Pandion]: A Pedagogical Debugger Featuring Illustrations of
Variable Tracing and Look-ahead

André L. Santos
Instituto Universitario de Lisboa (ISCTE-IUL)
PORTUGAL
andre.santos@iscte-iul.pt

ABSTRACT

We present Pandion], a pedagogical debugger for Java with inno-
vative features regarding how the program state information is
presented to users. We consider aspects that are either not available
or not fully automated in existing debuggers (pedagogical or not),
such as illustration of the history of variable values and look-ahead
of their future state. Our approach relies on static analysis of code
in order to infer variable roles, relationships, and behavior. This
information is used to render illustrations of program state that
existing debuggers are not capable of providing without requiring
additional user input.

CCS CONCEPTS

« Social and professional topics — Computing education; « Soft-
ware and its engineering — Software testing and debugging;

KEYWORDS
programming pedagogy, debuggers, visualization

ACM Reference Format:

André L. Santos and Hugo S. Sousa. 2017. Pandion]: A Pedagogical Debugger
Featuring Illustrations of Variable Tracing and Look-ahead. In Proceedings of
17th Koli Calling International Conference on Computing Education Research
(Koli Calling 2017). ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3141880.3141911

1 MOTIVATION

We carried out a study with programming instructors that revealed
illustration patterns in their explanations of program execution [6].
Many of these illustration patterns either have no representation
or are not fully automated (i.e. additional user input is necessary)
in existing pedagogical debuggers and animation tools (e.g., [1, 3-
5]). Further, despite the numerous pedagogical tools for program
visualization that have been proposed, such tools are not widely
used in teaching [2]. One the main reasons given by instructors
is that they prefer to develop their own visualizations. Based on
our study, we speculate that one of the possible justifications for
this is that the illustrations developed by instructors (drawings or
animations) tend to be considerably richer than the ones provided
by the tools.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Koli Calling 2017, November 16—19, 2017, Koli, Finland

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5301-4/17/11...$15.00

https://doi.org/10.1145/3141880.3141911

Hugo S. Sousa
e.Near
PORTUGAL
hugossousa92@gmail.com

Based on the assumption that the information drawn by pro-
gramming instructors in their explanations is useful for student
comprehension, we believe that a pedagogical debugger whose visu-
alizations resemble those could be beneficial to the learning process.
The goal of our approach is to incorporate in a debugger several
illustration patterns used by programming instructors, automating
them with the purpose of helping on programming education (de-
bugging exercises, understanding runtime errors, comprehension
of elementary algorithms).

2 DEBUGGING ENVIRONMENT

Pandion] consists of a view of debugger-provided information that
renders the state of program variables in graphical way, taking
into account variable information obtained from static analysis of
the source code. Our proof-of-concept implementation supports
Java and was built as a plugin for Eclipse, that integrates with its
debugger infrastructure (see Figure 1).

The information provided by a debugger engine is simply a set
of variable-values pairs held in call stack frames. In order to au-
tomatically render our illustrations (i.e., without relying on any
additional information provided by users), we collect additional
information about variables, related to their roles [5] (e.g., Gatherer,
Stepper, Most-Wanted Holder), how they relate to other variables
(e.g., an iterator for array indexes), and their behavior (e.g., con-
stant, incrementer/decrementer). Pandion] performs static analysis
of the code under execution in order to obtain such information.
When illustrating program state, the variable values provided by
the debugger are depicted according to the information extracted
from the source analysis. The illustrations do not rely on any sort
of source code annotations or naming conventions on the user code.
To our knowledge, there are no pedagogical debuggers available
that combine static analysis with runtime information in order to
provide fully automated visualizations of program state.

Variables are segmented according to the active frames of the call
stack. For each stack frame, values (variables of primitive type) are
represented as name-value pairs, while references are connected to
the objects (including arrays) they are pointing to (if not null). Value
variables may be depicted differently according to their role in the
method, its relationship with array variables, or predicted behavior.
Figure 1 presents an example of Pandion] in action, showing an
executing function for summing the values of an array within
a given interval of array indexes [a, b] (parameter validation is
ignored here). The execution is suspended at a point where the loop
is about to perform its third iteration.

Tracing. Pandion] features visualizations that enable users to
trace the current value of a variable. One case pertains to array index
iterators (Stepper a[5]), which are depicted next to the position of

https://doi.org/10.1145/3141880.3141911
https://doi.org/10.1145/3141880.3141911
https://doi.org/10.1145/3141880.3141911

Koli Calling 2017, November 16-19, 2017, Koli, Finland

[7] Kolijava 52 =]
class Koli {

static void test() {
int[] Vv = {?: 3: 5» 3! 2; 5}:
int s = sum(v, 1, 4);
System.out.println(s);

static int sum{int[] array, int a, int b) {

A int sum = @; =

for(int 1 = a; 1 == b; i++)
» sum += array[i];
return sum;

André L. Santos and Hugo S. Sousa

test() ‘ 3]s “ 2 | 5|
1 2 3 4

o

sumiarray, 1, 4)

array

b

{0+34+5)

[5]

Figure 1: Pandion] illustrating a function for summing the values contained within a given interval of array indexes.

the target array, while the trace of its previous values is visible
(trailing dots). In the example, variable i is classified as such, given
that it is only used to access positions of the array v. Parameters a
and b are considered array index accessors, and are also represented
next to the respective array positions. Although they are not used
to access the array directly, they are used to initialize an iteration
variable (i = a) and constrain its growth (i <= b).

Another tracing feature relates to Gatherer variables [5], whose
values result from a successive accumulation of values. In the ex-
ample, variable sum is classified as such given that it is modified
only through an accumulation instruction (+=). The tool displays
the parcels that decompose the current value of the variable. Yet
another case, not illustrated in the example, is when the variable is
identified as a Most-Wanted Holder [5], for which the tool displays
an history of the successive values that were superseded by the
newer ones.

Look-ahead. Pandion] features visualizations that anticipate vari-
able behavior, in order to enable users to look-ahead the future state
of the variable. Array index iterator variables may be classified as
incrementers or decrementers if all the instructors that modify them
are increments/decrements. In the example, variable i is classified
as an incrementer, since its value only changes through the instruc-
tion i++. Using this information, the tool depicts a direction of the
array iterator with an arrow pointing to the right/left (incremen-
tal/decremental). In addition to this classification, an array iterator
might have an associated bound, which consists of an expression
that constrains the upper/lower value of an array iterator. In the
example, variable bis a (closed) bound for the incrementer variable
i. We can also see variable i with a right-direction pointing to its
bound (represented by the bar), which in this case is a variable (b),
but it could be any side-effect-free expression.

Variables whose value never changes (so-called constants, or
Fixed Valuesa[5]) are also represented differently (grayed out), de-
spite if they were explicitly programmed as such (using the final

keyword in Java). In the example, the constants are the function
parameters (also classified as array index accessors, as explained).

3 CONCLUSIONS

Notice that the four variables of the example function sum are all
integers but have very different purposes in the function. Whereas
a conventional debugger would render these equally in a list of
name-value pairs, PandionJ depicts them differently according to
their behavior. While our visualizations are similar in some ways to
previous approaches, Pandion] has the advantage of not requiring
any user input for rendering the illustrations as such. For instance,
PlanAni [5] introduced different variable visualizations according to
variable role, however the scripts have to be manually developed by
instructors. JGRASP [1] renders arrays and iterators in a similar way
as ours, but the bindings of iterators to arrays have to be manually
defined by users and there is no representation of variable direction.

REFERENCES

[1] James Cross, Dean Hendrix, Larry Barowski, and David Umphress. 2014. Dynamic
Program Visualizations: An Experience Report. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education (SIGCSE ’14). ACM, New
York, NY, USA, 609-614.

Essi Isohanni and Hannu-Matti Jarvinen. 2014. Are Visualization Tools Used in

Programming Education?: By Whom, How, Why, and Why Not?. In Proceedings

of the 14th Koli Calling International Conference on Computing Education Research

(Koli Calling ’14). ACM, New York, NY, USA, 35-40.

[3] Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A. Uronen. 2003. The

Jeliot 2000 program animation system. Computers and Education 40, 1 (2003),

1-15.

Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. 2007. VILLE:

A Language-independent Program Visualization Tool. In Proceedings of the Sev-

enth Baltic Sea Conference on Computing Education Research - Volume 88 (Koli

Calling °07). Australian Computer Society, Inc., Darlinghurst, Australia, Australia,

151-159.

[5] Jorma Sajaniemi. 2002. An Empirical Analysis of Roles of Variables in Novice-
Level Procedural Programs. In Proceedings of the IEEE 2002 Symposia on Human
Centric Computing Languages and Environments (HCC’02) (HCC ’02). IEEE Com-
puter Society, Washington, DC, USA.

[6] André L. Santos and Hugo S. Sousa. 2017. An Exploratory Study of How Pro-
gramming Instructors Illustrate Variables and Control Flow. In Proceedings of the
17th Koli Calling International Conference on Computing Education Research.

[2

[4

	Abstract
	1 Motivation
	2 Debugging environment
	3 Conclusions
	References

