 Figure 3.8: XBee Explorer

Figure 3.9: Adafruit RFM69HCW

of 1 ms delay was needed between packets in order to avoid overflow of packets

when sending to the Arduino.

For RS232 the communication works as a simple Serial Communication with the

RX and TX ports on both ends, with a modification on settings of the Raspberry

Pi so that the OS does not uses that port for console communication. Also the

pySerial library was needed.

For ZigBee, the most complex configuration, it was necessary to pair the radios

using XCTU4 software. After that, each radio was assigned with an address that

the other end has to know to be able to send the packet. On the Raspberry Pi

the XBee library was used and on the Arduino, a 10ms delay between packets was

needed to ensure a correct transmission of packets.

For LoRa, the RadioHead library was used on all platforms. To configure it, only

an address for each node had to the chosen, guaranteeing it was different for each

node.
4https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu

37

Chapter 3. Communication Tests

3.2.2 Test Scenario

The wired communication tests were performed using Cat5 UTP (4 pairs) cable or

standard Ethernet cable, with the required lengths, to connect master and slave.

Figure 3.10 shows an example of the tests performed for Raspberry Pi and Arduino

using RS232 with a 5 meters cable.

Figure 3.10: Wired test example

The wireless communication tests were performed on floor 0 of ISCTE-IUL

Building 2, near the Instituto de Telecomunicações laboratories. An approximate

model of the space used can be seen at Figure 3.11, with the master and each slave

positions marked.

Figure 3.11: Test Scenario Model (Master: Red Circle; Slaves: Blue Lines)

This specific grounds were chosen due to availability of 50 meters in line of sight

with some variations in space, with open spaces, doors and some people walking.

Figure 3.12 shows the master and the 50 meters slave position, with a line of sight

between them.

38

Chapter 3. Communication Tests

Figure 3.12: Test scenario grounds (Left: Master position; Right: Slave 50
meter position)

Figure 3.13 shows an example of the tests performed for the Arduino combi-

nation using ZigBee at 10 meters.

Figure 3.13: Wireless Test example (Left: Master position; Right: Slave 10
meter position)

3.2.3 Results

The first thing to notice is that some protocols were not able to connect in some

platforms, I2C with ESP8266 is one of the cases and also LoRa with the Raspberry

Pi. The ESP8266 and ZigBee connection can be done, but due to ZigBee interfer-

ence with Wi-Fi, the results were not viable so it was discarded as a possibility.

39

Chapter 3. Communication Tests

One disadvantage detected was the fact that the Raspberry Pi can not be an I2C

slave, having the Arduino to wait a second between packets and therefore affecting

the results.

Figure 3.14: I2C Delay vs Distance results

Figure 3.15: RS232 Delay vs Distance results

With these delay results, shown in Figures 3.14, 3.15, 3.16 and 3.17, it is

possible to understand that the increase of distance does not affect much the

delay value, with only a slight increase in all protocols. RS232 has the best results

in all scenarios, with a delay ranging from around 75 to 800 us. LoRa has the

higher delay with values ranging from 800 to 2500 us and also the biggest variation

between scenarios. As of distance, the only one really affected is ZigBee with a

40

Chapter 3. Communication Tests

Figure 3.16: ZigBee Delay vs Distance results

Figure 3.17: LoRa Delay vs Distance results

bigger increase in delay over 10 meters in all scenarios. Regarding the master slave

combination, was when both platforms were the Arduino Uno that the best results

could be achieved. When only one Arduino Uno was present, the delay decreases

when the it is the slave.

Regarding throughput results, as shown in Figures 3.18, 3.19, 3.20 and 3.21, it

is possible to understand that distance affects the results, with a different pattern

in each scenario, and that in every protocol the maximum value reached is quite

different from the theoretical expected values. In some cases there are ups and

41

Chapter 3. Communication Tests

Figure 3.18: I2C Throughput vs Distance results

Figure 3.19: RS232 Throughput vs Distance results

downs with the increase of distance but always with slight variations, so that was

not taken in consideration. I2C has the most inconsistent results with big vari-

ations in both distance and master slave combination, with a throughput raging

from 1.3 to 2.9 kbits/s. On the other hand, RS232 has similar throughput results,

raging from 1.1 to 2.6 kbits/s, but with a more consistent and linear results. LoRa

and ZigBee got very similar results, ranging from 0.75 to 1.3 kbits/s, with LoRa

having the most linear results, almost none variation with the increased distance.

Regarding the master slave combination, the best results are achieved when only

one Arduino Uno is present, with some variations as it is the master or the slave.

42

Chapter 3. Communication Tests

Figure 3.20: ZigBee Throughput vs Distance results

Figure 3.21: LoRa Throughput vs Distance results

As for the efficiency tests, I2C had the worst results as communications at 50

meters were not feasible and when both platforms were Arduino Uno, nothing

over 2 meters worked. This could be improved with additional hardware such as

I2C range extenders. RS232, when connecting ESP8266 and Arduino Uno was not

able to connect over 20 meters. Every other scenario tested got a 100% efficiency

rate, including LoRa and ZigBee for every distance.

43

Chapter 3. Communication Tests

3.3 Discussion

This chapter focused on comparing communication protocols, to choose the best

suited for a set of scenarios using IoT low-cost devices. For the server side con-

nections the results were evaluated based on communication patterns, bandwidth

consumption and latency, while the network side communication were based on

delay, throughput and efficiency.

Regarding server side communications, it was possible to identify the advan-

tages of MQTT as a protocol designed for IoT, with low bandwidth consumption

and latency when facing the HTTP protocol. All of this without compromising

the security of the messages and with only a slight increase in consumption when

guaranteeing higher reliability.

As for the network side communications, one thing that it is possible to high-

light from the beginning is that wired protocols have better results than wireless

ones, in both delay and throughput. As for distance, with the increase affecting

each protocol differently, each scenario presents only slight variations, meaning

that up to 50 meters there is no availability and reliability problems.

Concluding the communication research, RS232 is the better choice when a

wired protocol is needed and LoRa is a more reliable choice for a wireless protocol

mainly because of the low complexity and cost needed and the fact that does not

interferes with WiFi.

Another focus was choosing the best devices for each node of the system, based

on previous stated characteristics and the communication tests done. With all

these results in mind, it is possible to say that the best suited combination includes

an Arduino Uno as an Sensor Node and the ESP8266 as the Aggregation Node.

This last decision takes place not only because it is a cheaper solution, not putting

in risk the reliability of the system, capable of sustaining the node specifications

but also due to the Raspberry Pi 3 extra features that are not needed for the system

and which implies a bigger power consumption and some interference between the

system console and the RS232 lines.

44

Chapter 4

System Architecture

The main goal of this project was to develop an IoT system that can adapt to any

object or environment, based on automation, efficiency and versatility, capable of

turning them into smart ones. With this system it is possible to have full secure

remote control and monitor off the environment through a web platform, allowing

the visualization of real time data and the control of actuators.

As said in Chapter 2.5, there are already some solutions available, for gateways

and visualization platforms, but none of them was capable to fulfill our require-

ments so all the modules needed to assemble the system were developed from

scratch.

The system relies on a group of devices connected over a network that is

controlled by an application using a given communication protocol. Figure 4.1

presents a high level system architecture and, as shown, the system is composed by

hardware, software and the implemented communication features. The proposed

system was conceived using hardware capable of supporting multiple communica-

tion protocols and flexible enough so as to run adaptable software, as described in

the following sections.

45

Chapter 4. System Architecture

Figure 4.1: System Architecture

4.1 Software

As shown in Figure 4.1 there are several components which include software, es-

sential to the proposed architecture. As stated before, the goal was to build a

system that can be adapted to any environment and specification. With that in

mind all the software was designed to be used with little or none modification and

easily modifiable by any person.

The system software is divided in two key features, the visualization platforms

and the support scripts that run in all the nodes. Both features are mentioned in

detail in the sections below.

4.1.1 Visualization Platforms

The visualization platforms consist on a display for the information gathered from

the sensor network. These provide the user not only with the possibility to monitor,

in real time, what is happening in the environment but also offering a bridge to

the sensor network, using the MQTT protocol and providing real time control.

The visualization platform is available in both web and mobile, the last one

being an adaptation from the web platform for small screens. The platform was

built from the ground using HTML, Javascript, JQuery, CSS, AJAX and PHP,

for both control and communication. It is hosted on a VPS, containing a private

MySQL database for storage, with the relational design presented in Figure 4.2.

46

Chapter 4. System Architecture

Figure 4.2: Database relational design

The platform main page, as can be seen in Figure 4.3, offers the user a graphic

way to see data as well as a set of features in order to control the network. All

the features offered by the platform are presented to the user in two main sections

that dynamically adapt to what the user is doing.

Figure 4.3: Screenshot of the web platform

47

Chapter 4. System Architecture

4.1.1.1 Monitoring and Control

On the top section, Figure 4.4, the user can see all the sensors and actuators

present in the network as well as the real time information about them. For the

sensors the name, type, last value and timestamp are provided, for actuators only

the name and state (ON/OFF).

Figure 4.4: Top section with sensor and actuator information

For both types, an action is deployed when the corresponding cell is pressed.

At an actuator cell, when "Select" is pressed the platform tells the network to

change that actuator state, thus changing the state on the platform if the action

is successful. If the cell is clicked, no matter whether it is a sensor or actuator, it

opens a custom information panel at the bottom section of the platform.

For each actuator selected, Figure 4.5, the possibility to change the actuator

state is available with a press of the "Select" button. Also allows the user to

schedule actions for that actuator in two different ways. One sets the time the

actuator remains in a state from the current time, the other allows a date and

time schedule, both start and end, with the possibility to set the repetition of the

schedule every day, week or month. All the schedules can be seen and canceled.

For each sensor selected an interactive graph, Figure 4.6, where the user can

choose the period of time to display and see the timestamp for each value, with

all the data retrieved from the network, is shown as well as information of name,

type, current, maximum and minimum value retrieved.

The last cell to the right, Figure 4.7, is the only default one, which include

present time and date, current temperature for the region where the network is,

48

Chapter 4. System Architecture

Figure 4.5: Bottom section with actuator schedule

Figure 4.6: Bottom section with sensor information

obtained from Open Weather Map API [47], the network state and information

about how many unseen notification and rules are set by the user.

Figure 4.7: General Information Cell

4.1.1.2 Rules

When the rules icon is clicked, the bottom section, Figure 4.8, displays a table that

shows all the rules set by the user, with the possibility to remove or edit them,

and a way to add new rules. To give the user the chance to stop a rule without

erasing it, an ON/OF switch was added to set the rule active or inactive.

49

Chapter 4. System Architecture

Figure 4.8: Bottom section with rules information

In order to create new rules a Bootstrap Modal is used, where the user can

choose which sensors will trigger the actions. One by one, the user need to select

the sensor, the comparison type and the value. The actions can be of two types:

i) Actuator changes: user selects, one by one, the actuators and the value to

be set;

ii) Notification: user select either email or platform notification and the title.

Figure 4.9: Rules Bootstrap Modal

4.1.1.3 Notifications

When the notification icon is clicked the user is able to see all the notifications,

Figure 4.10.

50

Chapter 4. System Architecture

Figure 4.10: Notification Bootstrap Modal

4.1.1.4 Personal Area

The web platform also has a personal area, where the user can change his per-

sonal information and control what structures are visible, add, edit and remove

structures.

Figure 4.11: Screenshot of the personal area

4.1.2 Support Scripts

The support scripts are present in every node of the system and are responsible

mainly for gathering, transferring, storing and analyzing data. All scripts were

designed using Artificial Intelligence methods in order to provide a generic code

adaptable to every situation.

51

Chapter 4. System Architecture

4.1.2.1 Visualization Platform

In the platform a JavaScript script, using the Eclipse Paho JavaScript Client [46],

is responsible for supporting the MQTT communication between the user and his

platform. It starts by connecting the user platform to the MQTT broker, using

the client ID, and subscribing to the unique user topic that will allow him to send

and receive information. It was designed to do a specific task pending the message

received, as shown in Figure 4.12, and also send to the network MQTT messages

with actions and rules as the user create them.

Figure 4.12: Visualization Platform Tasks pending MQTT Message Received

To guarantee that the system can offer an efficient workflow, a rule conflict

algorithm was created to make sure that contradictory rules were not created or

that user can not change the actuator state, without an warning, if a rule or

schedule are affecting it. This prevent the user from creating multiple rules that

are active by the same sensor combination but have inverse performance or that

the user can override a rule without erasing it.

52

Chapter 4. System Architecture

4.1.2.2 Server

In the server, a Python script is used in order to listen to all user network inputs

that send sensor data or notifications, using the Eclipse Paho Python Client [46].

These are done here because the client Javascript script is only running when the

platform is active, so the data is accumulated in a queue to be delivered when

the user re-opens the platform. With this script all data is processed in real time

without the need for the client to be active. In the case of notifications, this

script is responsible to send the email or platform notification to the user, with

the custom message chosen by the user.

Another task performed by this script is the management of scheduled actions.

As seen in Figure 4.13, when it is time to perform a scheduled action, the script

sends it to the correspondent network and removes it from the schedule. If the

action is a repetitive one, the script is responsible to schedule the next interaction.

This course of action was chosen to guarantee a more efficient management of the

database, putting scheduled actions there only when needed instead of scheduling

multiple iteration at once.

Figure 4.13: Scheduled Actions Management

Also in the server it was installed the MQTT broker, to which the web platform

and the clients scripts will connect, using the Mosquitto MQTT broker [48].

4.1.2.3 Aggregation Node

In the aggregation node a MicroPython [49] script is responsible for receiving

the data from the sensor node and sending them to the server using the MQTT

protocol, with the umqtt library for MicroPython [50]. Also this script, using

53

Chapter 4. System Architecture

Artificial Intelligence methods as shown in Fig. 4.14, is capable of comparing

the value received from the active rules set by the user and send the appropriate

action back to the sensor network when the rule is valid. In order to create a

more efficient algorithm and network functionality, the script analyzes the action

to implement in the network and only performs them if the current state of the

actuator is different from the new one.

Being this a real time system, sensors can be read multiple times per minute,

so when a notification rule is set it can be active that many times. To ensure that

a SPAM like notification is not being sent, notifications created by rules are only

sent in intervals of a minute, or any other time defined by the user, so even if the

rule is active by the sensors data the action is not performed.

Figure 4.14: Value and rules process on aggregation node

To ensure that all data reaches the user, when there is no Internet connection

the data is stored and send back to the user upon connectivity is achieved.

The script is also responsible for receiving commands and rules sent from the

user through the web platform, routing the action to the sensor node and storing

the rules.

54

Chapter 4. System Architecture

4.1.2.4 Sensor Node

The sensor node uses a custom C++ library, built from scratch, that is responsible

for transforming generic inputs sent from the platform through the aggregation

node into actions on the network, such as turning on and off actuators or switch-

ing between functionality modes, responding with an update ACK to guaranty

the action took place. It is also in this script that the sensors are read and the

information sent to the aggregation node that will forward them to the server.

All these scripts are combined together in order to create the perfect system

to build, monitor and control smart environments. The way they combine can be

seen in Fig. 4.15 and 4.16, where it is possible to see the process needed to initiate

the system, with the authentication of both network and user, including the initial

message exchange for the online platform configuration as well as the data and

action exchange process in order to send information from the Sensor Network to

the user and actions and rules from the user to the Sensor Network.

Figure 4.15: Network and User authentication process and initial process

55

Chapter 4. System Architecture

Figure 4.16: Rules, Data and Actions exchange

4.1.3 Network Security

Since the system will deal with data exchange, it was important to guarantee that

all the data retrieved reaches the destination without being changed, peeked or

replaced. To achieve this, all software features include some sort of authentication

or encryption.

In the visualization platform a login step, with an unique username and pass-

word, is required to access the monitor and control features. Also the connection

to the server is done using an encrypted HTTPS connection with a SSL certificate

that implements an asymmetric Public Key Infrastructure.

In the communications between the server and the aggregation node, each user

56

Chapter 4. System Architecture

has its own subscription topic using his token, composed by 10 alphanumeric sym-

bols created when the user registers in the system, guaranteeing that only he can

listen and publish to that topic thus ensuring the secure exchange of data. Besides

this, the MQTT protocol can also implements encrypted communication, adding

a second layer of protection to the communication.

The communications inside the sensor network are only encrypted when LoRa is

used, since the data exchange is done using an 16-bit private key to encrypt and

decrypt the messages. When wired communications are used there is no encryp-

tion added, but when needed a base 64 AES symmetric key encryption can be

used.

4.2 Hardware

As displayed in Figure 4.1, the hardware for our implementation is composed by

an aggregation node or gateway and, at least, one sensor node. The aggregation

node is not responsible for reading sensors, it just provides a gateway between the

user and the Sensor Network and also performs some data analyses. The sensor

node is responsible for gathering information from sensors, perform user actions

and use communication mechanisms to send data to the aggregation node.

The choice to have two separate nodes in the network relies on the need to

have a single point of connection with the server and the possibility to have mul-

tiple sensor nodes communicating. Therefore, in the implemented system, the

aggregation node is put on a place where a Wi-Fi connection is available and

within communication range from the multiple sensor nodes, that are placed in

the actuation site.

The communication protocol, the sensors and actuators are selected according

to the environment and user specification, and are addressed in a section ahead.

57

Chapter 4. System Architecture

4.2.1 Sensor Node

The sensor node is the simplest node in the network, requiring only analog and

digital I/O pins capable of interfacing with sensors and actuators and a commu-

nication mechanism to exchange data and actions. With these in mind and con-

sidering the decisions made in the previous chapters and the software developed,

an Arduino Uno board is all what is needed to check the requirements.

With size and price being one of the concerns about the system, it is possi-

ble to change the Arduino Uno for a Breaduino, Figure 4.17, an Arduino Uno

replica built from scratch using common electronics components, including the

ATMega328p. This solution has all the features that the ATMega328p provides

with the advantage of rearranging the board to our specifications and a lower cost,

being the only disadvantage the need to use FTDI to program the chip. But with

additional hardware the Arduino Uno capabilities can be matched, such as 3.3V

voltage regulator, 9-12V power input or USB programming.

Figure 4.17: Breaduino implementation

In terms of communication protocols, the sensor node has to be able to use the

RS232 and/or LoRa, that can easily be achieve as shown in Chapter 3.

Since the node was designed to be a part of the actuation zone, mostly in

outdoor environments, the input power can be provided from solar power, using a

small solar panel and battery capable of sustaining the entire node. When the node

is in an indoor environment, the required 5V can be sent using the the Arduino

USB port.

58

Chapter 4. System Architecture

A PCB projection for the sensor node built using the Breaduino solution with

both communication mechanisms required, can be found in Appendix B.

4.2.2 IoT Gateway

To maintain the normal requirements for an IoT gateway and in order to be able

to use multiple communication protocols, adapting them to user requirements,

the created solution is a gateway based on common requirements and capable of

using every sensor and communication protocol, both wired and wireless, that are

available.

From the start we decided that, if possible, we would build our own IoT gateway

using standard microcontroller components. To achieve this, bearing in mind the

decisions made in the previous chapters and the software developed, we started by

understanding the needs for this board. First it will use the Adafruit HUZZAH

8266 as the core processor, enabling the necessary Wi-Fi connection. Second it

will need to be able to use RS232 and/or LoRa, so an external UART interface is

needed and/or an external antenna for the LoRa chip. Lastly, the gateway must

have a way to store data when Wi-Fi connection is not available and also store

the configuration files that the user uses to adapt the gateway to the environment

and its personal space. For this an microSD card is used, so an SD card reader

is needed. Also a way to provide external power to the board is required, with a

5V supply coming from an micro-USB port. Additionally an RTC can be added,

if real time clock is needed.

Beginning with the build of a prototype using off the shelf boards. As seen in

Figure 4.18, the HUZZAH board was mounted on a breadboard connected to the

SD card reader, each powered by USB from a laptop.

Connecting the gateway to the previously stated sensor node using RS232 and

LoRa, Figures 4.19 and 4.20, it was possible to test the full system, register and

correct some errors found in both software and hardware.

59

Chapter 4. System Architecture

Figure 4.18: IoT Gateway first prototype

Figure 4.19: RS232 network connection

As we advance, after the test done with the first prototype and due to software

and communication necessities, such as the MicroPython Software that does not

have a library for external LoRa radios, it was necessary to add a second processor

to the gateway. With size and price being one of the concerns about the gateway we

decided to implement the Breaduino solution into the gateway, since the Arduino

Uno processor is capable of performing the needed tasks. This solution allows a

reduction in more than half in price and the ability to rearrange the board layout

to fit our necessities. The system continues to be powered by the 5V micro-USB

60

Chapter 4. System Architecture

Figure 4.20: LoRa network connection

connector, since both processors have a 5V input voltage.

With this changes in mind, a new breadboard prototype was built, Figure 4.21,

and tested as the first prototype.

Figure 4.21: IoT Gateway second prototype

61

Chapter 4. System Architecture

The need to have two processors on the gateway can be seen as a disadvantage,

but taking advantage of these needs, we were able to develop a more powerful with

more features gateway. With this, it is possible to transform the gateway into a

multi-purpose board, that can act as simply the Aggregation Node or as a single

network node combining the Aggregation and Sensor Node in the same board. Also

using the ATMega328p it is possible to convert the gateway in an Arduino friendly

board, capable of using its libraries, communication protocols, thus making the

gateway a more efficient and adaptable board. This means LoRa communication

can be a native gateway feature even when using MicroPython with the HUZZAH

and also, with the help of headers with the Arduino Uno layout, the gateway is

capable of using all Arduino Shields, increasing even more the features that can

be added to the board, like ZigBee, GSM, Motor control, among many others.

After testing the new prototype and with all the specifications concluded, a

new prototype was built on a PCB as seen in Figure 4.22. This prototype includes

the two processors connected over RS232, with jumpers that can be taken when

is necessary to program the board or if the Sensor Node is connected with RS232,

not needing the second processor; with a prototyping area that can be used to

implement LoRa communication or sensors and actuator; and the necessary power

and SD card modules.

Also a miniaturized version of the board, without the prototyping area and the

Arduino Uno layout, was designed and can be seen in Appendix B.

62

Chapter 4. System Architecture

Figure 4.22: IoT Gateway PCB implementation

Figure 4.23: IoT Gateway with Wireless Communication (Left: LoRa; Right:
ZigBee)

63

Chapter 5

Application Scenarios

Nowadays the user wants to be able to control everything from a mobile or Internet

connected device and this leads to the need to create autonomous environments

that facilitate the user day-by-day experience.

As said before, this project can be applied to any object or environment in

order to improve efficiency and user experience. The project allows an impact

in any environment, anywhere in the world, where there is the need to automate

repetitive manual tasks and also a control over budges, eg. in energy or water,

from a circular economy perspective. It can provide an technological approach to

situations that always exists, creating modern services and processes that lead to

an excellent performance and reduce economic resources to the final user, in both

materials and labor.

The developed system can be implemented in several situations, with multiple

different purposes, being the main focus the following:

• Home and Business Use:

– Room/Space monitoring;

– Gardens;

– Swimming Pools and Water features;

65

Chapter 5. Application Scenarios

• Agriculture:

– Harvest monitoring;

– Irrigation control;

• Renewable Energies:

– Monitoring and control;

5.1 Implemented Environments

In order to prove the practical functionality of the developed system it was im-

plemented in several different environments. Each environment tested shows at

least one of the developed functionalities. Also for each environment the visualiza-

tion platform was adapted to accommodate the used sensors, actuators and rules

needed. The platform setup configuration process can be seen in a tutorial video

at https://www.youtube.com/watch?v=qqbaITyVKsM.

5.1.1 Solar Panel Control

The first implemented environment aims to improve the efficiency of a solar panel.

To achieve maximum capability on harvest energy with a solar panel, it must

have full sun exposure at all time. Most solar panel projects are designed with

fixed positions, so the panel does not move according to sun position, making its

efficiency lower at certain times of the day.

To improve this environment, a sensor node was included in the solar panel as

well as a rotor to spin the panel as needed. The goal was to monitor the energy

created by the solar panel and move it according to the sun position. Since a

Solar Panel was not available at the time, a LDR sensor was used, attached to

Pan&Tilt controlled by servos. LDR [51] is a Light Dependent Resistor used to

check luminosity. Composed with two cadmium sulphide photo-conductive cells,

66

https://www.youtube.com/watch?v=qqbaITyVKsM

Chapter 5. Application Scenarios

that can imitate the spectral responses of an human eye or a photovoltaic cell,

in which resistance falls with increasing light intensity, providing 100Ω for 20000

LUX, corresponding to an entire blue sky, 400Ω for 1000 LUX, corresponding to

an overcast day, and 9kΩ for 10 LUX, corresponding to no sun light.

Since the sensor node and the aggregation node are separated, the communi-

cation between them was achieved using LoRa. Figure 5.1 shows the layout of the

implemented solution.

Figure 5.1: Solar node implementation

To automate and improve the efficiency of the implementation, a set of function

modes were programmed.

1. Normal Mode: Check the energy created by the sun every 10 minutes;

2. Search Mode: Move the solar panel from left to right searching for the best

position;

3. Night Mode: Fixed position, checking energy created every hour;

To test the implemented environment, a second LDR was added to act as a

stationary solar panel and to compare the values between both scenarios.

As said before, the LDR has a resistance level according to the amount of the

exposed light. With that in mind, a threshold of 350Ω was defined as the bottom

67

Chapter 5. Application Scenarios

value to get a good energy harvest from the solar panel, being that values higher

than that will indicate an inefficient situation.

To the LDR that uses the developed system to improve its workflow, 3 rules

based on the developed modes and threshold defined were applied:

1. If LDR resistance is bigger than 350Ω then switch to Search Mode;

2. If LDR resistance is less than 350Ω then switch to Normal Mode;

3. If LDR resistance bigger then 600Ω then switch to Night Mode;

5.1.1.1 Results

The system was tested throughout 7 hours and the results can be seen in Figure

5.2, with 88 values retrieved.

Figure 5.2: Solar Panel results

The first thing to notice is that in the 7 hours it was expected to retrieve

42 values in Normal Mode, but only 37 were obtained. This shows that on the

remaining 50 minutes the system works on Search Mode, so in this time the solar

panel was not getting the correct amount of solar exposure. Of these, the LDR

with the implemented system was under 350Ω on all 37 values while the stationary

LDR only 34 where under 350Ω. Taking in consideration the values obtained, it

68

Chapter 5. Application Scenarios

is possible to calculate the average resistance capture by both sensors, with the

stationary LDR averaging 368Ω and the implemented system LDR with 340Ω.

Although the difference is not large, the implemented system was able to get an

average below the threshold unlike the stationary system. Another thing that was

possible to conclude is that, when comparing each value from both systems, the

implemented one was able to get a lower resistance value in 80% of cases.

A laboratory demonstration video of this implementation was made showing

the automation of the system, with real time data visualization and value based

switch of functionality modes according to rules, can be seen at https://www.

youtube.com/watch?v=aW-1m99Bz8g.

5.1.2 Class Room Control

The second implemented environment aims to improve the energy consumption of

a class room, or any other room. One of the most common scenarios after a class

is to left the room lights or the air conditioner turned on, wasting unnecessary

energy.

To improve this, the IoT Gateway working as a single node was included in

the room, with a motion sensor, to see if anyone is in the room, a LDR, to check

if lights are on and a temperature sensor, as seen in Figure 5.3. The objective was

to monitor the sensors attached and send a notification to the teacher or security

guard, when the room is empty and the lights were left turned on. To make sure

that the node uses the energy provided by the environment, it was connected to a

room computer that is always turned on and can provide the necessary energy.

The implementation was done in one of the laboratories of Instituto de Teleco-

municações at ISCTE-IUL, with the motion sensor view demonstrated in Figure

5.4.

To automate and improve the efficiency of the implementation, a set of function

modes were programmed.

69

https://www.youtube.com/watch?v=aW-1m99Bz8g
https://www.youtube.com/watch?v=aW-1m99Bz8g

Chapter 5. Application Scenarios

Figure 5.3: Room Control scenario

Figure 5.4: Motion sensor view

1. Normal Mode: Check the sensors every 10 minutes;

2. Off Mode: Turn the system off, to use in situations like tests where there is

little movement or sound although people are in the room;

One thing to consider is that the movement sensor has to work every second

to guarantee the correct functionality, giving 0 is there is no movement from the

70

Chapter 5. Application Scenarios

previous iteration and 1 otherwise, and the LDR gives back a resistance of around

100Ω for an artificial light. With these conditions, 2 rules were defined to improve

the workflow of the environment:

1. If Movement is 0 and LDR resistance bigger then 300Ω then send an Email;

2. If Movement is 0 and Temperature less than 20oC then send an Email;

5.1.2.1 Results

The system was tested throughout 7 hours and the results can be seen in Figure

5.5, with 41 values retrieved.

Figure 5.5: Room Control results

With these results it is possible to understand the use of the room through-

out the day, with 4 moments of emptiness. It is also possible to see that when

movement is first detected a change in lights occurs.

Bearing in mind the purpose of the system, it is possible to see that on the 4

periods of time when no movement was detected, only one of the lights was left on.

At that period, of about 30 minutes, two notifications were sent with an interval

of 20 minutes or two sensor iterations. As specified before, the notifications are

not sent in every iteration to avoid a SPAM like functionality and allow the user

71

Chapter 5. Application Scenarios

to correct or change something in the environment. In this case, it was possible

to see that the notification was ignored, since the lights were not turned off. On

the other periods, as expected, no notifications were sent since the data retrieved

did not activate the rule.

5.1.3 Vertical Garden

The third implemented environment consisted on replacing the repetitive task of

watering the plants of a vertical garden. To maintain the vertical garden it is

necessary to water the plants on a daily basis, something that requires someone to

do it every day. Replacing this task with the addition of the IoT Gateway acting

as a single node it is possible to use the schedule functionality to water the plants

at a certain hour, for a certain amount of time, every day.

Figure 5.6 shows the implementation, where a water pump was added to get

water from a reservoir to the plants.

Figure 5.6: Vertical Garden implementation

72

Chapter 5. Application Scenarios

To automate and improve the efficiency of the implementation, a schedule

action was defined to turn the sprinklers ON for 10 seconds every day at 10:00

and 18:00.

To improve even more the functionality, with the addition of a water level

and soil humidity sensors, 2 rules can be defined to improve the workflow of the

environment:

1. If Humidity is less than 30% then turn the sprinkler ON;

2. If Water Level is less than 20cm then send an Email;

5.1.4 ISCTE Satellite Station

To prove that the system can really adapt to any situation, an already automated

environment was chosen to do the final implementation.

Recently the ISCTE Satellite Station was updated to allow monitor and control

over a web platform in order to control the antenna rotor and radio [52]. The

current implementation of the system, despite being fully functional, has some

efficiency problems trading data between the Raspberry Pi and the server due to

the use of standard POST and GET from HTTP, using them also to recursively

asking the server for new actions from the user, making it a poor real time system.

As seen in Figure 5.7, it is possible to notice that a similar architecture can be

found in terms of software and hardware.

Figure 5.7: ISCTE Satellite Station Architecture [52]

73

Chapter 5. Application Scenarios

Figure 5.8: ISCTE Satellite Station Hardware

Figure 5.8 show the implemented environment.

To improve the station system functionality, without making major changes,

some key features from our project were added:

i) The visualization platform was kept, with minor changes in order to imple-

ment our JavaScript script to implement MQTT communication;

ii) Since the system needs a Raspberry Pi to run the Predict script, it was

turned into the Aggregation Node for the system. Converting the MicroPy-

thon script, from the ESP8266, into a Python script that includes the func-

tionalities from actionScript and dataScript, the previously created scripts,

it is possible to improve the data exchange using MQTT instead of HTTP;

iii) On the system Arduino, our custom library was added including the previous

specifications.

With these modifications, the system was able to have a proper real time

functionality, with major saves in both bandwidth and energy.

5.1.4.1 Results

Regarding energy, as seen in Figure 5.9, after the application of our system the

CPU usage has a big improvement, using less 75% of the previous system load in

74

Chapter 5. Application Scenarios

both idle, where the system is no longer asking the server if there is new actions

every 5 seconds with a HTTP GET, and performing actions, where there is no

longer necessity to request the action and to confirm it using HTTP POST. When

calculating the antenna positions to track the satellite, the improvement was only

in getting the satellite to track, not asking if there is a new satellite to track every

5 seconds, leaving the rest of the process exactly as is, with the use of Predict,

that requires more computational power, thus having a lower improvement. Since

the Raspberry Pi carries a lower computational load, the system will have a much

better energy performance.

Figure 5.9: CPU Usage comparison between systems

Figure 5.10: Bandwidth Usage comparison between systems

75

Chapter 5. Application Scenarios

As for bandwidth, Figure 5.10 shows that after the application of our sys-

tem the consumption had a big improvement on every scenario, using less 97%

bandwidth in both idle and performing actions and less 80% when calculating the

antenna positions. Once again, replacing the recursive HTTP POST and GET to

the server with MQTT implies a huge improvement on the system.

A video of this implementation can be seen at https://www.youtube.com/

watch?v=avqQRqvX_Ek.

5.2 Other Environments

Besides the implemented cases, to prove the viability of the project more environ-

ments were planned, although they have not been tested.

The first one was for a swimming pool, with an application capable of monitor-

ing the water temperature, level and circulation, the environmental temperature,

relative humidity, air pollution and luminosity and remotely controlling the water

pumps and pool lights. Also keep track of machine room environment, for exam-

ple sending an notification to the user when the water level in the room exceeds a

certain level. To do this some rules and function modes are already specified, for

example a mode where only the sensors are active, a maintenance mode that is

active when dirt or low water level is detected, or a hibernation mode, for nights

and winter. With this, a better control of water and power consumption could be

achieved as well as a more efficient user experience.

The second one was for agriculture harvest areas, being capable of monitoring

the environmental temperature and humidity as well as the soil humidity. This

combined with a rain sensor can achieve a better irrigation and addition of sub-

stances timing, improving not only the plants health but also the water consump-

tion. With the system it was easy to monitor and control multiple species and

automatically adapting the action according to geographic zones and conditions,

improving not only the farmer job but also the water and material consumption.

76

https://www.youtube.com/watch?v=avqQRqvX_Ek
https://www.youtube.com/watch?v=avqQRqvX_Ek

Chapter 5. Application Scenarios

5.3 Discussion

In this chapter we focused on demonstrating the practical functionalities of the

developed system using real case scenarios. The system was implemented in four

different environments, each chosen to show at least one of the features designed

to improve automation, efficiency and versatility.

The solar panel implementation shows that a rule based operation working

with real time data gathering allows the improvement of the sun harvest operation,

with better results obtained in 80% of the time when facing a stationary panel.

Although the average sun exposure results are only slightly different, when the

system was applied it was kept under the defined threshold something that does

not happen with the stationary solution. To improve this result, the rule to exit

the Search Mode could be changed to a value lower than the threshold, meaning

that it only stop when a value better then the necessary minimum is achieved.

On the room control, even with the users not acting upon the notifications, it

is possible to see that a warning situation when the lights were left on in an empty

room could help to reduce the power consumption. To improve this environment,

a notification could also been sent to the security guard or building management

or, using the automation part of the system, include the building lights in the

system and use a rule to turn the lights off if the room is empty.

The schedule based operation replacing repetitive manual tasks has been proven

to be advantageous with the vertical garden scenario.

The previous results for MQTT over HTTP were once again proven, this time

in a real case scenario, with an improvement of 75% for CPU usage and 97%

for bandwidth consumption when implementing our system over the old Satellite

Station system, without losing efficiency and functionalities.

It was possible to demonstrate the versatility with the system being applied

in every environment, even if there was already an automate solution, with slight

modifications done between cases, only at programming the sensors as well as

77

Chapter 5. Application Scenarios

the hardware implementation of sensors and actuators. As for the Visualization

Platform, with the easy configuration process, it was adapted to each scenario.

78

Chapter 6

Conclusions

In this dissertation we demonstrated how to design and develop an IoT system

based on sensor networks and low-cost devices that allow full remote control over

objects or environments turning them into smart ones. The system, that was

developed to achieve automation, efficiency and versatility, was divided in three

specific modules that together create a system able to fulfill any requirement: (i)

Software, with an online visualization platform and nodes adaptive software; (ii)

Hardware, with the the network nodes architecture design; and (iii) Communica-

tions, that connect the previous ones.

Since the network depends on communications and devices, we have evalu-

ated the best solution available through a set of specific tests to get the right

ones for our specifications, including flexibility, availability, energy efficiency and

implementation simplicity. The RS232 showed to be a better choice when wired

protocols are needed while LoRa was the best for wireless protocols. Also MQTT

was proved to be a better solution when facing HTTP POST. As for devices the

Arduino Uno and ESP8266 proved to be the best ones for the network nodes.

The designed system architecture relies on a visualization platform as a way

to monitor and control the sensor network and although there were already many

solutions available, none fitted our requirements or had all the features desired so

a new one was built from scratch, capable of adapting to any specification and

79

Chapter 6. Conclusions

using Artificial Intelligence algorithms to improve the user experience. The same

methodology was applied to all the software developed for the network nodes.

The sensor network depends on the capability of gathering and transporting

information and for that a set of boards designed specifically for an adaptive system

were built. It was also possible to demonstrate that a multi-purpose board, capable

of interfacing with almost every sensor, actuator and communication protocol, can

be built using low-cost IoT devices.

The potential of the developed system was tested on multiple environments,

with the results showing that the system can indeed achieve automation, effi-

ciency and versatility. The automation, with a schedule watering functionality

in a vertical garden shows that the system can replace repetitive manual tasks.

The improve of efficiency can be seen in the Solar Panel implementation where,

when comparing a case with and without the system, it is possible to achieve a

better solar exposure on 80% of the time. Versatility was proven with the variety

of different implemented environments with even the possibility to implement it

in previously automated systems, as shown with the ISCTE Satellite Station.

There are big challenges when implementing IoT projects and the proposed

solution is another one to help improve and overcome the challenges. With a

low-cost solution, capable of adapting to every application with little or none

changes, using any sensor and various communications protocols it is possible to

reduce the price of a typical solution and surpass the lack of standards for different

applications within the same system, thus proving to be a solution capable of

creating and sustaining smart environments with real time monitoring and control.

6.1 Future Work

Despite a complete system being described with all presented functionalities being

implemented and tested some features can be added to improve even more the

overall performance, in both software and hardware.

80

Chapter 6. Conclusions

The implementation of more Arduino functionalities to the boards, such as

USB programming or OTA updates, and production of printed PCB and cases,

are some things that can be done on the hardware side. For Software, the develop-

ment of a mobile application, the possibility to connect our system to other cloud

based platforms such as Amazon AWS IoT or Cayenne through an API, or pro-

gramming modes in the platform, are functionalities that can be added. Also more

implementations can be tested to prove even more the practical functionality.

81

Appendices

83

Appendix A

Communications Tests Assembly

Figure A.1: I2C connections

85

Appendix A. Communications Tests Assembly

Figure A.2: RS232 connections

Figure A.3: LoRa connections

86

Appendix B

Nodes Assembly

Figure B.1: Sensor Node Connections

87

Appendix B. Nodes Assembly

Figure B.2: IoT Gateway Connections

Figure B.3: IoT Gateway PCB Projection

88

Appendix C

Scientific Articles Published

89

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 109C (2017) 568–575

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2017.05.343

10.1016/j.procs.2017.05.343

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

The 8th International Conference on Ambient Systems, Networks and Technologies
(ANT 2017)

Design and implementation of an IoT gateway
to create smart environments

André Glóriaa,∗, Francisco Cercasa,b, Nuno Soutoa,b

aISCTE-IUL, Av. das Forças Armadas, Lisbon, Portugal
bInstituto de Telecomunicações, Av. Rovisco Pais, 1, Lisbon, Portugal

Abstract

The paper presents a proposal of a practical implementation for an IoT gateway dedicated to real-time monitoring and remote
control of a swimming pool. Based on a Raspberry Pi, the gateway allows bidirectional communication and data exchange between
the user and the sensor network implemented on the environment using an Arduino.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Internet of Things; Sensor Networks; Smart Environments

1. Introduction

Nowadays the urge to connect everything to the Internet is growing, not just to send information to servers for
processing and storage but also to provide full control of physical devices over the web.

While humans will continue to connect their devices to the Web in greater numbers, by 2020 more than 200 billion
smart devices are expected to be connected to the Internet1, making Machine-to-Machine (M2M) communications up
to 45% of the whole Internet traffic1,2,3.

Examples such as Smart Homes, where users can control their thermostats or lights with a smartphone, are the basis
for Internet of Things (IoT). IoT was designed to play a great role improving our quality of live and its applications
are present in many of our day to day experience such as transportation, health care and industrial automation.

IoT has the ability to transform a simple physical device into a smart one, using the embedded technology and
computational power. Using the sensors and actuators available to guarantee the features of the device, it is possible
to share that information between devices and put them to work together to improve the user experience. This will
contribute to a bigger explosion coming from things connected to the Web that were not connected before, did not
exist, or now use their connection as a core feature.

∗ Corresponding author.
E-mail address: afxga@iscte-iul.pt

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

The 8th International Conference on Ambient Systems, Networks and Technologies
(ANT 2017)

Design and implementation of an IoT gateway
to create smart environments

André Glóriaa,∗, Francisco Cercasa,b, Nuno Soutoa,b

aISCTE-IUL, Av. das Forças Armadas, Lisbon, Portugal
bInstituto de Telecomunicações, Av. Rovisco Pais, 1, Lisbon, Portugal

Abstract

The paper presents a proposal of a practical implementation for an IoT gateway dedicated to real-time monitoring and remote
control of a swimming pool. Based on a Raspberry Pi, the gateway allows bidirectional communication and data exchange between
the user and the sensor network implemented on the environment using an Arduino.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Internet of Things; Sensor Networks; Smart Environments

1. Introduction

Nowadays the urge to connect everything to the Internet is growing, not just to send information to servers for
processing and storage but also to provide full control of physical devices over the web.

While humans will continue to connect their devices to the Web in greater numbers, by 2020 more than 200 billion
smart devices are expected to be connected to the Internet1, making Machine-to-Machine (M2M) communications up
to 45% of the whole Internet traffic1,2,3.

Examples such as Smart Homes, where users can control their thermostats or lights with a smartphone, are the basis
for Internet of Things (IoT). IoT was designed to play a great role improving our quality of live and its applications
are present in many of our day to day experience such as transportation, health care and industrial automation.

IoT has the ability to transform a simple physical device into a smart one, using the embedded technology and
computational power. Using the sensors and actuators available to guarantee the features of the device, it is possible
to share that information between devices and put them to work together to improve the user experience. This will
contribute to a bigger explosion coming from things connected to the Web that were not connected before, did not
exist, or now use their connection as a core feature.

∗ Corresponding author.
E-mail address: afxga@iscte-iul.pt

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000

The Internet is one of the most important developments of man kind and IoT will represent the next evolution of
the Internet2,3. With the capability of gathering, analyzing and distributing the data, IoT consists in the connection
between the Internet and a range of devices and sensors.

IoT, as shown in Fig. 1, can be divided into six elements4 that help us understand its real meaning and functionality,
i.e, identification, sensing, communication, computation, services and semantics.

Fig. 1. IoT elements

IoT projects have the ability to do more than just connect the device to the Internet, they can be a big part of
improving the efficiency or even adding new features such as Artificial Intelligence, transforming every common
objects into connected one.

In this paper the authors describe the designing/developing of a system that can be applied to any object or envi-
ronment with little or no modifications and easily used by any person. The system will provide full remote and secure
control and monitoring of sensor networks, via an online platform, that can be applied to any non-smart object or
environment allowing them to be connected to the Internet and to the user. With the possibility to add a set of rules
and Artificial Intelligence it is possible to improve the efficiency leading to potential gains, such as energy or water
savings. Although the main goal is to create a low cost system that is flexible in the sense that it can be easily adapted
to any specification, in this paper the practical functionality will be tested and evaluated in a swimming pool, with an
application capable of monitoring the water temperature and level, the environmental temperature, relative humidity,
air pollution and luminosity and remotely control the water pumps and pool lights.

2. Related Work

IoT gateways5 are dedicated hardware applications used to connect the user to the network, allowing the conversion
of data between the short distance communication protocols to the traditional communication network. The gateway
is supposed to support different types of sensor nodes, multiple communication protocols, both wireless or wired, and
provide a set of unified information for the application or user, making these only responsible for data processing.

The main challenge on creating an IoT gateway is the lack of standards, being that each sensor node can commu-
nicate with a different protocol that is not compatible for others. This makes the development of a general purpose
gateway a complicated task, which explains why it is common to find gateways developed for specific applications.
Nevertheless, all have the same key requirements: low-cost hardware, easy implementation and extensibility and an
application layer support.

R. Gerstendorf in his article6 examines ten platforms for creating smart homes, from ZigBee to the Apple HomeKit.
All ten are market solutions available to consumers as a ready-to-use product in order to control smart devices through
a gateway. Each one has a communication protocol, proprietary characteristics and a range of pros and cons.

In the literature it is possible to find several proposals7,8,9 for IoT gateways implemented using low-cost hardware
devices, such as Arduino and Raspberry Pi. Most of them use these devices to support the web server, which difficults
its access from outside the network. Other solutions were found10,11, that use wireless communication protocols for
specific applications and little to none IoT gateways were designed to use wired protocols. Only one of these12 did it,
where the authors used the gateway with the RS485 protocol to control end-devices from the Internet. This makes all
of these solutions limited in flexibility and adaptation to other environments.

The literature presented a similar concept for a multi-communication protocol IoT gateway. In this13, the authors
present a heterogeneous IoT gateway capable of using the same board to communicate with multiple wireless protocols
as well as support for a large amount of communication buses, in a modularity basis.

Appendix C. Scientific Articles Published

90

 André Glória et al. / Procedia Computer Science 109C (2017) 568–575 569Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

The 8th International Conference on Ambient Systems, Networks and Technologies
(ANT 2017)

Design and implementation of an IoT gateway
to create smart environments

André Glóriaa,∗, Francisco Cercasa,b, Nuno Soutoa,b

aISCTE-IUL, Av. das Forças Armadas, Lisbon, Portugal
bInstituto de Telecomunicações, Av. Rovisco Pais, 1, Lisbon, Portugal

Abstract

The paper presents a proposal of a practical implementation for an IoT gateway dedicated to real-time monitoring and remote
control of a swimming pool. Based on a Raspberry Pi, the gateway allows bidirectional communication and data exchange between
the user and the sensor network implemented on the environment using an Arduino.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Internet of Things; Sensor Networks; Smart Environments

1. Introduction

Nowadays the urge to connect everything to the Internet is growing, not just to send information to servers for
processing and storage but also to provide full control of physical devices over the web.

While humans will continue to connect their devices to the Web in greater numbers, by 2020 more than 200 billion
smart devices are expected to be connected to the Internet1, making Machine-to-Machine (M2M) communications up
to 45% of the whole Internet traffic1,2,3.

Examples such as Smart Homes, where users can control their thermostats or lights with a smartphone, are the basis
for Internet of Things (IoT). IoT was designed to play a great role improving our quality of live and its applications
are present in many of our day to day experience such as transportation, health care and industrial automation.

IoT has the ability to transform a simple physical device into a smart one, using the embedded technology and
computational power. Using the sensors and actuators available to guarantee the features of the device, it is possible
to share that information between devices and put them to work together to improve the user experience. This will
contribute to a bigger explosion coming from things connected to the Web that were not connected before, did not
exist, or now use their connection as a core feature.

∗ Corresponding author.
E-mail address: afxga@iscte-iul.pt

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

The 8th International Conference on Ambient Systems, Networks and Technologies
(ANT 2017)

Design and implementation of an IoT gateway
to create smart environments

André Glóriaa,∗, Francisco Cercasa,b, Nuno Soutoa,b

aISCTE-IUL, Av. das Forças Armadas, Lisbon, Portugal
bInstituto de Telecomunicações, Av. Rovisco Pais, 1, Lisbon, Portugal

Abstract

The paper presents a proposal of a practical implementation for an IoT gateway dedicated to real-time monitoring and remote
control of a swimming pool. Based on a Raspberry Pi, the gateway allows bidirectional communication and data exchange between
the user and the sensor network implemented on the environment using an Arduino.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Internet of Things; Sensor Networks; Smart Environments

1. Introduction

Nowadays the urge to connect everything to the Internet is growing, not just to send information to servers for
processing and storage but also to provide full control of physical devices over the web.

While humans will continue to connect their devices to the Web in greater numbers, by 2020 more than 200 billion
smart devices are expected to be connected to the Internet1, making Machine-to-Machine (M2M) communications up
to 45% of the whole Internet traffic1,2,3.

Examples such as Smart Homes, where users can control their thermostats or lights with a smartphone, are the basis
for Internet of Things (IoT). IoT was designed to play a great role improving our quality of live and its applications
are present in many of our day to day experience such as transportation, health care and industrial automation.

IoT has the ability to transform a simple physical device into a smart one, using the embedded technology and
computational power. Using the sensors and actuators available to guarantee the features of the device, it is possible
to share that information between devices and put them to work together to improve the user experience. This will
contribute to a bigger explosion coming from things connected to the Web that were not connected before, did not
exist, or now use their connection as a core feature.

∗ Corresponding author.
E-mail address: afxga@iscte-iul.pt

1877-0509 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000

The Internet is one of the most important developments of man kind and IoT will represent the next evolution of
the Internet2,3. With the capability of gathering, analyzing and distributing the data, IoT consists in the connection
between the Internet and a range of devices and sensors.

IoT, as shown in Fig. 1, can be divided into six elements4 that help us understand its real meaning and functionality,
i.e, identification, sensing, communication, computation, services and semantics.

Fig. 1. IoT elements

IoT projects have the ability to do more than just connect the device to the Internet, they can be a big part of
improving the efficiency or even adding new features such as Artificial Intelligence, transforming every common
objects into connected one.

In this paper the authors describe the designing/developing of a system that can be applied to any object or envi-
ronment with little or no modifications and easily used by any person. The system will provide full remote and secure
control and monitoring of sensor networks, via an online platform, that can be applied to any non-smart object or
environment allowing them to be connected to the Internet and to the user. With the possibility to add a set of rules
and Artificial Intelligence it is possible to improve the efficiency leading to potential gains, such as energy or water
savings. Although the main goal is to create a low cost system that is flexible in the sense that it can be easily adapted
to any specification, in this paper the practical functionality will be tested and evaluated in a swimming pool, with an
application capable of monitoring the water temperature and level, the environmental temperature, relative humidity,
air pollution and luminosity and remotely control the water pumps and pool lights.

2. Related Work

IoT gateways5 are dedicated hardware applications used to connect the user to the network, allowing the conversion
of data between the short distance communication protocols to the traditional communication network. The gateway
is supposed to support different types of sensor nodes, multiple communication protocols, both wireless or wired, and
provide a set of unified information for the application or user, making these only responsible for data processing.

The main challenge on creating an IoT gateway is the lack of standards, being that each sensor node can commu-
nicate with a different protocol that is not compatible for others. This makes the development of a general purpose
gateway a complicated task, which explains why it is common to find gateways developed for specific applications.
Nevertheless, all have the same key requirements: low-cost hardware, easy implementation and extensibility and an
application layer support.

R. Gerstendorf in his article6 examines ten platforms for creating smart homes, from ZigBee to the Apple HomeKit.
All ten are market solutions available to consumers as a ready-to-use product in order to control smart devices through
a gateway. Each one has a communication protocol, proprietary characteristics and a range of pros and cons.

In the literature it is possible to find several proposals7,8,9 for IoT gateways implemented using low-cost hardware
devices, such as Arduino and Raspberry Pi. Most of them use these devices to support the web server, which difficults
its access from outside the network. Other solutions were found10,11, that use wireless communication protocols for
specific applications and little to none IoT gateways were designed to use wired protocols. Only one of these12 did it,
where the authors used the gateway with the RS485 protocol to control end-devices from the Internet. This makes all
of these solutions limited in flexibility and adaptation to other environments.

The literature presented a similar concept for a multi-communication protocol IoT gateway. In this13, the authors
present a heterogeneous IoT gateway capable of using the same board to communicate with multiple wireless protocols
as well as support for a large amount of communication buses, in a modularity basis.

Appendix C. Scientific Articles Published

91

570 André Glória et al. / Procedia Computer Science 109C (2017) 568–575
A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000 3

3. System Architecture

To maintain the normal requirements for IoT gateways and in order to be able to use multiple communication pro-
tocols, adapting them to user requirements, the authors of this paper created a gateway based on common requirements
and capable of using every sensor and communication protocol, both wired and wireless, that is available. The system
relies on a group of devices connected over a network that is controlled by an application using a given communica-
tion protocol. Fig. 2 presents a high level system architecture and, as shown, the system is composed by hardware,
software and the implemented communication features. The proposed system was conceived using hardware capable
of supporting multiple communication protocols and flexible enough so as to run adaptable software, as described in
the following sections.

Fig. 2. System Architecture

3.1. Hardware

As displayed in Fig. 2 and 3, the hardware components adopted for our implementation consist in a Raspberry Pi
314, a low-cost credit card sized computer with enough processing power and memory, that support programmable
I/O ports and the use of standard peripherals, as an aggregation node or gateway; an Arduino Uno15, an open-source
electronics single board based on a simple input/output capable of interfacing different peripherals, sensor and wireless
communication devices, as a node sensor that collects information from temperature, humidity, luminosity and water
level. Also a set of relays are used to control numerous actuators such as lights and motors.

The aggregation node are not responsible for reading sensors, they just provide a gateway between the user and
the Sensor Network and also perform some data analyses. The sensor node, the lowest level of a Sensor Network, is
responsible for gather information from sensors, perform user actions and use communication mechanisms to send
data to the aggregation node.

3.2. Software

As presented in Figure 2 there are several pieces of software that are essential to the proposed architecture. They
are divided into two sections that are mentioned below.

3.2.1. Web Platform
The web platform consists on a display for the information gathered from the sensor network. As can be seen in

Fig. 4 in the platform the user can choose which sensors to display, as well as the current values and past data retrieved,
turn on and off all the actuators and switch between functionality modes. The web platform also provides the user a
bridge to the sensor network using the MQTT protocol, with the Eclipse Paho JavaScript Client16. It is hosted on a
private server, containing a private MySQL database for storage and was built using HTML, PHP, Javascript, CSS and
AJAX for both control and communication.

3.2.2. Python Scripts
Present in the aggregation node, this scripts are responsible for receiving the data from the sensor node and send

them to the server using the MQTT protocol. They are also responsible for receiving commands sent from the user
through the web platform and pass them to the sensor node. These scripts use the Eclipse Paho Python Client16. They

4 A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000

Fig. 3. Hardware connections

Fig. 4. Screenshot of the web platform

represent as well the MQTT broker, in which the web platform and the client scripts will connect, using the Mosquitto
MQTT broker17.

In Fig. 5 and 6 it is possible to see the Activity Diagram with the process needed to initiate the system, with the
authentication of both network and user, including the initial message exchange for the online platform configuration
as well as the data and action exchange process in order to send information from the Sensor Network to the user and
actions from the user to the Sensor Network.

3.3. Communications protocols

As mentioned before, communication is one of the main elements of IoT. In the system there are two key commu-
nication points, between the server and the aggregation node and from the this last to the sensor node. In the first,
the need was to have an open-source, low bandwidth consumption and good performance application layer Internet

Appendix C. Scientific Articles Published

92

 André Glória et al. / Procedia Computer Science 109C (2017) 568–575 571
A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000 3

3. System Architecture

To maintain the normal requirements for IoT gateways and in order to be able to use multiple communication pro-
tocols, adapting them to user requirements, the authors of this paper created a gateway based on common requirements
and capable of using every sensor and communication protocol, both wired and wireless, that is available. The system
relies on a group of devices connected over a network that is controlled by an application using a given communica-
tion protocol. Fig. 2 presents a high level system architecture and, as shown, the system is composed by hardware,
software and the implemented communication features. The proposed system was conceived using hardware capable
of supporting multiple communication protocols and flexible enough so as to run adaptable software, as described in
the following sections.

Fig. 2. System Architecture

3.1. Hardware

As displayed in Fig. 2 and 3, the hardware components adopted for our implementation consist in a Raspberry Pi
314, a low-cost credit card sized computer with enough processing power and memory, that support programmable
I/O ports and the use of standard peripherals, as an aggregation node or gateway; an Arduino Uno15, an open-source
electronics single board based on a simple input/output capable of interfacing different peripherals, sensor and wireless
communication devices, as a node sensor that collects information from temperature, humidity, luminosity and water
level. Also a set of relays are used to control numerous actuators such as lights and motors.

The aggregation node are not responsible for reading sensors, they just provide a gateway between the user and
the Sensor Network and also perform some data analyses. The sensor node, the lowest level of a Sensor Network, is
responsible for gather information from sensors, perform user actions and use communication mechanisms to send
data to the aggregation node.

3.2. Software

As presented in Figure 2 there are several pieces of software that are essential to the proposed architecture. They
are divided into two sections that are mentioned below.

3.2.1. Web Platform
The web platform consists on a display for the information gathered from the sensor network. As can be seen in

Fig. 4 in the platform the user can choose which sensors to display, as well as the current values and past data retrieved,
turn on and off all the actuators and switch between functionality modes. The web platform also provides the user a
bridge to the sensor network using the MQTT protocol, with the Eclipse Paho JavaScript Client16. It is hosted on a
private server, containing a private MySQL database for storage and was built using HTML, PHP, Javascript, CSS and
AJAX for both control and communication.

3.2.2. Python Scripts
Present in the aggregation node, this scripts are responsible for receiving the data from the sensor node and send

them to the server using the MQTT protocol. They are also responsible for receiving commands sent from the user
through the web platform and pass them to the sensor node. These scripts use the Eclipse Paho Python Client16. They

4 A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000

Fig. 3. Hardware connections

Fig. 4. Screenshot of the web platform

represent as well the MQTT broker, in which the web platform and the client scripts will connect, using the Mosquitto
MQTT broker17.

In Fig. 5 and 6 it is possible to see the Activity Diagram with the process needed to initiate the system, with the
authentication of both network and user, including the initial message exchange for the online platform configuration
as well as the data and action exchange process in order to send information from the Sensor Network to the user and
actions from the user to the Sensor Network.

3.3. Communications protocols

As mentioned before, communication is one of the main elements of IoT. In the system there are two key commu-
nication points, between the server and the aggregation node and from the this last to the sensor node. In the first,
the need was to have an open-source, low bandwidth consumption and good performance application layer Internet

Appendix C. Scientific Articles Published

93

572 André Glória et al. / Procedia Computer Science 109C (2017) 568–575
A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000 5

Fig. 5. Network and User authentication process and initial process

Fig. 6. Data and Actions exchange

protocol that can also connect a JavaScript Client to a Python Client, so the communications are done using MQTT,
a protocol design for IoT projects. In the second, there is a range of options with both wired or wireless capabili-
ties. In here we search for a low-cost, low-power, high range, multi-node communication protocol with low hardware
complexity. The protocols that adapt to the specification range from both environments, like I2C, RS485, ZigBee
or LoRaWAN but to ensure a bigger reliability and an easy connection the communications are done using Serial
Communication in the form of an USB cable.

3.3.1. Universal Serial Bus
USB was developed in order to facilitate the connection of peripheral devices to a computer. The propose of USB

was to give the ability to devices to be plug and play with a single interface and automatic configuration. Consists in
a communication bus used for connecting and power devices, such as micro-controllers from other interfaces. USB
operates at 5 volts using 4 different lines: Power, Ground and a twisted pair of data lines using NRZI encoding18,19.
Providing a fast Master/Slave interface capable of supporting up to 127 devices with up to 6 hubs, USB uses an
enumeration process where each slave is assigned with a unique address and give the master information about which
speed will be used and what type of data will be transferring.19.

6 A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000

3.3.2. Message Queuing Telemetry Transport
MQTT is a messaging protocol that aims at connecting embedded devices and networks with applications and

middleware4,20,21. Built on top of the TCP protocol, uses a publish/subscribe pattern, with a routing mechanism
(one-to-one, one-to-many, many-to-many), to provide flexibility and simplicity transition making MQTT an optimal
connection protocol for the IoT and M2M being suitable for small, cheap, low power and low memory devices with
low bandwidth networks. Compared to HTTP, MQTT is designed to have a lower protocol overhead.

MQTT consist of three components: subscriber, publisher and broker. A device registers as a subscriber for specific
topics of interest in order to get the information publish to that topic. The publisher acts as a generator of data for
some topic, transmitting that information to the subscriber through the broker.

4. Results

The developed gateway can be seen in Fig. 7, 8, 9 and 10 with every hardware feature and communication protocol
used.

In Fig. 7 we see the whole setup, with the online platform on the laptop, showing the data retrieved from the sensor
network. It is possible to see that the data is shown at the respective place, that the user has the possibility to turn
the lights on and of and change between modes (Normal Mode turned on, green on the platform and first light on the
sensor node).

Fig. 7. Functional prototype setup

In Fig. 8 it is possible to see the MQTT broker log showing the client and the network connecting and disconnect-
ing. Without these results the communication over MQTT is not possible, since both parts need to be connected to
the broker in order to receive the messages from the topics they subscribed previously. Fig. 9 shows the script that
controls the aggregation node with the response to the update message, data transmission and actions received. When
the aggregation node receives the update message it responds with all the sensors and actuators present in the network
and after the successful connection it receives the user chosen mode and light command. Also it is possible to see that
the data retrieved from the sensor node over USB are successfully received in the aggregation node and then sent to
the platform.

Fig. 10 demonstrates the hardware setup, with the nodes connected with USB, the sensors connected to the sensor
node and the actuator working with user specifications. As said before the lights (red led) are off and the normal mode
lights (first yellow led) are on, both selected by the user on the platform. The sensor values retrieved are accordingly
with the expected ones, with the temperature at 22oC and humidity at 39% in a room at 25oC and low humidity. With
these results we conclude that the sensor node is capable of obtaining the values, send them to the aggregation node
and also perform the action that the user send using the online platform.

Appendix C. Scientific Articles Published

94

 André Glória et al. / Procedia Computer Science 109C (2017) 568–575 573
A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000 5

Fig. 5. Network and User authentication process and initial process

Fig. 6. Data and Actions exchange

protocol that can also connect a JavaScript Client to a Python Client, so the communications are done using MQTT,
a protocol design for IoT projects. In the second, there is a range of options with both wired or wireless capabili-
ties. In here we search for a low-cost, low-power, high range, multi-node communication protocol with low hardware
complexity. The protocols that adapt to the specification range from both environments, like I2C, RS485, ZigBee
or LoRaWAN but to ensure a bigger reliability and an easy connection the communications are done using Serial
Communication in the form of an USB cable.

3.3.1. Universal Serial Bus
USB was developed in order to facilitate the connection of peripheral devices to a computer. The propose of USB

was to give the ability to devices to be plug and play with a single interface and automatic configuration. Consists in
a communication bus used for connecting and power devices, such as micro-controllers from other interfaces. USB
operates at 5 volts using 4 different lines: Power, Ground and a twisted pair of data lines using NRZI encoding18,19.
Providing a fast Master/Slave interface capable of supporting up to 127 devices with up to 6 hubs, USB uses an
enumeration process where each slave is assigned with a unique address and give the master information about which
speed will be used and what type of data will be transferring.19.

6 A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000

3.3.2. Message Queuing Telemetry Transport
MQTT is a messaging protocol that aims at connecting embedded devices and networks with applications and

middleware4,20,21. Built on top of the TCP protocol, uses a publish/subscribe pattern, with a routing mechanism
(one-to-one, one-to-many, many-to-many), to provide flexibility and simplicity transition making MQTT an optimal
connection protocol for the IoT and M2M being suitable for small, cheap, low power and low memory devices with
low bandwidth networks. Compared to HTTP, MQTT is designed to have a lower protocol overhead.

MQTT consist of three components: subscriber, publisher and broker. A device registers as a subscriber for specific
topics of interest in order to get the information publish to that topic. The publisher acts as a generator of data for
some topic, transmitting that information to the subscriber through the broker.

4. Results

The developed gateway can be seen in Fig. 7, 8, 9 and 10 with every hardware feature and communication protocol
used.

In Fig. 7 we see the whole setup, with the online platform on the laptop, showing the data retrieved from the sensor
network. It is possible to see that the data is shown at the respective place, that the user has the possibility to turn
the lights on and of and change between modes (Normal Mode turned on, green on the platform and first light on the
sensor node).

Fig. 7. Functional prototype setup

In Fig. 8 it is possible to see the MQTT broker log showing the client and the network connecting and disconnect-
ing. Without these results the communication over MQTT is not possible, since both parts need to be connected to
the broker in order to receive the messages from the topics they subscribed previously. Fig. 9 shows the script that
controls the aggregation node with the response to the update message, data transmission and actions received. When
the aggregation node receives the update message it responds with all the sensors and actuators present in the network
and after the successful connection it receives the user chosen mode and light command. Also it is possible to see that
the data retrieved from the sensor node over USB are successfully received in the aggregation node and then sent to
the platform.

Fig. 10 demonstrates the hardware setup, with the nodes connected with USB, the sensors connected to the sensor
node and the actuator working with user specifications. As said before the lights (red led) are off and the normal mode
lights (first yellow led) are on, both selected by the user on the platform. The sensor values retrieved are accordingly
with the expected ones, with the temperature at 22oC and humidity at 39% in a room at 25oC and low humidity. With
these results we conclude that the sensor node is capable of obtaining the values, send them to the aggregation node
and also perform the action that the user send using the online platform.

Appendix C. Scientific Articles Published

95

574 André Glória et al. / Procedia Computer Science 109C (2017) 568–575
A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000 7

Fig. 8. MQTT Broker script Fig. 9. Aggregation node script

Fig. 10. Functional prototype hardware setup

5. Conclusions

In this paper, an IoT gateway for creating a smart swimming pool was designed, consisting in a Raspberry Pi acting
as an aggregation node, an Arduino with a set of sensors as a sensor node and a web platform for monitor and control
the network. The developed system so far, accomplishes the proposal features and purpose, giving the user the ability
to control the environment remotely. Nevertheless more tests to the system in multiple situations can be done in order
to prove the efficiency of the developed architecture.

In the future, the authors of this publication are planning to compare multiple communications protocols for each
point of communication, or even offer a solution supporting multiple communication schemes. Furthermore, addi-
tional functionalities will be considered for the system, such as the possibility to create sets of rules directly from the
platform, and add Artificial Intelligence or Machine Learning. At last the focus will be towards a more secure system,
with the implementation of encrypted communications and a SSL protocol and certificate on web server side.

Acknowledgments

The authors would like to thank Professor Octavian Postolache for providing the sensors. This work was partially
supported by the FCT - Fundação para a Ciência e Tecnologia and Instituto de Telecomunicações under project
UID/EEA/50008/2013.

8 A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000

References

1. J. Gantz, D. Reinsel, THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East, IDC
iView: IDC Anal. Future 2007 (2012) 1–16.

2. D. Evans, The Internet of Things How the Next Evolution of the Internet Is Changing Everything, CISCO, San Jose, CA, USA, White Paper.
3. S. Taylor, The Next Generation of the Internet Revolutionizing the Way We Work, Live, Play, and Learn, CISCO, San Francisco, CA, USA,

CISCO Point of View.
4. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: A Survey on Enabling Technologies, Protocols,

and Applications, IEEE Communications Surveys and Tutorialsdoi:10.1109/COMST.2015.2444095.
5. C. L. Zhong, Z. Zhu, R. G. Huang, Study on the IOT architecture and gateway technology, in: Proceedings - 14th International Symposium

on Distributed Computing and Applications for Business, Engineering and Science, DCABES 2015, 2016. doi:10.1109/DCABES.2015.56.
6. R. Gerstendorf, Ten platforms examined (9 2016).
7. A. Grygoruk, J. Legierski, IoT gateway – implementation proposal based on Arduino board, Federated Conference on Computer Science and

Information Systems (FedCSIS)doi:10.15439/2016F283.
8. S. M. Kim, H. S. Choi, W. S. Rhee, IoT home gateway for auto-configuration and management of MQTT devices, in: 2015 IEEE Conference

on Wireless Sensors, ICWiSE 2015, 2015. doi:10.1109/ICWISE.2015.7380346.
9. R. Balakrishnan, IoT based Monitoring and Control System for Home Automation, Global Conference on Communication Technologies

(GCCT).
10. T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, P. Dutta, The Internet of Things Has a Gateway Problem-

doi:10.1145/2699343.2699344.
URL http://dx.doi.org/10.1145/2699343.2699344.

11. S. Guoqiang, C. Yanming, Z. Chao, Z. Yanxu, Design and implementation of a smart IoT gateway, in: Proceedings - 2013 IEEE International
Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing,
GreenCom-iThings-CPSCom 2013, 2013. doi:10.1109/GreenCom-iThings-CPSCom.2013.130.

12. M. Dong, X. Zeng, S. Bi, S. Guo, Design and implementation of the multi-channel RS485 IOT gateway, in: Proceedings -
2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, CYBER 2012, 2012.
doi:10.1109/CYBER.2012.6392581.

13. E. Gioia, P. Passaro, M. Petracca, AMBER: an advanced gateway solution to support heterogeneous IoT technologies, 24th International
Conference on Software, Telecommunications and Computer Networks (SoftCOM).

14. C. Bell, Beginning Sensor Networks with Arduino and Raspberry Pi, 1st Edition, Apress, 2013.
15. M. Banzi, Geting started with Arduino, 2nd Edition, Make:Books, 2011.
16. Eclipse Foundation Inc., Paho - Open Source messaging for M2M (2016).

URL https://eclipse.org/paho/

17. Eclipse Foundation Inc., Mosquitto - An Open Source MQTT broker (2016).
URL https://mosquitto.org/

18. M. Sharma, N. Agarwal, S. Reddy, Design and Development of Daughter Board for USB-UART Communication between Raspberry Pi and
PC, International Conference on Computing, Communication & Automation.

19. Computer-solutions.co.uk, USB - a brief tutorial for embedded engineers (2015).
URL http://www.computer- solutions.co.uk/info/Embedded tutorials/usb tutorial.htm

20. D. Locke, MQ Telemetry Transport (MQTT) v3.1 protocol specification (2010).
URL https://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

21. N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, G. Reali, Comparison of two lightweight protocols for smartphone-based sensing,
in: IEEE SCVT 2013 - Proceedings of 20th IEEE Symposium on Communications and Vehicular Technology in the BeNeLux, 2013.
doi:10.1109/SCVT.2013.6735994.

Appendix C. Scientific Articles Published

96

 André Glória et al. / Procedia Computer Science 109C (2017) 568–575 575
A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000 7

Fig. 8. MQTT Broker script Fig. 9. Aggregation node script

Fig. 10. Functional prototype hardware setup

5. Conclusions

In this paper, an IoT gateway for creating a smart swimming pool was designed, consisting in a Raspberry Pi acting
as an aggregation node, an Arduino with a set of sensors as a sensor node and a web platform for monitor and control
the network. The developed system so far, accomplishes the proposal features and purpose, giving the user the ability
to control the environment remotely. Nevertheless more tests to the system in multiple situations can be done in order
to prove the efficiency of the developed architecture.

In the future, the authors of this publication are planning to compare multiple communications protocols for each
point of communication, or even offer a solution supporting multiple communication schemes. Furthermore, addi-
tional functionalities will be considered for the system, such as the possibility to create sets of rules directly from the
platform, and add Artificial Intelligence or Machine Learning. At last the focus will be towards a more secure system,
with the implementation of encrypted communications and a SSL protocol and certificate on web server side.

Acknowledgments

The authors would like to thank Professor Octavian Postolache for providing the sensors. This work was partially
supported by the FCT - Fundação para a Ciência e Tecnologia and Instituto de Telecomunicações under project
UID/EEA/50008/2013.

8 A. Glória, F. Cercas, N. Souto / Procedia Computer Science 00 (2016) 000–000

References

1. J. Gantz, D. Reinsel, THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East, IDC
iView: IDC Anal. Future 2007 (2012) 1–16.

2. D. Evans, The Internet of Things How the Next Evolution of the Internet Is Changing Everything, CISCO, San Jose, CA, USA, White Paper.
3. S. Taylor, The Next Generation of the Internet Revolutionizing the Way We Work, Live, Play, and Learn, CISCO, San Francisco, CA, USA,

CISCO Point of View.
4. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: A Survey on Enabling Technologies, Protocols,

and Applications, IEEE Communications Surveys and Tutorialsdoi:10.1109/COMST.2015.2444095.
5. C. L. Zhong, Z. Zhu, R. G. Huang, Study on the IOT architecture and gateway technology, in: Proceedings - 14th International Symposium

on Distributed Computing and Applications for Business, Engineering and Science, DCABES 2015, 2016. doi:10.1109/DCABES.2015.56.
6. R. Gerstendorf, Ten platforms examined (9 2016).
7. A. Grygoruk, J. Legierski, IoT gateway – implementation proposal based on Arduino board, Federated Conference on Computer Science and

Information Systems (FedCSIS)doi:10.15439/2016F283.
8. S. M. Kim, H. S. Choi, W. S. Rhee, IoT home gateway for auto-configuration and management of MQTT devices, in: 2015 IEEE Conference

on Wireless Sensors, ICWiSE 2015, 2015. doi:10.1109/ICWISE.2015.7380346.
9. R. Balakrishnan, IoT based Monitoring and Control System for Home Automation, Global Conference on Communication Technologies

(GCCT).
10. T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, P. Dutta, The Internet of Things Has a Gateway Problem-

doi:10.1145/2699343.2699344.
URL http://dx.doi.org/10.1145/2699343.2699344.

11. S. Guoqiang, C. Yanming, Z. Chao, Z. Yanxu, Design and implementation of a smart IoT gateway, in: Proceedings - 2013 IEEE International
Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing,
GreenCom-iThings-CPSCom 2013, 2013. doi:10.1109/GreenCom-iThings-CPSCom.2013.130.

12. M. Dong, X. Zeng, S. Bi, S. Guo, Design and implementation of the multi-channel RS485 IOT gateway, in: Proceedings -
2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, CYBER 2012, 2012.
doi:10.1109/CYBER.2012.6392581.

13. E. Gioia, P. Passaro, M. Petracca, AMBER: an advanced gateway solution to support heterogeneous IoT technologies, 24th International
Conference on Software, Telecommunications and Computer Networks (SoftCOM).

14. C. Bell, Beginning Sensor Networks with Arduino and Raspberry Pi, 1st Edition, Apress, 2013.
15. M. Banzi, Geting started with Arduino, 2nd Edition, Make:Books, 2011.
16. Eclipse Foundation Inc., Paho - Open Source messaging for M2M (2016).

URL https://eclipse.org/paho/

17. Eclipse Foundation Inc., Mosquitto - An Open Source MQTT broker (2016).
URL https://mosquitto.org/

18. M. Sharma, N. Agarwal, S. Reddy, Design and Development of Daughter Board for USB-UART Communication between Raspberry Pi and
PC, International Conference on Computing, Communication & Automation.

19. Computer-solutions.co.uk, USB - a brief tutorial for embedded engineers (2015).
URL http://www.computer- solutions.co.uk/info/Embedded tutorials/usb tutorial.htm

20. D. Locke, MQ Telemetry Transport (MQTT) v3.1 protocol specification (2010).
URL https://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

21. N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, G. Reali, Comparison of two lightweight protocols for smartphone-based sensing,
in: IEEE SCVT 2013 - Proceedings of 20th IEEE Symposium on Communications and Vehicular Technology in the BeNeLux, 2013.
doi:10.1109/SCVT.2013.6735994.

Appendix C. Scientific Articles Published

97

Comparison of Communication Protocols for
Low Cost Internet of Things Devices

André Glória(1,2), Francisco Cercas(1,2), Nuno Souto(1,2)
(1) ISCTE-IUL, Av. das Forças Armadas, Lisbon, Portugal

(2) Instituto de Telecomunicações, Av. Rovisco Pais, 1, Lisbon, Portugal

Abstract—Internet of Things (IoT) uses the connection between
devices to improve their efficiency and user experience, being
the communication one of the main elements for a proper IoT
network. This paper presents a review of the most common wired
and wireless communication protocols, discusses their character-
istics, advantages and disadvantages as well as a comparison
study to choose the best bidirectional sensor network composed
by low power devices such as Arduino, ESP-12 and Raspberry
Pi.

Index Terms—Internet of Things, Sensor Networks, I2C,
RS232, ZigBee, LoRa, Arduino, ESP-12, Raspberry Pi

I. INTRODUCTION

In order to provide full control of physical devices over the
web the urge to connect everything to the Internet is growing,
with an expected 200 billion smart devices being connected
to the Internet by 2020 [1]. With the capability of gathering,
analyzing and distributing the data, Internet of Things consists
in the connection between the Internet and a range of devices
and sensors and was designed to play a great role improving
our quality of live.

IoT relies on group of devices connected over a network
controlled by an application using a communication protocol.
These devices can be anything capable of retrieving and
storing data, but the most usual are microcontrolers or System
on Chip (SoC) devices. SoC [2] is a replacement for a
computer, based on an electronic chip or integrated circuit
containing the whole computing system. With this approach
the cost of producing a computing system has drop, making
these devices much cheaper for the end consumer. The most
common examples of this platforms are the Arduino [3],
an open-source electronics single board based on a simple
input/output capable of interfacing different peripherals, sensor
and wireless communication devices, the Raspberry Pi [4], a
low-cost credit card sized computer with enough processing
power and memory, that support programmable I/O ports and
the use of standard peripherals, and most recently the ESP-
12 [5], a WiFi module based on the ESP8266 core processor,
providing the ability to interface with sensors and actuators
through I/O pins and offering a complete and self-contained
WiFi (IEEE802.11 b/g/n) networking solution as a low-power,
low-cost and minimal space device.

For an IoT system capable of creating smart environments
[6], the need to adapt to any specification requires that multiple
options for devices and communication protocols be available.
Fig. 1 shows the system architecture and it is possible to

Fig. 1. System Architecture [6]

see that two types of devices are essential, an aggregation
node that provide a gateway between the user and the Sensor
Network and also perform some data analyses, and a sensor
node responsible for gather information from sensors and
perform user actions. The previously presented devices are
capable of performing the task needed for this nodes, with
the Raspberry Pi and the ESP-12 being more suitable for the
aggregation node, as they have more computational power,
memory and WiFi connectivity, whereas the Arduino is the
best choice for the sensor node, as it has more I/O pin,
with analog inputs available, and lower power consumption.
Regardless of the platforms chosen, these two nodes require a
bidirectional communication mechanisms in order to exchange
the data retrieved from sensors to the aggregation node and
also get the user actions from the aggregation node to the
sensor node to be applied to the actuators. Other thing to
have in mind when choosing the right communication protocol
is the need to have a multi-node capability, due to the fact
that multiple sensor nodes can be included in the system, all
communicating with the same aggregation node. Also, and
bearing in mind the low-cost and power saving capabilities of
the system, is important that the protocol have these features
as well.

In this paper the authors present a detailed review of the
main communication protocols available, as well as a multiple
scenario analysis to comprehend if distance and different board
combination affects delay, data rate and efficiency for the
tested protocols in order to choose the best communication
protocol for each scenario.

II. COMMUNICATIONS PROTOCOLS

Communication is one of the main elements of IoT, as the
need to trade data between devices is crucial to the efficiency
of an IoT project. Besides the word Internet being part of IoT,
not all the situations rely on Internet related protocols. With

Appendix C. Scientific Articles Published

98

the increased use of Sensor Networks and applications in the
most diverse environments, the need of different protocols,
both wired and wireless, is growing. Wired protocols are still
used to connect devices, since they are more reliable, secure
and can transfer data at higher rates. The most common wired
technologies are Serial Communication or Universal Asyn-
chronous Receiver and Transmitter (UART), mainly in the
form of USB or RS232, RS485, SPI, I2C and PLC. Also CAN
bus can be used for networks that need a bigger reliability.
Wireless communication protocols, offer all what is needed to
work with the advantage of a wireless low space environment.
The most common wireless technologies are WiFi, ZigBee,
Bluetooth, with new technologies like 6LoWPAN, LoRaWAN
and even LTE-A being increasingly used.

Present in Table I are some key characteristics of the main
communications protocols.

Without the possibility to test every protocol and bearing
in mind that the goal is to use a low-cost, low-power, high
range, multi-node communication protocol that also has a low
complexity hardware configuration, the chosen protocols to
do further tests are I2C, RS232, ZigBee and LoRa. A more
precise description, as well as advantages and disadvantages,
of each one can be found in the following subsections.

A. Inter-Integrated Circuit

The Inter-Integrated Circuit [7] was developed in 1982 with
the purpose of reducing the number of wiring printed in the
PCB and avoid additional logic, using just two wires for
connecting the peripherals to the microcontroller, called Serial
Data (SDA) and Serial Clock (SCL), making this protocol
ideal for communication between integrated circuits and slow
communication with on-board peripherals. With this two lines
it is possible to connect multiple masters and slaves, making
I2C a multi-master protocol. This two signal lines make
communications between devices possible using a protocol
that defines a unique 7-bit slave address, used to connect
to the bus, 8 bytes containing data and a few bytes for
communication control. Besides this two lines, physically, the
bus also needs a ground connection. Both active lines are bi-
directional making the device that starts the data transfer on
the bus a master, being the other slaves.

I2C has a range of data rates [7] in which we can choose to
transmit. Standart mode, at 100 kb/s, fast mode, at 400 kb/s,

and high speed mode, at 3.4 Mb/s, are the main data rates for
I2C. But some variants of the protocol add low speed mode,
at 10 kb/s, and fast mode +, at 1 Mb/s, as valid speeds.

Advantages of I2C [8]:
• Easy to connect;
• Widely supported;
• Automatically configured;
• Low power consumption;
Disadvantages of I2C [8]:
• Does not support long distance communication;
• Does not support High Speed connections;
• Number of nodes is limited by the address space on the

bus;

B. Universal Asynchronous Receiver and Transmitter

The UART is a programmable integrated circuit capable of
interfacing serial devices [9]. This interface provide operations
such as converting the bytes to a single serial bit stream for
outbound transmission, and vice versa for inbound transmis-
sion, adding a start and stop bits to signal the beginning and
end of a data word, and a parity bit for error detection [9],
[10]. To a correct stream of data there is no need for a clock
signal since UART is asynchronous but both ends of the line
must operate with the same baud rate [11].

There are four different standarts for UARTs: RS232,
RS423, RS422 and RS485. The RS232 has a signe-ended line
configuration with a Simplex or Full Duplex operation, being
able to achieve up to 15 meters at 20 kbits/s.

Advantages of UART:
• Widely supported;
• No clock signal needed;
• Robust to errors;
Disadvantages of UART:
• Limited size of 9 bits;

C. IEEE 802.15.4 (ZigBee)

Introduced in 2002, ZigBee uses the IEEE 802.15.4 protocol
as a base. Created for low-rate wireless private areas networks
(LR-WPAN) it is one of the most used communication pro-
tocols for IoT due to is low consumption, low data rate, low
cost and high message throughput. It can also provide high
reliability, security, with both encryption and authentication

TABLE I
MAJOR COMMUNICATION PROTOCOLS CHARACTERISTICS

Feature SPI I2C RS232 RS485 WiFi Bluetooth ZigBee LoRa
Based Data Rate [Mbps] 20 0.1 0.02 10 11 1 0.25 0.11
Frequency [GHz] - - - - 2,4 2,4 2,4 0.433
Version - Standard - - 802.11b 4.0 - -
Range [m] 100 10 15 60 1-100 10-100 10-100 2000
Nodes/Masters 3 1024 256 256 32 7 65540 -
Power Consumption [mA] - - - - 100-350 1-35 1-10 1-10
Complexity Medium Low Low Low High Medium Medium Low
Security - - - - WPA/WPA2 128 bit 128 bit 128 bit

Appendix C. Scientific Articles Published

99

Fig. 2. IEEE 802.15.4 topologies. (a) Star, (b) Peer-to-Peer, (c) Cluster-tree

services, works with different platforms and can handle up to
65000 nodes.The IEEE 802.15.4 works in three frequencies,
with a DSSS method, capable of transferring data at 250
kbps at 2.4 GHz, the most usual [8], [12]. To ensure that
collisions are avoid, the IEEE 802.15.4 MAC sublayer uses the
CSMA/CA protocol. The MAC sublayer is also responsible
for flow control via acknowledged frame delivery, frame
validations as well as maintaining network synchronization,
controlling the association, administering device security and
scheming the guaranteed time slot mechanism [13].

This standard can support two types of network nodes, Full
Function Device (FFD), responsible for creating, controlling
and maintain the network, and Reduce Function Device (RFD),
simple nodes with low resources being just able to communi-
cate with the coordinator in a star topology [12], [14]. Fig. 2
shows the topologies for the IEEE 802.15.4 protocol.

Advantages of ZigBee [8]:

• Low power consumption, allows devices to operate from
batteries;

• One coordinator can control a numerous amount of
slaves;

• Self-organizing network capabilities;
• Highly secure, with 128-bit AES encryption;

Disadvantages of ZigBee [8]:

• Setting up the network requires additional devices, which
can increase costs;

• Low data transmission, only 127 bytes per message;
• Is incompatible with other network protocols and lacks

Internet Protocol support;

1) LoRa: A bidirectional communication protocol that uses
the LoRa physical layer in order to provide low power long-
range communications. To achieve this, LoRa is based on
Chirp Spread Spectrum (CSS) modulation that have the same
low power characteristics as FSK modulation (present in great
part of the other wireless communication protocols) but with a
significant increase in the communication range. With a single
base station it is possible to cover up to hundreds of square
kilometers. To guarantee that all communications are com-
pleted, the LoRa MAC layer is responsible for join and accept
the end-point and the gateway, schedule the receiving slots for
end-points and confirm the reception of the received packets
[15]. LoRa uses a star topology in order to maintain the low
power long communication viable, reducing complexity and
increasing network capacity and lifetime as opposed by a mesh
topology. This is possible by using a higher link budget, lower

license-free frequency such as 433 or 900 MHz and software
adaptive power output with transceiver modules [16].

Advantages of LoRa [16]:
• Low power consumption, allows devices to operate from

batteries;
• Long communication range;
• Highly secure, with 128-bit AES encryption;
Disadvantages of LoRa:
• Low data transmission, only 55 bytes per message;

III. TESTS SCENARIOS

To ensure that the best communication protocols were used
in the system, a set of tests was applied to the network nodes
in order to choose the best one.

These tests focus on the exchange of strings of data between
the aggregation node, the master, and the sensor node, the
slave. The main goal was to see if the communication protocol
can work with these platforms, how well they perform when
increasing the distance between nodes and also to compare the
results with theoretical ones.

For these, three different tests were made in order to see
the following values:
• Throughput;
• Message Delay;
• Efficiency;
Also the complexity of setting the system to work and

master slave combination were evaluated.
For the first test, the master sends a continuous amount of

data packets, with no interval between them, and the slave
just receives them, registers the timestamp and increases the
number of packets received. Then we see how many packets
the slave can process in a second, in order to obtain the true
system throughput.
In the second one, a similar method is used, but this time only
100 packets are sent with an interval of one second. The slave
receives the packets and registers the time between packets.
Then the average time is calculated, in order to achieve the
delay, over the one second, that the system needs to receive
the packets.
In the last one, 1000 packets were sent to the slave and the
slave only increase the number of received packets if the data
is equal to the one sent. This way it is possible to see how
many packets were lost or have errors.

All the tests have been done with a distance of 1, 2, 5,
10, 20 and 50 meters between nodes and with the following
board combination, as both master and slave: Raspberry Pi -
Arduino, Arduino - Arduino, ESP12 - Arduino, in order to
evaluate every scenario possible.

A. Complexity

For I2C and RS232, Arduino, ESP12 and Raspberry Pi plat-
forms have native pins to use this protocols, so no additional
hardware is needed. ZigBee and LoRa need the external radio
interfaces in order to communicate. For ZigBee a pair of XBee
S2, an Arduino Wireless Proto Shield and XBee Explorer were

Appendix C. Scientific Articles Published

100

Fig. 3. I2C Delay vs Distance results

used to connect everything. For LoRa only a pair of Adafruit
RFM69HCW is needed.

In terms of software, for I2C in the Raspberry Pi the smbus
library was used and in the Arduino and ESP12 the Wired
library. For a correct communication only the slave address
needs to be set on both platforms as well as the callbacks on
both ends. I2C does not allow the Raspberry Pi to be a Slave,
so some modification to the code was needed in order to set
the Arduino as a Master. Also a minimum of 1 ms was needed
between packets in order to avoid overflow of packets when
sending to the Arduino.
For RS232 the communication works as a simple Serial
Communication with the RX and TX ports on both ends, with
a simple modification on settings of the Raspberry Pi in order
to tell the OS not to use that port for console communication.
Also the pySerial library was needed.
For ZigBee, the most complex configuration, it was necessary
to pair the radios using XCTU software. After that each radio
was assigned with an address that the other end needed to
know in order to send the packet. On the Raspberry Pi the
XBee library was used and on the Arduino and ESP12 a 10ms
between packets was needed to ensure a correct transmission
of packets.
For LoRa, the RadioHead library was used on all platforms. To
configure it only an address for each node had to the chosen,
guaranteeing it was different for each node.

IV. RESULTS

The first thing to notice is that some protocols were not able
to connect in some platforms, I2C with ESP-12 is one of the
cases and also LoRa with the Raspberry Pi. The ESP-12 and
ZigBee connection can be done, but due to ZigBee interference
with WiFi, the results were not viable thus it was discarded
as a possibility. One disadvantage detected was the fact that
the Raspberry Pi can not be a I2C slave, having the Arduino
to wait a second between packets and therefore affecting the
results.

With these delay results, Fig. 3, 4, 5 and 6, it is possible to
understand that the increase of distance does not affect much
the delay value, with only a slight increase in all protocols.
RS232 has the best results in all scenarios, with a delay

Fig. 4. RS232 Delay vs Distance results

Fig. 5. ZigBee Delay vs Distance results

Fig. 6. LoRa Delay vs Distance results

ranging from around 75 to 800 us. LoRa has the higher
delay with values ranging from 800 to 2500 us and also the
biggest variation between scenarios. As of distance, the only
one really affected is ZigBee with a bigger increase in delay
over 10 meters in all scenarios. Regrading the master slave
combination, is when both platforms are the Arduino Uno that
the best results are achieved and, with only one Arduino Uno
present, the delay decreases when the Uno is the slave.

Regrading throughput results, Fig. 7, 8, 9 and 10, it is
possible to understand that distance affects the results, with
a different pattern in each scenario, and that in every protocol
the maximum value reached is widely different from the

Appendix C. Scientific Articles Published

101

Fig. 7. I2C Throughput vs Distance results

Fig. 8. RS232 Throughput vs Distance results

theoretical values. In some cases there is up and downs with
the increase of distance but always with slight variations,
so that was not taken in consideration. I2C has the most
inconsistent results with big variations in both distance and
master slave combination, with a data rate raging from 1.3
to 2.9 kbits/s. On the other hand, RS232 has similiar data
rate results, raging from 1.1 to 2.6 kbits/s, but with a more
consistent and linear results. LoRa and ZigBee got very similar
results, ranging from 0.75 to 1.3 kbits/s, with LoRa having the
most linear results, almost none variation with the increased
distance. Regrading the master slave combination, the best
results are achieved when only one Arduino Uno is present,
with some variations as it is the master or the slave.

As for the efficiency tests, I2C had the worst results as
communications at 50 meters were not able to connect and
when both platforms were Arduino Uno, nothing over 2 meters
worked. This could be improved with additional hardware such
as I2C range extenders. RS232, when connecting ESP-12 and
Arduino Uno was not able to connect over 20 meters. Every
other scenario tested got a 100% efficiency rate, including
LoRa and ZigBee for every distance.

V. CONCLUSIONS

In this paper the authors focused on comparing communica-
tion protocols, to choose the best for a set of scenarios using
low-cost devices, based on delay, data rate and efficiency.

Fig. 9. ZigBee Throughput vs Distance results

Fig. 10. LoRa Throughput vs Distance results

Concluding the communication research, RS232 is the better
choice when a wired protocol is needed and LoRa is a more
reliable choice for a wireless protocol mainly because of the
low complexity and cost needed and the fact that does not
interferes with WiFi. Another focus was choosing the best
devices for each node of the system, based on previous stated
characteristics and the communication tests done. With all
these results in mind, it is possible to say that the best suited
combination includes an Arduino Uno as an Sensor Node and
the ESP12 as the Aggregation Node. This last decision takes
place not only because it is a cheaper solution, not putting
in risk the reliability of the system, capable of sustaining the
node specifications but also due to the Raspberry Pi 3 extra
features, such as Internet browser, file systems and others, are
not needed for the system, it has a bigger power consumption
and the RS232 lines are also used in the system console,
meaning that some interference can exist.

ACKNOWLEDGMENT

This work was partially supported by the FCT - Fundação
para a Ciência e Tecnologia and Instituto de Telecomunicações
under project UID/EEA/50008/2013.

REFERENCES

[1] J. Gantz and D. Reinsel, “THE DIGITAL UNIVERSE IN 2020: Big
Data, Bigger Digital Shadows, and Biggest Growth in the Far East,”
IDC iView: IDC Anal. Future, vol. 2007, pp. 1–16, 2012.

Appendix C. Scientific Articles Published

102

[2] A. Ghosh, “Intelligent Appliances Controller Using Raspberry Pi
Through Android Application and Browser,” IEEE 7th Annual Infor-
mation Technology, Electronics and Mobile Communication Conference
(IEMCON), 2016.

[3] M. Banzi, Geting started with Arduino, 2nd ed., O’Reilly, Ed.
Make:Books, 2011.

[4] C. Bell, Beginning Sensor Networks with Arduino and Raspberry Pi,
1st ed., Apress, Ed. Apress, 2013.

[5] AI Thinker, “ESP-12E WiFi Module Datasheet,” 2015. [Online].
Available: https://mintbox.in/media/esp-12e.pdf

[6] A. Glória, F. Cercas, and N. Souto, “Design and implementation of
an IoT gateway to create smart environments,” The 8th International
Conference on Ambient Systems, Networks and Technologies (ANT
2017), 2017.

[7] F. Leens, “An introduction to I2C and SPI protocols,” IEEE Instrumen-
tation and Measurement Magazine, vol. 12, no. 1, pp. 8–13, 2009.

[8] A. Hafeez, N. H. Kandil, B. Al-Omar, T. Landolsi, and A. R. Al-Ali,
“Smart home area networks protocols within the smart grid context,”
Journal of Communications, vol. 9, no. 9, pp. 665–671, 2014.

[9] U. Nanda and S. K. Pattnaik, “Universal Asynchronous Receiver and
Transmitter (UART),” 3rd International Conference on Advanced Com-
puting and Communication Systems (ICACCS), pp. 22–23, 2016.

[10] L. Frenzel, “What’s The Difference Between The RS-
232 And RS-485 Serial Interfaces?” [Online]. Available:
http://ocwitic.epsem.upc.edu/assignatures/se/recursos/rs232-vs-rs485

[11] M. Sharma, N. Agarwal, and S. Reddy, “Design and Development of
Daughter Board for USB-UART Communication between Raspberry Pi
and PC,” International Conference on Computing, Communication &
Automation, 2015.

[12] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys and Tuto-
rials, 2015.

[13] N. S. Bhat, “Design and Implementation of IEEE 802.15.4 Mac Pro-
tocol on FPGA,” Innovative Conference on Embedded Systems, Mobile
Communication and Computing (ICEMC2), pp. 1–5, 2011.

[14] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A Comparative Study of Wireless
Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” IECON 2007 - 33rd
Annual Conference of the IEEE Industrial Electronics Society, 2007.

[15] LoRaTM Alliance, “LoRaWANTM Specification,”
2015. [Online]. Available: https://www.lora-
alliance.org/portals/0/specs/LoRaWANSpecification1R0.pdf

[16] LoRa R© Alliance Technical Marketing Workgroup, “LoRaWANTM What
is it? A technical overview of LoRa R© and LoRaWAN TM,” LoRa R©
Alliance, San Ramon, CA, White Paper, 2015.

Appendix C. Scientific Articles Published

103

Bibliography

[1] J. Gantz and D. Reinsel, “THE DIGITAL UNIVERSE IN 2020: Big Data,

Bigger Digital Shadows, and Biggest Growth in the Far East,” IDC iView:

IDC Anal. Future, vol. 2007, pp. 1–16, 2012.

[2] D. Evans, “The Internet of Things How the Next Evolution of the Internet Is

Changing Everything,” CISCO, San Jose, CA, USA, White Paper, 2011.

[3] S. Taylor, “The Next Generation of the Internet Revolutionizing the Way

We Work, Live, Play, and Learn,” CISCO, San Francisco, CA, USA, CISCO

Point of View, 2013.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of Things: A Survey on Enabling Technologies, Protocols, and Ap-

plications,” IEEE Communications Surveys and Tutorials, 2015.

[5] L. Atzori, A. Iera, G. Morabito, and A. Diee, “The Internet of Things : A

survey,” Computer Networksxxx, 2010.

[6] C. Bell, Beginning Sensor Networks with Arduino and Raspberry Pi, 1st ed.,

Apress, Ed. Apress, 2013.

[7] F. Leens, “An introduction to I2C and SPI protocols,” IEEE Instrumentation

and Measurement Magazine, vol. 12, no. 1, pp. 8–13, 2009.

[8] A. Hafeez, N. H. Kandil, B. Al-Omar, T. Landolsi, and A. R. Al-Ali, “Smart

home area networks protocols within the smart grid context,” Journal of

Communications, vol. 9, no. 9, pp. 665–671, 2014.

105

References

[9] U. Nanda and S. K. Pattnaik, “Universal Asynchronous Receiver and Trans-

mitter (UART),” 3rd International Conference on Advanced Computing and

Communication Systems (ICACCS), pp. 22–23, 2016.

[10] L. Frenzel, “What’s The Difference Between The RS-232 And RS-485 Serial

Interfaces?” [Online] Available: http://ocwitic.epsem.upc.edu/assignatures/

se/recursos/rs232-vs-rs485, (visited 09/12/2016).

[11] M. Sharma, N. Agarwal, and S. Reddy, “Design and Development of Daughter

Board for USB-UART Communication between Raspberry Pi and PC,” In-

ternational Conference on Computing, Communication & Automation, 2015.

[12] S. Kim, E. Y. Kwon, M. Kim, J. H. Cheon, S. H. Ju, Y. H. Lim, and M. S.

Choi, “A secure smart-metering protocol over power-line communication,”

IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2370–2379, 2011.

[13] E. Driscoll Jr., “The history of X10,” [Online] Available: http://home.planet.

nl/~lhendrix/x10_history.htm, (visited 20/06/2017).

[14] E. Ferro and F. Potortì, “Bluetooth and Wi-Fi wireless protocols: A survey

and a comparison,” IEEE Wireless Communications, vol. 12, no. 1, pp. 12–16,

2005.

[15] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A Comparative Study of Wireless

Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” IECON 2007 - 33rd Annual

Conference of the IEEE Industrial Electronics Society, 2007.

[16] LoRa R© Alliance Technical Marketing Workgroup, “LoRaWANTM What is it?

A technical overview of LoRa R© and LoRaWAN TM,” LoRa R© Alliance, San

Ramon, CA, White Paper, 2015.

[17] D. Locke, “MQ Telemetry Transport (MQTT) v3.1 protocol specifica-

tion,” 2010, [Online] Available: https://www.ibm.com/developerworks/

webservices/library/ws-mqtt/index.html, (visited 01/11/2016).

[18] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali, “Com-

parison of two lightweight protocols for smartphone-based sensing,” in IEEE

106

http://ocwitic.epsem.upc.edu/assignatures/se/recursos/rs232-vs-rs485
http://ocwitic.epsem.upc.edu/assignatures/se/recursos/rs232-vs-rs485
http://home.planet.nl/~lhendrix/x10_history.htm
http://home.planet.nl/~lhendrix/x10_history.htm
https://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html
https://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

References

SCVT 2013 - Proceedings of 20th IEEE Symposium on Communications and

Vehicular Technology in the BeNeLux, 2013.

[19] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, C. Keng, and Y. Tan, “Perfor-

mance Evaluation of MQTT and CoAP via a Common Middleware,” in IEEE

ISSNIP 2014 - 2014 IEEE 9th International Conference on Intelligent Sen-

sors, Sensor Networks and Information Processing, Conference Proceedings,

2014.

[20] A. Ghosh, “Intelligent Appliances Controller Using Raspberry Pi Through

Android Application and Browser,” IEEE 7th Annual Information Technol-

ogy, Electronics and Mobile Communication Conference (IEMCON), 2016.

[21] A. Nayyar and V. Puri, “A review of Arduino board’s, Lilypad’s and Arduino

shields,” 3rd International Conference on Computing for Sustainable Global

Development (INDIACom), 2016.

[22] Arduino, “Arduino - Introduction,” 2016, [Online] Available: https://www.

arduino.cc/en/Guide/Introduction, (visited 28/11/2016).

[23] A. Grygoruk and J. Legierski, “IoT gateway – implementation proposal based

on Arduino board,” Federated Conference on Computer Science and Informa-

tion Systems (FedCSIS), 2016.

[24] M. Banzi, Geting started with Arduino, 2nd ed., O’Reilly, Ed. Make:Books,

2011.

[25] ESP8266 Community Wiki, “Getting Started with ESP8266,” 2017,

[Online] Available: http://www.esp8266.com/wiki/doku.php?id=

getting-started-with-the-esp8266, (visited 24/05/2017).

[26] AI Thinker, “ESP-12E WiFi Module Datasheet,” 2015, [Online] Available:

https://mintbox.in/media/esp-12e.pdf, (visited 04/05/2017).

[27] BeagleBoard.org, “BeagleBoard.org - about,” 2016, [Online] Available: http:

//beagleboard.org/about, (visited 24/05/2017).

107

https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
http://www.esp8266.com/wiki/doku.php?id=getting-started-with-the-esp8266
http://www.esp8266.com/wiki/doku.php?id=getting-started-with-the-esp8266
https://mintbox.in/media/esp-12e.pdf
http://beagleboard.org/about
http://beagleboard.org/about

References

[28] N. Balani, “What Is the Intel R© Edison Module?” 2016, [Online] Available:

https://software.intel.com/en-us/articles/what-is-the-intel-edison-module,

(visited 24/05/2017).

[29] Arduino, “Arduino Uno,” 2016, [Online] Available: https://www.arduino.cc/

en/Main/ArduinoBoardUno, (visited 28/05/2017).

[30] ——, “Arduino Mega,” 2016, [Online] Available: https://www.arduino.cc/en/

Main/ArduinoBoardMega, (visited 28/05/2017).

[31] Raspberry Pi Foundation, “Raspberry Pi Zero W,” 2017, [Online] Available:

https://www.raspberrypi.org/products/pi-zero-w/, (visited 28/05/2017).

[32] ——, “Raspberry Pi 3 Model B,” 2016, [Online] Available: https://www.

raspberrypi.org/products/raspberry-pi-3-model-b, (visited 29/11/2016).

[33] L. Ada and Adafruit R©, “Overview | Adafruit HUZZAH ESP8266

breakout,” 2016, [Online] Available: https://learn.adafruit.com/

adafruit-huzzah-esp8266-breakout/overview, (visited 28/05/2017).

[34] Intel Corporation., “Product Brief Intel R© Edison,” 2015, [Online] Avail-

able: http://download.intel.com/support/edison/sb/edison_pb_331179002.

pdf, (visited 28/05/2017).

[35] C. L. Zhong, Z. Zhu, and R. G. Huang, “Study on the IOT architecture and

gateway technology,” in Proceedings - 14th International Symposium on Dis-

tributed Computing and Applications for Business, Engineering and Science,

DCABES 2015, 2016.

[36] R. Gerstendorf, “Ten platforms examined,” 2016, in Elektor Magazine, pp.

10-20, 9 2016.

[37] S. M. Kim, H. S. Choi, and W. S. Rhee, “IoT home gateway for auto-

configuration and management of MQTT devices,” in 2015 IEEE Conference

on Wireless Sensors, ICWiSE 2015, 2015.

108

https://software.intel.com/en-us/articles/what-is-the-intel-edison-module
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardMega
https://www.arduino.cc/en/Main/ArduinoBoardMega
https://www.raspberrypi.org/products/pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b
https://www.raspberrypi.org/products/raspberry-pi-3-model-b
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/overview
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/overview
http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf
http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf

References

[38] R. Balakrishnan, “IoT based Monitoring and Control System for Home

Automation,” Global Conference on Communication Technologies (GCCT),

2015.

[39] T. Zachariah, N. Klugman, B. Campbell, and et al., “The Internet of Things

Has a Gateway Problem,” in Proceedings of the 16th International Workshop

on Mobile Computing Systems and Applications (HotMobile ’15), 2015.

[40] S. Guoqiang, C. Yanming, Z. Chao, and Z. Yanxu, “Design and implemen-

tation of a smart IoT gateway,” in Proceedings - 2013 IEEE International

Conference on Green Computing and Communications and IEEE Internet of

Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-

CPSCom 2013, 2013.

[41] M. Dong, X. Zeng, S. Bi, and S. Guo, “Design and implementation of the

multi-channel RS485 IOT gateway,” in Proceedings - 2012 IEEE International

Conference on Cyber Technology in Automation, Control, and Intelligent Sys-

tems, CYBER 2012, 2012.

[42] E. Gioia, P. Passaro, and M. Petracca, “AMBER: an advanced gateway solu-

tion to support heterogeneous IoT technologies,” 24th International Confer-

ence on Software, Telecommunications and Computer Networks (SoftCOM),

2016.

[43] IFTTT, “Learn how IFTTT works,” [Online] Available: https://ifttt.com/,

(visited 10/12/2016).

[44] Amazon Web Services, “AWS IoT Platform,” [Online] Available: https://aws.

amazon.com/pt/iot-platform/, (visited 27/06/2017).

[45] myDevices, “Cayenne IoT Project Builder,” [Online] Available: https://

mydevices.com/, (visited 10/12/2016).

[46] Eclipse Foundation Inc., “Paho - Open Source messaging for M2M,” 2016,

[Online] Available: https://eclipse.org/paho/, (visited 22/07/2016).

109

https://ifttt.com/
https://aws.amazon.com/pt/iot-platform/
https://aws.amazon.com/pt/iot-platform/
https://mydevices.com/
https://mydevices.com/
https://eclipse.org/paho/

References

[47] OpenWeatherMap Inc., “Weather API - OpenWeatherMap,” 2016, [Online]

Available: http://openweathermap.org/api, (visited 27/11/2016).

[48] Eclipse Foundation Inc., “Mosquitto - An Open Source MQTT broker,” 2016,

[Online] Available: https://mosquitto.org/, (visited 15/07/2016).

[49] D. George, “MicroPython,” 2017, [Online] Available: https://micropython.

org/, (visited 01/05/2017).

[50] MicroPython, “umqtt library,” 2017, [Online] Available: https://

github.com/micropython/micropython-lib/tree/master/umqtt.simple, (vis-

ited 01/05/2017).

[51] Sunrom Technologies, “LDR Data Sheet,” 2008, [Online] Available: http://

igem.org/wiki/images/1/1a/File-T--Technion_Israel-Hardwarespecsldr.pdf,

(visited 26/12/2016).

[52] A. Glória, A. Marques, and D. Fernandes, “ISCTE Satellite Station,” 2016,

[Online] Available: https://goo.gl/EmREYc, (visited 06/06/2017).

110

http://openweathermap.org/api
https://mosquitto.org/
https://micropython.org/
https://micropython.org/
https://github.com/micropython/micropython-lib/tree/master/umqtt.simple
https://github.com/micropython/micropython-lib/tree/master/umqtt.simple
http://igem.org/wiki/images/1/1a/File-T--Technion_Israel-Hardwarespecsldr.pdf
http://igem.org/wiki/images/1/1a/File-T--Technion_Israel-Hardwarespecsldr.pdf
https://goo.gl/EmREYc

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Scientific Contribution
	1.3 Structure of the Dissertation

	2 State of the Art
	2.1 Internet of Things
	2.2 Sensor Networks
	2.3 Communication protocols
	2.3.1 Wired Network Technologies
	2.3.1.1 Serial Peripheral Interface
	2.3.1.2 Inter-Integrated Circuit
	2.3.1.3 Universal Asynchronous Receiver and Transmitter
	2.3.1.4 Power Line Communication

	2.3.2 Wireless Network Technologies
	2.3.2.1 IEEE 802.11 (Wi-Fi)
	2.3.2.2 IEEE 802.15.1 (Bluetooth)
	2.3.2.3 IEEE 802.15.4 (ZigBee)
	2.3.2.4 LoRaWAN

	2.3.3 Internet
	2.3.3.1 Message Queuing Telemetry Transport
	2.3.3.2 Constrained Application Protocol

	2.3.4 Remarks

	2.4 Controlling Platforms
	2.4.1 Arduino
	2.4.2 ESP8266
	2.4.3 Raspberry Pi
	2.4.4 BeagleBone
	2.4.5 Intel Edison
	2.4.6 Remarks

	2.5 Related Work
	2.5.1 IoT Gateway
	2.5.2 Visualization Platforms

	3 Communications Tests
	3.1 Server side communications
	3.1.1 Test Scenario
	3.1.2 Results

	3.2 Network side communications
	3.2.1 Setup Complexity
	3.2.2 Test Scenario
	3.2.3 Results

	3.3 Discussion

	4 System Architecture
	4.1 Software
	4.1.1 Visualization Platforms
	4.1.1.1 Monitoring and Control
	4.1.1.2 Rules
	4.1.1.3 Notifications
	4.1.1.4 Personal Area

	4.1.2 Support Scripts
	4.1.2.1 Visualization Platform
	4.1.2.2 Server
	4.1.2.3 Aggregation Node
	4.1.2.4 Sensor Node

	4.1.3 Network Security

	4.2 Hardware
	4.2.1 Sensor Node
	4.2.2 IoT Gateway

	5 Application Scenarios
	5.1 Implemented Environments
	5.1.1 Solar Panel Control
	5.1.1.1 Results

	5.1.2 Class Room Control
	5.1.2.1 Results

	5.1.3 Vertical Garden
	5.1.4 ISCTE Satellite Station
	5.1.4.1 Results

	5.2 Other Environments
	5.3 Discussion

	6 Conclusions
	6.1 Future Work

	Appendices
	A Communications Tests Assembly
	B Nodes Assembly
	C Scientific Articles Published
	Bibliography

