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Light Field Image Coding with Jointly Estimated  

Self-Similarity Bi-Prediction 

Caroline Conti*, Paulo Nunes, and Luís Ducla Soares 

Instituto Universitário de Lisboa (ISCTE–IUL), Instituto de Telecomunicações, Lisbon, Portugal 

 

Abstract 

This paper proposes an efficient light field image coding (LFC) solution based on High Efficiency Video Coding (HEVC) and a novel Bi-

prediction Self-Similarity (Bi-SS) estimation and compensation approach to efficiently explore the inherent non-local spatial correlation of 

this type of content, where two predictor blocks are jointly estimated from the same search window by using a locally optimal rate 

constrained algorithm. Moreover, a theoretical analysis of the proposed Bi-SS prediction is also presented, which shows that other non-local 

spatial prediction schemes proposed in literature are suboptimal in terms of Rate-Distortion (RD) performance and, for this reason, can be 

considered as restricted cases of the jointly estimated Bi-SS solution proposed here. These theoretical insights are shown to be consistent with 

the presented experimental results, and demonstrate that the proposed LFC scheme is able to outperform the benchmark solutions with 

significant gains with respect to HEVC (with up to 61.1 % of bit savings) and other state-of-the-art LFC solutions in the literature (with up 

16.9 % of bit savings). 
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1. Introduction 

Light Field (LF) imaging based on a single-tier camera equipped with a Microlens Array (MLA) – also known as 

holoscopic, plenoptic, and integral imaging – derives from the fundamentals of light field/radiance sampling [1], where not only 

the spatial information about the Three Dimensional (3D) scene is represented, but also the angular viewing direction, i.e., the 

“whole observable” scene. 

Recently, LF imaging has become a prospective imaging approach for providing richer content capture, visualization, and 

manipulation, being applicable in many different areas of research, e.g., 3D television [2,3], biometric recognition [4], and 

medical imaging [5]. Among the advantages of employing an LF imaging system is the enabling of new degrees of freedom in 

terms of content production and manipulation, thus supporting functionalities not straightforwardly available in conventional 

imaging systems, namely, post-production refocusing, changing depth-of-field, and changing viewing perspective. 

However, deploying LF image and video applications with its appealing functionalities will require the use of efficient 

coding schemes to deal with the large amount of data involved in such types of systems. In this context, novel initiatives on LF 

image and video coding standardization are also emerging. Notably, the Joint Photographic Experts Group (JPEG) committee 

has recently started the JPEG Pleno standardization initiative [6] that addresses representation and coding of emerging new 

imaging modalities. In addition, the Moving Picture Experts Group (MPEG) group has recently started a new work item on 

coded representations for immersive media (MPEG-I) [7]. 

1.1. Related Work 

Previous Light Field Coding (LFC) schemes available in the literature can be categorized in three main approaches: i) based 

on transform coding [8,9], ii) based on view extraction [10–17], and iii) based on non-local spatial prediction [18–22]. 

Generally, all coding schemes try to take advantage of the particular planar intensity distribution of the LF image. Notably, as a 

result of the used optical system, the raw LF image corresponds to a 2D array of Micro-Images (MIs), where both light 

intensity and direction information are recorded. 
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1.1.1. LFC Based on Transform Coding 

Most of the early proposed LFC schemes adopted the transform-based approach by using a Discrete Cosine Transform 

(DCT) or a Discrete Wavelet Transform (DWT). In [8], a 3D DCT was applied to a stack of MIs to exploit the existing 

correlation between adjacent MIs, as well as the redundancy within each MI. In [9], the LF content was separated into various 

viewpoint images by extracting one pixel with the same position from each MI and a 3D DWT was then applied to a stack of 

them. Afterwards, the lower frequency coefficients were transformed using a Two Dimensional (2D) DWT followed by 

arithmetic encoding, while the remaining high frequency coefficients were simply quantized and arithmetic encoded. Recently, 

it has been concluded in the literature that HEVC Main Still Image Profile [23] presents significant compression performance 

improvements in comparison to previous transform-based still image coding technologies [24,25] – such as JPEG (DCT-based) 

and JPEG 2000 (DWT-based) standards. Moreover, similar conclusions have been also reached for LF image coding, in 

[26,27], where HEVC presented significantly better performance than JPEG and JPEG 2000. 

1.1.2. LFC Based on View Extraction 

Alternatively, other schemes proposed to extract a set of views from the LF data for coding. In [10–15], MIs or Viewpoint 

Images (VIs) were extracted from the LF content in order to represent the LF data as a set of views and to use inter-view 

prediction for achieving compression. In [10,11], these views were then encoded as multiview content using Multiview Video 

Coding (MVC) [28]. Differently, in [12–15], the views were encoded as a Pseudo Video Sequence (PVS) using a 2D video 

coding standard, such as H.264/AVC [28], in [12], or High Efficiency Video Coding (HEVC) [23] in [13–15]. Although 

conceptually different (in terms of coding architecture), both multiview- and PVS-based coding approaches have the same basic 

purpose of proposing an efficient prediction configuration for better exploiting the correlations between the views. For this, 

different scanning patterns for ordering the views, as well as different prediction structures have been proposed. In [29], it was 

shown that the PVS-based coding solution outperformed a transform-based solution (similar to the LF coding solution proposed 

in [9]) with significant gains, notably, at lower bit rates. In addition, an alternative to the multiview representation based on 

these low resolution MIs/VIs was proposed in [16,17] using super-resolved rendered views. In this case, the scalable coding 

architecture proposed in [16] was used, which supported backward compatibility to legacy 2D and 3D multiview displays in the 

lower layer while the highest layer supports the entire LF content. In [17], the associated disparity information was also 

encoded and transmitted in the lower layers along with the set of views. 

1.1.3. LFC Based on Non-Local Spatial Prediction 

Schemes based on the non-local spatial predictive approach rely on a non-local prediction techniques that exploit the 

existing redundancy between MIs in a (spatial) neighborhood to encode the entire raw LF image, being usually integrated (but 

not necessarily so) on a standard 2D image codec. The idea of exploiting non-local spatial redundancy has been firstly proposed 

for 2D image and video compression in order to further enhance the performance of H.264/AVC intra prediction [30]. Notably, 

the intra macroblock compensation technique was proposed in [30] to extend the usage of motion compensated prediction for 

intra-coded frames. 

In the context of LF content coding, previous work of the authors [18,19] showed that further improvements are still possible 

for LF images with respect to the state-of-the-art for 2D image coding using the HEVC Main Still Picture profile [24,25,31] by 

using the concept of Self-Similarity (SS) compensated prediction. Similar to the intra macroblock compensation [30], the SS 

estimation process uses a block-based matching over the previously coded and reconstructed area of the current picture 

(referred to as SS reference [18]), to find the ‘best’ predictor for the current block. As a result, the chosen block becomes the 

candidate predictor and the relative position between the two blocks is signaled by an SS vector. In [19], a novel vector 

prediction scheme was also proposed to take advantage of the particular characteristics of the SS prediction data and thus 

increase coding efficiency. Subsequently, in [20], a scheme to extend the SS prediction concept by using HEVC inter B frame 

bi-prediction was proposed for LF image coding. However, in this case, to guarantee that the two prediction signals came from 

two different MIs, the search area was proposed to be separated into two non-overlapping parts [20] to perform the prediction 

estimation as in conventional HEVC bi-prediction. Although not targeting LF image coding, another prediction scheme similar 

to the SS compensated prediction, known as Intra Block Copy (IntraBC) [32], has been recently proposed in the literature in the 

context of Screen Content Coding (SCC) [32]. In this case [32], the prediction estimation is performed considering only integer 

pixel accuracy and the search window is expanded to the entire CB row or column, or to the entire previously coded area of the 

picture by using a hash-based search [32]. 

Furthermore, instead of using a block-based matching approach, an alternative prediction scheme based on locally linear 

embedding was proposed in [21], where a set of nearest neighbor patches were estimated from the same search area and 

linearly combined to predict the current block. More recently, in [22], a prediction scheme based on Gaussian Process 
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Regression (GPR) was also proposed for LF image coding. In this case, two separate search areas are adopted for finding a set 

of nearest neighbor patches and the prediction is modeled as a non-linear (Gaussian) process for estimating the predictor block. 

1.2. Motivations and Contributions 

Motivated by the authors’ results in [18,19,21], this paper proposes an improved LF image coding solution based on HEVC 

and a novel Bi-predicted Self-Similarity (Bi-SS) estimation approach using the generic concept of superimposed prediction 

[33], which allows bi-prediction using samples from the same search area. Therefore, instead of dividing the search are into two 

non-overlapping parts to derive each predictor block from different MIs (as in [20]), these predictor blocks can be located in the 

same MI and in overlapped pixel positions. Moreover, instead of simply combining the two (independent) best uni-predicted 

candidate predictor blocks for bi-prediction (as in [20]), the locally optimal rate-constrained algorithm [34] is used for jointly 

estimating these two predictor blocks. 

In addition to this, a theoretical analysis of the proposed Bi-SS prediction is also presented, which shows that other non-local 

spatial prediction schemes – such as the IntraBC [32], the preceding uni-predicted SS solution in [19], and the bi-prediction 

proposed in [20] – are suboptimal in terms of Rate-Distortion (RD) performance and, for this reason, can be considered as 

restricted cases of the jointly estimated Bi-SS solution proposed here. Furthermore, studies about the influence of the MI cross-

correlation and the weighting factors used for bi-prediction on the RD efficiency of the Bi-SS prediction are also presented to 

experimentally validate the theoretical assumptions used for LF image coding. 

Experimental results show that the proposed LFC solution using the jointly estimated Bi-SS prediction – from now on 

referred to as LFC Bi-SS solution – is able to outperform with significant coding gains various state-of-the-art LFC solutions 

based on different non-local special predictions. 

1.3. Paper Outline 

The remainder of the paper is organized as follows: Section 2 describes the proposed LFC Bi-SS solution architecture; 

Section 3 proposes the jointly estimated Bi-SS prediction and presents the theoretical and experimental analyses of its 

prediction efficiency improvement for LF image coding; Section 4 presents the test conditions and experimental results; and, 

finally, Section 5 concludes the paper. 

2.  LFC Bi-SS Solution Architecture 

The proposed LFC Bi-SS solution is not tuned for any particular optical acquisition setup since it does not require any 

explicit knowledge about it (e.g., microlens size, focal length, and distance of the microlenses to the image sensor). Notice that, 

although these parameters may be provided by camera makers, many of them are highly dependent on the manufacturing 

process, being different even from camera to camera of the same model (e.g., each microlens may vary slightly in shape, size, 

and relative layout position). This means that the LF content from each specific LF camera is also different, and compression 

tools that use this kind of information need to be robust to these variations. For this reason, using compression tools that are less 

dependent on a very precise calibration pre-process may be advantageous for supporting LF visualization without increasing the 

processing complexity. 

In this sense, this LFC Bi-SS solution may be mainly advantageous for applications in which the LF content is consumed by 

the end user in a format similar to the captured format, as for example, in the case in which the captured LF content is 

visualized in an LF display that also makes use of an MLA in its optical system, or is consumed by using a proprietary LF 

rendering algorithm that makes used of the same (raw) 2D format. In this scenario, the captured LF image can be encoded with 

the proposed LFC Bi-SS solution and may be then transmitted to a receiver over heterogeneous networks. Alternatively, this 

LFC solution may be also advantageous for improving the storage compression efficiency. The proposed solution is also 

advantageous in terms of the encoder/decoder computational complexity and necessary memory, which are no larger than that 

of HEVC inter B frame coding. Detailed information about HEVC computational complexity can be found in [19]. 

Fig. 1 presents the architecture of the proposed LFC Bi-SS solution, which is based on HEVC and comprises both additional 

and modified modules to efficiently handle LF content. Basically, the proposed codec introduces an additional type of 

prediction – the Bi-SS – and the encoder will choose the best, among Bi-SS and HEVC intra prediction, based on a 

conventional Rate-Distortion Optimization (RDO) process. 
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More specifically, enhancing the HEVC coding architecture with Bi-SS compensated prediction requires adaptations at the 

following stages of the coding process (as explained in the following): i) SS estimation; ii) prediction modes and block 

partitioning; iii) Bi-SS compensation; iv) Bi-SS vector prediction; and v) reference picture management. 

2.1. Bi-SS Estimation 

The Bi-SS estimation (depicted in Fig. 1) is used to exploit the cross-correlation existing in an MI neighborhood (see Fig. 

2a) by estimating the prediction block with the highest similarity (according to appropriate criteria) to the current block in the 

previously coded and reconstructed area of the current picture itself (the SS reference, as seen in Fig. 2b). Hence, the relative 

position between the current and the ‘best’ candidate block is signaled by an SS vector, 𝒗0, (see Fig. 2b). Similarly to the 

conventional HEVC inter P frame prediction, the best SS vector, 𝒗0
𝑏𝑒𝑠𝑡 , for the SS prediction can be found by minimizing the 

Lagrangian cost function in (1) [35], 

 𝐽𝑈𝑛𝑖−𝑆𝑆 = min
𝒗0

‖𝐼(𝒙) − 𝐼(𝒙 − 𝒗0)‖
1

+ 𝜆 𝑅(𝒗0) (1)  

where 𝐼(𝒙) is a matrix variable representing the current block at position 𝒙 = (𝑥, 𝑦) in the LF image; Ĩ(𝒙 − 𝒗0) represents a 

candidate block in the SS reference, Ĩ, with 𝒙 − 𝒗0 ∈ 𝐖 (see Fig. 2b); 𝑅(𝒗0) corresponds to an estimated number of bits for 

encoding the SS vector 𝒗0 (i.e., the estimated number of bits necessary to encode the motion vector difference between 𝒗0 and 

its predictor, selected as shown in Section 2.4); and 𝜆 is the Lagrangian multiplier. In addition, to keep the complexity low, the 

l1-norm (or Sum of Absolute Differences (SAD)), ‖ ‖1, is used and a limited causal search window W is adopted. However, it 

is worth noting that the search area shall be larger than the MI size to be able to exploit the inherent MI cross-correlations. 

Finally, the SS predictor block, 𝐼(𝒙), is derived as Ĩ(𝒙 − 𝒗0
𝑏𝑒𝑠𝑡). As done in HEVC reference software version 14.0 [36], when 

SAD is used as the distortion measure, 𝜆 is given by √𝜆𝐼𝑛𝑡𝑟𝑎, where 𝜆𝐼𝑛𝑡𝑟𝑎 is the Lagrangian multiplier computed for prediction 

mode selection in intra-coded frames. 

Notice that the SS estimation process in (1) only considers a single compensated signal for prediction of the current block, as 

previously proposed by the authors in [19], and for this reason will be hereinafter referred to as Uni-predicted Self-Similarity 

(Uni-SS) estimation. Moreover, further improvements to this estimation process will be proposed in Section 3 for allowing 

jointly estimated Bi-SS prediction. 

2.2. Prediction Modes and Block Partitioning 

The Bi-SS prediction is evaluated for all Coding Block (CB) sizes (i.e., from 64×64 down to 8×8) in the conventional RDO 

process to choose the best prediction mode. For this, the proposed Bi-SS method defines the following two additional 

prediction modes: 

• Bi-SS mode – In this case, Bi-SS estimation (see Fig. 1) is used to find a prediction for encoding the current block. As 

in HEVC inter coding, the eight partition patterns, i.e., M×M, M×(M/2), (M/2)×M, (M/2)×(M/2), M×(M/4), M×(3M/4), 

(M/4)×M, and (3M/4)×M [37], are allowed to define a flexible way to partition the CB for the Bi-SS estimation process 

in Fig. 2b.  

 
Fig. 1 Coding architecture of the proposed LFC Bi-SS solution based on HEVC (the novel and modified blocks are highlighted in blue). The HEVC blocks for 

motion estimation and compensation are here omitted since temporal prediction is not used in the proposed light field image coding solution. 
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• SS-skip mode – The SS-skip is employed only for the M×M partition pattern, and, in this case, the SS vector is directly 

derived from the Bi-SS vectors prediction presented Section 2.4, and no further information is transmitted. 

2.3. Bi-SS Compensation 

In this process (shown in Fig. 1), the inverse quantized and inverse transformed causal residual block is added to the 

prediction block to obtain the reconstructed block. The SS reference is then updated (for each CB) by including this 

reconstructed block as it will be available at the decoder side. 

2.4. Bi-SS Vectors Prediction 

In conventional video coding solutions, since neighboring motion vectors are likely to be correlated, they are usually 

predictively coded based on motion vectors of neighboring blocks. Regarding HEVC [23], this predictive coding of motion 

vectors was improved, relatively to previous video coding standards, by introducing a tool called Advanced Motion Vector 

Prediction (AMVP). Furthermore, an HEVC technique called merge mode is used to derive all motion data of a block (i.e., 

motion vectors and indices of the used reference pictures) from the neighboring blocks, replacing the direct and skip modes of 

the previous H.264/AVC standard. In these methods, a vector candidate (or merge candidate) list is built by selecting vectors 

from CBs in the spatial and temporal (co-located) neighborhood [37]. From these spatio-temporal candidates, the encoder 

selects the best predictor vector in an RDO sense, and transmits only the index of the chosen candidate in this list. 

In addition to this, a set of new SS candidate vectors proposed in [19], referred to as MI-based vector prediction (MIVP) 

candidate vectors, is also included into AMVP and merge candidate lists to further improve the RD performance. As explained 

in [19], up to three MI-based candidate vectors (i.e., left, above, and above-left) are computed to force the candidate vectors to 

be distributed according to the structure of MIs. A detailed description of the MIVP candidate vectors selection is given in [19]. 

Regarding the proposed Bi-SS mode, if bi-prediction is used, two predictor vectors are derived from the AMVP method (one 

for each estimated SS vector) and the difference between the two SS estimated vectors and the corresponding predictor vectors 

are transmitted along with the indices of the chosen candidates in the list. In this case, the AMVP candidate list is constructed 

with the following candidates (for intra-coded frames): 

• Spatial AMVP vector candidates – Up to two spatial vector candidates are derived from a set of five spatial 

neighboring CBs that were previously coded with Bi-SS mode. The position of these neighboring CBs are defined in 

HEVC standard [23]. 

• MI-based vector candidate – When less than two spatial vector candidates are available, one MI-based vector 

candidate is derived from the set of left, above, and above-left defined in MIVP. 

• Zero vector candidates – Afterwards, zero vectors are added to fill, when necessary, the AMVP candidate list with up 

to two final candidates (as in HEVC [23]). 

In the case of the SS-skip mode, bi-predicted merge candidates may be derived from the following merge candidate list: 

• Spatial merge vector candidates – Up to four spatial candidates from the set of five [23] neighboring CBs that were 

coded with Bi-SS mode are included. 

• MI-based vector candidates – The maximum size of the merge candidate list is signaled in the slice header syntax 

(being equal to five as defined by default in HEVC standard [23]). After selecting the spatial candidates, up to three 

MIVP merge candidates are included into the merge candidate list until the maximum number of candidates is reached. 

  

 

(a) (b) (c) 

Fig. 2 SS prediction: (a) inherent MI cross-correlation in a light field image neighborhood; (b) Bi-SS estimation process (example of a second candidate block 
and SS vector for bi-prediction is shown in dashed blue line); and (c) Heat map showing the SS vectors distribution when coding an LF image 
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• Additional merge candidates – Furthermore, if the merge candidate list is still not fully populated, bi-predicted 

candidates can also be derived by combining two existing candidates from different reference picture lists. When the list 

is still not full, zero motion candidates are included to complete the list. 

An analysis of the influence of this MIVP scheme in the RD performance achieved by the Bi-SS prediction is presented in 

Section 3.5. 

2.5. Reference Picture Management 

To allow the Bi-SS estimation and Bi-SS compensation in intra-coded frames of HEVC, the reference lists construction and 

signaling need to be altered so as to include the SS reference. This process is similar to the temporal lists construction on 

HEVC inter-coded frames, and is managed by the general coder control block in Fig. 1 by using the concept of Reference 

Picture Set (RPS), which is signaled for each slice [37]. For this, the SS reference is made available at the decoded picture 

buffer (see Fig. 1) and marked to be used as a reference. 

3.  Proposed Jointly Estimated Bi-SS Compensated Prediction 

To further improve the performance of the proposed Uni-SS LFC solution [19], a novel jointly estimated Bi-SS estimation 

and compensation scheme, which is based on the generic concept of superimposed prediction [33], is here proposed to replace 

the aforementioned Uni-SS estimation and compensation processes. 

To motivate the adoption of this Bi-SS prediction in the LFC solution presented in Section 2, a theoretical analysis is firstly 

presented, which shows that other non-local spatial prediction schemes – such as the IntraBC [32], the preceding Uni-SS 

prediction presented in Section 2.1, and the solution for bi-prediction proposed in [20] – can be considered as restricted cases of 

the Bi-SS solution proposed here. Then, the Bi-SS candidate predictor estimation is proposed in Section 3.2 and the theoretical 

assumptions for its improved RD efficiency are experimentally analyzed in Sections 3.3 and 3.4, respectively, in terms the MI 

cross-correlation in LF images and in terms of the weighting factor used in the bi-prediction. Finally, the influence of the MIVP 

in the RD performance achieved for Bi-SS prediction is also analyzed in Section 3.5. 

3.1. Theoretical Bi-SS Performance Analysis 

The RD performance improvement due to the adoption of the jointly estimated Bi-SS prediction (presented in more detail in 

the following section) is based on three main hypotheses, which will be analyzed in this section: 

1) With a large enough search window, 𝐖, (see Fig. 2b), it is possible to find two predictor blocks that properly represent 

the current block, 𝐼(𝒙), i.e., with low residual signal. 

2) By combining two good predictor blocks, it is possible to further minimize the residual signal of the SS compensated 

prediction, compared to only using the uni-predicted SS candidate (as in the Uni-SS prediction [19] and in the IntraBC 

scheme [32]). 

3) Jointly estimating the predictor blocks leads to better RD performance than deriving them independently (as in reference 

software for HEVC inter B frame coding [36] and in the bi-prediction solution proposed in [20]). 

For this analysis, the performance of the proposed Bi-SS prediction is here modeled by the uncertainty [35] (or inaccuracy 

[33,38]) in the SS compensated prediction signal. 

Regarding the first abovementioned hypothesis, it is valid due to the following facts: 

• Given the small baseline between adjacent microlenses in the acquisition process, a significant cross-correlation exists 

between neighboring MIs, as shown by the autocorrelation function in Fig. 2a. It can be seen (Fig. 2a) that the 

autocorrelation function presents a regular structure of spikes and the constant distance between these regular spikes 

corresponds to the MI spacing in the array [19]. Since these highly-correlated samples are distributed along the MIs, it is 

likely that similarly good predictor blocks will be also distributed accordingly. 

• It was shown in [19] that, when using the SS compensated prediction scheme for exploiting the inherent MI cross-

correlation, the distribution of the chosen SS vectors is also related to the size and arrangement of the MIs in the MLA. 

This can be illustrated by the heat map in Fig. 2c, where brighter areas correspond to more frequent SS vector 

amplitudes. Hence, since these most frequent best uni-predicted SS vectors are distributed in all directions according to 

the MI arrangement, it is possible to consider that the second-best SS vector, which can also represent the current block 

properly, is likely to be found according to this distribution in a different direction. 
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Regarding the second and third hypotheses, the residual signal for the Bi-SS compensated prediction is given by (2), 

 𝑒(𝒙) = 𝐼(𝒙) − ∑ ℎ𝑝(𝒙) ∙ 𝐼(𝒙 − 𝒗𝑝)
1

𝑝=0
 (2)  

where 𝒙 − 𝒗𝑝 ∈ 𝑾, and ℎ𝑝 is the weight for each of these predictor blocks. For instance, for the bi-predicted SS candidate 

predictor proposed in Section 3.2, ℎ𝑝 = 1 2⁄ , ∀𝑝 ∈ {0,1}. However, as discussed in [35], the residual signal given by (2) can be 

actually generalized as in (3) for 𝑁 predictor blocks. 

 𝑒(𝒙) = 𝐼(𝒙) − ∑ ℎ𝑝(𝒙) ∙ 𝐼(𝒙 − 𝒗𝑝)
𝑁−1

𝑝=0
 (3)  

The general case represented by (3) can also incorporate other types of candidate predictors reflecting the very flexible set of 

inter coding tools of HEVC [23]. In this case, 𝒉 = (ℎ0, ℎ1, … , ℎ𝑁−1) corresponds to a weight vector that is able to, for example, 

incorporate [35]: i) the filtering used to generate the quarter-pixel interpolated signal in the SS estimation; and ii) the 

deblocking filter that can be applied in the SS reference. Each 𝐼𝑝(𝒙) = 𝐼(𝒙 − 𝒗𝑝) term can be interpreted as each of the 

multiple compensated signals available for prediction of the current block. Hence, the uncertainty in a given Bi-SS 

compensated prediction can be modeled, as in [35], by an a posteriori probability density function, ℎ𝑝(𝒙), conditioned on the 

encoded data. Therefore, since the expected value (the second term on the right-hand side of (3)) is the estimator that minimizes 

the mean-square error in the prediction of a random variable [35], it is possible to say that the residual signal in (3) can be 

minimized and, consequently, the accuracy of the prediction can be improved by using a larger set of multiple compensated 

signals and an optimized weight vector [35]. 

In addition, another possibility is to analyze the performance of the Bi-SS compensated prediction by modeling the 

inaccuracy of each used displacement vector 𝒗𝑝, as in [33,38]. For this, Fig. 2b shows that although the pixel correlation in the 

raw LF image is not as smooth as in conventional 2D images, each MI itself has some degree of inter-pixel redundancy as in 

common 2D images (see Fig. 2b). Thus, it is possible to consider that samples inside each MI follow the same correlation 

model as samples in a 2D image (i.e., an isotropic exponentially decaying autocorrelation function). This assumption is 

reasonable at least for blocks 𝐼(𝒙)  smaller than the MI resolution, and has been also adopted in [20,39] for LF images. With 

this assumption, the accuracy of the SS compensation can be measured by the displacement error variance [38], and the same 

signal model used in [33,38] can also be considered for the SS compensated prediction signal. In this case [33,38], 𝒉 denotes a 

row vector of impulse responses (ℎ0, ℎ1, … , ℎ𝑁−1) of a 2D prediction filter [38], and the residual signal is given by (4), 

 𝑒(𝒙) = 𝐼(𝒙) − 𝒉(𝒙) ∗ �̃�(𝒙) (4)  

where the second term on the right-hand side of the equation denotes a 2D convolution of the prediction filter 𝒉 with a column 

vector of 𝑁 multiple compensated signals �̃� =  (𝐼0, 𝐼1, … , 𝐼𝑁−1)𝑇. In this model, both 𝐼 and each component of �̃� are assumed to 

be wide sense stationary random processes with an additive Gaussian noise signal. Hence, these noisy signals may comprise all 

signal components of the SS compensated prediction that cannot be described by the translational displacement model [38]. 

Based on the abovementioned approximations, the conclusions from [33,38] also hold for validating the second and third 

hypotheses. Notably, with high rate assumptions: 

• Concerning the second hypothesis, the optimal filter 𝒉 (i.e., that minimizes the mean square error) can be interpreted as 

a low pass filter that removes high frequency components from �̃� that are too noisy or that change too rapidly [38]. From 

the theoretical analysis in [38], it was concluded that increasing the number of equally good predictor blocks always led 

to bitrate savings compared to a more limited set of predictor blocks, even if the simple average filter is used, instead of 

considering an optimal filter 𝒉 in (4). Therefore, this suggests that increasing from one predictor block (in the 

previously proposed Uni-SS prediction [19]) to two predictor blocks (in the Bi-SS prediction proposed here) minimizes 

the residual signal in the SS compensated prediction. 

• Concerning the third hypothesis, an extended analysis was performed in [33] for the case where the multiple 

compensated samples of �̃� are jointly estimated. In this case, the displacement error of all components of �̃� are assumed 

to be correlated, instead of being independent as assumed in [38]. Moreover, this analysis considered the simple average 

filtering case as for the proposed Bi-SS. Therefore, it was shown that a combination of two jointly estimated predictor 

blocks is more efficient than two independent predictor blocks [33]. Furthermore, it was concluded that, for jointly 

estimated predictors, the major portion of the gain is already achievable by only two predictor blocks [33]. This suggests 

that further RD gains can be achieved by jointly estimating the two predictor blocks for bi-prediction compared to 
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simply combining two best uni-predicted candidates (as in the HEVC reference software inter B frame coding [23] and 

in bi-predicted solution proposed in [20]). 

Therefore, without loss of generality, the IntraBC scheme in [32], and the previously proposed LFC solutions in [19,20] can 

be seen as restricted cases of the Bi-SS solution being proposed here. In these cases [19,20,32], restrictions are imposed in the 

number of predictor blocks, the number of allowed partition patterns and sizes, and in the bi-prediction estimation process for 

each predictor block that is independently employed in different areas of the SS reference. 

As it will be seen in Section 4, the theoretical insights from this section for the proposed Bi-SS solution are supported by the 

experimental results for LF images. Moreover, to extend the conclusions from this analysis, Section 3.4 also analyzes the RD 

performance for LF image coding when using different sets of weighting coefficients for Bi-SS prediction. 

3.2. Bi-SS Candidate Predictors Estimation 

Motivated by the theoretical analysis presented above, the proposed Bi-SS prediction is here presented, which is based on 

the generic concept of superimposed prediction [33]. 

More specifically, there is only a single reference picture available in the Bi-SS compensated prediction, i.e., the SS 

reference [18], and only two possible candidate predictors (instead of the three candidates of HEVC [23] that are used in [20]) 

are derived to predict the current block, namely: i) the Uni-SS candidate, and ii) the Bi-SS candidate. 

The Uni-SS candidate predictor corresponds to the previously proposed SS prediction [19] (see Section 2.1), in which the 

predictor block is found by minimizing the Lagrangian cost function in (1). 

The proposed Bi-SS candidate predictor differs from the HEVC reference software inter B frame bi-prediction, as well as 

from the bi-predicted solution in [20], for two main reasons: 

1) The two predictor blocks in the Bi-SS solution are derived from the same reference picture (the SS reference) and are 

estimated in the same search window, 𝐖 (see Fig. 2b). Consequently, they can be located in the same MI (different to 

[20]) and in overlapped pixel positions (as illustrated by the dashed blue lines in Fig. 2b). 

2) To further improve the prediction efficiency, these two predictor blocks are jointly estimated in the complete search 

window (as explained below), instead of combining two best uni-predicted candidates (as in [20]). 

For jointly estimating the two predictor blocks, the locally optimal rate-constrained algorithm proposed in [34] (see Fig. 3) is 

used. This algorithm avoids searching through all possible combinations of two candidate predictor blocks 𝐼(𝒙 − 𝒗0) and 

𝐼(𝒙 − 𝒗1) inside 𝐖. For this, in each algorithm iteration, 𝑘, an optimal SS candidate vector 𝒗𝑞
(𝑘+1)

 (with index 𝑞 ∈ {0,1}) is 

found by minimizing the Lagrangian cost function conditioned to the optimal SS candidate vector found in the previous 

iteration 𝒗𝑝
(𝑘)

 (with 𝑝 ∈ {0,1}). Therefore, the algorithm is focused on finding an optimized vector 𝒗1 conditioned to a known 

vector 𝒗0 in even iterations, and vice versa in odd iterations. For instance, in the first iteration, 𝑘 = 0, 𝑝 = 0, 𝑞 = 1, and the 

optimal 𝒗1
(1)

 is found by fixing 𝒗0
(0)

= 𝒗0
𝑏𝑒𝑠𝑡  (the best uni-predicted SS candidate vector). Similarly, in the second iteration, 𝑘 =

1, 𝑝 = 1, 𝑞 = 0, and the optimal 𝒗0
(2)

 is found by fixing 𝒗1
(1)

 (which was found in the previous iteration). Similarly to (1), the 

Lagrangian cost function show in Fig. 3 is used to find the optimal SS vector in each iteration, where 𝜆 is computed as √𝜆𝐼𝑛𝑡𝑟𝑎 

[36] and 𝑅(𝒗𝑞
(𝑘+1)

) + 𝑅(𝒗𝑝
(𝑘)

) corresponds to the estimated number of bits for encoding the SS vectors 𝒗0 and 𝒗1 given in each 

Initialization:    𝑘 = 0,     ℎ0 = ℎ1 = 1/2,     𝑣0
(𝑘)

= 𝑣0
𝑏𝑒𝑠𝑡,    𝐽𝐵𝑖−𝑆𝑆 = 𝐽𝑀𝐴𝑋 

   do 

        𝐽𝐵𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡 = 𝐽 

        𝑝 = (𝑘)mod(2), 𝑞 = 1 − 𝑝 

         𝐽𝐵𝑖−𝑆𝑆 = ‖𝐼(𝒙) − [ℎ𝑞 ∙ 𝐼(𝒙 − 𝒗𝑞
(𝑘+1)

) + ℎ𝑝 ∙ 𝐼(𝒙 − 𝒗𝑝
(𝑘)

)]‖
1

+ 𝜆[𝑅(𝒗𝑞
(𝑘+1)

) + 𝑅(𝒗𝑝
(𝑘)

)] 

        𝒗𝑞
(𝑘+1)

= arg min
𝒗𝑞

(𝑘+1)
  𝐽𝐵𝑖−𝑆𝑆 

        𝑘 = 𝑘 + 1 

    while 𝑘 ≠ 𝐾 or 𝐽𝐵𝑖−𝑆𝑆 < 𝐽𝐵𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡  

Fig. 3 Algorithm for jointly estimating the two predictor blocks 𝐼(𝒙 − 𝒗0) and 𝐼(𝒙 − 𝒗1) for the proposed Bi-SS candidate predictor. The index 𝑞 defines 

which of the two vectors (𝒗0 or 𝒗1) will be optimized in a particular iteration 𝑘, while the index 𝑝 defines the vector that will be kept fixed. 
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iteration, i.e., the estimated number of bits necessary to encode the motion vector difference between the SS vectors and their 

predictor vectors and for signaling the vector predictor using AMVP. 

The maximum number of iterations, 𝐾, defines a tradeoff between complexity and RD performance and can be adjusted 

according to the system constraints. In this work, 𝐾 = 2 and, consequently, the corresponding complexity is similar to that of 

HEVC inter B-frame with one active reference in each reference picture list. 

Finally, the best prediction between Uni-SS and Bi-SS candidates is also chosen in terms of conventional RDO [35] by 

comparing the associated Lagrangian costs 𝐽𝑈𝑛𝑖−𝑆𝑆
𝑏𝑒𝑠𝑡  and 𝐽𝐵𝑖−𝑆𝑆

𝑏𝑒𝑠𝑡 , respectively found in (1) and Fig. 3. 

3.3. Bi-SS Prediction Analysis for Different MI Cross-Correlation 

This section aims at analyzing how close the theoretical conclusions drawn in [33,38] and the approximations considered in 

Section 3.1 are to the experimental results when using the proposed Bi-SS prediction for LF image coding. More specifically, 

this analysis focuses on the influence of the MI cross-correlation, inherently present in LF images, in the performance of the Bi-

SS prediction proposed in Section 3.2. For this, Tables 1 and 2 summarize some statistics of relevant results when encoding 

different LF test images (see Section 4), such as: percentages of prediction mode usage, SS bi-prediction usage, and coding 

block size (CBS) usage. These statistics are shown for higher bitrates in Table 1 (corresponding to quantization parameter value 

22) and for lower bitrates in Table 2 (corresponding to quantization parameter value 42). In addition, some RD results 

comparing Uni-SS and Bi-SS prediction are presented using the Bjøntegaard delta (BD) [42] metrics, i.e., in terms of the luma 

PSNR of the LF image and the corresponding bitrate (BR) in terms of bits per pixel (bpp) for four different Quantization 

Parameter (QP) values. In this case, the sets of QP values {22, 27, 32, 37} and {27, 32, 37, 42} were considered for analyzing 

the performance, respectively, for high and low bitrates. 

For better analyzing these results, two different situations where the MI cross-correlation is differently distributed in a 

neighborhood are considered (corresponding to the highlighted values in Tables 1 and 2). For the first situation, a second frame 

Table 2 Influence of MI cross-correlation in mode selection statistics and RD performance for low bitrate 

Image 
Prediction Modes Statistics SS Prediction Statistics CBS Statistics 

LFC Bi-SS vs. 

LFC Uni-SS 

Intra SS SS-skip Uni-Prediction Bi-Prediction 64×64 32×32 16×16 8×8 BD-PSNR BD-BR 

Plane and Toy (frame 123) 30.5 % 46.2 % 23.3 % 87.1 % 12.9 % 0.1% 3.9 % 22.3 % 73.7 % 0.3 dB -4.9 % 

Plane and Toy (frame 23) 43.7 % 30.5 % 25.8 % 75.0 % 25.0 % 0.6 % 14.9 % 32.4 % 52.1 % 0.4 dB -6.5 % 

Demichelis Spark 18.2 % 46.1 % 35.7 % 61.1 % 38.9 % 8.5 % 40.0 % 33.0 % 18.5 % 0.7 dB -17.3 % 
Laura 22.5 % 45.1 % 32.4 % 74.1 % 25.9 % 0.1 % 11.0 % 36.0 % 52.9 % 0.5 dB -9.5 % 

Jeff 21.0 % 38.7 % 40.3 % 76.8 % 23.2 % 1.1 % 18.5 % 40.5 % 39.9 % 0.4 dB -8.8 % 

Seagull 15.9 % 36.5 % 47.6 % 81.0 % 19.0 % 0.7 % 20.5 % 39.6 % 39.2 % 0.6 dB -13.8 % 
Zhengyun1 22.0 % 34.8 % 43.3 % 78.4 % 21.6 % 0.9 % 19.7 % 42.7 % 36.6 % 0.4 dB -9.1 % 

Flowers 75.7 % 18.7 % 5.5 % 62.5 % 37.5 % 12.3 % 43.9 % 17.0 % 26.8 % 0.1 dB -3.4 % 

Vespa 47.0 % 29.4 % 23.6 % 41.1 % 58.9 % 31.6 % 40.8 % 15.1 % 12.5 % 0.5 dB -20.6 % 
Ankylosaurus_&_Diplodocus_1 45.7 % 16.6 % 37.8 % 59.8 % 40.2 % 51.5 % 30.5 % 10.8 % 7.1 % 0.5 dB -33.6 % 

Fountain_&_Vincent_2 40.7 % 40.4 % 18.9 % 40.7 % 59.3 % 17.8 % 39.9 % 18.5 % 23.7 % 0.6 dB -16.4 % 

Color_Chart_1 26.4 % 33.6 % 40.0 % 26.1 % 73.9 % 40.7 % 33.9 % 13.6 % 11.8 % 0.3 dB -15.0 % 
ISO_Chart_12 46.9 % 31.5 % 21.6 % 40.2 % 59.8 % 25.2 % 45.3 % 21.2 % 8.3 % 0.6 dB -20.8 % 

 

Table 1 Influence of MI cross-correlation in mode selection statistics and RD performance for high bitrate  

Image 
Prediction Modes Statistics SS Prediction Statistics CBS Statistics 

LFC Bi-SS vs. 

LFC Uni-SS 

Intra SS SS-skip Uni-Prediction Bi-Prediction 64×64 32×32 16×16 8×8 BD-PSNR BD-BR 

Plane and Toy (frame 123) 57.2 % 42.3 % 0.5 % 60.4 % 39.6 % 0.0 % 0.9 % 9.3 % 89.8 % 0.3 dB -4.5 % 

Plane and Toy (frame 23) 67.8 % 30.9 % 1.3 % 54.2 % 45.8 % 0.0 % 3.0 % 11.4 % 85.6 % 0.4 dB -6.1 % 

Demichelis Spark 53.3 % 39.9 % 6.9 % 48.8 % 51.2% 0.1% 3.8 % 18.2 % 77.9 % 0.5 dB -14.9 % 
Laura 36.3 % 62.9 % 0.7 % 44.9 % 55.1 % 0.0 % 1.1 % 20.7 % 78.3 % 0.5 dB -8.6 % 

Jeff 39.6 % 58.6 % 1.7 % 44.5 % 55.5 % 0.0 % 4.5 % 27.6 % 67.9 % 0.5 dB -10.4 % 

Seagull 27.3 % 66.3 % 6.4 % 47.3 % 52.7 % 0.0 % 3.2 % 29.8 % 67.0 % 0.7 dB -14.4 % 
Zhengyun1 58.3 % 40.7 % 1.0 % 47.5 % 52.5 % 0.0 % 3.3 % 20.8 % 76.0 % 0.4 dB -9.9 % 

Flowers 72.7 % 26.5 % 0.8 % 45.3 % 54.7 % 0.8 % 15.3 % 15.8 % 68.1 % 0.1 dB -3.1 % 

Vespa 29.9 % 65.6 % 4.5 % 26.7 % 73.3 % 0.4 % 7.9 % 27.7 % 64.0 % 0.5 dB -18.9 % 
Ankylosaurus_&_Diplodocus_1 14.7 % 84.6 % 0.7 % 10.8 % 89.2 % 0.2 % 3.5 % 30.0 % 66.4 % 0.7 dB -44.1 % 

Fountain_&_Vincent_2 40.9 % 57.4 % 1.7 % 16.3 % 83.7 % 0.6 % 12.3 % 23.1 % 64.0 % 0.7 dB -16.6 % 

Color_Chart_1 20.3 % 75.4 % 4.3 % 16.2 % 83.8 % 0.1 % 2.5 % 28.4 % 69.0 % 0.4 dB -22.5 % 
ISO_Chart_12 23.5 % 73.7 % 2.8 % 21.3 % 78.7 % 0.1 % 5.1 % 28.3 % 66.5 % 0.6 dB -22.7 % 
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of Plane and Toy sequence (frame 23) is used to exemplify the case where the MI cross-correlation varies for the same camera 

parameters due to the different distance of the main object relatively to the camera [40]. In this case, Plane and Toy (frame 23) 

presents a more rapid decrease in the MI cross-correlation in a neighborhood when compared to Plane and Toy (frame 123). 

For the second situation, two raw LF images, Jeff and ISO_Chart_12, with considerably larger and smaller MI resolutions, 

respectively, are used to illustrate the case in which the MI cross-correlation varies due to a change in the camera parameters. In 

this case, the aperture of the microlens (which usually corresponds to the size of the MI) limits its field of view [41], and 

consequently, the smaller the MI is, the less correlated it will be with MIs in its neighborhood (i.e., less overlapped areas of the 

scene will be captured by neighbor MIs). For completeness, Tables 1 and 2 also show statistics for all LF test images. 

The results in Table 1 illustrate the influence of the MI cross-correlation in the usage and performance of the proposed Bi-SS 

approach for higher bitrates. Comparing the results for Plane and Toy (frame 123) and Plane and Toy (frame 23), it can be seen 

that the percentage of SS bi-prediction is larger in the case where the MI cross-correlation decreases rapidly (frame 23). 

Moreover, the bi-prediction is also able to achieve larger bit savings in this case (frame 23) when compared to the LFC Uni-SS 

solution, where only uni-prediction is used. Somehow similar to the abovementioned conclusion, the usage percentage of bi-

prediction tends to be also considerably larger for the case of ISO_Chart_12 where the MI cross-correlation is smaller due to 

changes in the camera parameters (compared to Jeff). 

In addition, Fig. 4 illustrates the Bi-SS vectors distribution for the LF images Plane and Toy (frame 23) and ISO_Chart_12. 

It can be seen that the Bi-SS vectors are also distributed according to MI structure of each tested LF image (as was also 

concluded for the uni-predicted SS vectors [19]). This is evident for ISO_Chart_12 (in Fig. 4b) where the MIs in the raw LF 

image are distributed according to a hexagonal grid, and, consequently, the SS vectors distribution (Fig. 4b) follow the same 

structure. This fact supports the assumptions made in Section 3.1 that more than one good predictor is likely to be found in all 

directions, distributed according to the MI size and arrangement in the array. Moreover, analyzing the distribution of these SS 

vectors along the raw LF image (rightmost images in Fig. 4), it can be seen that, although the amplitude of the SS vectors 

respects the MI structure, the direction tends to be dictated by the object boundaries and textures. 

It is also worthwhile to notice (Table 1) that, for all tested LF images considered in Section 4, most of the coding blocks tend 

to be partitioned down to 8×8 blocks, being smaller than the MI resolution. These results support the assumptions used in the 

theoretical analysis from Section 3.1, which considered that samples inside each MI follow the same correlation model as 

samples in a 2D image. 

To complete this analysis, Table 2 illustrates the statistical results also for lower bitrates, so as to analyze the performance of 

the Bi-SS prediction when the SS reference degrades. Comparing the results in Tables 1 and 2 for all test images, it can be 

observed that using higher QP values results in increasing percentages of usage of the SS uni-prediction, as well as SS-skip 

modes. This is due to the fact that the Lagrangian multiplier, in (1) and Fig. 3, increases with increasing QP values [35] and, for 

this reason, the possible quality improvements of using the bi-prediction do not justify the higher number of bits needed for 

transmitting the SS vectors when minimizing the Lagrangian cost. 

   

(a) 

   

(b) 

Fig. 4 Bi-predicted SS vector distribution (from left to right): heat map of SS vector distribution for first candidate predictor, heat map of SS vector distribution 
for second candidate predictor, distribution of first (in blue) and second (in red) SS vectors along the encoded raw image. Results are illustrated for: (a) Plane 

and Toy (frame 23); and (b) ISO_Chart_12. 
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3.4. Bi-SS Prediction Analysis for Different Weighting Coefficients 

This section aims at analyzing the RD performance of the proposed LFC Bi-SS solution when different sets of weighting 

coefficients, ℎ0 and ℎ1 (see Fig. 3), are used for Bi-SS prediction. 

For this, the HEVC weighted prediction signaling [37] is used. Basically, the usage of explicit weighted prediction in HEVC 

is activated by a flag in the Picture Parameter Set (PPS), and different integer weighting factors, 𝑤𝑝, and offset values, 𝑜𝑝, can 

be assigned for prediction in each slice [37]. The resulting predictor block 𝐼(𝒙) for weighted bi-prediction can be then derived 

by [37]: 

 𝐼(𝒙) = ⌊
𝑤0 ∙ 𝐼(𝒙 − 𝒗0) + 𝑤1 ∙ 𝐼(𝒙 − 𝒗1) + (𝑜0 + 𝑜1 + 1) ∙ 2𝐿𝑊𝐷

2 ∙ 2𝐿𝑊𝐷
⌋ (5)  

where 𝐿𝑊𝐷 is a log weight denominator rounding factor [37] used to normalize the integer weighting factors and the sub-

sample interpolation filtering process [43]. Notice that determining suitable weighting factors and offsets is out of the scope of 

HEVC standard and they are directly derived from the bitstream at the decoder side. 

In this case, the following three LFC Bi-SS solutions are here tested and compared: 

1) LFC Bi-SS (ℎ0 = ℎ1 = 1/2) – This corresponds to the proposed Bi-SS prediction, where the average weighting 

coefficients are used. In (5), this corresponds to having 𝑤0 = 𝑤1 = 1, 𝐿𝑊𝐷 = 0, and 𝑜0 = 𝑜1 = 0. 

2) LFC Bi-SS (ℎ0 = 1/4 , 𝑎𝑛𝑑 ℎ1 = 3/4) – In this case, weighted Bi-SS prediction is used, where the average weighting 

coefficients in Fig. 3 are replaced by ℎ0 = 1/4 and ℎ1 = 3/4. In (5), this corresponds to having 𝑤0 = 1, 𝑤1 = 3, 

𝐿𝑊𝐷 = 1, and 𝑜0 = 𝑜1 = 0. 

3) LFC Bi-SS (ℎ0 = 1/8 , 𝑎𝑛𝑑 ℎ1 = 7/8) – In this case, weighted Bi-SS prediction is used with weighting coefficients 

ℎ0 = 1/8 and ℎ1 = 7/8. In (5), this corresponds to having 𝑤0 = 1, 𝑤1 = 7, 𝐿𝑊𝐷 = 2, and 𝑜0 = 𝑜1 = 0. 

Due to space limits, Fig. 5 illustrates the results for only two LF images (i.e., Seagull and Vespa), but the conclusions are 

consistent for all LF test images considered in Section 4. From these results, it can be seen that the LFC Bi-SS solution using 

the average weighting coefficients always presents the best RD performance. Moreover, the less asymmetric the weighting 

coefficients are, the better the RD efficiency of the LFC Bi-SS solution is shown to be. In addition, in all cases, the weighted 

Bi-SS always outperform the LFC Uni-SS solution. For this reason, the average weighting coefficients are here considered to 

the proposed LFC Bi-SS solution. 

Notice that it was not under the scope of this work to develop an optimized set of weighting coefficients for each CB 

(instead of fixing it for each slice). In fact, the theoretical analysis in [38] suggested that it is still possible to achieve further RD 

performance improvements by adaptively estimating these weighting coefficients; this will be considered in future work, as 

well as the experimental validation, for LF image coding, of the theoretical assumption made in [33] that suggests that the 

major portion of the gain is already achievable by only two predictor blocks. 

  
(a) (b) 

Fig. 5 RD performance of the proposed LFC Bi-SS solution (compared to the LFC Uni-SS solution) with different sets of weighting coefficients (QP values 22, 

27, 32, 37, and 42). The results are show for two LF test images: (a) Seagull, and (b) Vespa 
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3.5. MIVP Efficiency Analysis for Bi-SS Prediction 

To separately analyze the RD efficiency of using the MIVP vector prediction for Bi-SS prediction, Table 3 shows some 

preliminary results for comparing the performance of Bi-SS prediction with MIVP (referred to as Bi-SS w/ MIVP) and without 

MIVP (referred to as Bi-SS w/o MIVP). These results are then compared to the achieved RD improvements presented for the 

previously proposed LFC Uni-SS solution in [19] (i.e., Uni-SS solution with and without MIVP). 

In these tests, the same test conditions adopted in [19] are here used. Notably, HEVC reference software version 14.0 [36] is 

used as the benchmark, as well as the base software for implementing the proposed codec. RD performance is evaluated here 

for six different LF images through the BD [42] metrics, i.e., in terms of the luma PSNR of the LF image and the corresponding 

bitrate (BR) in terms of bits per pixel (bpp) for four QP values (27, 32, 37, and 42). These results of the MIVP influence on RD 

performance for Uni-SS prediction can also be found in [19]. 

From these results, it is possible to see that the gains of including the MIVP candidate vectors for Bi-SS prediction are 

slightly lower than for Uni-SS prediction. However, the MIVP is still relevant for the LFC Bi-SS solution, leading to further bit 

savings of up to 5.5% (for LF test image Seagull). 

4. Performance Evaluation 

This section assesses the performance of the complete LFC Bi-SS codec. For this, the test conditions are firstly introduced and, 

then, the obtained results are presented and discussed. 

4.1. Test Conditions 

The test conditions to evaluate the performance of the proposed LFC Bi-SS solution can be summarized as follows. 

4.1.1. Test Images 

Twelve LF test images with different camera setups and scene characteristics are used (see Fig. 6 and Table 4) so as to 

achieve representative RD results. These are: Plane and Toy (frame number 123 of the sequence with same name) and 

Demichelis Spark [44] (first frame of a video sequence with same name); Laura, Fredo, Seagull, and Zhengyun [45]; and 

Flowers, Vespa, Ankylosaurus_&_Diplodocus_1, Fountain_&_Vincent_2, Color_Chart_1, and ISO_Chart_12 [46]. 

The (raw) LF test images were converted to the Y’CbCr 4:2:0 color format before being encoded. 

4.1.2. Coding Conditions 

The experimental results that are presented in this section considered the following test conditions: 

1) Codec Software Implementation – The reference software of HEVC version 14.0 [36] was used as the benchmark, as 

well as the base software for implementing the proposed codec. 

2) Search Range – A search range value of 128 was adopted for all tested LF images (i.e., w=128 in Fig. 2b). 

3) Search Strategy – The full search algorithm with the HEVC quarter-pixel accuracy was used since fast search 

algorithms proposed for 2D video coding and for SCC have shown to present significant drop in RD performance for LF 

image coding [20]. 

4) Coding Configuration – The results are presented using the Main Still Picture profile [23] and five QP values are 

considered, i.e.: 22, 27, 32, 37, and 42. 

Table 3. RD performance for LFC Bi-SS solution using MIVP (for QP values 27, 32, 37, and 42) 

Image 
Uni-SS vs. Uni-SS w/o MIVP (from [19]) Bi-SS vs. Bi-SS w/o MIVP 

PSNR [dB] BR [%] PSNR [dB] BR [%] 

Plane and Toy 0.2 -2.8 0.2 -3.1 

Demichelis Spark 0.3 -8.3 0.1 -3.5 

Laura 0.1 -2.5 0.1 -2.3 

Jeff 0.2 -4.7 0.1 -3.1 

Seagull 0.3 -6.6 0.2 -5.5 

Zhengyun1 0.2 -5.2 0.2 -4.7 

Average 0.2 -5.0 0.2 -3.7 
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5) RD Evaluation – The RD performance was evaluated in terms of three different objective quality metrics: i) Overall 

PSNR; ii) Rendering-dependent PSNR (PSNR5×5Views); and iii) Rendering-dependent SSIM (SSIM5×5Views). The overall 

PSNR is calculated by taking the luma PSNR of the raw LF image. Differently, the rendering-dependent metrics 

(PSNR5×5Views and SSIM5×5Views) are measured in terms of the average luma PSNR and SSIM calculated for a set of 

views rendered from the reconstructed LF content, similarly to the metrics proposed in [6]. To have a representative 

number of rendered views, a set of 5×5 views was rendered from equally distributed directional positions. For rendering 

the views from LF images captured using a focused LF camera setup (Table 4), the algorithm proposed in [47] and 

referred to as Basic Rendering algorithm was used. In this case, the plane of focus was chosen to represent the case 

where the main object of the scene is in focus. For LF images captured using the traditional LF camera setup (Table 4), 

5×5 VIs were extracted. The rate is given in terms of bpp value, which is calculated with the number of bits needed for 

encoding the LF image divided by its corresponding number of pixels given in Table 4 (bpp). 

4.1.3. Benchmark Solutions 

In order to assess the RD performance for different local and non-local spatial prediction schemes, five HEVC-based coding 

solutions are compared against the proposed LFC Bi-SS. To guarantee a fair comparison between all of them, the same test 

conditions presented in Section 4.1.2 are also adopted. These five benchmark solutions are: 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Fig. 6 Central rendered view from each test LF image: (a) Plane and Toy, (b) Demichelis Spark; (c) Laura, (d) Jeff, (e) Seagull, (f) Zhengyun1, (g) Flowers, (h) 

Vespa, (i) Ankylosaurus_&_Diplodocus_1, (j) Fountain_&_Vincent_2, (k) Color_Chart_1, and (l) ISO_Chart_12 

Table 4. Description of LF test images in Fig. 6 

Image Resolution LF camera setup MLA structure MI Resolution 

Plane and Toy 1920×1088 Focused LF camera (Plenoptic camera 2.0) Rectangular grid of squared MIs 28×28* 

Demichelis Spark 2880×1620 Focused LF camera (Plenoptic Camera 2.0) Rectangular grid of circular MIs 38×38* 

Laura 7240 ×5232 Focused LF camera (Plenoptic Camera 2.0) Rectangular grid of squared MIs 74×74* 

Jeff 7240 ×5232 Focused LF camera (Plenoptic Camera 2.0) Rectangular grid of squared MIs 74×74* 

Seagull 7240 ×5232 Focused LF camera (Plenoptic Camera 2.0) Rectangular grid of squared MIs 74×74* 

Zhengyun1 7240 ×5232 Focused LF camera (Plenoptic Camera 2.0) Rectangular grid of squared MIs 74×74* 

Flowers 7728×5368 Traditional LF camera (Plenoptic Camera 1.0) Hexagonal grid of circular MIs 15×15* 

Vespa 7728×5368 Traditional LF camera (Plenoptic Camera 1.0) Hexagonal grid of circular MIs 15×15* 

Ankylosaurus_&_Diplodocus_1 7728×5368 Traditional LF camera (Plenoptic Camera 1.0) Hexagonal grid of circular MIs 15×15* 

Fountain_&_Vincent_2 7728×5368 Traditional LF camera (Plenoptic Camera 1.0) Hexagonal grid of circular MIs 15×15* 

Color_Chart_1 7728×5368 Traditional LF camera (Plenoptic Camera 1.0) Hexagonal grid of circular MIs 15×15* 

ISO_Chart_12 7728×5368 Traditional LF camera (Plenoptic Camera 1.0) Hexagonal grid of circular MIs 15×15* 

   *Integer approximation 
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1) HEVC – In this case, the original LF image is encoded with HEVC [36], using the Main Still Picture profile [23]. 

2) HEVC SCC – In this case, the original LF image is encoded using the HEVC SCC reference software version 1.0 [48], 

where IntraBC prediction [32] is used. As previously discussed in this paper, this solution is a restricted case of the 

proposed LFC Bi-SS since a reduced set of coding options is used, such as: i) only uni-prediction estimation is allowed 

considering only integer-pixel precision; ii) partition patterns are limited (i.e., M×M, M×(M/2), (M/2)×M, and 

(M/2)×(M/2) ); iii) CB sizes are also limited (CBs larger than 16×16 are skipped based on a threshold on the RD cost); 

and iv) only one dimensional (1D) vectors for 16×16 CBs are allowed. However, it is worth mentioning that some 

improvements for the IntraBC prediction have been continuously included. For instance, in the HEVC SCC reference 

software 1.0, the search window was expanded over the entire CB row or column (for 16×16 CBs), and over some 

positions in the entire picture by using a hash-based search (for 8×8 CBs). 

3) LFC Uni-SS – In this case, the original LF image is encoded with the authors’ previous solution proposed in [19], where 

only the uni-predicted candidate is available for the SS estimation and compensation. This solution also uses the MIVP 

candidate vectors for improving the coding performance (as in the proposed LFC Bi-SS). A search area with w=128 (in 

Fig. 2b) is also adopted in this case. 

4) LFC Restricted-SS – In this case, the original LF image is encoded with the author’s implementation of the solution 

proposed in [20], where bi-prediction is also allowed by simply using the HEVC inter B-frame prediction. For this, and 

as explained in [20], the SS reference search area is separated into two different parts, which are assumed to be two 

different reference pictures [20]. Therefore, as in HEVC inter B-frame prediction, three candidate predictors can be 

derived: the two best (uni-predicted) candidates from each of the two reference pictures, and a linear combination of 

them for bi-prediction. As discussed in Section 3, this solution can be seen as a restricted case of the Bi-SS prediction 

proposed here. It is also worthwhile to notice that, the solution presented in [20] (as well as the author’s implementation 

of this solution) does not include the MIVP candidate vectors that are used in both LFC Uni-SS and LFC Bi-SS 

solutions. A search area with w=128 (in Fig. 2b) is also adopted in this case. 

5) LFC GPR – In this case, an HEVC-based LFC solution using the implicit GPR-based prediction method proposed in 

[22] is considered. Different from the SS prediction, the predictor block is here given as a linear combination of six 

nearest neighbor patches, which are implicitly found in two different search windows: i) horizontal search window 

(defined as the causal area in the same CB row): ii) the vertical search window (defined as the causal area in the same 

CB column). Afterwards, the set of weighting coefficients for combining these six patches is implicitly determined by 

solving a GPR and the same process to find the nearest neighbor patches and weighting coefficients is replicated at the 

decoder side to derive the prediction. For this comparison, the results presented in [22] for coding using this LFC GPR 

solution are compared to the results for the proposed LFC Bi-SS solution considering the same test conditions 

(described in [22]). Notably, the results are shown using the BD metrics in terms of the overall PSNR with respect to 

HEVC reference software [36] with “Intra, main” configuration and considering four different QP values: 22, 27, 32, 

and 37 (as in [22]). 

It is important to notice that, other benchmark solutions have already been compared against the authors’ previous solution 

LFC Uni-SS in [19], (e.g., a multiview-based method, similar to the proposed in [12,13]). For a more complete performance 

comparison, please also refer to [19]. 

4.2. Overall RD Performance 

Figs. 7 and 8 illustrate the RD performance of the proposed LFC Bi-SS using three different objective quality metrics, i.e., 

the overall PSNR, and the rendering-dependent metrics PSNR5×5Views and SSIM5×5Views. Additionally, Tables 5 and 6 present the 

LFC Bi-SS RD performance against four benchmark solutions (i.e., HEVC, HEVC SCC, LFC Uni-SS, and LFC Restricted-SS) 

in terms of BD metrics, respectively, for higher and lower bpp values. It is worth noting that the comparison between the 

proposed LFC Bi-SS and the LFC GPR solutions will be separately performed in Section 4.4 since, in this case, the results 

presented in [22] for the LFC GPR solution is directly compared to the LFC Bi-SS solution RD results when using the same set 

of LF images as well as the same test coding conditions adopted in [22]. 
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Fig. 7 RD performance (QP values 22, 27, 32, 37, and 42) for the LF test images: (a) Plane and Toy, (b) Demichelis Spark; (c) Laura, (d) Jeff, (e) Seagull, and 

(f) Zhengyun1 
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(f) 

Fig. 8 RD performance (QP values 22, 27, 32, 37, and 42) for the LF test images: (a) Flowers, (b) Vespa, (c) Ankylosaurus_&_Diplodocus_1, 

(d) Fountain_&_Vincent_2, (e) Color_Chart_1, and (f) ISO_Chart_12 
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As can be observed in Figs. 7 and 8, independently of the adopted objective quality metrics, the results follow the same trend 

and the proposed LFC Bi-SS solution outperforms the other benchmark solutions in all cases. Moreover, as shown in Tables 5 

and 6, significant gains can be achieved by the proposed LFC Bi-SS solution mainly for lower bpp values (Table 6), achieving 

in average 2.7 dB (or 51.5 % of bit savings) against HEVC, 1.3 dB (or 32.0 % of bit savings) against HEVC SCC, 0.5 dB (or 

14.4 % of bit savings) against LFC Uni-SS, and 0.3 dB (or 9.4 % of bit savings) against LFC Restricted-SS. Additionally, as 

hypothesized in the theoretical analysis of Section 3.1, increasing the number of predictor blocks from the LFC Uni-SS solution 

to the LFC Bi-SS solution led to bit savings of up to 22.7 % (Table 5). Furthermore, comparing to the LFC Restricted-SS 

solution, it can be seen that by jointly estimating both candidate predictors, instead of devising them separately from different 

areas, further bit savings of up to 16.9 % (Table 6) can be achieved. 

Moreover, comparing the achieved performance gains due to MIVP (Table 3) with the results against the LFC Uni-SS in 

Table 5, it can be seen that most of the LFC Bi-SS performance gains come from the usage of an improved bi-prediction 

scheme. However, it should be noticed that the MIVP is mainly advantageous for improving the performance against the LFC 

Restricted-SS (see Table 5), even when only Uni-SS prediction is allowed. For instance, for the LF image Plane and Toy, the 

LFC Uni-SS solution (using the MIVP) presents a slightly better performance than the LFC Restricted-SS solution (where the 

MIVP is not used). 

Regarding the performance for different LF image characteristics, it was observed that the coding efficiency of the SS 

compensated prediction is not as good for close-up images. This can be seen by analyzing the results for LF image Flowers 

(close-up image) against Fountain_&_Vincent_2 (see Fig. 6g and j, respectively), but it was also observed for other LF images 

of the dataset in [46]. In these close-up images, most of the coding blocks (about 75 % of them) are coded using HEVC intra 

prediction. 

Table 6. LFC Bi-SS overall RD performance with respect to the benchmark solutions for each image in Fig. 6 (QP values 27, 32, 37, and 42) 

LF Image 

LFC Bi-SS vs. HEVC LFC Bi-SS vs.HEVC SCC LFC Bi-SS vs.LFC Uni-SS 
LFC Bi-SS vs. 

LFC Restricted-SS 

BD-PSNR 

[dB] 

BD-BR 

[%] 

BD-PSNR 

[dB] 

BD-BR 

[%] 

BD-PSNR 

[dB] 

BD-BR 

[%] 

BD-PSNR 

[dB] 

BD-BR 

[%] 

Plane and Toy 2.4 -31.0 0.8 -12.3 0.3 -4.9 0.4 -6.4 

Demichelis Spark 3.1 -56.0 1.6 -37.0 0.7 -17.3 0.3 -8.8 

Laura 3.4 -48.0 1.2 -23.1 0.5 -9.5 0.2 -4.6 

Jeff 3.6 -52.3 1.5 -28.6 0.4 -8.8 0.3 -7.0 

Seagull 4.3 -61.1 1.8 -34.3 0.6 -13.8 0.5 -10.5 

Zhengyun1 3.1 -51.7 1.4 -29.0 0.4 -9.1 0.4 -8.9 

Flowers 0.3 -8.3 0.2 -5.6 0.1 -3.4 0.1 -2.4 

Vespa 1.7 -50.3 1.2 -39.6 0.5 -20.6 0.3 -12.7 

Ankylosaurus_&_Diplodocus_1 2.3 -82.4 1.7 -66.1 0.5 -33.6 0.2 -9.6 

Fountain_&_Vincent_2 2.6 -51.1 1.2 -29.5 0.6 -16.4 0.4 -10.0 

Color_Chart_1 2.4 -66.2 0.9 -36.5 0.3 -15.0 0.4 -16.9 

ISO_Chart_12 2.5 -60.0 1.6 -42.6 0.6 -20.8 0.5 -15.8 

Average 2.7 -51.5 1.3 -32.0 0.5 -14.4 0.3 -9.4 

 

Table 5. LFC Bi-SS overall RD performance with respect to the benchmark solutions for each image in Fig. 6 (QP values 22, 27, 32, and 37) 

LF Image 

LFC Bi-SS vs. HEVC LFC Bi-SS vs.HEVC SCC LFC Bi-SS vs.LFC Uni-SS 
LFC Bi-SS vs. 

LFC Restricted-SS 

BD-PSNR 

[dB] 

BD-BR 

[%] 

BD-PSNR 

[dB] 

BD-BR 

[%] 

BD-PSNR 

[dB] 

BD-BR 

[%] 

BD-PSNR 

[dB] 

BD-BR 

[%] 

Plane and Toy 1.6 -22.8 0.6 -9.4 0.3 -4.5 0.3 -4.9 

Demichelis Spark 1.7 -43.0 1.0 -27.4 0.5 -14.9 0.2 -6.8 

Laura 2.8 -37.9 1.2 -19.4 0.5 -8.6 0.2 -3.0 

Jeff 2.9 -43.7 1.3 -23.8 0.5 -10.4 0.3 -6.3 

Seagull 3.6 -51.9 1.5 -28.3 0.7 -14.4 0.4 -8.3 

Zhengyun1 2.7 -47.8 1.0 -21.8 0.4 -9.9 0.3 -6.7 

Flowers 0.3 -7.1 0.2 -4.6 0.1 -3.1 0.1 -2.0 

Vespa 1.4 -41.3 1.0 -31.3 0.5 -18.9 0.2 -9.4 

Ankylosaurus_&_Diplodocus_1 2.3 -68.9 1.4 -56.1 0.7 -44.1 0.1 -6.8 

Fountain_&_Vincent_2 2.2 -41.8 1.1 -25.0 0.7 -16.6 0.3 -7.7 

Color_Chart_1 2.1 -51.1 0.8 -26.7 0.4 -22.5 0.3 -11.3 

ISO_Chart_12 2.1 -54.1 1.2 -38.1 0.6 -22.7 0.3 -12.9 

Average 2.1 -42.6 1.0 -26.0 0.5 -15.9 0.2 -7.2 
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4.3. Computational Complexity 

The significantly better performance of the LFC Bi-SS solution comes with the price of additional computational load 

compared to both LFC Uni-SS and LFC Restricted-SS. 

To illustrate this fact, Tables 7 and 8 present, respectively, the encoding and decoding time of the LFC Bi-SS solution, and 

also the time ratio in terms of 𝑇𝑖𝑚𝑒𝐵𝑖−𝑆𝑆 𝑇𝑖𝑚𝑒𝑏𝑒𝑛𝑐ℎ.⁄ , with respect to HEVC, HEVC SCC, LFC Uni-SS, and LFC Restricted-

SS benchmark solutions. For this, encoding/decoding times were obtained using a machine with an Intel Xeon E5-2620 v2 

processor clocked at 2.10 GHz and using gcc 4.8.3 compiler. 

Regarding the encoding complexity (Table 7), it can be seen that coding solutions that make use of a block-based matching 

algorithm (i.e., HEVC SCC, LFC Uni-SS, and LFC Restricted-SS and LFC Bi-SS) are generally much slower than the 

conventional HEVC intra coding (which is used as the HEVC benchmark solution with Still Picture Profile in this paper). For 

instance, LFC Bi-SS is 84.1 times slower than HEVC intra coding in average. The brute force RDO considering a larger set of 

available prediction modes is also a contributing factor for this increased encoding complexity in the LFC Bi-SS solution. 

Compared to HEVC SCC, the proposed LFC Bi-SS encoding is 15.5 slower (in average) mainly due to the brute force search 

that is performed to a larger set of CB partition patterns and sizes and in quarter-pixel positions, instead of the integer-pixel 

search that is performed in HEVC SCC using the faster hash-based search algorithm [32]. It is also important to notice that the 

encoding time using HEVC SCC may vary considerably for different LF images, mainly due to the different runtime 

complexity that can be achieved by the used hash-based search algorithm. This fact can be observed in Table 7 by comparing 

the significantly different encoding time ratios between Laura and Flowers. Additionally, it can be seen that the proposed LFC 

Bi-SS solution is 2.0 times slower than LFC Uni-SS and 1.7 times slower than LFC Restricted-SS (in average). In this case, this 

increase in encoding complexity is observed mainly due to the locally optimal rate constrained algorithm that is used for 

finding the two possible predictors Uni-SS and Bi-SS candidates. For instance, a search window with 𝑊 (quarter) pixel 

positions will require (𝐾 + 1)×𝑊 SAD computations in the LFC Bi-SS solution compared to the 𝑊 SAD computations needed 

for the LFC Uni-SS solution, where 𝐾 is the maximum number of iterations allowed in the locally optimal rate constrained 

algorithm (in this work 𝐾 = 2). 

Nevertheless, note that a fast search approach can still be adopted for the proposed LFC Bi-SS solution, for instance, by 

taking advantage of the regular SS vector distribution depicted in Fig. 4. In this case, instead of performing the full search 

algorithm, the number of positions that are visited for the block-based matching algorithm can be significantly reduced by 

considering only the most probable positions shown in Fig. 4. 

Regarding the decoding complexity (Table 8), it can be observed that the proposed LFC Bi-SS decoding complexity does 

not vary significantly with respect to the LFC Uni-SS and LFC Restricted-SS solutions. However, the proposed LFC Bi-SS is 

12.9 and 15.3 times slower than HEVC and HEVC SCC, respectively, mainly due to the quarter-pixel interpolation filter that is 

used for the SS compensation and due to the larger set of coding possibilities (e.g., prediction modes, CB partition patterns) 

which require more time for parsing at decoder. 

Table 7. LFC Bi-SS encoding complexity regarding the benchmark solutions with QP value set to 32 (for each image in Fig. 6) 

Image 
LFC Bi-SS 

Encoding Time [s] 

LFC Bi-SS Encoding Time Ratio w.r.t: 

HEVC HEVC SCC LFC Uni-SS LFC Restricted-SS 

Plane and Toy 1429.6 66.1 20.2 2.3 1.8 

Demichelis Spark 2552.9 71.6 38.5 2.2 1.7 

Laura 34479.6 84.8 1.9 2.1 1.9 

Jeff 28360.0 91.7 10.4 2.0 1.7 

Seagull 30665.7 86.8 2.9 1.9 1.7 

Zhengyun1 30604.9 48.6 21.9 1.9 1.7 

Flowers 39686.0 123.6 24.1 2.2 1.7 

Vespa 23871.4 76.1 23.7 2.0 1.7 

Ankylosaurus_&_Diplodocus_1 23289.8 78.0 16.0 2.0 1.7 

Fountain_&_Vincent_2 32475.5 89.1 5.8 2.0 1.7 

Color_Chart_1 32273.1 99.2 10.3 2.0 1.7 

ISO_Chart_12 29985.8 93.5 9.7 1.8 1.6 

Average 84.1 15.5 2.0 1.7 
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4.4. Comparison between Bi-SS and GPR-based LF image coding 

To complete the LFC Bi-SS RD performance analysis, Table 9 compares the results presented in [22] for the LFC GPR 

benchmark solution with the LFC Bi-SS solution RD results when using the same set of LF images as well as the same test 

coding conditions adopted in [22]. Namely, the results are shown using the BD metrics in terms of the overall PSNR with 

respect to HEVC reference software [36] with “Intra, main” configuration and considering four different QP values: 22, 27, 32, 

and 37 (as in [22]). 

From these results, it can be seen that the proposed LFC Bi-SS solution is able to significantly improve the overall RD 

performance compared to the LFC GPR, leading to further bit savings of 43.9% with respect to HEVC (in average) compared 

to the 36.1 % of bit savings achieved by the LFC GPR solution (also with respect to HEVC). 

Additionally, Table 9 also compares the encoding and decoding time ratios (with respect to HEVC) observed for both LFC 

Bi-SS and LFC GPR solutions. It can be seen that the LFC GPR solution is able to significantly reduce the encoding 

complexity by reducing the training data as proposed in [22]. However, the implicit prediction used in the LFC GPR solution is 

still a bottleneck in the decoding time since the same process for finding the nearest neighbor patches and determining the 

weighting coefficients used in the encoder needs to be repeated at decoder side. For this reason, the proposed LFC Bi-SS is 

shown to be significantly faster than the LFC GPR at the decoder side. 

4.5. Visual Quality Inspection 

In addition to the presented BD results, a portion of a central view from each of three different LF test images was used for a 

visual inspection in Fig. 9. For rendering the views, the algorithm proposed in [47] and referred to as Basic Rendering 

algorithm was used. For the image in Fig. 9c, the Light Field Toolbox version 0.4 [49] was firstly used to transform from the 

hexagonal to a square grid of MIs. For all compared solutions, the quantization parameter (QP) [23] of the encoder was 

Table 9. RD performance and complexity comparison between LFC Bi-SS and GPR-based solution proposed in [22] considering QP values 22, 27, 32, and 37 

(according to [22]) 

LF Image 

LFC Bi-SS vs. HEVC LFC GPR vs. HEVC (from [22]) 

BD-PSNR [dB] BD-BR [%] 
Encoding 

Time Ratio 

Decoding 

Time Ratio 
BD-PSNR [dB] BD-BR [%] 

Encoding 

Time Ratio 

Decoding 

Time Ratio 

Bike 2.6 -39.2 81.5 20.9 2.4 -27.3 19.8 74.1 

Fountain 2.6 -37.6 88.8 10.5 2.8 -36.4 20.4 97.7 

Fredo 3.3 -45.9 48.6 18.6 3.0 -41.0 19.9 91.2 

Jeff ** 2.9 -43.7 91.7 17.3 2.2 -31.4 19.0 87.1 

Laura 2.8 -37.9 84.8 20.8 3.0 -38.1 20.0 99.1 

Seagull 3.6 -51.9 86.8 18.6 2.9 -41.4 22.0 101.3 

Sergio 3.5 -46.8 88.3 9.9 2.3 -36.9 20.3 88.1 

Zhengyun1 2.7 -47.8 48.6 7.4 2.3 -36.2 20.5 91.2 

Average 3.0 -43.9 77.4 15.5 2.6 -36.1 20.2 91.2 
** referred to as Photographer in [22]  

 

Table 8. LFC Bi-SS decoding complexity regarding the benchmark solutions with QP value set to 32 (for each image in Fig. 6) 

Image 
LFC Bi-SS 

Decoding Time [s] 

LFC Bi-SS Decoding Time Ratio w.r.t: 

HEVC HEVC SCC LFC Uni-SS LFC Restricted-SS 

Plane and Toy 2.1 20.9 21.1 1.0 1.2 

Demichelis Spark 1.6 10.5 12.6 0.9 1.5 

Laura 38.1 18.6 23.1 0.9 0.9 

Jeff 26.4 17.3 21.4 0.9 0.9 

Seagull 31.6 20.8 26.8 1.2 1.0 

Zhengyun1 29.1 18.6 23.8 1.2 1.0 

Flowers 12.2 9.9 9.6 1.1 0.9 

Vespa 8.0 7.4 7.9 1.0 0.8 

Ankylosaurus_&_Diplodocus_1 4.8 4.2 6.0 0.8 0.8 

Fountain_&_Vincent_2 12.7 9.4 10.3 0.9 0.9 

Color_Chart_1 10.3 9.3 10.8 0.7 0.9 

ISO_Chart_12 9.3 8.2 10.2 0.9 0.9 

Average 12.9 15.3 1.0 1.0 
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adjusted to lead to the same bpp value for all images in5 Fig. 9. Notice that, since there is still no consensus on the scientific 

community regarding subjective evaluation methodologies for LF content, these results are shown here as an illustrative 

qualitative analysis of the proposed coding solution. 

From a visual inspection of the views rendered from the coded raw LF images in Fig. 9, it is possible to conclude that the 

proposed LFC Bi-SS presents considerably better visual quality than HEVC and improvements are also noticeable when 

compared to the LFC Restricted-SS solution (e.g., for Demichelis Spark and Zhengyun1 LF images). Furthermore, it can be 

seen that the coding artifacts are less evident but still noticeable in the case of Fig. 9c. 

5. Conclusions 

This paper proposed an LF image coding solution based on self-similarity compensated bi-prediction (Bi-SS) where two 

predictor blocks can be jointly estimated from the same search window. As discussed in this paper, the proposed HEVC-based 

LFC coding architecture was shown to be advantageous in terms of the simplicity of the coding format, which is less dependent 

on a very precise LF camera calibration process, while keeping the encoder/decoder complexity and memory load comparable 

to HEVC inter coding. In addition, the proposed LFC Bi-SS led to significantly superior performance when compared to HEVC 

Main Still Picture Profile, presenting gains of up to 4.3 dB (or 61.1 % of bit savings). Furthermore, jointly estimating the two 

candidate blocks for Bi-SS prediction led to further RD improvements when compared to the case in which only one candidate 

block is estimated (with up to 44.1 % of bit savings with respect to the LFC Uni-SS solution), as well as compared to the case 

in which to the two candidate blocks are independently estimated (with up to 16.9 % of bit savings with respect to the LFC 

    

(a) 

    

(b) 

    

(c) 

Fig. 9 Comparison of a portion from the central view rendered from (from left to right): original image; compressed image using HEVC; compressed image 

using LFC Restricted-SS; and compressed image using the proposed LFC Bi-SS solution. The results as shown for the bpp values: (a) 0.05 bpp for Demichelis 

Spark; (b) 0.06 bpp for Zhengyun1; and (c) 0.09 bpp for Fountain_&_Vincent_2 
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Restricted-SS solution). Moreover, the proposed LFC Bi-SS solution is also able to achieve better overall RD performance 

when compared to the LFC GPR solution while presenting significantly smaller decoding complexity. 

Acknowledgements 

The authors acknowledge the support of FCT, under the project UID/EEA/50008/2013, and SFRH/BD/79480/2011 grant. 

References 

[1] M. Levoy, P. Hanrahan, Light Field Rendering, in: Proc. 23rd Annu. Conf. Comput. Graph. Interact. Tech. - SIGGRAPH ’96, New 

Orleans, LA, US, 1996: pp. 31–42. doi:10.1145/237170.237199. 

[2] A. Aggoun, E. Tsekleves, M.R. Swash, D. Zarpalas, A. Dimou, P. Daras, P. Nunes, L.D. Soares, Immersive 3D Holoscopic Video 

System, IEEE Multimed. 20 (2013) 28–37. doi:10.1109/MMUL.2012.42. 

[3] J. Arai, Integral Three-Dimensional Television (FTV Seminar), ISO/IEC JTC1/SC29/WG11 M34199, Sapporo, Japan, 2014. 

[4] R. Raghavendra, K.B. Raja, C. Busch, Presentation Attack Detection for Face Recognition Using Light Field Camera, IEEE Trans. 

Image Process. 24 (2015) 1060–75. doi:10.1109/TIP.2015.2395951. 

[5] X. Xiao, B. Javidi, M. Martinez-Corral, A. Stern, Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications 

[Invited], Appl. Opt. 52 (2013) 546–560. 

[6] JPEG Pleno Call for Proposals on Light Field Coding, ISO/IEC JTC 1/ SC29/WG1 N74014, Geneva, Switzerland, 2017. 

[7] K. Wegner, G. Lafruit, eds., Call for Immersive Visual Test Material, ISO/IEC JTC1/SC29/WG11 N16766, Hobart, Australia, 2017. 

[8] R. Zaharia, A. Aggoun, M. McCormick, Adaptive 3D-DCT Compression Algorithm for Continuous Parallax 3D Integral Imaging, 

Signal Process. Image Commun. 17 (2002) 231–242. doi:10.1016/S0923-5965(01)00020-0. 

[9] A. Aggoun, Compression of 3D Integral Images Using 3D Wavelet Transform, J. Disp. Technol. 7 (2011) 586–592. 

doi:10.1109/JDT.2011.2159359. 

[10] S. Shi, P. Gioia, G. Madec, Efficient Compression Method for Integral Images using Multi-View Video Coding, in: 2011 18th IEEE Int. 

Conf. Image Process., Brussels, Belgium, 2011: pp. 137–140. 

[11] J. Dick, H. Almeida, L.D. Soares, P. Nunes, 3D Holoscopic Video Coding Using MVC, in: 2011 IEEE EUROCON - Int. Conf. Comput. 

as a Tool, Lisbon, Portugal, 2011: pp. 1–4. 

[12] R. Olsson, Empirical Rate-Distortion Analysis of JPEG 2000 3D and H. 264/AVC Coded Integral Imaging Based 3D-Images, in: 2008 

3DTV Conf. True Vis. - Capture, Transm. Disp. 3D Video, Istanbul, Turkey, 2008: pp. 113–116. doi:10.1109/3DTV.2008.4547821. 

[13] A. Vieira, H. Duarte, C. Perra, L. Tavora, P. Assuncao, Data Formats for High Efficiency Coding of Lytro-Illum Light Fields, in: 2015 

Int. Conf. Image Process. Theory, Tools Appl., Orleans, France, 2015: pp. 494–497. doi:10.1109/IPTA.2015.7367195. 

[14] C. Perra, P. Assuncao, High Efficiency Coding of Light Field Images based on Tiling and Pseudo-Temporal Data Arrangement, in: 2016 

IEEE Int. Conf. Multimed. Expo Work., Seattle, WA, US, 2016: pp. 1–4. doi:10.1109/ICMEW.2016.7574671. 

[15] D. Liu, L. Wang, L. Li, Zhiwei Xiong, Feng Wu, Wenjun Zeng, Pseudo-Sequence-Based Light Field Image Compression, in: 2016 

IEEE Int. Conf. Multimed. Expo Work., Seattle, WA, US, 2016: pp. 1–4. doi:10.1109/ICMEW.2016.7574674. 

[16] C. Conti, P. Nunes, L.D. Soares, Inter-Layer Prediction Scheme for Scalable 3-D Holoscopic Video Coding, IEEE Signal Process. Lett. 

20 (2013) 819–822. doi:10.1109/LSP.2013.2267234. 

[17] A. Dricot, J. Jung, M. Cagnazzo, B. Pesquet, F. Dufaux, Integral Images Compression Scheme Based On View Extraction, in: 2015 

23rd Eur. Signal Process. Conf., Nice, France, 2015: pp. 101–105. doi:10.1109/EUSIPCO.2015.7362353. 

[18] C. Conti, P. Nunes, L.D. Soares, New HEVC Prediction Modes for 3D Holoscopic Video Coding, in: 2012 19th IEEE Int. Conf. Image 

Process., Orlando, FL, US, 2012: pp. 1325–1328. doi:10.1109/ICIP.2012.6467112. 

[19] C. Conti, L.D. Soares, P. Nunes, HEVC-Based 3D Holoscopic Video Coding using Self-Similarity Compensated Prediction, Signal 

Process. Image Commun. 42 (2016) 59–78. doi:10.1016/j.image.2016.01.008. 

[20] Y. Li, M. Sjostrom, R. Olsson, U. Jennehag, Coding of Focused Plenoptic Contents by Displacement Intra Prediction, IEEE Trans. 

Circuits Syst. Video Technol. 26 (2016) 1308–1319. doi:10.1109/TCSVT.2015.2450333. 

[21] L.F.R. Lucas, C. Conti, P. Nunes, L.D. Soares, N.M.M. Rodrigues, C.L. Pagliari, E.A.B. da Silva, S.M.M. de Faria, Locally Linear 

Embedding-Based Prediction for 3D Holoscopic Image Coding using HEVC, in: 2014 Proc. 22nd Eur. Signal Process. Conf., Lisbon, 

Portugal, 2014: pp. 11–15. 



22 

[22] D. Liu, P. An, R. Ma, C. Yang, L. Shen, 3D Holoscopic Image Coding Scheme Using HEVC with Gaussian Process Regression, Signal 

Process. Image Commun. 47 (2016) 438–451. doi:10.1016/j.image.2016.08.004. 

[23] G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the High Efficiency Video Coding (HEVC) Standard, IEEE Trans. 

Circuits Syst. Video Technol. 22 (2012) 1649–1668. 

[24] K. Ugur, J. Lainema, Updated Results on HEVC Still Picture Coding Performance, JCTVC-M0041, Incheon, South Korea, 2013. 

[25] P. Hanhart, M. Řeřábek, P. Korshunov, T. Ebrahimi, Subjective Evaluation of HEVC Intra Coding for Still Image Compression, 

JCTVC-L0380, Geneva, Switzerland, 2013. 

[26] Y. Li, Coding of Three-Dimensional Video Content, Ph.D Thesis, Mid Sweden University, 2015. 

[27] G. Alves, F. Pereira, E.A.B. da Silva, Light Field Imaging Coding: Performance Assessment Methodology and Standards 

Benchmarking, in: 2016 IEEE Int. Conf. Multimed. Expo Work., Seattle, WA, US, 2016: pp. 1–6. doi:10.1109/ICMEW.2016.7574774. 

[28] A. Vetro, T. Wiegand, G.J. Sullivan, Overview of the Stereo and Multiview Video Coding Extensions of the H.264/MPEG-4 AVC 

Standard, Proc. IEEE. 99 (2011) 626–642. doi:10.1109/JPROC.2010.2098830. 

[29] R. Olsson, Synthesis, Coding, and Evaluation of 3D Images Based on Integral Imaging, Ph.D Thesis, Mid Sweden University, 2008. 

[30] S.-L. Yu, C. Chrysafis, New Intra Prediction Using Intra-Macroblock Motion Compensation, JVT-C151, Fairfax, VA, US, 2002. 

[31] J. Lainema, F. Bossen, W. Han, J. Min, K. Ugur, Intra Coding of the HEVC Standard, IEEE Trans. Circuits Syst. Video Technol. PP 

(2012) 1. doi:10.1109/TCSVT.2012.2221525. 

[32] D.-K. Kwon, M. Budagavi, Fast Intra Block Copy (IntraBC) Search for HEVC Screen Content Coding, in: 2014 IEEE Int. Symp. 

Circuits Syst., Melbourne, Australia, 2014: pp. 9–12. doi:10.1109/ISCAS.2014.6865052. 

[33] M. Flierl, B. Girod, Video Coding with Superimposed Motion-Compensated Signals - Applications to H.264 and Beyond, 1st ed., 

Springer US, 2004. doi:10.1007/b105390. 

[34] M. Flierl, T. Wiegand, B. Girod, A Locally Optimal Design Algorithm for Block-Based Multi-Hypothesis Motion-Compensated 

Prediction, in: Proc. DCC ’98 Data Compression Conf., Snowbird, UT, US, 1998: pp. 239–248. doi:10.1109/DCC.1998.672152. 

[35] G.J. Sullivan, T. Wiegand, Rate-Distortion Optimization for Video Compression, IEEE Signal Process. Mag. 15 (1998) 74–90. 

doi:10.1109/79.733497. 

[36] Il-Koo Kim, K. McCann, K. Sugimoto, B. Bross, W.-J. Han, G. Sullivan, High Efficiency Video Coding (HEVC) Test Model 14 

(HM14) Encoder Description, JCTVC-P1002, San José, CA, US, 2014. 

[37] V. Sze, M. Budagavi, G.J. Sullivan, eds., High Efficiency Video Coding (HEVC): Algorithms and Architectures, Springer International 

Publishing, Cham, 2014. doi:10.1007/978-3-319-06895-4. 

[38] B. Girod, Efficiency Analysis of Multihypothesis Motion-Compensated Prediction for Video Coding., IEEE Trans. Image Process. 9 

(2000) 173–83. doi:10.1109/83.821595. 

[39] P. Ramanathan, B. Girod, Rate-Distortion Analysis of Random Access for Compressed Light Fields, in: 2004 Int. Conf. Image Process. 

ICIP ’04., Nanyang, Singapore, 2004: pp. 2463–2466. doi:10.1109/ICIP.2004.1421601. 

[40] C. Conti, L.D. Soares, P. Nunes, Influence of Self-Similarity on 3D Holoscopic Video Coding Performance, in: Proc. 18th Brazilian 

Symp. Multimed. Web - WebMedia ’12, São Paulo, Brazil, 2012: pp. 131–134. doi:10.1145/2382636.2382666. 

[41] G. Baasantseren, J.-H. Park, K.-C. Kwon, N. Kim, Viewing Angle Enhanced Integral Imaging Display using Two Elemental Image 

Masks, Opt. Express. 17 (2009) 14405. doi:10.1364/OE.17.014405. 

[42] G. Bjøntegaard, Calculation of Average PSNR Differences between RD Curves, VCEG-M33, Austin, TX, US, 2001. 

[43] M. Wien, High Efficiency Video Coding, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. doi:10.1007/978-3-662-44276-0. 

[44] 3D Holoscopic Sequences (Download Link), (2013). http://3dholoscopicsequences.4shared.com/ (accessed October 30, 2016). 

[45] T. Geogiev, Todor Georgiev Gallery of Light Field Data, (n.d.). http://www.tgeorgiev.net/Gallery/ (accessed September 17, 2016). 

[46] M. Řeřábek, T. Ebrahimi, New Light Field Image Dataset, in: 8th Int. Conf. Qual. Multimed. Exp., Lisbon, Portugal, 2016. 

[47] T. Georgiev, A. Lumsdaine, Focused Plenoptic Camera and Rendering, J. Electron. Imaging. 19 (2010) 021106–021106. 

doi:10.1117/1.3442712. 

[48] R. Joshi, J. Xu, R. Cohen, S. Liu, Z. Ma, Y. Ye, Screen Content Coding Test Model 1 (SCM 1), JCTVC-Q1014, Valencia, Spain, 2014. 

[49] D.G.D.G. Dansereau, O. Pizarro, S.B.S.B. Williams, Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras, in: 

2013 IEEE Conf. Comput. Vis. Pattern Recognit., Portland, OR, US, 2013: pp. 1027–1034. doi:10.1109/CVPR.2013.137. 


