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Abstract

The exponential growth of the number of multihomed mobile devices is changing the way how we
connect to the Internet. Unfortunately, it is not yet easily possible to a multihomed device to be

simultaneously connected to the network through multiple links.

This work enhances the network access of multihomed devices. This enhancement is achieved by using
simultaneously all of the mobile devices interfaces, and by individually routing each data flow through
the most adequate technology. The proposed solution is only deployed at the network core and it does
not depend on the mobile devices, i.e., it's transparent to the mobile devices. This work gives the
necessary tools to reuse the already deployed technologies like WiFi or 3G/LTE. Moreover, it is also
possible to extend the network by using femtocells which support multi access technologies. This work
is also integrated with IEEE 802.21 standard to improve the handover mechanisms in the network.

Additionally, we also propose an integration with a broker that can manage all the data flows individually.

The proposed solution improves the quality of service of the users while not overloading the operator
infrastructure. Evaluation results, obtained from the developed prototype, evidence that the overhead

for using the proposed solution is very small when compared to the advantages.
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Resumo

O crescimento exponencial do nimero de equipamentos méveis com multiplas tecnologias de acesso
a rede esta a mudar a maneira como nos ligamos a Internet. Infelizmente, ainda n&o é possivel usar

simultaneamente todas as interfaces de rede de um equipamento maével.

Este trabalho melhora o acesso a rede a partir de dispositivos mdveis com multiplas interfaces de rede.
Para alcancar esta melhoria todas as interfaces de rede dos dispositivos méveis podem ser usadas
simultaneamente, e os fluxos de trafego sdo encaminhados individualmente através da tecnologia mais
conveniente. A solugdo proposta apenas é instalada na rede core, ou seja, € transparente para os
equipamentos moveis. Este trabalho desenvolveu as ferramentas necessarias para reutilizar as
tecnologias existentes que ja estdo disponiveis em larga escala, como o WiFi ou 0 3G/LTE. E também
possivel usar femto-células com suporte a mdultiplas tecnologias de acesso para expandir mais
rapidamente a rede. Este trabalho criou também uma integragdo com a norma IEEE 802.21 para
melhorar os processos de handover. Adicionalmente propomos a integragcdo com um broker externo

para uma melhor gestao dos fluxos de trafego.

A solucgao proposta melhora a qualidade de servigo dos utilizadores sem sobrecarregar a infra-estrutura
do operador. Os resultados obtidos a partir dos testes realizados ao protétipo desenvolvido mostram
que o impacto na performance ao usar esta solugéo é extremamente reduzido quando comparado com

as suas vantagens.

Palavras chave: mobilidade de fluxo; PMIPv6; femto-células
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1. Introduction

According to Cisco [1], mobile traffic is growing very fast, and in 2014 the number of mobile connected
devices exceeded the world population. Also according with this report, by 2019 three-quarters of mobile
traffic will be generated by smartphones. Moreover, in 2016 more than half of the traffic generated each
month by mobile devices will be offloaded to the fixed network by means of WiFi or femtocells. The
traffic generated by mobile phones will exceed the traffic generated by laptops, tablets and any other

devices [2].

Global mobile traffic (monthly ExaBytes) ‘I O\<
/

growth in mobile
O data traffic between
Voo 2013 and 2019

In 2013, mobile traffic
generated by mobile
phones will exceed that
generated by mobile
PCs, tablets and routers

Figure 1 - Global mobile traffic grow [2]

To support the growth of the traffic consumed by Mobile Nodes (MNs), new technologies, like LTE-A,
are being developed and deployed. The LTE-A allows MNs to transmit up to 300 Mbit/s, but this

throughput is very dependent on the cell congestion.

The cell congestion problem is basically solved by deploying more cells. However, it is desirable to
reduce the cost of deploying more equipment in the network. To avoid this cost the operator can use the
already deployed infrastructures like WiFi, WiMAX or others that can be deployed at a low cost. We
have already the required technology available and deployed, 90% of the world population has 2G
coverage, and 45% has 3G coverage [3]. The number of public WiFi hotspots is growing for the next

years, and in 2015 there will be about 5.8 million hotspots [4].

Despite the possibilities already offered by the existing technologies, operators are not using all of the
available network capacity, e.g. in practice they aren’t yet efficiently using the WiFi infrastructure to
alleviate mobile data traffic. This could be better achieved if operators could improve the support for
mobility protocols in their network infrastructure. The mobility consists on the ability of MNs to move
across the operator network while keeping their reachability and continuity of sessions, independently

of the technology that is in use.

The mobility can be host based or network based. There are some differences between the two
approaches, namely the responsibility of the MN tracking, the place where the routing decision is taken

and the MNs technological requirements.



Aside the differences, both approaches have a common element, the Home Agent (HA). The HA is an
entity that resides at the MN home network and it’'s responsible to maintain a bridge between the MN
home address and the MN foreign address. The HA must maintain an association between the MN

home address and the foreign address.

In host based protocols the MN must keep the HA informed about the changes in its foreign address. In
these type of solutions all of the logic resides in the MNs, the network must only assure coherent routes

from the MN home address to the MN foreign address.

On the other hand, the network based protocols don’t require the intervention of the MN. The tracking
of the MN movements is implemented at the network side. This is done by deploying new entities in the
network edge that have the capability of tracking the MNs movements and keep the HA informed about

them.

Host based solutions have the disadvantage of requiring extra software/hardware deployed in the MNs.
It's not easy to an operator to install new software/hardware in all the user’s equipment, mainly because
of the costs involved. Another disadvantage in host based protocols is that the MN can have the final
decision in the mobility process, so, the operator can't fully control the mobility process according with
its policies. Nonetheless, one advantage of host based solutions is the scalability, each MN is

responsible for its own mobility, so the network isn’t overloaded with extra tasks.

Contrary to the host based solutions the network based solutions have shifted all the logic to the network.
In these networks, the modifications required in the MNs are inexistent or null. The network based
solutions are more appealing to the operators, since they can now offer a service that can be used by a
vast majority of their clients. However, contrary to the host based solutions, network based solutions
can have some problems in large networks. The network must be capable of supporting the
management of all the MNs that are connected, and it is more challenging to scale than the host based

solutions.

Additionally, it is important to notice that the type of MNs have been evolving over the years, and now
the operators have to deal with: more traffic, more connected devices, multiple network interfaces for
each device, multiple access technologies available and distinct Quality of Service (QoS) requirements

depending on the application being used by the user.

These new requirements demand a new paradigm to route the traffic, and this work addresses this
challenge by adopting the flow Mobility concept [5]. The flow mobility concept, is basically applying the
mobility concept for each individual traffic flow i.e., each traffic flow can be routed individually through
the available routes. In this scenario the MN can be connected to the network through multiple interfaces
and it can be receiving/sending traffic simultaneously in all of its interfaces. Each flow can be routed
according to some policy defined by the operator with or without the user intervention. In this document
the term "flow mobility" means the possibility of moving a specific IP flow from one access link to another.

This definition implies that the MN has the capability of being connected to at least two access points



simultaneously. The concept of an equipment being connected to more than one network at the same

time is called multihoming.

To better illustrate this concept a flow mobility scenario is represented in Figure 2, where a MN may
use all the available interfaces simultaneously. For example, a MN that has a WiFi and a 3G interface

can be connected with both interfaces while receiving traffic by both.

ISATAP wnnel

Weak Host MN

Figure 2- Flow mobility network (adapted from [6])

With a flow based mobility strategy, the operator can positively discriminate more critical traffic with the
QoS available in the 3G/LTE networks when necessary, and simultaneously provide cheaper rates for
non-critical traffic. For example, in a congested 3G/LTE cell an operator may only accept voice traffic
and offload non-critical traffic, like HTTP or Email, to the WiFi infrastructure. This strategy brings

advantages to both operators and clients.

There are solutions that in part permit the mobility of traffic flows either host based [7], [8], or network
based [6], [9]. The focus of the work presented in this thesis is to extend a network based mobility

approach, and to propose a solution to solve the main problems in the flow mobility process, namely:

* The mobility process must be transparent to the MN;
* The flows can be dynamically routed without impacting the transport or application layers
protocols;

* The operator can make routing decisions for each individually flow;

Additionally, this work proposes and implements three new features that will benefit both the operator

and the users:

* Improved detection of MNs attachments/detachments to/from the network. This objective is
accomplished by integrating the flow mobility software with an implementation of IEEE 802.21
[10]. IEEE 802.21 brings several advantages to the proposal: improve the mechanism of MNs

tracking on the network; provides a robust framework to monitor the network and link status;

3



makes the access technology transparent to the mobility logic; and allows for a easier to scale
to large networks;

* Integration with an external broker that may take decisions based on real-time QoS parameters,
requirements and policies. This broker can receive as input the business rules of the operator
and manages routes for the flows accordingly;

e The use of femtocells with multi-access technologies. It will study the feasibility and
performance of having MNs simultaneously connected to multiple technologies in the same

femtocell.

As this work has a requirement of not requiring modifications in the MNs, a network based mobility
solution had to be adopted. The host based solutions aren’t adequate to the topic of this work because

they all require mobility software installed in the MNs.

To accomplish the proposed goals this work has followed a straightforward methodology in Figure 3.

Technical

Theoretical Analysis Requirements

Implementation Evaluation

Figure 3 —Work methodology

1. In theoretical analysis phase, the problem was better identified and studies regarding available
solutions and possible implementations were conducted.

2. The technical Requirements phase consisted in identifying the necessary tools to solve the
problem identified in the previous step. In this phase, a couple of mobility software
implementations were analysed and tested. One was chosen to be used as starting point to
implement this work proposal.

3. The Implementation phase corresponds to the coding of the defined requirements in a real
prototype.

4. Finally, in the Evaluation phase, the output of the implementation phase was tested in a real

scenario using real traffic with real equipment.

The accomplished results of this research have already been partially published [11], the next five
chapters of this work explain in more detail the proposal. Chapter 2 describes some of the existing
protocols and presents them in more detail. The Chapter 3 presents the proposal to solve the problems
stated above. The proposal contains a detailed description of the necessary hardware/software to
deploy in the network. Chapter 4 shows how the proposed solution was implemented. This chapter
describes the choices taken during the implementation phase and enumerates the necessary equipment
to deploy in a network to achieve the stated objectives. The proposed solution is evaluated at chapter
5. Chapter 5 contains the results collected from the evaluation phase. Finally, Chapter 6 contains the

conclusions about this work and some future work that can be done to improve the developed solution.



2. Mobility protocols

Today mobile networks are facing new challenges: increasing of traffic, increasing of number of MNs
connected simultaneously, MNs connected through multiple interfaces and technologies and the new
type of apps requiring specific QoS. These challenges require the development of new solutions to

support users mobility.

The term “mobility” is normally associated to the physical movement of the client with his/her mobile
equipment. In a mobility scenario the user can move his/her equipment while keeping its reachability
and sessions continuity. While the MN is moving it cannot lose the already established connections, and

the mobility process must be transparent to the transport protocols.

The mobility can be achieved at different layers of the network stack. It can be provided at: physical
layer, link layer, network layer, transport layer or application layer. Implementing mobility at physical or
link layer can provide fast and transparent handovers, but a solution at this level needs to be developed
specifically for each technology. On the other end of the stack a solution at the application layer would

be easier to develop, but it would require changes in all the applications [9].

From a performance perspective the mobility at physical layer is the most advantageous solution, but
it's the solution that involves more costs. A solution implemented at application layer would be cheaper

to develop but it would require a huge effort from all developers.

This work considers mobility at the network layer. Since the Internet Protocol (IP) is the most used
protocol for network layer, a solution at this layer will require only changes to one protocol. All the

applications that are deployed over IP would automatically benefit from mobility.

There are already mobility protocols for the network layer. These mobility protocols can be classified in

two main groups [12]:
Host Based Protocols:

In this type of protocols, the MN must participate in the mobility process. When the MN moves to a
foreign network it must inform its anchor point about its foreign IP address. The anchor point is

responsible to forward the traffic to the clients.
Network Based Protocols:

These types of protocols don't require the intervention of the mobile node in the mobility process.
The MN movements are detected by an entity in the network, and the mobility process takes place

without the MN intervention.

Unfortunately, the flow mobility protocols are still in development state. There are some
implementations of flow mobility either network based [6], [9], [13] or host based [7], [8]. However
these implementations are still in a development/research state, and will be better described and

compared in the next chapters.



As the flow mobility protocols are in development state, there isn’t a final Request for Comments
(RFC) to work on. The most detailed documentation, until this date, is being published by the NETEXT
Working Group (WG) from IETF". This group is working on the future RFC that will describe the
necessary extensions to support flow mobility on the IETF network based mobility protocol, the
PMIPv6.

The following sub chapters describe some of the available mobility solutions, either with or without

support for flow mobility.

2.1. Hercules network stack

The Hercules stack [7], [8] is a mobility solution where a new network stack is deployed on the client
and in its peer. This solution is suitable for devices that have multiple network interfaces available. The

author has developed a prototype for Linux and Android.

Hercules Stack proposal consists in refactoring the network stack of all the nodes that are involved in a
communication. The Hercules new network stack, see Figure 4, manages the physical interfaces and
provides a single virtual interface to the protocols above IP layer. This solution creates an abstraction
layer that hides the complexity of network management to the applications running on the node. The

management of the flows is made by a control plane that was added to the network stack.
The Hercules stack can be separated in three modules:

* Virtual Interface
This module provides to the protocols above network layer a single network access. This
interface has an arbitrary IP address that only exists inside the device.
When an application wants to send a packet it will use the address provided by this virtual
interface. The IP address assigned is a local IP address, and it's only valid inside the node.
Before sending the packets to the network the IP address must be translated to the real IP
address that is being sent to the network.

* Control Plane
This module makes the decisions about the packets routing. The decisions can be based on
static policies or can be configured in runtime using an Application Programming Interface
(API) developed by the author.
The proposal doesn'’t restrict the control to the node. The control plane can be located
anywhere in the network. This control plane can also be used by the applications that have
specific routing requirements.

e Switch
This is the module that forwards the packets according to the control plane rules. The switch

must multiplex/demultiplex the packets to/from the correct physical interface.

! http://datatracker.ietf.org/wg/netext/



This module works like a Network Address Translator (NAT). It must translate the private IP
addresses that are provided to the upper layers, to the real IP address assigned to the MN.
When it receives a packet from the network it must translate the destination address to the

address assigned to the network layer.

S
Applications

=

o [ Protocols J
Q.
2 I Virtual Interface
o >

o ﬁ I

—’ 3G WiFi WiMAX

Figure 4 — Hercules Stack [7]

This solution has been implemented and tested in Linux and Android Operative Systems (OSs). Also
according with a presentation made by the author in 2011 [14], the Android prototype should become

available to the public "soon". Unfortunately, the prototypes aren't yet available publicly.

Flow Mobility Support:

The Hercules stack is already prepared for flow mobility. The flow mobility can be exploited by the
applications using the API to manipulate the control plane. Alternatively, the user can also configure

static policies in the control plane.

For the Transmission Control Protocol (TCP) the Hercules stack must assure that the session is kept
alive between handovers. The session continuity is more problematic in connection oriented protocols
like TCP. In TCP, a session is identified by the pair of IP addresses and the transport ports. If one of
the IP addresses changes during the handover the TCP session will be lost. The Hercules stack must
ensure that after a handover the TCP layer continues to see the same pair of IP addresses that was
being used before the handover. As said by the author it is not easy to migrate a flow from an oriented
connection protocol like TCP. In a normal situation this would require that the TCP protocol is modified
or the packets headers that arrive to the TCP layer are modified before being delivered, so that the
TCP layer always see the same endpoint. The Hercules uses the last option, it modified the IP packets

so that the transport layer doesn’t detect changes at the network layer.

Figure 5 represents three different phases of the flow migration process, one for when the client is
behind a NAT (1), another when client isn’t behind a NAT (2) and another for when exists a middlebox
between the client and its peer (3). In all the situations the nodes are using the Hercules stack. During
the flows migrations the MN must exchange signalization messages with its peer, this signalization is

responsibility of the control plane.



The right image of Figure 5 shows the address translation procedure. Independently of the network
where the MN is connected the application running in host A thinks that the communication is between
the IP addresses A’ and B. At the other side the application running in host B thinks that the
communication is between the addresses A1 and B’. To make this “illusion” possible the switch module
must translate the addresses accordingly before sending the packets to the network and before

delivering the packets to the transport layer.

This solution was also tested with a middlebox that also uses the Hercules stack. The middlebox must
do the same procedure of address translation as in an end to end connection. According to the author

this configuration can be useful for introducing a firewall or a Deep Packet Inspection (DPI) tool.

A <> Al B<>pB

NAT Clearwire m‘—){
A 1 B
A <> A2 A2,B <> Al1,8’
g - . 2 x5 (A Je e8| AL®
{ Stanford

‘ 3 A'B<->A2M A2,M<-> M,B M,B <-> A1,B’
' Middlebox N (_De{c]

Figure 5 - Hercules stack address translation [7]

To handover a flow extra signalization between the participants is required. The sender must inform its
peer about the new address that it will start to use to send the packets. This step is required so that

the receiver can associate the traffic coming from the new IP address to an existing flow.

Final Remarks

One key aspect of the Hercules stack it's the control plane. The control plane makes the Hercules a
very configurable solution. The control plane can be used by external applications to provide QoS
based routing and handovers. An operator that can configure the control plane of all of its users will
have a powerful tool to optimize its network. The Hercules is the adequate solution to deploy in an

environment where it's impossible to modify the network core equipment.

Hercules is prepared for a full flow mobility environment. The API introduced in Hercules can become
very useful for introducing external flows schedulers. With this API the system administrator can
configure dynamic policies to best serve their clients. Another advantage is the abstraction that the
Hercules creates for the applications, this stack configures an internal IP address that the applications
can use. The mapping between this internal IP address and the real IP address it is responsibility of the

switch module.

As a host based mobility protocol Hercules introduces modification in the MNs. Hercules in specific,
requires a complete new network stack. This is a very expensive operation to perform for all the MNs
of an operator network. Even though, the author has already developed the stack and all the
dependencies for Linux and Android OS, they still need to be installed in all the MNs. This kind of

operation involves changing the whole OS.



The Hercules stack has problems when dealing with midleboxes that don’t have the Hercules stack
installed. This is a common situation in the operators networks, sometimes there are statefull firewalls
in the network core. When the Hercules stack makes a handover it will change the packets IP
addresses. The firewalls in the packets route could drop these packets if they can’t detect that the

packets belong to an previously established flow.

This solution has a very restrict set of pre-conditions that must be met so that the protocol works as
expected. This solution only supports the TCP and User Datagram Protocol (UDP) as transport
protocols. If the user wants to use another transport protocol it won’t work. Also, the solution does not

explicitly explains the compatibly with the existing NATSs.

The Hercules stack provides to the application running on the host a private IP address. This IP
address is a virtual address, it must be translated before sending the packets to and from the network.
This translation mechanism is identically to the standard NAT behavior in IPv4 networks. This solution
inherits the problems that are usually related to the NATs. Like the difficulty to provide public services

in a known port. Another problem of this solution is the fact that it isn’t a standard.

2.2. Mobile IPv6

The MIPv6 [15] is a host based mobility protocol that allows mobile nodes to move around an IPv6

network while keeping their reachability and session continuity in transport layer.

In a MIPv6 scenario, the MN is always identified and reachable by the same address, the home
address. As the MN keeps the same address while moving, the movement is transparent to the higher
layers of the stack, namely the transport and application layer. The home address is an address that

it's assigned to the MN by an anchor point, the anchor point is located in the MN home network.

This protocol introduces a new entity in the network, the HA. The HA is located in the MN home
network and it acts as an anchor point. This entity must assure the route to the MNs, even if they
aren’t at the home network. To assure the route the HA must maintain a structure that maps the MNs
home address with their real IP address, the foreign address. With this information the HA can keep a

bi-directional tunnel to the MN and forward all the traffic through this tunnel.

When the MN moves to a foreign network it will have to configure a local address with the available
mechanisms, either static, stateless [16] or statefull [17] configuration. The address obtained it's the
Care-of Address (CoA). After getting a CoA the MN must register it in its HA. With this information the
HA can create a bidirectional tunnel to the MN. With this tunnel the HA can forward all the traffic
received that has the MN home address as destination. If the MN has available more than one CoA it
can register all in the HA, but it has to select one primary CoA. The MN must ensure that it's always

reachable by the its primary CoA.



To store the MNs location, the HA maintains a structure called Binding Cache. This structure stores a
set of bindings. A binding is an association between a home address and one or more CoA. This
structure has the necessary information to reach the MN. This cache consists in a binding cache entry
for each connected MN. Each binding cache entry must contains at least the home address and the

respective CoA.

The HA only maintains the binding cache with the information that it receives from the MN. The MN is

responsible to keep its location updated in the HA binding cache.

As seen in Figure 6, there are two possible solutions to the communication between the MN and its

peer, the Correspondent Node (CN). The bidirectional Tunneling or the Route Optimization mode.

Correspondent Node

o
— ——
T |—
ForeignNetwork's  __ __ __ __ __ M | — — —
1D Home Address [CoA
Clientl |2001:AAAA::12|2001:BBBB::65 i
Client2 |2001:AAAA::20|2001:DDDD::123| * \\”_\
Binding Cache

Home Network

Client 1
CoA: 2001:BBBB::65

Client 2
CoA2001:DDDD:123

Figure 6 - MIPv6 forwarding mechanisms

Bidirectional Tunneling:

This mode does not require MIPv6 support in the CN.

In this mode all the traffic travels by the HA. The packets addressed to the MN are routed to the
HA and then forwarded to the MN through a secure tunnel. The packets from the MN to the CN
are sent through the tunnel and then forwarded by the HA to the CN. This mode of operation has
a non-optimal route path. In a scenario where the MN is at the same network than the CN, the
packets sent to each other always traverse the HA, even if the HA is at a different network.

The advantage of this mode is the transparency to the CN, the real location of the MN is irrelevant

to the CN. In this scenario the CN doesn’t need to support MIPv6.
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Route Optimization:

In this scenario the first messages are exchanged in bidirectional tunneling mode. After the first
message both correspondents can reach each other. Now the MN can register its CoA in the CN,
like it was the HA. Now the packets are routed directly between the MN and the CN. This also
alleviates the congestion in the HA, making this approach more scalable that the bidirectional
tunneling. The possible downside is that it is no longer transparent to the CN, in this scenario the

CN must implement the MIPv6 protocol.

In MIPv6 the signalization messages are vital to keep the MN location always updated in the HA. The

signalization messages are encapsulated in a new IPv6 extension header [18][19], the mobility header.

This header was specifically created to transport messages related to the mobility management. The
MIPv6 defines a set of messages to serve multiple purposes on the mobility management process. Each
of these messages can contain one or more mobility option encoded in Type-Length-Value (TLV) format.
These options contain additional information that can be reused between messages. From the options
defined in the standard the most important to consider for this work is the Home Prefix Option, this is

the option that carries the CoA.

Flow Mobility support:

The MIPv6, as defined in RFC 6275 [15], cannot provide flow mobility to the MNs. The bindings that
the HA stores are always a binding between an IP address and one or more CoA. Even when a MN

registers more than one CoA it must choose one primary CoA.

Due to the importance of flow mobility, the MIPv6 standard has been updated to accommodate the
necessary changes to provide the flow mobility to the clients. The first change [20] was to give the
possibility to the client register multiple active CoAs. If the MN has more than one access link, for
example two WiFi interfaces, it can obtain two distinct CoAs for its interfaces and register both in the
HA. A HA compliant with this update can forward traffic to the MN based on a specific forwarding
policy. The forwarding policy is dependent on the HA implementation, so it doesn’t consider the user

preferences.

A later update [21] to MIPv6 added the necessary signalization messages so that the MNs can bind a
specific flow to a CoA. The MN now have the capability of installing routes in the HA to forward each

flow through the most adequate route.

With the last two updates the MIPv6 became ready to provide flow mobility to its users.

Remarks:

The MIPV6 is a simple and mature protocol that is widely deployed. It also has the advantage that
even low end devices can support MIPv6 without requiring significant modifications. With MIPv6 it's

possible to deploy a mobility enabled network without significant hardware requirements in the
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network core. It's even possible to obtain mobility without permanently using a centralized HA. If both
participants in the communication support MIPv6 they can route the first messages through the HA
and then the CN can act as the HA for the MN.

As stated before, sometimes the session continuity can be more important than the mobility. In MIPv6
the MN is always identified by the same address. Even when the MN moves to another network the
transport and application layers will always see the same IP address. The MIPv6 assures that the

mobility is transparent to the MN.

One downside of MIPV6 is that not always the route to the CN is the best. To get the best route both
ends of the communication must exchange signalization messages directly. This is only possible if
both ends are MIPv6 compliant devices. Even in the route optimization scenario the HA has to exist.
The HA assures that the CN can reach the MN for the first message. After reaching the MN the CN

can exchange MIPv6 signalization directly with the MN so that they can optimize the route.

Another problem is the lack of control that the operators have. In a MIPv6 network the only entity
managed by the operator is the HA. Moreover, this HA can only act as simple router that it's configured
directly by the clients. In most of the time, the operator has more information about the whole network

than the client. With this information the operator could take better handover decisions than the client.

2.3. Dual Stack Mobile IPv6

Dual stack mobile IPv6 [22] is a set of modifications to the MIPv6 protocol. Since IPv6 isn’'t wide
deployed it isn’t possible to assure mobility only with standard MIPv6. Even when the MNs support
IPv6, it can move to other networks that don’t support IPv6. This protocol gives the possibility of
registering an IPv4 as CoA in the HA. This protocol also supports private addressing that can exist
behind a NAT in an IPv4 network.

Although the nodes involved in the mobility must support both IPv4 and IPv6, only MIPv6 is used for
the mobility management. The standard MIPv4 is not used because MIPv6 offers more benefits. For
example, route optimization and the dynamic HA discovery are only available in MIPv6. IPv6 also
offers a large address space, this makes possible to assign a global unique addresses to the MNs.
The large address space removes the necessity of using NATs, avoiding all of the forwarding problems

that they imply.

DSMIPv6 specifies two use cases: one when the foreign network supports IPv6 (1), and another when
the foreign network only supports IPv4. When the foreign network only supports IPV4 two situations
can occur: the network can provide a public IPv4 address (2) or it can provide private addresses that
it's behind a NAT (3).

When the foreign network supports IPv6 (1) the DSMIPv6 works like the standard MIPv6. The only
difference is that if the MN also has an IPv4 address assigned, that it can also register it as its CoA. In

this situation the HA will have two binding entries, one for the IPv4 address and another for the IPv6
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address. If the HA has to forward traffic to the IPv4 CoA it will encapsulate the packets in IPv6 and

send them through a tunnel, as the standard MIPv6 does.

The process for when the MN gets a public IPv4 address (2) it's identical. The MN encapsulates the

MIPv6 binding update in an IPv4 packet and addresses it to the HA IPv4 address.

If the MN obtains a private IPv4 address as the CoA (3), it will have to traverse the NAT. To traverse
the NAT, the MN encapsulates the IPv6 packets in UDP datagrams and then in a IPv4 packet. In both
cases after the Binding Update (BU) message, the communication between the MN and the HA it's

made through a secure tunnel, in this tunnel the IPv4 packets are encapsulated in IPv6 packets.

Flow Mobility

Conceptually DSMIPVG is just a set of extensions to MIPv6, so most of the RFCs are shared between

both protocols. Inclusively for the specification of multiple CoAs and flow bindings [20], [21].

Remarks

When the objective is to use a host based mobility protocol the DSMIPV6 is the most universal solution.
DSMIPv6 has all of the features of the MIPv6 and the capability of also supporting IPv4 nodes. IPv6 is
not widely deployed, there still are a lots of networks that only provide IPv4 addresses. Limiting the

mobility to IPv6 networks would not make the solution appealing to deploy in large scale.

One problem of this protocol is that with the support of IPv4 it will also have to deal with the existing
NATs. The NATs have some inconveniences to the incoming traffic [23], especially for the connections
originated outside the private network. In a flow mobility scenario, the NAT also introduce some
problems. If an already established flow starts being routed through a new network, the NAT on that
network will not recognize the flow. As the NAT doesn’t have a bind for that flow it will have to discard
all the packets.

2.4. Proxy Mobile IPv6

PMIPv6 [24]-[26] is a network based mobility protocol developed by IETF. Since it's a network based

mobility protocol it doesn’t require the participation of the MNs in the mobility process.

The MIPv6 protocol required the participation of the MN in the mobility process. The PMIPv6 removes

that limitation. In PMIPv6 the functions that were assured by the MN were transferred the network edge.

The PMIPv6 reuses most of the concepts defined in MIPv6. As can be seen in Figure 7, a PMIPv6
Localized Mobility Domain (LMD) is assured by two entities. The Local Mobility Anchor (LMA) is the
entity located in the network core and it's responsible for anchoring the MNs locations in the LMD. The
Mobile Access Gateway (MAG) is deployed at the network edge and it must track the MNs movements

and keep the LMA informed about them.
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ID Prefix Proxy-Coa
Client1 |prefA::/64 MAG 1
Client2 |prefB::/64 MAG 2
Client3 |prefC:/64 MAG3 LMA

Core Network

Edge Network

Client 2

Figure 7 - PMIPv6 reference diagram

The LMA is an extension of the HA used in MIPv6. The LMA is responsible to maintain routes to the
MNs that are using the mobility domain. The LMA must be compatible with the standard HA functions

defined in MIPv6. Normally there is only one LMA in a LMD.

The MAG is the entity that it's located at the network edge and it responsible to track the MNs

movements and inform the LMA about them.

This separation between core and edge makes possible to provide mobility between different access
technologies. The LMA is independent of the access technology, for the LMA it’s indifferent if the MN is
connected through a LTE network or through an IEEE 802.11x network. The LMA only needs to forward
the traffic to the MAGs. Each MAG will have the necessary technology to forward the traffic to the final
destination, the MN.

The LMA must be able to forward all the traffic addressed to its clients, it must act as an anchor point.
When the LMA wants to forward traffic to its clients it must route it through a secure tunnel that connects
to the most adequate MAG. The MAG is responsible by the last hop. Contrary to MIPv6, the secure

tunnel ends at the network edge, it doesn’t reach the MN.

Another responsibility of the PMIPv6 entities is the assignment of the Home Network Prefixes (HNPs)
to the MNs. The actual specification supports only the per-MN prefix model. In this model the HNPs
assigned to one MN can’t be shared with another MN. If the MN attaches to the network with multiple
interfaces simultaneously, each one will be assigned a unique HNP or set of HNPs. In this situation the
prefixes that aren’t assigned to the same interface aren’t managed under the same mobility session,

i.e., each MN interface will have an independent mobility session.
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In a typical scenario, the association of a MN to the network is made in four steps, as shown in Figure
8. The MN starts by attaching its interface to an Access Point (AP), this attachment occurs at the link
layer. Then, the MN will send a router solicitation message (1) to obtain an IP address. When the MAG
detects a client connection it will identify the client and check in its policy database if the client is
authorized to use the mobility service. If the client has authorization, the MAG will send a Proxy Binding
Update (PBU) message (2) to the LMA. The PBU message contains the information about the MN,
namely the HNP assigned and its identification. The LMA will then check the validity of the PBU and if
everything is correct it will respond with a Proxy Binding Acknowledge (PBA) (3) message. After
receiving the PBA message the MAG can send a router advertisement message (4) with the assigned
HNPs to the client.

Attach interface to AP |
managed by MAG :

| |

L Router Salicitation | 1:v—>:

|  PBURegistration (2)

Router Advertisment (4) | |

¢ ! !

Figure 8 - PMIPv6 MN attachment simplified diagram

The LMA must be backward compatible with the MIPv6 HA functionalities. To avoid creating new data
structures the binding cache structure defined in MIPv6 was reused in PMIPv6. In PMIPVv6 the binding

cache entry must also store:

* Aflag that indicates that the entry is from a proxy registration;

* An identifier of the MN. This identifier is implementation dependent but it is recommended to
use the Network Access Identifier (NAI) [27];

* The link-layer identifier of the MN;

e The link-local address of the MAG on the point-to-point link shared with the MN;

e The list of all IPv6 HNPs assigned to the MN;

* The identifier of the bidirectional tunnel between the LMA and the MAG;

* The access technology type that the MN is using;

e Atimestamp of the last accepted PBU message.

The LMA operation is similar to the MIPv6 HA. Its main objective is to manage the MNs locations and
provide a reliable route to the traffic addressed to the MNs. The main difference to the HA, is that it no

longer exchanges signalization with the MN. In a PMIPv6 network the responsibility of keeping the LMA
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updated is transferred to the MAG. The LMA only has to guarantee a route to the MN by using the

information that it receives from the MAG.

The MAG is a new entity introduced specifically for PMIPv6. The MAG resides on the access links. It
has the responsibility of tracking the MNs movements and keep the LMA informed about them. The
MAG has to maintain a Binding Update List updated with the information of the clients attached to it.

The PMIPv6 extends the Binding update list defined in MIPv6 with the following extra fields:

¢ The identifier of the MN;

e The link layer address of the MN;

* Alist of HNPs assigned to the MN;

* The IPv6 address of the LMA managing the MN;

* The interface identifier of the point-to-point link between the MN and the MAG;
* The identifier of the bidirectional tunnel that connects the MAG and the LMA.

With PMIPv6 the mobility is independent of the technology being used at the access links. The
network can provide mobility in a heterogeneous network scenario. The only requirement is to have a
MAG in the access links with the capability of tracking the MNs movements. The MAG also removes

the necessity of the client having to update its location.

Flow Mobility:

The PMIPv6 as defined in its specification does not have support for flow mobility. The IETF has created
the WG NETEXT? to standardize a solution to extend the PMIPV6 so that it can support flow mobility.
This group has already created multiple drafts about flow mobility extensions for PMIPv6 [28]. Even
though this is a very active WG, at the time of the writing of this work there wasn’t any final RFC

published.

There is however a embryonic implementation of flow mobility on PMIPv6 [6], [9]. This is also based on
PMIPv6 protocol, and in the documents published by NETEXT WG. This work has shown that it is
possible to have flow mobility without the intervention of the MN, and those different types of MNs can
be supported without requiring modifications on them. Another important aspect of this work was the
integration with a 3G network, the tests shown that it's possible to provide network based flow mobility
between different technologies. With the right choice of routing policies it's possible to obtain gains for
the operator and for the users. The operator can use its knowledge of the status of the network to provide
better QoS to the users and to alleviate its infrastructure. Unfortunately, the software and the prototype

produced aren’t publicly available and their research hasn’t progressed significantly.

Remarks

A downside of PMIPv6 when compared to the MIPv6 protocol is the requirement of having MAGs in all

access links that are under the same LMD. In a MIPv6 scenario, it's only necessary to have a single

2 http://datatracker.ietf.org/wg/netext/charter/
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entity in the network, the HA. The deployment of MAGs at the network edge it’s the price to pay when
compared to the cost of upgrading all of the MNs for a host based mobility scenario. The MAG can be

as simply as a software entity running in the APs.

PMIPv6 is the IETF protocol for network based flow mobility. This protocol has been updated over time
to accommodate the new developments in flow mobility research area. Contrary to client based
protocols this protocol does not impose any changes to MNs. This is very appealing for network
administrators and operators. Modifications in MNs hardware or software aren’t easy to implement and

definitely they would represent a huge monetary cost to the operators.

Being a protocol that doesn’t require modification in the MNs, makes it a first choice to be deployed in

large scale. This protocol also gives the control of the mobility process to the network administrator.

2.5. |EEE 802.21 Media Independent Handover

IEEE 802.21 [10], [29] is a standard that defines mechanisms to improve the handover between IEEE
802.x networks or cellular networks. This standard is not a mobility protocol like the ones presented
before, but it provides useful mechanisms to improve the handover process regardless of the mobility

protocol being used.

IEEE 802.21 is a framework that has the objective to provide intelligence to the layers above link layer.
IEEE 802.21 can be separated in three main components:

a) A framework that facilitates the handover process between heterogonous networks. This
framework is implemented as a stack deployed in all devices that are involved in the handover;

b) Anew entity called Media Independent Handover Function (MIHF) that provides mobility related
functions to the users. And the necessary primitives to the communication;

c) A Media Independent Information System (MIIS) and its primitives so that all the users can
communicate with it. This entity works like a central repository from where the users can request
information that will help to realize a handover;

d) A Link Layer Service Access Point (Link SAP) and its primitives. The Link SAP is the bridge
between the MIHF and the link layer of the network stack. The link SAP implementation is

specific for each link layer technology.

Figure 9 shows a simplified architecture of an IEEE 802.21 deployment. In a simple deployment there
are two entities, the MIHF and one or more Link SAPs. The Link SAP is the entity responsible to
communicate directly with a specific technology at the link layer of the network stack. For example,
IEEE 802.11 and IEEE 802.3. The information collected by the Link SAP is sent to the MIHF so that it

can forward it to its clients.
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Figure 9 — IEEE 802.21 generic architecture [10]

The Link SAP is the entity responsible to detect events at the link layer level. Because of the multiple
link layer technologies existent, the IEEE 802.21 doesn’t define a protocol for the communication
between the Link SAP and the link layer technology. The Link SAP implementation is dependent of the
link layer technology. The information provided by Link SAP can be events, for example MNs

attachments or detachments, or parameters, like Received Signal Strength (RSS) and QoS.

The MIHF is the entity that provides services to the Media Independent Handover (MIH) users. The
services provided can be used to optimize the handover process. For the communication with the
MIHF the 802.21 defines the MIH protocol.

The Media Independent Handover (MIH) user is any entity that may perform handover related
functions. The MIH users rely on the information provided by the MIHF to improve the handover

process.

Most of the network mobility protocols don’t define how the tracking of the MNs movements should be
done. For these cases IEEE 802.21 provides a reliable and efficient way to do it. There are proposed
solutions [30][31], [32] to use IEEE 802.21 together with a mobility protocol, the first two papers
propose an integration with PMIPv6. However there are no solutions that use IEEE 802.21 when there

is flow mobility with PMIPv6, as it is proposed in the present research [11].

2.6. Distributed Mobility Management

Distributed Mobility management is a paradigm that has the objective of improving the existing mobility
protocols. The mobility protocols presented before relies on a centralized entity, the HA. The HA is
located at the network core and it redirects the traffic destined to the MNs to the real location of the MNs.
The standard mobility protocols, as anything that relies in a centralized entity, has some inconveniences

in terms of scalability and fault tolerance.
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Distributed mobility management concept could be applied to the exiting mobility protocols [12], either
client based protocols or network based protocols. The distributed mobility management solution has

the purpose of deployment mobility anchors closer to MNs.

There is one proposal to include a distributed management approach in PMIPv6 [33]. This proposal
extends the PMIPv6 protocol so that it follows the distributed mobility management paradigm. The
proposed solution replaces the exiting MAG and LMA by a new entity, the Distributed Gateway (D-GW).
This new entity is located at the network edge and it must implement the functionalities of: a regular
router, a MAG and a LMA. The D-GW will behave like one of these entities depending on the situation.
The D-GW is the first hop that the MN sees when it joins the network.

In the proposal [33] the attachment of a MN to the network followed by a handover can be described as

follow:

¢ When a MN connects for the first time to a D-GW, let’s call it D-GW1, it will receive a HNP, in
this situation the D-GW is working as a regular router. The MN will then use the HNP to configure
its address, let’s call it addrA. In this situation there isn’t any mobility related function being used.

* When the MN moves to another network or wants to do a handover, it wants to keep its
reachability by maintaining its current address, addrA. Once the MN connects to the new D-
GW, it will receive a new HNP.

* So to continue to being reachable by the address addrA, the new D-GW must act as a MAG
and send a PBU to the LMA. The LMA in this case, is the D-GW1. The D-GW where the MN
was previously connected.

e After the standard PMIPv6 procedure, the D-GW1 will route the traffic addressed to the addrA
to the new D-GW. The procedures to transfer the previous assigned HNPs to the new D-GW is

not defined in the proposal. The author suggests that it could be used layer 2 signaling.

The distributed mobility management solves some of the problems of the actual protocols, like the
scalability or the route optimization problems. Despite being a proposal in a development phase, there

is already one implementation for PMIPv6 and MIPv6 from the Open DMM project3.

The work developed for this thesis is compatible with the distributed mobility management paradigm.
With some extra work, the distributed mobility management paradigm can be easily implemented in the

proposed solution.

3 http://www.odmm.net/
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3. Solution Description

This chapter describes a novel proposal to allow for network based flow mobility in the operator network.
In this proposal the mobility process is transparent to the MN. The MN can move in the network while
keeping its reachability, and the transport protocols will keep their sessions state. The proposed solution
is fully network based, and the MNs don’t have to be involved in the mobility process. The handover
decisions and the MN tracking in the network is implemented by entities managed by the network
administrator.

The proposal extends PMIPv6 and considers documentation published by the NETEXT WG. This group
has already began the process of standardization of the flow mobility extensions to PMIPv6 [28]. Figure
10 shows a typical scenario where this proposal can be deployed. Here the Localized Mobility Domain
(LMD) has one Local Mobility Anchor (LMA) and multiple Mobile Access Gateway (MAGs). These
entities are meant to be deployed at network core and at the edge respectively.

CN1 CN 2

Internet

Core Network

Broker

Core Network

@ =

LTE WiFi

Figure 10 — Proposal for solution deployment

The network core has the LMA installed. The LMA acts as the anchor point for the MNs. The LMA has
the traditional functionalities of mobility management and the necessary extensions to also support flow
mobility. In this proposal, the LMA is able to forward each client flow individually.

The network core architecture also includes a broker. The broker is an entity that receives inputs about
the network status to calculate the best routes for the flows. The result of this choose is then passed to
the LMA so that it can install the routes. The broker can be either a proactive entity or a passive entity.
When the broker is a passive entity it merely reacts to events in the network and suggest handover
decisions for the necessary flows to the LMA. On the other hand, when in proactive mode it will be
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constantly monitoring the network status to make timely handover suggestions to the LMA, when

necessary.

The MAGs are the components located at the network edge that are responsible for the tracking of the
MNs movements in the network. To improve the MNs detection and the handovers process, this work

proposes the integration with the IEEE 802.21 standard.

This proposal may also be deployed in femtocells scenarios where a single network equipment can
provide multiple access networks though distinct technologies. For example, in Figure 10 there is one

cell that provides access to the network through two different networks, in this case it's WiFi and LTE.

This proposal doesn’t impose any restriction in the edge network technologies, and it works with any
heterogeneous scenario, where flow mobility is available, even if connected through multiple access
technologies simultaneously. For example, a MN can be connected to the LMD through WiFi and LTE

simultaneously.

This independency of the network edge technologies is achieved in part by using IEEE 802.21. With
IEEE 802.21 the MAG just has to register adequate link events in the MIHF. In this architecture each
access point has a specific Link Sap adapted for access technology that it provides. The Link Saps will
be monitoring the activity in the network, sending to the MIHF all the relevant events that are detected.
For example, a MN attachment or detachment event. Then, the MIHF will forward the events received
to the MAGs.

As above mentioned, this solution has three key entities, the MNs, the MAGs and the LMA. The next
chapters will then describe the proposed and implemented modifications, relative to the standard

PMIPv6, to each one of these entities.

The section 3.1 shows the two types of MNs supported by this solution. When a MN has multiple
interfaces it can manage that interfaces in several ways. This chapter describes the most common

approaches taken by operating systems to manage multi-homed MNs.

The section 3.2 describes the behaviour expected from the MAG, it describes how the MNs movement

is detected and how the MAG will forward the traffic to and from the MNs.

Finally, the section 3.3 proposes the solution to be adopted by the LMA, it describes the core of the
solution. This chapter explains the decisions and technologies chosen to have network based flow

mobility.

3.1. Mobile Nodes

There are multiple types of MNs, and this work will support some of them. When a multihomed
equipment configures its interfaces some problems may appear. After configuring all the interfaces, the
node will have two sets of parameters, these parameters can be of two types. The ones that are bounded
to the interface, like IP address and link layer address, and global parameters like Domain Name Servers

(DNS) and gateways. The main problem here is how the node will merge and use all the parameters
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available from the different interfaces. In an scenario like this an host can behave like a weak host, a

strong host it may has a LIF (Logical Interface) [34][35].

The strong host model is the most restrictive model. In this model the host can only send packets on an
interface if the interface is assigned the source IP address of the packet being sent. And the same logic
applies for the incoming packets. For example, a host has two interfaces, one with IP address “A” and
another with IP Address “B”. If the interface “B” receives a packet addressed to the interface “A” it will

drop the packet.

On the other hand, the weak-host model is less restrictive at receiving and sending packets. A weak
host accepts packets in any interface Wen sending traffic the only requirement is that the source address
is assigned to any of the interfaces of the node. And when receiving traffic, the destination address must

be assigned to any of the interfaces of the node.

In addition to this two host models a host can also implement a LIF [36]. A LIF is mechanism provided
by the operating system to hide the complexity of the network management. The LIF objective is to hide
from the IP Layer the details of the available physical interfaces. In a LIF setup the IP layer is on top of

a virtual interface created by the operating system, see Figure 11.

IF1 IF 2 IF1 IF2
LIF Datalink | DataLink
P P P
Transport Transport

Figure 11 - Client stack implementation types. LEFT: logical interface. RIGHT: weak or strong host model

The model that the node uses depends on the stack implementation, i.e., it depends on the OS. Each
OS vendor can choose one of these solution or it can use a custom solution. Fortunately, the most

common operating systems, Widows, Linux variants and OSx, use one of these three approaches.

Only the weak-host and the LIF can be used in a flow mobility environment. The strong-host model is

very restrictive about the packet addressing and it won’t be considered for this work.

The goal of the proposed solution in this work is to not require any modification on the client equipment,

and for this reason, this proposal supports MNs that are weak-hosts or have a LIF.

When a MN has multiple routes available for the outgoing traffic it must install forwarding rules that can
take advantage of all of routes. This behavior is dependent on the equipment/software manufacturer
implementation [35]. This work does not have any requirement for MN outgoing traffic. In a later update

to this work, the incoming traffic from the client can be used to help to make handover decisions.

However, the MN must install routes that minimize the asymmetries in the traffic paths. The MN should
ensure that it sends the traffic by the same interface where it was received, with the exception when it

wants to signal a handover to the LMA. The asymmetrical routes can degrade the flow performance.
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This phenomenon is especially relevant for protocols that are dependent on feedback sent in
acknowledgment messages to calculate the ideal throughput, like TCP [37]. Despite of being a
recommendation this work does not impose any traffic outgoing policy in the client. It is up to the client

to minimize traffic asymmetries.

3.2. Mobile Access Gateway

In this proposal the MAG implements the standard PMIPv6, however PMIPv6 doesn’t define how the
MAG should detect the MNs movements. For this reason, this work proposes to use the IEEE 802.21
framework to decouple the client management from the PMIPv6. The MAG will communicate with a
MIHF deployed in the network. This communication is based on triggers, and to receive these the MAG
will make a registration in the MIHF for attachment and detachment events generated on the APs. These
events will be detected by Link SAPs, which will forward them to the MIHF that will forward them once
again to the MAGs that had subscribed them.

The integration with IEEE 802.21 requires the inclusion of new entities in the network, at least one MIHF
and one Link SAP for each AP. These new entities will deal with all the aspects of monitoring the MNs

movements in the network.

Figure 12 shows the high level architecture of the MAG. The MAG is composed by 5 modules: the
Finite State Machine (FSM) (1), the events handler (2), the MIHF (3), the Link Saps (4) and the Binding
cache (5).

Figure 12 represents an overview of the MAG software modules. At the bottom, there are the Link SAPs.
The Link Sap is an entity from the IEEE 802.21 standard. Each Link Sap interacts with one network
physical interface and it detects events that are occurring in the network. In this work the events are the
link up and link down, i.e. attachments and detachments of MNs. Each MAG will have one Link Sap for
each network interface that it manages. The Link Sap software is specifically developed for each
technology, for example, the Link Sap for IEEE 802.11 isn’t the same as the Link Sap form IEEE 802.3.

The MIHF is another entity from the IEEE 802.21 framework. This entity acts as a central point that
receives events from the Link Saps and forward those to other entities that previously asked to be
notified. The MIHF acts as an abstraction layer to the applications that want to manage heterogeneous

network interfaces.

At the top layers there are the PMIPv6 standard entities. The event handler listens for events on the
network. It listens for PBA messages, ICPMv6 messages and IEEE 802.21 messages. During the setup
phase this module asks to the MIHF to be notified about Link up and Link down events that occur in the

network interfaces under the domain of this MAG.

When the Event handler receives an event it passes it to the finite state machine. In this work the finite
state machine handles PBA messages, the finite state machine applies the rules defined in PMIPv6

standard to process the PBA messages.
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Finally, the binding cache is a data structure that stores information related with the MNs. This table

stores all the necessary information about the MNs. From all the information that it stores, for each MN,

the most relevant information is the HNPs assigned to the MN.

Finite State Machine

C::> Binding Cache

i

Events Handler

i

MIHF

10

10

Link Sap

Link Sap

Figure 12- MAG Software Modules

Figure 13 shows the process of setting up the MAG movement detection routine. The MAG registration

with MIHF is made with three messages. The first message registers the MAG as a client in the MIHF.

This message has an optional acknowledgment response. After a successfully registration, the MAG

will send a capability discover request message (3) to the MIHF. The MIHF will respond with the

interfaces that it manages and the available events for each one (4). When the MAG receives the

capability discover response (4) it will check if the interface that it should manage is under that MIHF

supervision. If it is, it will send an event (link up and link down) subscribe request (5) to MIHF, this

message requests to the MIHF to send back a message when it detects an attachment or a detachment

on that specific link. After this setup phase, the MAG will be waiting for event messages from the MIHF
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Figure 13 - Interaction between MAG and ODTONE
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Figure 14 shows how the MAG processes a MIHF event, in this example the link up (10) from Figure
13. When the MAG receives the link up event it only knows the link layer address of the MN that has
been attached. To obtain the MN ID the MAG must convert the MN link layer address to the EUI-64
format and send an authentication message to the (Authentication, Authorization and Accounting) AAA
server (11). The AAA server will then return the MN authorization, the MN ID and the HNP that should
be assigned (12).

To finalize the attachment, the MAG will send a PBU message (13) to the LMA with the information
obtained from the AAA server. After receiving the PBA (14), the MAG can advertise the prefixes assigned

to the client by sending a unicast Router advertisement (15) message to the MN.
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Figure 14 - MAG processing a user attachment

Integrating IEEE 802.21 with PMIPv6 improves the MNs movements detection mechanism. It also opens
the door to future upgrades that can take advantage of all the functionalities that IEEE 802.21 has to
offer. For example, in an IEEE 802.21 scenario the MIHF can be used to detect situations of an eminent
link down. This information can be passed to the LMA so that it can start preparing a handover for the

flows that will be affected by the link down.

Figure 15 shows a simplified version of the MAG finite state machine. This state machine represents
the MAG logic to process the events that are generated during the PMIPv6 operation. There are four
events: attachment (1), detachment (2), a PBA response to a register PBU (3) and a PBA response to
a deregister PBU (4). They indicate when a client connects a new interface (1), when it disconnects the
interface (2), and when the MAG receives a PBA, either related with a registration (3) or with a

deregistration (4).

The attachment and detachment events (1) and (2) can be generated by multiple sources, in proposed
solution they can have origin in a MIHF message or in a syslog message. Only one of the last two

mechanisms can be active at a time.
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When the MAG receives an attachment event it means that the MN is connecting for the first time. In
this situation the MAG gets the MN Network NAI from the Radius server and creates a temporary Binding

Cache Entry (BCE). Next it sends a PBU register message to the LMA.

The previous PBU message will trigger a PBA in response, when the MAG receives it, it tries to find a
BCE for the MN to what that event refers to. The search can return or not a BCE, if it returns a BCE it

can either be a temporary entry or a permanent entry.

The temporary entry is the entry that exists while the MAG hasn’t received the PBA message in response
to the PBU that originated that entry. When the MAG receives the PBU with status success, it will change
status of the entry from temporary to permanent and sends a unicast router advertisement containing
the HNP to the MN. It concludes the registration process. If the PBU is received has an error status

code, it will delete the BCE and ends the process.

If the MAG finds a permanent BCE it means that the PBA is the response to a previous renewal request,
it will update the BCE lifetime.

Lastly, the MAG can also receive a detachment event. This situation occurs when the MN disconnects
from the network. In response to this event the MAG deletes the routes and the BCE that are related
with that MN. Finally, it sends a deregister PBU to LMA to inform about the MN detachment.

Another task of the MAG is the management of the binding cache table. Each BCE has a lifetime, when
the BCE lifetime is about to expire the MAG must check if the MN is still reachable. This is done by

sending a neighbor solicitation message to the MN. If the MN is still active, i.e. it responds back with a
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neighbor advertisement, the MAG will renew the BCE. In this proposal the lifetime is a static value, that
it's equal for all the BCEs. This implementation can be changed so that the lifetime is more adaptable.
For example, the lifetime value can be calculated based on the volatility of the MN. If the MN is constantly
moving, the lifetime should be a small value. On the other side, if the MN has a stable behavior the

lifetime should have a higher value to avoid unnecessary signalization messages.

The two supported types of MNs, weak host and LIF as described in chapter 3.1, have some
particularities during HNP assignment. In a flow mobility scenario, the MN will have to have multiple

prefixes for its interfaces. NETEXT draft specifies three use cases for the prefixes attribution:

1. When the MN attaches a new interface it receives the same prefix or set of prefixes that were
already assigned to the other interface;
At attachment the MN receives a new prefix or set of prefixes;
The MN will receive new prefixes and prefixes that are already assigned to other interface. This

is a hybrid of the two scenarios stated above.

When the MN receives a common prefix or set of prefixes for its interfaces (1) additional signalization
to install routes in MAGs isn’t necessary. This happens because the MAGs where the MN is connected
has the necessary information to route the packets to the MN. For example, a MN with two interfaces,
each one connected to a different MAG, will have the same prefix configured on both. Each MAG can

receive traffic addressed to any of the MN interfaces because they all share the same HNP.

The proposal of this work adopts the 2" case, where the MN receives a unique prefix for each interface.
If each MN interface has a unique prefix or set of prefix, MAGs won’t be able to route packets to the
MN, if they are addressed to a prefix that they don’t manage. In this case, a MAG cannot forward packets
addressed to a prefix that it doesn’t know. In this situation the LMA must explicitly inform MAGs with all

the prefixes that are assigned to the MN, so that they can install routes to the MN.

To inform MAGs about changes in the mobility sessions, the LMA must send an Update Notification
Message [38] to the MAG to inform it about new prefixes that the MAG should route. This proposal
makes a simplification and does not use this message. Since all the traffic addressed to the MNs is
tunneled from the LMA the MAG, each MAG can simply forward all the traffic coming from the tunnel to

the wireless medium.

3.3. Local Mobility Anchor

The LMA s the entity that is responsible for anchoring MNs. This entity must be able to provide a reliable

route to traffic addresses to each MN.

Figure 16 shows the overview of the LMA architecture. The figure is subdivided in two groups, the kernel
space and the user space. Each one indicates where the software is running, either in kernel or in the

user space.
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Figure 16 - LMA software modules

In this solution the core of the protocol runs in user space. The kernel space is used to install routing

rules to forward the traffic.

In the first row there is the Binding Cache (BC) and the Flow Binding Cache (FBE). These are conceptual

data structures that store the necessary information to keep the traffic flowing to the MNs.

Bellow the data structures are the four core modules of the proposed solution. Each one of these

modules has a specific task in the FMPMIPV6 protocol.

The Packet Userspace Queue (PUQ) is a queue where the packets belonging to flows that don’t have
a forwarding rule are put before being routed. These packets are handled by the Flow Identifier Module
(FIM). The FIM identifies the MN to where the packets must be routed. The information collected by FIM
is then passed to to the Flow Scheduler Module (FSM). The FSM module will choose a route according

to its policies and install it in kernel space.

The Mobility Manager Module (MMM) handles all the events related to the PMIPv6 protocol, as PBUs
and IEEE 802.21 events.

The kernel space has all the software responsible to route the network packets according to the pre
established routes. It also has a packet filtering framework that can divert packets from the kernel to the

user space for further processing by the PUQ before being routed.
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Data Structures

Because of MN multihoming, the LMA binding cache structure must be changed. With multihoming, the
binding cache must store an association between each MN prefix and its proxy CoAs, i.e., the MAG that

is serving the HNP.

Table 1 shows a simplified LMA Binding cache. The BC data structure has now two new fields: The
Binding Identifier (BID) and the MN-ID. The BID is an identifier that uniquely identifies one entry of the
table. The MN ID is the value used to identify a MN. It's important to reinforce that the MN-ID identifies
the MN not a specific interface. This example contains two MNs and three routes. The MN 1 could be

reached either through MAG 1 or MAG 2. This MN has unique prefixes assigned to its interfaces.

Table 1 - Example of a Binding Cache

BID MN-ID HNPs Proxy-CoA
1 MN 1 HNP1,HNP2 MAG 1
2 MN 1 HNP3 MAG 2
3 MN 2 HNP4 MAG 1

A MN with multiple interfaces will have multiple entries in the binding cache, each entry will have a
different BID but they will all share the same MN-ID.

The BC only gives support for multihoming, and it doesn’t enable the solution to identify specific flows.
The binding cache supports the management of the MNs locations. When the LMA receives a PBU from
a MAG it must be able to check if it corresponds to a new attachment or to a handover. In this
implementation the LMA only deletes a route to a client in two situations, when it receives a PBU asking
for deletion or when the lifetime of the binding entry expires. So if a MAG doesn’t detect the MN
detachment and later the LMA receives PBU from a different MAG, the LMA will insert a second entry
in the BC. Until the old BCE expires, or the MAG sends a de-registration message, the LMA will have
two routes, even if one of them is a dead end. This is minimized with a reliable MN movement detection

mechanism, like IEEE 802.21, or with an adequate lifetime for the BCEs

Table 2 shows the data structure of the flow binding cache. This is a new data structure implemented in
the LMA that stores the information about each individual flow. This table is composed at least by a

traffic selector and a BID.

The traffic selector is a value that uniquely identifies a flow. In this proposal, the traffic selector is
composed by values of the transport and network headers. From the network header it uses the
destination and source IPv6 address, the flow label, the traffic class and the next header value [19].

From the transport header it will use the source and destination ports.

This solution is compatible with all packets that have a IPv6 network header, and a transport header
that has the source and destination port in the first 4 bytes, for example TCP and UDP. If a flow doesn’t

meet these requirements it will follow the standard routing mechanisms bypassing the flow mobility
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process. This strategy avoid routing conflicts for protocols that are interface aware, like ICMPv6 or
DHCPv6.

All the values required to construct the traffic selector are retrieved directly from each packet transport

and IPv6 headers, they aren’t manipulated or generated by the software.

Finally, the BID in the flow mobility cache. The BID points to an entry in the BC, i.e., identifies the route
that the flow must follow. For example, Table 2 shows that the packets that are addressed to TCP port
80 of the MN 1 will be routed through the MAG 1. And all the flows destined to the TCP port 5060 of the
MN 1 will be routed through the MAG 2.

Table 2 - Flow Binding Cache

# Priority Traffic selector BID Action
1 1 Destination is MN1 and TCP destination port 80 1 Forward
2 35 Destination is MN1 and TCP destination port 5060 2 Forward

The changes in the data structures were the first step to support the flow mobility, but additional

substantial changes were necessary to enable flow mobility.

Flow Scheduler Module

The FSM is a module that receives information about a flow chooses a route for it. In this implementation
this module is a scheduler that randomly chooses one path from the ones that are available. In a more
sophisticated scenario this module could easily adopt another strategy for a better flow scheduling. For
example this entity can communicate with an broker [39] that can provide more reliable information

about the network status and the MN traffic requirements.

The solution is prepared to work with any implementation of this module. And the only requirement is

that the provided module implements the interface provided for the flows schedulers.

Mobility Manager Module

The MMM is an event driven thread that waits for events related with the mobility process, like PBUs.
This module is the core of the PMIPv6 implementation.

Figure 17 shows the FSM of the MMM. When the MMM receives a PBU message it will search in its BC
for a BCE belonging to the node referenced in the PBU. The MMM identifies a BCE by the tuple MN

ID<->Serving MAG address. This means that there exists one BCE for each MN connected interface.

In this implementation it's not possible for a client be connected to the same MAG by two or more distinct
interfaces. For example, in a normal situation where a MN is connected to two MAGs, the MN will have
two entries in the binding cache, one which maps the MN ID with the serving MAG 1 and another that
maps the MN-ID with the serving MAG 2. If the MN connects to the same MAG, it would have two equal

entries that map MN ID to the MAG where it is connected. In the architecture proposed this is not a
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problem since each femtocell can have multiple technologies simultaneously, and it isn’t a common

procedure to connect distinct wireless interfaces to the same AP.

After searching for the BCE, the LMA may perform one of four different actions, as represented in Figure
17: It can register the attachment from a MN (1), it can renew the lifetime of a BCE (2), it can perform a
handover (3) or it can delete a BCE (4).
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Figure 17 — Mobility Manager Module Finite State Machine

The attachment (1) corresponds to the connection of a network interface from a MN. This event is
triggered by a PBU message. If the PBU is valid, the LMA will create a new BCE in the binding cache
structure and setup the necessary routes/tunnels to send the traffic to the MN. This action ends by

sending a PBA message to the MAG.

As said in the standard, the BCE must have a lifetime to avoid old routes that are no longer active. The
renewal (2) of a BCE is triggered by receiving a PBU with a Lifetime value higher than 0 and when there
already exists a BCE for that PBU.

If there is a PBU for that MN, but it's coming from a different MAG it means that the MN has done a
handover. In this case (3) the LMA will update the old BCE and the routes associated with it. Both the
renewal and the handover process ends with the sending of the PBA message to the MAG that sent the
PBU.

Finally, the delete action (4) is triggered by receiving a PBU with a Lifetime equals to 0, this means that
the MAG is requiring the deletion of BCE associated with that PBU. In this situation, the LMA will delete

the BCE and the system routes.

Both the handover (3) and the delete action (4) have impact on the flows that are addressed to the MN.
In these situations, the LMA will have to reschedule all the flows of the client. This is done by requesting

to the flow scheduler to reroute the flows addressed to the MN.
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Flow Identifier Module:

The last component is the FIM. This module is a thread that processes the data packets addressed
MNs. This module is constantly looking for flows that haven’t a defined routing rule. It extracts the

packets that are put in the user space queue and identifies to which MN they belong.

When parsing a packet, the FIM generates a traffic selector, the traffic selector it's 6-tuple selector that
it's composed by the following values, extracted from the packet: the source and destination IPv6
addresses, the source and destination transport protocol ports, the transport protocol and the flow label
extracted from the IPV6 header. These values are enough to uniquely identify a flow and since they are

all in the packet and datagram headers they are very fast to extract.

By querying the BC with the destination IPv6 address the FIM can identify to which MN the flow belongs.
When the FIM identifies the MN it passes the traffic selector and the MN identification to the FSM so

that it can create a routing rule to that flow

This module must be able to analyze all the packets that are addressed to the MNs. If the traffic to the
MNs isn’t routed through the machine where the LMA is installed, the FIM won’t be able to identify the
flows. And without the identifications of the flows the FSM cannot install routes that make the flow
mobility possible. But since the LMA works as an anchor point it controls all the traffic related to its

clients, so at any moment the traffic to the MNs must pass through the LMA.
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4. Implementation and Testbed

An important part of this work is the implementation and test of the developed prototype. Before starting
the coding of the solution an analysis was made. The analyses consisted in evaluating the already
available PMIPv6 software implementations. After the evaluation one was chosen to serve as base to
the flow extensions. The section 4.1 describes in detail the analyses made and the details of the

proposed implementation.

Then the section 4.2 describes how the tests were conducted. This section describes in detail: what
hardware and software was used to test the prototype, the test conditions, the network topology and the

how the results needed were measured from the network devices.

4.1. Implementation

This section presents and compares the available software solutions that provide PMIPv6 without flow
mobility. Then it describes the proposed solution by this thesis in more detail, namely the decisions taken

in account for the implementation phase.

PMIPv6 implementation analysis

This work is based on the PMIPv6 protocol, so it's important to choose an already existing open-source
implementation that can be modified to support the flow mobility extension. Reusing an existing PMIPv6

implementation has of the following advantages:

e Quality: the flow mobility extensions will be implemented over software that has already been
tested by the community. Normally this type of software is included in Linux distributions. In this
way it's assured that the PMIPv6 core is complaint with the existing standards.

* Acceptance: If this work is an add-on to existing software it will be easier to persuade others to
use it and test it.

¢ Documentation and support: Having good documentation and a community that assures future
support for the software decreases the development time and improves the overall software

quality.

There are two PMIPv6 implementations available as open-source software: the Eurecom OAI-PMIPv6*,
and OPMIP®. There is also a commercial version of the PMIPv6 protocol from Sibridge Technologies e
The last solution hasn’t been considered for this work due to the lack of public documentation and

available results.

4 http://www.openairinterface.org/openairinterface-proxy-mobile-ipv6-oai-pmipv6
® http://helios.av.it.pt/projects/opmip
6 http://www.sibridgetech.com/PMIPv6.aspx
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Both the Eurecom and OPMIP implementation are good candidates to receive flow mobility extensions.
Eurecom project was developed on top of a MIPv6 implementation, the UMIP Project7. The UMIP project

is an open source implementation of MIPv6 maintained by the open source community.

The Eurecom project started as an investigation work. Nowadays it's aggregated to the UMIP project

and it's maintained by the community.

On the other hand, the OPMIP project is a PMIPv6 implementation made by ATNOG group from the
University of Aveiro. This group is a research group that develops solutions to solve mobility related

problems.

Table 3 shows a summary of the decisions made to choose a PMIPv6 implementation to start working

on.

The programming language is an important metric because choosing the correct one can simplify a lot
the process of cross compilation and decrease the development time. The ¢ language was preferred by
this work due to the high adoption by the Linux community, there are a lot of tools to develop and cross

compile software to multiple hardware in an easy way.

It is important to choose a solution that isn’t already outdated. The last update for OAI-PMIPv6 was in
2011, and the last update for OPMIP was in 2013. Both solutions aren’t being active developed. Despite
being the oldest, the OAI-PMIPv6 seems to be the most adequate solution. This solution is based on
UMIP. The UMIP project is the project that implements MIPv6 support in the Linux Kernel and it’s already
shipped by default in some Linux kernels. On the other hand, the OMIP was developed from the scratch

and it isn’t adopted in a large scale.

To decrease the development time, it is important that the solution adopted has available good
documentation. Both have support of mailing lists and technical documentation. OPMIP is also
supported by a thesis [25] that describes in detail the decisions made during the design and

implementation phase.

For last, there is the requirements that the solutions have. Both require a kernel compiled with support

for MIPv6. The OAI-PMIPv6 also requires a radius server to store the MNs authorization parameters.

Apart the metrics shown in Table 3 there is another more subjective, but also important to consider.
What is the solutions that is more easy to distribute to the community? From this work perspective it is
the Eurecom OAI-PMIPv6. The Eurecom software was based on the older UMIP project. The UMIP
project is already disseminated by the most part of Linux Kernel versions. After developing the flow
mobility extensions on top of UMIP a simple patch is enough to distribute the solution through the mailing
lists of Linux community. It won’t require external libraries that normally are difficult to push to the main

Linux development tree.

" http://umip.org/
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Table 3 - PMIPv6 available implementations comparison

OAI-PMIPv6 OPMIP

Programming
Standard ¢ C++ with Boost library
language

OAI-PMIPv6 was launched in 2011 based in
Last Update 2013
the UMIP 0.4 launched in 2005

Further
Project has stopped Project has stopped
developments

Thesis and technical
Documentation Technical documentation and mailing lists .
documentation

Linux with kernel compiled with support for = Linux with kernel compiled with
Requirements
MIPv6 and radius server support for MIPv6

After analyzing the metrics shown in Table 3 and doing some code review, the Eurecom OAI-PMIPv6
was the chosen project to receive the flow mobility extensions. It is important to notice that it was a
difficult choice. Technically both solutions are solid enough to have flow mobility extensions

implemented. The choice was partly based in more subjective metrics.

The solution described in the rest of this chapter has been developed on top of the Eurecom OAI-

PMIPv6 implementation.

Mobile node identification

The Eurecom OAI-PMIPv6 uses the MN Link layer address to identify a MN. In a multihoming scenario
the MN identifier must identify the MN independently of the interface in use. This work uses the NAI [40]
as the MN identifier. The NAl is a 63-byte identifier that it's assigned by the network administrator. The

NAI must uniquely identify a MN independently of its interfaces.

This is a relatively small change, and the software has been modified to use a NAl instead of a link layer
address to identify a MN.

Database and HNPs assignment

The Eurecom OAI-PMIPv6 uses a Radius server as the AAA server. This work has included an extra
parameter to the radius database, the MN NAI. As such, the database now stores the following

parameters:

* MN interface ID in EUI-64 [41] format. This parameter identifies a MN interface;
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* Network prefix to be assigned to the MN. This is the network prefix that the MAG must assign
to this specific interface of the MN.
* MN NAL It's a unique identifier to the MN.

With this configuration there is one record for each MN interface. This assumption is valid for a weak-
host model that have a unique link layer address for each interface. A client using a LIF will always use

the same link layer address, so in practice there is only one entry in the database.

This configuration assumes that the LMD administrator can obtain all of this information about its clients.
This is a relative simple task for a network operator that has access to a client database which have the

characteristics of the MNs.

As said before, this considers the clients that either follow weak host model or use a LIF. In this work
each network interface receives a unique HNP. A weak-host client that has two interfaces will receive
two distinct HNPs. On the other hand, a LIF client will receive the same HNP independently of the

attachment point.

As said in the previous chapter, when making a handover to another MAG that doesn’t know the MN
HNP it's necessary that the LMA send an update message to the MAG informing it about the new MN
HNP. In this work, each MAG has a static route that forwards all the traffic coming from the LMA to the
interface that leads to the MNs. This is possible because in our setup, the traffic exchanged between
the MAG and the LMA always travels through a tunnel. It's reasonable to assume that all the traffic

coming from the tunnels that is not address to the MAG itself must be addressed to any of the MNs.

Mobility Access Gateway

The MAG responsibility in the mobility environment is to track the user movements and keep the LMA

informed. As explained before, this work will use IEEE 802.21 to monitor the MNs movements.

The Eurecom implementation of PMIPv6 uses syslog messages to detect the attachment and
detachment of clients. This method uses libpcap® to capture all syslog messages from the network so
that they can be parsed by the application to extract MN information, in this case the MN MAC Address.
In the Eurecom implementation, the software has a thread capturing all syslog messages from the
network. When it receives a message, it parses it to extract the MAC address of the client and the type
of event, either an attachment or a detachment. This implementation is very dependent of the MAG
technology. Different equipment can generate different syslog messages on attachment/detachment

events, or they even cannot generate messages at all.

This work decouples the client management from the PMIPv6 implementation. This work has been
integrated with ODTONE® [42], an implementation of IEEE 802.21 protocol. The ODTONE project

provides an interface defined in ¢ programing language that defines the necessary messages to

® http://www.tcpdump.org/
® http://atnog.github.io/ODTONE/
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communicate with the MIHF. ODTONE also provides several Link Saps for different link layer

technologies. This work uses the IEEE 802.11 Link Sap in the tests that will be described later on.

The use of ODTONE is however optional, and the software may still use the old method for detecting
clients, by just disabling a macro before compiling.

When using ODTONE the software reads some additional parameters from the configuration file. Table
4 shows the extra parameters that should be configured when using ODTONE for movement detection.
The first parameter is the MAC address of the interface that the MAG wants to manage, i.e., the interface
that it's acting as AP to the clients; When a MN connects to that AP the ODTONE will generate a link up
event. The second and third parameter are the pair IP address and port where the MIHF is listening for
requests. The fourth and fifth parameters are ids to use while exchanging messages between IEEE
802.21 entities.

Table 4 - Extra configuration parameters for ODTONE integration

MAC address of the interface that the MAG manages 16 Byte
IP address of MIHF IPv4 address
MIHF listening port Integer
User name of the MAG to use while registering in the MIHF 4 char
ID of the MIHF 4 char

Local Mobility Anchor

ALinux system usually forwards packets based on the destination address. This is achieved by matching
the destination address with longest prefix in a routing table and retrieve the next hop. Using only this
strategy is not convenient to forward packets based on policies. The standard routing mechanism can
only forward packets based on the destination address, but the LMA must implement a policy based
routing strategy. The policy based routing provides a mechanism to make routing decisions based on
all the information present in the packet. In Linux, the policy based routing is supported by having
multiple routing tables and by using forwarding marks. A forwarding mark is a 32 bit field that can be
associated with a packet that is traversing the Linux network stack. This mark is not part of the packet

and, it only exists as metadata in the kernel while the packet is in the system.

During the setup phase, the LMA creates one routing table for each MAG that it manages. Each routing
table has only one entry that forwards all the traffic through the adequate tunnel. By default, the Linux
kernel only consults multiple routing tables to route packets if it's explicitly asked to. The LMA must also
create a policy based rule that instructs the kernel that a packet that has a specific mark is going to be
routed with the information present in one specific routing table. This setup is made by using tools from
the iproute210 package, namely the “ip” tool. Figure 18 shows a flow chart about how the operating
system handles this kind of routing. When it’s time to choose a route for a packet the operating system
will check if the packet has a mark. For example, in Figure 18 if a packet has the mark “50” the operating
system will search a forwarding rule in a forwarding tabled called “MAG1”. The search in this table will

10 http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
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result on one route that forwards the packet towards its destination. If the packet has no mark, the

operating system will use the default table, normally called the “main table”.

Packet arrived

100
| ¥

Lookup Table MAG1 Lookup Table MAG2 Lookup Main table

No Mark—

A
Apply routs

Figure 18 - Linux policy based routing example

The marking of the packets can be made with a packet filter framework. This work will consider the use
of both IPTables and NFTables, from neffilter project”. The particular framework can be chosen before
compiling the software by setting a specific compile macro. One of these packet filtering frameworks will

then be used by the FSM to install routes for the flows.

These type of tools can analyse the packet headers and data to apply a forwarding mark to the packet
that will work as a traffic selector. Normally these type of tools are used in static scenarios where a
system administrator configures a list of rules that are installed during a setup phase. But in this work
it's necessary to dynamically change the forwarding rules. This requirement is necessary because the
LMA must parse all the packets that are addressed to MNs, so that it can choose an adequate route

based on the forwarding policy.

An important aspect of these tools is that the majority of the packet processing takes place in kernel
space. Since the LMA is a user space application it was necessary to divert the packets from the kernel
to the user space. So that the routing decision could be taken by the LMA, more specifically the FIM

and the FSM as explained in the previous chapter 3.3.

Diverting all packets to user space is not efficient. To minimize the impact on the system, the LMA only
diverts to the user space the first packet from the flows that it hasn’t yet analysed. To achieve this, it
uses the libnetfilter_queue'®. This library is a framework that allows a user space application to
manipulates packets that are placed in a user space queue by a packet filter framework. The packets
that are diverted to the user space queue are waiting for a routing decision made in user space, and

they will not be forwarded to the destination until some application applies a decision to them.

As seen in Figure 19 the LMA must parse the packets from the flows that aren’t marked. For example,

when the first packet of the flow A arrives to the system, the kernel will try to find a rule to mark that

" http://neftfilter.org/projects/nftables/
"2 http://www.netfilter.org/projects/libnetfilter_queue/
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packet. As this is the first packet, the LMA hasn’t yet configured a rule to mark it, so this packet will
match the default rule that sends all non-marked packets to the user space queue. In the user space,
the LMA will parse the packet to identify the destination MN. After identifying the MN, it will apply its
policy based rules to get a route to that flow. This route will be installed on the system by installing a
forwarding rule in the kernel that marks all the packets of that flow with a forward mark. When the next
packet of flow A arrives in the kernel, a corresponding rule is already installed, so it skips the user space

and continues the normal path in the kernel.

Kernel space

Send the packet to next
jump

Packet Received T
b4 According to the
mark search the
L route in a specific J
Packet has fqrward mark? routing table.
User space
y

Identify the entry in the Binding
cache where this flow belongs
(MAG)

Create a iptables rule for Mark this packet and
marking this flow - in send it to the next
Routing mangle table phase

Create new entry in
flow binding table

Figure 19 — User space packet handling

4.2. Testbed Setup

This section describes in more detail: how the software was tested, used equipment, the configurations

used for the software and the multiple tools used to perform the tests and collect the results.

The scenario for the tests consisted in one LMA and four MAGs, as shown in Figure 20. The four MAGs
are installed in two equipments. In the testbed each equipment provides two distinct WiFi networks. In

this situation each equipment provides one network in 2.4 GHz band and another in the 5 GHz band.

Since different tests require different configurations, for flexibility, the LMA was installed in a virtual
machine. The client is also a virtual machine that has two WiFi interfaces available, one supporting only
the 2.4GHz band and the another supporting both 2.4 GHz and 5 GHz band. Both were available via
USB dongles.

41



MAG 1 + MAG 2

WiFi WiFi

Figure 20 — Generic testbed network diagram

This testbed layout was planned taking in account one of the main objectives that this work wanted to

achieve and demonstrate the feasibility of multi technology femtocell and their handover capabilities

The MAGs were deployed Small Office Home Office (SOHO) routers with the OpenWrt'® OS. We have
chosen this type of routers because of their capabilities like: low cost, extensive documentation, open
source software and the support for plug and play external hardware, like USB dongles. These factors
were essential to speed up prototyping and testing. Having a Linux OS installed has permitted the
configuration in a single equipment of two independent APs with different technologies, simulating a

multi technology femtocell.

In total, this testbed provides four independent APs using two SOHO routers, enabling us to handover
the flows between two access points in the same equipment or between two different equipment.
Another advantage of this type of equipment is the available support for using OpenWrt OS. The
OpenWRT OS is a custom Linux distribution tailored to embedded devices. This OS has all of the
advantages of a Linux system, namely the customizability and the performance. The OpenWrt project
also gives us tools to cross-compile software to the different hardware it supports, and with this tools
the MAG software may be developed to a generic architecture and later cross-compiled to router specific

architectures.

Contrary to the MAG, the LMA must be a more capable machine. The LMA must act as a gateway in

the network and process all the traffic addressed to MNs.

As above mentioned, the client is a laptop with two WiFi interfaces. As expected the only extra software

that was installed in the client was the software to make the network measurements.

3 www.openwrt.org
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To isolate the entities involved in the tests from the rest of the network, they were all connected through
a local switch. To complete this scenario a server that acts as a CN was added at an external network.
This server acts as a simple traffic generator that can send one or more data flows to the MNs. This

server could also work as a traffic sink.

Despite the fact that PMIPv6 can be used to provide mobility between heterogeneous networks, our
tests consider networks from the IEEE 802.11 family. The support for 3G networks require specialized
hardware and software that is not easy to obtain, but our solution is generic enough to be easily used
with other wireless access technologies. To test our solution with 3G networks its required to have at
least two USB 3G dongles, one connected to the MAG and another acting as the client interface. We
would then create a IPv4 tunnel through the 3G network between the two nodes. In this situation the
communication between the client and the MAG is done through the 3G network. The PMIPv6 and IPv6

configuration related messages are sent encapsulated in IPv4 packets through the tunnel.

Table 5 shows with more detail the hardware that was used in the testbed. All entities, except the MAG,
were installed in virtual machines. Despite of the virtual machine overhead, we decided to use them to
facilitate the deployment process. With the virtual machines it's very easy to re-deploy all the network in
a different hardware configuration, or even replicate entities with different configuration parameters. The

VMWare Workstation 10" was uses as the Hypervisor.

Table 5 - Testbed hardware

Hardware CPU RAM Network (O] Function
TP-Link S OpenWrt

WDR4300 Atheros AR9344 560MHz | 128 MB | Gigabit Ethernet 12.09 MAG
Server 1 Intel P4@2.4GHz 942 MB Fast Ethernet | CentOs 6.5 VM Host
Server 2 Intel E5335@2GHz (x2) 4GB Gigabit Ethernet | CentOs 7 | VM Host
Laptop Intel 3537 4GB Gigabit Ethernet LMDE VM Host

Alfa AWUS036H - - WiFi 2.4GHz - Client
Interface

TP-Link TL- - Client
WDN3200 ) ) WiFi 2.4/5GHz ) Interface

The TP-Link router serves as host to the MAG related software. This router is using a customized version
of the OpenWrt 0S™. The installed OS is a customized image of the official OpenWrt 12.09 release that
was installed with the MAG software, the ODTONE entities, the MIHF and the Link Saps developed or

customized for this research.

Each physical router has two MAGs instances, one MIHF instance and two Link SAPs instances. This

set of software is able to provide two independent wireless accesses to MNs. One of the wireless access

" www.vmware.com
1 https://openwrt.org/
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is working on the 2.4 GHz band and the other in the 5 GHz band. Both the ODTONE entities and the
MAG software had to be cross compiled to the TP-Link hardware. The necessary configuration files are

available in this project source code repository'®.

As above mentioned, for convenience, on the hardware specified in Table 5, virtual machines have been

installed as shown in Table 6.

Table 6 - Virtual machines used

VM Host | Cpu
RAM 0S Kernel Description
[Table 4] | Cores
LMA with IPTables and Radius
Server 2 4 1GB Debian 7 3.15.7 x86_64
Server
LMA with NFTables and Radius
Server 2 4 1GB Debian 7 3.15.7 x86_64
Server
Server 1 1 512 MB | Debian 7 3.2.0 x86_32 Traffic generator
Laptop 1 1GB LMDE 3.11-2-486 Client

The four virtualized entities were distributed by different physical machines. The table shows two LMAs

but only one was used at a simultaneously.

Traffic generators and Measurement software

To emulate the data flows of the users, several servers, generating data flows to a MN connected to the

LMD, have been used:

* Poisson traffic generator R
This software generates a traffic flow following a Poisson distribution.

* Constant traffic generator - IPerf'®
The main use for this tool is to measure network performance, but for this work only the traffic
generation capabilities have been used. It can generate both TCP and UDP Constant Bit Rate
(CBR) streams.

*  Generic traffic generator - MGEN 5'
This is a toolset for generating multiple types of traffic. This work has used it to generate a burst

traffic pattern.

As will be seen in chapter 5 this work requires the measure of two values, the time to forward a packet

and the handover time. The handover time is measured in the MN, as the time between the last packet

1 https://github.com/hugo-ma-alves/OAI-PMIPv6-FM
' http://www.spin.rice.edu/Software/poisson_gen/

1 https://iperf.fr/

' http://www.nrl.navy.mil/itd/ncs/products/mgen
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received before the link down and the first packet received after the link down. This measurement is
made by parsing a PCAP file generated by the TCPDump® software running in the MN. This software
captures all the traffic, including timestamps, and stores it in the PCAP file. Then this file is parsed by a

python script to extract the handover value.

To measure the time to forward a packet this work developed a custom measurement toolset. The packet
forward time must be measured in the most accurate way possible. Ideally, measurements should be
made by external hardware/software that doesn’t interfere with the machine running the PMIPv6
software. To minimize this problem, a kernel module was developed to extract the necessary information
from the packets that are routed by the LMA and the MAG. With a kernel module it’s possible to obtain
results with an adequate precision without a significant performance impact on the machine running the
module. The developed software uses the netfilter framework present in Linux Kernel. This framework

allows the registration of callbacks functions at important phases of the packet processing chain.

Figure 21 shows a simplified diagram of Linux network stack with the netfilter hooking points
represented with orange background. In each one of this points the module has access to a c
structure called sk_buff. This structure has the packet raw data and some metadata. The metadata
includes the timestamp in ns of when the packet first entered the chain. For example, a packet that
was received by the hardware interface will arrive to the chain in netif_receive_skb, and the kernel will

create for the first time the skb_buff structure with the timestamp at that moment.

Higher Layers

Ip_local_deliver_finish Ip_queue_xmit

Ip_local_out

Ip_local_deliver o

Ip_rcv_finish >| Ip_forward I—V -—D{ Ip_forward_finish Ip_output

ip_finish_output

Ip_recv

Netif_receive_skb Dev_queue_xmit

I3 R
il i A

Lower Layers/Hardware

Figure 21- Neffilter Hooks

The module is executed for each packet that traverse the selected hook. The values that the module
extracts from the skb_buff are stored in memory. This memory is accessed through a virtual file in the

Linux virtual file system “proc”.

20 http://www.tcpdump.org
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In the MAG the module registers at the NF_INET_POST_ROUTING hook. At this point the module
can easily calculate the packet process time by making the difference between the current timestamp
and the timestamp saved in sk_buff. Due to limitations in the MAG memory and processing

capabilities, this module only stores in memory the packet process time.

The LMA is a bit more complex because it uses tunnels to encapsulate and forward traffic to the
MAGs. In this type of scenario, a single packet will traverse the chain twice, in a kernel 3.x. One when
it enters in the LMA coming from the CN and another when it's encapsulated and sent through the
tunnel. Therefore, for the LMA it is necessary to run two different modules: one that registers itself on
NF_INET_PRE_ROUTING that access the raw packet that enters in the LMA coming from the
external network, i.e. from the CN; and another in NF_INET_POST_ROUTING that access the packet
that is forwarded through the tunnel to the MAG.

Each module saves in memory a structure with the following values: entry timestamp, exit timestamp,

transport source port, transport destination port, UDP packet checksum.

With these values, it's possible to match the data collected from the two modules to obtain a unique
set of data. The packet entry timestamp is collected from the pre routing module output and the packet

exit timestamp is collected from the post routing module output.
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5. Evaluation

This chapter presents the evaluation results of the developed software. The objectives of the evaluations

are to verify if the software works as expected and to evaluate the gains of having flow mobility.

The following sections describe in detail the tests performed and their results. Section 5.1 compares the
performance of the developed solution when using IPTables or NFTables. As seen in the previous
chapters the developed solution can use any one of these packet filtering framework. This test compares

the packet forward time and the time to setup a new flow of both solutions.

Section 5.2 has measured the extra the packet forwarding time, at LMA and MAG, when using flow
mobility. Then section 5.3 also measured the packet forwarding time in both LMA and MAG, but when
there is no flow mobility. With these results, we can see in detail what is the cost, in terms of extra delay,
of adding flow mobility capabilities to a PMIPv6 network.

The tests conducted in section 5.4 measure the delay introduced by the flow identifier module. As seen
in previous chapters the flow identifier module must analyzes the packets of the new flows to identify a

route to them. This test has measured the packet forwarding time of the first fifth packets of the flow.

Finally, section 5.5 presents the handover time results. These tests measured the time after a link has
gone down until the handover of the affected data flows occur.

Figure 22 shows the testbed network diagram were the results shown in this chapter were measured.
The testbed shown in Figure 22 is a simplification of the testbed already shown in section 4.2. The
network created is composed by one LMA, two MAGs, one multihomed MN and one CN. The data flows
are UDP streams, generated with Iperf, that have origin in the CN. For these tests the LMA FSM
randomly chooses one route to each flow, in practice the load is evenly distributed by the available
MAGs.

In this network the two MAGs are provided by a single equipment, a femtocell. This femtocell provides
two independent WiFi networks. Each femtocell has two instances of the MAG software running. In all

tests performed the MN is a weak host with two WiFi network interfaces.
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Forelgn network

Figure 22 —Testbed used in evaluation

5.1. IPTables and NFTables performance

As described in previous chapters, the LMA may use two different packet filtering frameworks to forward
the packets based on traffic selectors. This test compares the performance of IPTables and NFTables.
In this test the performance is measured as the time taken to forward a packet since it enters the kernel

until it leaves the device, and the time it takes to setup a new flow.

Both IPTables and NFTables frameworks consist in a list of rules to be matched against a packet. That
have their performance limited by the speed of the search algorithm in use. The worst case scenario
happens when the rule that matches the packet being processed is the last rule to be searched either
by IPTables or NFTables.

This test consisted in having one constant traffic flow from the CN to the MN. The flow traversed the
LMA and the MAG until it reached the MN. During the test new rules were being added to the IPTables
or NFTables at regular intervals, see Figure 23. These rules didn’t match any real packet in the system,
and they were inserted to delay the IPTables and NFTables search algorithm on purpose. The increment
on the number of rules emulates a scenario where the LMA is being congested by an increasing number

of flows, and the only flow that has real traffic is the oldest one.
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Figure 23 - IPTables vs NFTables test scenario diagram

This test has measured two parameters, the packet processing time in the LMA and the time that it takes
to insert a new rule either in the IPTables or in NFTables. Both of the values were plotted in function of

the number of rules in IPTables or NFTables.

Figure 24 shows the evolution of the packet processing time, for both IPTables and NFTables, as a
function of the number of rules in the system. The figure shows clearly that both solutions have higher
packet processing times when the system has a high number of rules installed, as it was logically

expected.
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Figure 24 - IPTables vs NFTables packet process time at 10 Kbps

Even with the increase of the number of rules, the IPTables presents an almost stable performance. The
packet processing time when using IPTables increases slower than the scenario using the NFTables.
When using IPTables the worst case scenario has a packet processing time of 1 ms. Despite being a
very high value to be considered in a real environment, it is substantial better than the 3.5 ms of the
NFTables. Both values only occur on a limit case, when there are 10000 flows being processed by a
single LMA.
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When we analyze the same situation for a 100 Kbps flow, see Figure 25, we can see that the results are

very similar.
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Figure 25 - IPTables vs NFTables packet process time at 100 Kbps

Even the 3.5 ms maximum delay with NFTables can be considered a reasonable value to a packet
forward time in a prototype. Even for Voip conversation a latency of 3.5 ms is very tolerable, the

maximum one-way latency for a high quality conversation should be at maximum 150 ms [43], [44].

We will now analyze in more detail the behavior of both NFTables and IPTables until the 500 rules mark.
As seen in Figure 26, until the mark of 500 rules both solutions have a relatively small packet processing
time value. However, it is obvious that the IPTables has the most stable behavior, and it's always faster
than NFTables. Both the 10 Kbps and 100 Kbps curves of IPTables don’t have packet process times
higher than 75 us. On the contrary, the NFTables solution has an increasing packet processing times
when more rules are added. Even when there are few rules on the system the NFTables presents a
bigger packet process time than the IPTables, except for the 10 Kbps test when there are less than 50

rules on the system.
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Figure 26 - IPTables vs NFTables packet process time summary

Another aspect to consider, when choosing between IPTables and NFTables is the time that it takes to
add a new rule to the system. This is a very important metric to take into account. A slow insertion of the

rule in the system delays the other flows, and this may deteriorate the users Quality of Experience (QoE).
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When we consider the time it takes to insert a new rule in IPTables or NFTables, the results are the
opposite of the packet process time. As seen in Figure 27, the NFTables presents a constant value
independently of the number of rules already inserted in the system. On the other side, the IPTables
time to insert a rule is very sensitive to the number of rules already there and it is proportional to the
number of rules in the system. When there are 10000 rules on the system the time it takes to insert a

new rule is about 0.7 s.

Until the 3000 rules mark the IPTables has a smaller packet processing time and a smaller time to insert
a new rule, when compared to NFTables. If it's expected that the LMA won’t have to manage more than
3000 flows, the IPTables is the most appropriate solution. But if it's expected that the LMA has to handle
more than 3000 flows, the NFTables framework should be considered instead. For this kind of load, the

NFTables has a bigger packet processing times but it has a lower time to insert rule.

If we just analyze the results between 1 and 500 rules at 100 Kbps, see Figure 27 and Figure 28, both
solutions have a apparent constant time to insert a new rule. Regarding the packet processing time in
this region both frameworks have a relatively stable behavior, in this case the IPTables outperforms the
NFTables by about 160 ms.
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Figure 27 - IPTables vs NFTables time to insert new rule at 100 Kbps - detail
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Taking in account both metrics, the packet processing time and time to insert a new rule, it's not easy to
say what'’s the best framework. If a load higher than 3000 simultaneously flows is expected, it's more

adequate to use IPTables instead of NFTables.

In this case it's also necessary to consider the volatility of the flow mobility cache. If the system has a
very dynamic number of flows, being deleted and created, it starts to make more sense to use NFTables,

due to the fact that it is faster when creating and deleting forwarding rules in the system.

For a small deployment, with fewer than 3000 simultaneously flows, the performance difference between

IPTables and NFTables has no real impact.

5.2. Packet forward time at LMA and MAG

This test focused on measuring the delay introduced by the LMA and the MAG in the network. In see
section 5.3 these results are also compared with a situation where there is no flow mobility support, i.e.,
a standard PMIPv6 network.

The results shown below were measured in a stable situation where all the flows were already processed
by the LMA user space software. In this situation the only entities involved in the packets forwarding is
the kernel and IPTables. This test was not made with NFTables because the purpose of the test is to
measure solely the impact of the number of flows and the throughput in the packet processing times in
LMA and MAG. And as the previous test has shown for a relative low number of flows the performance

differences of IPTables and NFTables is irrelevant.

Figure 29 shows the empirical distribution function results for the packet processing times of the MAG
and LMA for different throughputs. Figure 29 shows that the MAG packet forward time is not affected by
the throughput until the 100 Kbps per flow. For 50 flows at 100 Kbps each the MAG can forward 90% of
the packets in less than 10 us. In the MAGs plot the results for 1 flow at different rates is always worse
than the results for the higher throughputs. Once again this happens because of the optimization made
in the OS by the NAPI. This was the expected behaviour for the MAG, in this scenario the MAG is just
acting as a bridge between the LMA and the MNs, it doesn’t make any relevant task that could delay the
packets. The tests shows that the maximum combined throughput of all the flows is 5 Mbps, the MAG

forwards all the packets in less than 15 us.

The LMA on the other hand presents different results. The first thing to notice is that the forwarding times
of the LMA are approximately twice the ones got on the MAG. The reason to this behaviour is the
complexity of the LMA routing tables. The LMA has a set of forwarding rules slightly more complex than
the MAG. As seen in the previous chapters the LMA must check all the incoming packets to verify if the

flow has already a defined route.
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Figure 29 — Packet processing time at LMA and MAG for different throughputs

For the sake of the clarity of the results, another relevant aspect to notice in Figure 29, is that the higher
throughputs have apparently lower packet process times. This is a contradiction to the expected
behaviour. The behaviour that was expected is the increasing of the packet processing while the
machine load starts to increase.
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In reality, the phenomenon that it's shown in Figure 29 it's an optimization made by the OS to improve
the performance in high throughput networks. To understand this optimization, it's important to give a

brief explanation about how the network driver works.

Most of the OSs use an interrupt based mechanism to react to hardware events. When the network
interface receives a frame it puts that frame in a buffer, this buffer is shared with the OS. After inserting
the frame in the buffer, the network interface sends an interrupt to the CPU. The CPU detects the
interrupt and immediately calls the correspondent driver that handles that specific interrupt, and the

frame starts being processed.

It's rather obvious that with high throughputs the interrupt rate will be excessively high. This is a problem
because the hardware interrupts have priority over all the other tasks that the OS is executing. And the
CPU must spend resources saving the actual state/caches so that after the interrupt processing it can

return to the exact same status that it had before the interrupt.

In networks with a high packet arrival rate this behaviour can slow down all the system [45], [46]. In a
worst case scenario the system can drop its throughput to O, this happens when the CPU is spending

more time processing the interrupts than performing other tasks [47].

This is a serious problem in high throughputs networks, most commonly known as gigabit networks. To
overcome this problem the Linux has introduced a new mechanism to avoid the high number of
interrupts, the New API (NAPI) [48]. This mechanism removes the inconveniences of having one

interrupt for each packet.

With NAPI, the driver has to provide a buffer, either in the OS or in hardware, to store the frames received
from the wire, normally a ring buffer. Additionally, it has to provide a poll method that retrieves received
frames from the network interface. This method can be invoked by the networking subsystem of the
Kernel when it wants to get a batch of frames to start the processing in the network stack. Basically the

interrupt based strategy is replaced by a poll mechanism.

When the driver receives the first hardware interrupt it disables further interrupts until: the call of a poll
method, when enough packets are received, or a specific timeout is reached. Then hardware interrupts
are re-enabled. The moment when the driver goes from poll mechanism to interrupt mechanism is not
defined.

The poll strategy can significantly improve the performance in high throughputs networks, like shown by
a test made by Linux Foundation®' where a node receiving 890 Kpps, only 17 interrupts were generated.
If the NAPI hadn’t been used, this scenario would have generated 1 interrupt for each received frame.

This kind of load would slow down significantly any machine.

The nodes that use this mechanism to forward traffic at low throughputs will introduce an extra latency
in the network. For example, if the driver waits for 2 frames before starting the frame processing, and

the system is receiving 1 frame per second. In this situation the frames that was received first will have

2 http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
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an extra delay of 1 second. In this situation it is more beneficial use the traditional hardware interrupts

based mechanism.

The NAPI behaviour is shown in the Figure 29 plots. The NAPI is introducing a delay for the low
throughput traffic. As soon as the throughput starts to increase the packets processing time converge to
the same range of values. Disabling the NAPI requires the recompilation of the network driver. This type

of details must be taken in account for a production environment.

5.3. Packet forward time without flow mobility

The results shown in Figure 29 are relative to a scenario were flow mobility is enabled. Figure 30
compares the previously obtained results, for 100 Kbps, with the same scenario but without using flow
mobility. This scenario uses the standard PMIPv6 implementation, from Eurecom, without flow mobility
capabilities.
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Figure 30 — Packet processing time with and without flow mobility
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The MAG results of the scenario without flow mobility are identically to the scenario with flow mobility.
This was the expected result, since the changes made to the MAG to support flow mobility weren’t

expressive.

It is expectable to have a slightly worse performance in the LMA when flow mobility is enabled, since

the LMA has suffered significantly changes that can influence the normal forwarding of the packets.

A brief analysis of the LMA results shows that the performance penalty for having flow mobility is actually
extremely low. The solution without flow mobility is slightly faster than the solution with flow mobility, but

delay values are kept under 30 us in both scenarios. This is a very low delay value.

For 1 and 2 flows the solution without flow mobility can forward 90% of the packets under 23 us. But the
solution with flow mobility can only guarantee that 90% of the packets are forwarded under 33 us. For
higher throughputs, 10, 20 and 50 flows the situation is identical, and the LMA can forward 90% of the

packets under 7 us in the solution without flow mobility versus the 11 us in the solution with flow mobility.

This results have shown that our proposal introduced only a marginal delay in the network when
compared with the previous solution without flow mobility. Some delay was already expected, since the
proposal of this work has introduced changes in the way how the packets are routed. LMA must analyze
all of the existing flows in order to apply forwarding routes to each one individually. This level of detail in
the routing has to have a cost. Despite of the extra delay introduced, this test has shown that the extra
cost is almost insignificant when compared to the advantages brought to the clients and to the operator.
For 90% of the packets the difference between the two solutions is on the worst case 5 us in the LMA.

The MAG performance is identically in both scenarios.

5.4. Delay introduced by the flow identifier

module

As explained in Chapter 3 the first packets from a user flow must be redirected to the user space so that
the LMA can process them. After the packets have been identified by the LMA the forwarding is done in
kernel space. It is expected that the packets that doesn’t reach the user space have smaller forwarding
times. It is also expected that a higher throughput increases the packets forwards time, this happens
because the queue that is in the user space starts to accumulate packets before the LMA can process

them.

This test consisted in an environment with one LMA and two MAGs, the MAGs were installed in the
same equipment. Then a server started to incrementally sending new flows to the client, each new flow
is only started after the last flow has been processed in the LMA. The objective of this test is to measure
only the impact of the user space code, the LMA flow identifier module. This test only measures the
forward time of the first packet from a flow, the routing decision for this packet is taken in user space.

The impact of the packet filter framework on this situation is negligible.
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Figure 31 shows the results of this test, in x axis it's represented the nth flow to be added and in y axis
the time taken to process the first packet of that flow. For example, the flow 5 was the fifth flow to be
added to the system. The plot shows that for a low number of flows in the system, the time taken to
setup the route for the first packet of a flow is independent of the number of flows in the system. Setting
up the 50" flow takes approximately the same time that it takes to setup the first. It's also shown that

until the 50" flow the time taken to process the first packet is independent of the throughput.

Packet process time [ms]
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Flow #
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Figure 31 - Time to process the first packet at 100 Kbps per flow

For all throughput values shown in figure, the time to process the first packet is always greater than 33
ms. This can be an unacceptable value for real-time traffic. Fortunately, this only happens for the first
packet. After the first packet, see Figure 32, the packet process time starts to diminish rapidly to

acceptable values, as also shown in section 5.2.

Figure 32 shows what happens to the packet process time when it is also considered the packet process
time of the second to 10th packet. By other words, what is the penalty for having to divert the first packet
of a flow to the user space for classification? The figure shows that the time to process packet diminishes
rapidly after the first one. After the fifth packet the packet process time is less than 40 us, the same

values shown in section 5.2.
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Figure 32 - Evolution of the packet processing time

57



This chapter shown that there is an extra cost to process the first packet, as it was expected. But that
costs starts to get rapidly diluted after the 5™ packet of a flow. Due to the gains that flow mobility has,
this is a tolerable cost. This cost can be reduced by having more capable machines or by tuning the
packet classification framework in Linux.

5.5. Handover Times

This test consists on having a client with two interfaces. Each interface is connected to a different
MAG. One of the interfaces was receiving a constant stream of multiple flows, and the other interface
was receiving one flow that suffered a handover. The objective of this test is to measure the time it

takes to perform a handover.

Because of the limitations of the weak host model all of the flows were addressed to the IP of one
interface. To do the handover the interface that wasn’t being addressed was shut down. This shut down

was detected by the Link SAP in the AP. The Link Sap then triggered the handover process.

If the interface that had the IP address that was being used as destination address was shut down, the
MN would de-configure the IP address and all the traffic addressed to it would be dropped. This is a

limitation of the weak host model.

The handover time was measured as the difference between two consecutives packets on different
interfaces, both packets belong to the flow that has suffered the handover. The handover start time is
the timestamp of the last packet received in the interface that has been shut down. And the handover

end timestamp is the timestamp of the first packet received in active interface.

This measure is not a real handover time, it's a packet inter-arrival time. Since the data flow has a
constant throughput, the period between packets will be approximately constant. If the average of the
packet period is subtracted to the inter-arrival time measured during the handover, we will obtain a

reasonable accurate measure of the handover time.

This methodology is only valid for high throughputs were the period between consecutives packets is
very small. For low throughputs the period between packets is relatively high, there is a huge chance
that the handover occurs between two consecutive packets, so in this case, our measure would be less

accurate.

For this test to work correctly the traffic generated by the CN must have a constant throughput. Due to

some hardware limitations on the CN machine the traffic generated didn’t had a constant throughput.

Figure 33 shows the measured handover times. In the area shown, the maximum handover time is
between 50 ms and 150 ms. Despite not being values that can be neglected, for some type of traffic

they are perfectly tolerable.
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6. Conclusion

This work has presented a proposal to provide network based flow mobility to the MNs of an operator
network. With this objective accomplished, the users can now benefit from theirs MNs multi access
capabilities. On the other end, the operator can control the routing decisions to each specific flow. The
possibility of having a centralized control gives to the operator the necessary tools to improve the QoS

that it provides to its clients.

Another aspect of the developed solution that it's worth mentioning is the integration with the IEEE
802.21 framework. This integration has permitted to decouple the user tracking from the mobility

protocol.

The scheduling of the flows was also decoupled from the mobility protocol. Each operator can replace

the flow scheduler by its own. The proposal can support any custom implementation of a flow scheduler.

This work has also validated the solution by running tests with real equipment. It was shown that it is
possible to obtain: (1) flow mobility transparent to the user, (2) implement the extensions defined by the
NETEXT WG to provide flow mobility in a PMIPv6 network, (3) the penalty for having flow mobility is
negligible when compared to the standard PMIPv6 without flow mobility and (4) that the operators have

advantages for reusing the existing WiFi network before starting to expand the cellular network.

It's also important to note that the MAG can be as simply as a SOHO router. The MAG is a simple
network node that the operator can ship to their customers houses at a low cost. This type of equipment
can provide both WiFi and LTE to the clients of the operator in the neighborhood. It can be seen as a

way to deploy a large number of smaller cells with a low cost for the operator.

For future work we suggest a full integration with IEEE 802.21 protocol. In this thesis solution IEEE
802.21 is only used to track the MNs movements. However, the |IEEE 802.21 can provide useful
information to improve the handovers. The network can start to be more proactive to deal with the

variations of the links quality.

The next objective is to create a more intelligent broker in the network that communicates with the flow
scheduler. The broker may improve the QoS by using all of the available information about the network

status to route the QoS sensitive flows through the most reliable path.
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