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AN EMPIRICAL COMPARISON BETWEEN GRADE OF

MEMBERSHIP AND PRINCIPAL COMPONENT ANALYSIS

A. SULEMAN

Abstract. It is the purpose of this paper to contribute to the discussion ini-
tiated by Wachter about the parallelism between principal component (PC)

and a typological grade of membership (GoM) analysis. The author tested

empirically the close relationship between both analysis in a low dimensional
framework comprising up to nine dichotomous variables and two typologies.

Our contribution to the subject is also empirical. It relies on a dataset from

a survey which was especially designed to study the reward of skills in the
banking sector in Portugal. The statistical data comprise thirty polythomous

variables and were decomposed in four typologies using an optimality crite-

rion. The empirical evidence shows a high correlation between the first PC
scores and individual GoM scores. No correlation with the remaining PCs was

found, however. In addtion to that, the first PC also proved effective to rank

individuals by skill following the particularity of data distribution meanwhile
unveiled in GoM analysis.

1. Introduction

The aim of this paper is to contribute to the discussion on the relationship
between principal component analysis (PCA) and the typological GoM analysis in-
troduced by Woodbury and Clive in [21]. This issue was first addressed by Wachter
in [19]. In his empirical work, the author used sets of three to nine dichotomous
variables drawn from U.S. National Survey of Families and Households (NSFH).
He found a strong correlation between the first PC scores and the individual GoM
scores, and both scores proved effective to recover an age gradient implicit in NSFH
data. In sequel, Wachter attempted to recast the underlaying GoM model with a
geometrical formulation, thereby suggesting that the GoM analysis is somehow a
version of PCA under certain metrics. These findings hold at least for low dimen-
sional settings which comprise two typologies for any number from three to nine
dichotomous variables where the referred study was confined to.

The GoM model was presented in 1974 by Woodbury and Clive as a statistical
tool to represent fuzzy partitions. This has been the most used formulation of the
model both in theoretical and applied frameworks so far (e.g. [17], [2]). However,
it has already been mentioned in literature as an alternative PCA method for
discrete data ([5]), although sometimes still in fuzzy context, namely as a mean
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for identifying fuzzy clusters or typologies ([11]). Nevertheless, we did not find any
other attempt to connect GoM to PCA as did Wachter in his work cited above.

The work presented in this paper is an attempt to link empirically GoM to PCA
in a higher dimensional space than in Wachter’s study. In particular, we were
interested in understanding to what extent the results achieved in that study can
be generalized and whether they provide potential guidelines to explicitly establish
a theoretical linkage of the two approaches to data analysis. We kept the original
formulation of the GoM model, that is, under the framework of fuzzy clustering.
So, we did not consider herein the geometrical formulation referred above. For
the purpose of our study, we used a dataset from a survey which was purposefully
designed to study the impact of skills on wages in the Portuguese banking sector
([14]). In the survey, supervisors were asked to assess individual skills from a list of
30 skill items in a 5-point Likert scale. Besides that, they also provided professional
and socio-demographic information on each individual. However, this additional
information was not of concern in the specific context of our research and was not
used at all therein.

The use of a fuzzy clustering approach has already been proved suitable to these
data ([15]). In particular, if we assume that the population under study can be
modeled by a fuzzy K-partition and use the GoM model to identify the underlined
fuzzy clusters. The difficulty lies, however, in how to set the value of K prior to
applying the GoM model to data as it must be. Differently from the just cited
paper, here we used a more objective criterion to fix the value of K, which is based
on a measure of the relative goodness of fit (i.e. a likelihood ratio test) of competing
GoM models. The empirical evidence shows that a model with K = 4 fuzzy clusters
provides the best fit to data among all the models considered in this study.

After submitting the dataset to a PCA, we estimated a linear regression model for
each of 30 PCs to check out the extent to which these quantities can be predicted by
3 out of 4 non-redunctant GoM scores under ordinary least squares (OLS) method.
The results achieved show an almost perfect fit to the first PC. But, on the other
side, no other PC was found to fit a linear combination of GoM scores. It turns
out, then, the GoM analysis can not be replaced by PCA in our particular study as
was the case in Wachter’s study which comprised two typologies and consequently
only one non-redundant GoM score for each individual.

Apart from the results referred to herein before, the output of GoM model un-
veiled a hierarchical fuzzy partition of skills. As a post-hoc analysis, we explored
then a geometrical counterpart of a fuzzy 4-partition, that is, the unit simplex
with 4 vertices. The distribution of individuals on this convex set lead them to be
ordered by skill through an utility function which is a linear combination of GoM
scores. The coefficients of such combination must, however, meet some specific con-
ditions so as to perform properly and provide individual rank. It is the case that
the estimated linear regression model for the first PC meets these conditions and
consequently the first PC could additionally be used to rank individuals by skill.

This paper is organised as follows. In the next section we present the data used
in our empirical work. The third section describes the GoM model in a fuzzy sets
theory perspective. A brief account on the theoretical background underlying PCA
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is given in section four. The fifth section is devoted to empirical analysis. Finally,
some concluding remarks are presented in the last section.

2. The Data

The data used in our empirical analysis were compiled from a survey conducted
by supervisors of the banking sector in Portugal. The survey was intended to analy-
se skills rewards of retail bankers in this country ([14]). The supervisors were asked
to assess each retail banker in 30 different skill items. They accomplished this task
rating individuals in each item through a Likert scale from 1 to 5, with the following
meaning: 1: Very Low; 2: Low; 3: Medium; 4: High; and 5: Very High. The 30
variables comprise four different skill dimensions namely of Knowledge, Behaviour
and Attitude toward Others, Behaviour and Attitude toward the Organisation and
Cognitive and Technical Skills. Table 1 displays the number of variables in each
dimension. Detailed specification of skill items is provided in Appendix A. Ob-
served frequencies in each (variable, category) pair are accounted for in Appendix
C, under the column labelled Frequency. The final sample size is N = 600.

Skill Dimension Number of Variables

Knowledge 3

Behaviour and Attitude toward Others 6
Behaviour and Attitude toward the Organisation 12

Cognitive and Technical Skills 9

Total 30

Table 1. Number of Variables in Each Skill Dimension

In addition to those variables, the survey provides detailed information on human
capital, demographic characteristics, job position and earnings of banking employ-
ees. We did not use this additional information here as we were focusing on the
way how skill measurement variables cluster together on the basis of GoM analy-
sis as well as of PCA. That is, our approach is methodological in the sense that
it aims to analyse whether and the way one data decomposition technique turns
into another. However, in a different setting, e.g. in applied research in economics
([15]), we should not ignore that professional and socio-demographic information
on individuals as it is commonly used in feature selection process of estimated fuzzy
partition sets ([1]).

3. Grade of Membership Analysis

We assume that the universe U of banking employees is decomposed into K ≥ 2
fuzzy sets or fuzzy clusters of skills, A1, A2, ..., AK , that form a fuzzy K−partition
of U , although we do not know in advance the value of K. Each individual of U ,
say individual i, is represented in this structure by his / her vector of GoM scores

gi = (gi1, gi2, ..., giK) (1)

This coordinate vector belongs to the unit simplex

SK =

{
a = (a1, a2, ..., aK) : ak ≥ 0 ∧

K∑
k=1

ak = 1

}
(2)
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The generic GoM score gik of the vector gi, in (1), stands for the grade of member-
ship of individual i in fuzzy set Ak. We further assume that each partition set is
normal, i.e.,

∀1≤k≤K ∃i : gik = 1

In other words, every fuzzy set Ak, 1 ≤ k ≤ K, has at least one full member.
In order to estimate the fuzzy K−partition that presumably underlies the data,

we used the statistical model introduced by Woodbury and Clive ([21]), and known
by the acronym GoM (Grade of Membership). It assumes that the number of fuzzy
partition sets, K, is fixed a priori. The model can be formulated as follows. Let

Xi = (Xi1, Xi2, ..., XiJ) , 1 ≤ i ≤ N (3)

be the vector of outcomes or attributes of individual i in J measurement variables,
where Xij ∈ {1, 2, .., Lj} , 1 ≤ j ≤ J , is a categorical variable with Lj ≥ 2 number
of categories, and N is the sample size. In our case, N = 600, J = 30, Xij is the
individual i assessment in Likert scale on jth skill item, and Lj = 5 for all skill
items.

In GoM model the coordinates of Xi (3), that is the outcomes Xij , are, by
assumption, ruled in latent form by the vector of GoM scores gi, as in (1). Given
gi, they are considered independent from each other. This means, Xij |gi and Xij′ |gi
(j 6= j′) are independent random variables. Denote by λkjl the probability of a full
member of fuzzy set Ak has the outcome l in jth variable, i.e.,

λkjl = Pr [Xij = l | gik = 1]

where 1 ≤ i ≤ N ; 1 ≤ j ≤ J ; 1 ≤ k ≤ K; 1 ≤ l ≤ Lj . Being probabilities, the λkjl
verify the two conditions

λkjl ≥ 0 and

Lj∑
l=1

λkjl = 1, for each k and each j (4)

The quantities λkjl account in probabilistic terms for the importance of different
attributes in fuzzy clusters. Their estimates are therefore used in practice to identify
typologies associated with those clusters ([12]). In this perspective, fuzzy clusters
may be referred to as typologies. A few other very common names for those clusters
in the context of GoM model are pure types ([21]) or extreme profiles ([10]).

The basic assumption of GoM is that, given gi, the probability pijl of individual
i having the outcome l in jth variable is

pijl = Pr [Xij = l | gi] =

K∑
k=1

gikλkjl (5)

Given a fixed value for the number of fuzzy partition sets, that is K, the model
parameters, namely gik and λkjl, are estimated by maximization of the logarithm
of the multinomial likelihood function,

LK =

N∏
i=1

J∏
j=1

Lj∏
l=1

(
K∑
k=1

gikλkjl

)ηijl
(6)
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subject to the above referred constraints, (2) and (4). In (6), ηijl is an indicator
variable which is equals to 1 if Xij = l and 0 otherwise. The optimal solution is
achieved iteratively: in each step, the likelihood function is maximized with one
set of parameters fixed, say λkjl, to obtain estimates for gik, and then the obtained
gik are used in the next step to update λkjl. This process is repeated until one
criterion from a set of predefined criteria for convergence is met (e.g. difference
between consecutive estimates, maximum number of iteration).

The model fitness is assessed by a likelihood ratio test

T = −2 ln

(
L1

LK

)
(7)

which measures the deviance of the solution of K ≥ 2 fuzzy clusters LK (6) from
the so-called independence model with a single cluster solution L1. Under the null
hypothesis, i.e. when L1 is the true model, the statistic T in (7) is approximated by
a chi-square distribution with the degrees of freedom equal to number of estimated
parameters (see [10], for details). If we denote by υ the number of degrees of
freedom then, for a given K,

υ = N × (K − 1) +K ×
J∑
j=1

(Lj − 1) = 600× (K − 1) +K × 30× 4 (8)

Due to high number of degrees of freedom commonly associated with GoM model
application, in practice we use a transformation which converts a statistic with
a chi-square distribution to a statistic with a distribution closely approximating
a standard normal distribution. In Section 5, we will report some results on the
referred approximation procedures as well as our option for a particular solution.

4. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method of data reduction.
The basic idea of PCA is to reduce the dimensionality of a dataset, which com-
prises a large number of interrelated variables, so that the variation present in the
dataset can be expressed through a smaller number of latent variables called prin-
cipal components (PCs). The PCs are uncorrelated, and are constructed as linear
combinations of the input variables. The number of PCs is equal to the number of
original variables. However, PCs are ordered variables in the sense that the first
component has as high variance as possible. All succeeding components have the
highest possible variance but are subject to the constraint of being uncorrelated
with the preceding components. As such, the first few PCs may account for the
most of the variability present in all of the original variables. If it is the case, these
few PCs can alternatively be used to examine the universe under study. This can
be stated formally as follows.

Suppose X is a vector of J random variables,

X =
(
X(1), X(2), ..., X(J)

)
(9)

The first PC Y (1) is obtained as a linear function a
′

1X of components of X, where

a
′

1 =
[
a11 a12 ... a1J

]
, that is,

Y (1) = a
′

1X = a11X
(1) + a12X

(2) + ...+ a1JX
(J)
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and has maximum variance subject to the condition a
′

1a1 = 1. The coordinates of
the vector a1 are referred to as first principal component loadings. The second PC
Y (2) is given similarly as a linear combination of components of X, that is,

Y (2) = a
′

2X = a21X
(1) + a22X

(2) + ...+ a2JX
(J)

which has the highest possible variance subject to the two constraints a
′

1a2 = 0 and,

in the same way as before, a
′

2a2 = 1. All the remaining components are obtained

following the same procedure. If Y (j) and Y (j′), 1 ≤ j < j′ ≤ J , are any two PCs
with the vector of loadings aj and aj′ , respectively, then

Var
[
Y (j)

]
≥ Var

[
Y (j′)

]
(10)

and a
′

jaj = 1 and a
′

j′aj = 0. This later condition means that Y (j) and Y (j′) are

uncorrelated random variables. In (10), Var
[
Y (j)

]
means variance of Y (j).

Having defined the PCs, the concern is now on the way these new variables are
found. Suppose that the vector of original variables X has a known covariance
matrix Σ. It can be shown that if Y (j) = a

′

jX, j = 1, 2, ..., J , is the jth PC, aj is an

eigenvector of Σ corresponding to its largest jth eigenvalue αj . Furthermore, if the

loadings vector aj is chosen to have unit length, i.e. aja
′

j = 1, then Var
[
Y (j)

]
= αj .

So, α1 ≥ α2 ≥ ... ≥ αJ .
In most practical cases the covariance matrix Σ is unknown and it is replaced

by the sample covariance matrix S. It is also common in practice to derive the PCs
from the correlation matrix ρ using the standardised version of observed variables
instead. Readers interested in more details about PCA may consult [8] where this
section was mostly derived from.

Even not explicitly mentioned, PCA is designed for real value data, that is, X in
(9) is a vector of RJ . It turns out that our data are categorical though ordinal. So,
prior to apply PCA to our dataset we shall assume that the skill items are vectors
of RJ (J = 30), where the Euclidean distance makes sense as does, consequently,
the calculation of empirical covariance or correlation matrices. Although this is
convenient for practical purposes, we have no formal statistical justification for
such assumption.

The question now being asked is how to link GoM to PCA. Extending the work
developed in [19], we aim to find a linear regression model that expresses a relation
between the two data analysis techniques. For jth PC, we calculate individual PC
scores beforehand as follows,

Y
(j)
i = a

′

jXi= aj1Xij + aj2Xij + ...+ ajJXij , 1 ≤ i ≤ N ; 1 ≤ j ≤ J
where Xi is individual i observed skill items vector as in (3). Then we estimate a
regression model between each PC and (K − 1) non-reductant GoM scores,

Y
(j)
i = β

(j)
0 + β

(j)
1 gi1 + β

(j)
2 gi2 + ...+ β

(j)

(K−1)gi(K−1) + ε
(j)
i (11)

where ε
(j)
i are the error terms and, by assumption, are normally and indepen-

dently distributed with zero mean and σ2 variance. The intercept term β
(j)
0 and

the regression coefficients β
(j)
1 , ..., β

(j)
(K−1) are estimated by ordinary least squares
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(OLS) method and the model (11) goodness of fit is assessed through the adjusted
coefficient of determination, R2

adj.

5. Empirical Evidence

5.1. GoM - PCA Relation. The estimation process of GoM model parameters,
gik and λkjl, was conducted through DsiGoM Software ([6]). In order to define
the optimal number of fuzzy clusters K, we first ran this computer program on a
trial basis, ranging the value of K from 2 to 5, and realised that the best fit to the
data was achieved for K = 4. With the exception of the model based on K = 3
fuzzy clusters, the optimal solution was attained in less than 100 iterations, for a
maximum fixed error of 10−6. In case of K = 3, it took 1, 285 iterations. It may be
the case that the estimation algorithm is hindered to estimate all independent pa-
rameters involved in GoM model. Whenever this happens some degrees of freedom
are lost. The DsiGoM Software reports the effective number of degrees of freedom
involved in each estimation process. Details about practical estimation aspects of
GoM model are found in [10].

The goodness of fit was assessed through the test statistic T as in (7) using an
approximation of chi-square distribution to normal distribution due to excessive
number of degrees of freedom (df) or, equivalently, the number of parameters in-
volved. In this regard we considered three different approximations to standard
normal distribution ([4]) as follows:

Z1 =
√

2T −
√

2υ − 1

Z2 =
(T/υ)1/3 − (1− 2/9υ)√

2/9υ

Z3 = Z2 + 8Z5
2 / 100υ3

where T is the value of test statistic obtained through the relation (7) and υ is
the number of degrees of freedom. The approximation Z1 is due to Fisher ([7],
quoted in [4]), the approximation Z2 is due to Wilson and Hilferty ([20]) and the
approximation Z3 is due to Kelley ([9], quoted in [4]). In any case, the bigger the
value of the statistic Zm (m = 1, 2, 3) the higher the deviance from the independence
model. Table 2 displays the empirical values found for each statistic for different
values of K. The GoM model with K = 4 fuzzy clusters seems to fit the data
consistently better than any other competing model.

K T υ (df) Z1 Z2 Z3

2 10, 007 750 (840) 102.75 79.71 79.79
3 13, 806 1, 500 (1, 560) 111.41 90.03 90.05

4 16, 837 2, 250 (2, 280) 116.43 96.20 96.21

5 17, 662 3, 000 (3, 000) 110.49 93.62 93.62

Table 2. GoM Model Goodness of Fit Assessment for Different
Values of K. Column 3 Displays Both the Effective Number of
Degrees of Freedom and, in Parenthesis, the Number of Freedom
Implied by Formula (8)
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Needless to say, all four tests lead to the rejection of the null hypothesis, that is
the true model is the one with a single cluster, for the level of significance of 5%
(Zm > 1.645, m = 1, 2, 3).

Having obtained the estimates of GoM model based on a solution of K = 4 fuzzy
clusters, we submitted our dataset to a PCA with the aim of assessing how the two
data analysis techniques are related to each other. The PCs were derived from both
the sample covariance matrix and correlation matrix (see results in Appendix B).
In sequel, we calculated individual PC scores based on the two forms of PCs. The
results achieved so far show a closer relationship to PCs derived from the correlation
matrix, in particular to the first PC. So, this form of PCs are considered in more
detail here.

We estimated a regression model for the first PC scores to understand how this
quantity can be predicted by GoM scores. The model is represented by the equation

Y
(1)
i = β

(1)
0 + β

(1)
1 gi1 + β

(1)
2 gi2 + β

(1)
3 gi3 + ε

(1)
i , i = 1, 2, ...N = 600 (12)

which is adapted from (11) to the particular case of K = 4. The OLS estimates of
model parameters as well as relevant associated statistics, related to the first PC
computed from the correlation matrix, are displayed in Table 3. All parameters
were found to be significant at a 5% significance level. The goodness of fit of

95% Confident Interval
Parameter Estimate Std. Error Lower Bound Upper Bound

β0 1.995 0.021 1.953 2.037
β1 −4.446 0.031 −4.506 −4.386

β2 −2.661 0.025 −2.710 −2.612

β3 −1.341 0.028 −1.396 −1.287

Table 3. First PC Regression Model Estimates

the regression model (12) was assessed through the adjusted coefficient of determi-
nation, R2

adj. The empirical value found for R2
adj is 0.985, which shows almost a

perfect fit of the first PC scores to a linear combination of GoM scores. When we
used the first PC derived from the sample covariance matrix we found a slightly
lower value for that statistic, namely 0.970. Recall that PCA is not scale invariant.
The inspection of the distribution of residuals, i.e. predicted minus observed values,
through a normal probability plot (Figure 1), gives some room for questioning the
normality assumption of error terms in (12). The fact that GoM scores are con-
strained to lie within unit simplex Sk (2) is probably one of the factors contributing
to curve residuals away from the normal line in places. The S shape curve as seen
on Figure 1 signals heavier tails than a normal distribution.

In the continued work on the relation between PCA and GoM, we estimated a
regression model similar to (12) for the remaining 29 PCs. Curiously, the values of
the adjusted coefficient of determination were very low and some negative values
were found. The highest value was 0.030. Before our research, we thought (K − 1)
out of J PCs would be linearly related to (K − 1) non-reductant GoM parameters
somehow in the line with Wachter’s work ([19]). This would potentially lead to the
estimation of GoM parameters through PC scores. However, the empirical evidence
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Figure 1. Probability Plot of Standardised Residuals

shows that this is not the case. Thus, PCA is not an alternative to GoM at least
for our particular study.

5.2. Pos-Hoc Analysis. In the second stage of our empirical analysis, we explored
the estimated fuzzy 4−partition from a distributional point of view. For this pur-
pose we looked at the estimates of individual vector of GoM scores gi = (gi1, ..., gi4)
and made use of the unit simplex S4 (2) which can be represented geometrically by
a tetrahedron. Full fuzzy set members position on the vertices of this convex set;
partial members of two fuzzy clusters position on the edges of S4 while individuals
who share three fuzzy clusters are placed on the faces. All remaining individuals
position in the interior of S4. We can number the vertices of S4 so that the vertex k
corresponds to fuzzy cluster Ak, k = 1, 2, 3, 4. As such, the edge 1− 2 corresponds
to individuals who are partial members of fuzzy clusters A1 and A2; the edge 2− 3
to individuals who share fuzzy clusters A2 and A3, and so forth. The same rea-
soning applies to faces and to the interior points of S4. Table 4 gives account of
the results obtained from the application of GoM model to our dataset. The same
information is provided graphically in Figure 2.

Part of S4 Total (600)

Vertex 44 (7.3%)

1 2 3 4
12 13 7 12

Edge 300 (50.0%)

1− 2 2− 3 3− 4 1− 3 1− 4 2− 4
60 157 81 2 0 0

Face 211 (35.2%)
1− 2− 3 2− 3− 4 1− 3− 4 1− 2− 4

100 104 5 2

Interior 45 (7.5%)

45

Table 4. Decomposition of the Unit Simplex S4

After analysing the distribution of retail bankers in the unit simplex S4, we may
conclude that 57% lie on the path of edges 1 − 2 − 3 − 4, including the vertices.
Combined with this, a further 31% lie in a 0.85 vicinity of this path, that is their
estimated GoM scores obey the relation

gik ≥ 0.85, k = 1, 2, 3, 4 or gik + gi(k+1) ≥ 0.85, k = 1, 2, 3 (13)
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The value 0.85 should be understood as a threshold for ”strong agreement”
([3]) with either one or two consecutive fuzzy clusters and it is set subjectively.
Explicitly, we first consider all members whose grade of membership in any fuzzy
set is equal or greater than 0.85. Next, we account for the members for whom
the sum of two consecutive GoM scores obey the same condition, i.e. ≥ 0.85. In
each step, we exclude all members who have already been accounted for on earlier
steps to avoid double counting. It can therefore be concluded that about 90% of
individuals position close or on the path of edges 1−2−3−4. This is an important
finding as we shall see further ahead.

At the other extreme of GoM representation of our dataset, we looked at the
λkjl parameter estimates so as to identify skill typologies latent in the Portuguese
banking sector. Empirical evidence shows that the four typologies are somehow
ordered by skill from lowest (A1) to highest (A4). Indeed, we found out that full
fuzzy sets members are likely to have increasing skill rates as we move from A1 to
A4 in all but one observed variable, namely variable number 21, and in particular
for fuzzy set A3 (see Appendix C for the estimates of λkjl parameters). This finding
therefore leads us to label fuzzy sets A1, A2, A3 and A4 as Low (skill), Medium,
High and Very High, respectively. As a consequence, individuals who lie on the
oriented path of edges going from the vertex 1 to the vertex 4, that is the path
1→4 of unit simplex S4, are increasingly more skilled (Figure 2). This fact allows,
in particular, to rank these individuals by skill as we shall subsequently see.

Figure 2. Estimated Distribution of Retail Bankers on
the Unit Simplex S4

Consider the following function of GoM scores

ρ (i) = b0 +
4∑
k=1

bkgik (14)

It can be shown that ρ strictly increases in the oriented path 1→4 as long as bk <
bk′ , where 1 ≤ k < k′ ≤ 4 (see [15], for a demonstration of an equivalent result).
That is, ρ is an (ordinal) utility function for the oriented path 1 →4. Curiously,
the first PC turns out to meet the conditions that have been just mentioned, that
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is bk < bk′ . Explicitly, looking at β estimates in Table 3, we realise that not
only they are statistically significant but also verify the inequalities β1 < β2 <
β3. Furthermore, all of them are negative. Setting β4 = 0 and replacing each b
coefficient in (14) by corresponding β estimates leads to the first PC. Thus, the
first PC can be used as an analytical tool to provide a point estimate of individual
skills rank for, at least, the 57% of individuals estimated to lie on the oriented path
1→ 4 ([15]). If we extend this possibility to individuals with strong agreement with
either one or two consecutive fuzzy sets in the same sense as in (13), the first PC
would fairly behave as an ranking device for almost all sampled individuals (Fig.
2). Of course, this PC could be used for ranking purposes without resorting the
fuzzy approach. However, the individual PC score would probably not sound the
same in that case. Furthermore, the first PC gives by itself no indication about the
underneath hierarchical skill structure as does the GoM analysis. In summing up,
combining GoM with PCA led to deeper insight into skill data structure.

6. Concluding Remarks

In this study, we have tried to contribute to the discussion about the relationship
between PCA and GoM following the pioneer work by Wachter. Differently from
this author, we used a rather more complex dataset and have found that GoM and
PCA are linearly related to each other only through the first PC and not otherwise.
The same relation found by the referred author in two-dimensional space appears
now to be unrelated to the space dimension. The exclusive relation to the first
PC could be explained by the fact that PCs are uncorrelated by nature. However,
there is no any apparent theoretical impediment to, for example, the second PC
be linearly related to GoM as does the first PC, being their respective coefficients
orthogonal in the similar way as are their loadings. Quite apart from this, the results
achieved so far encourage practitioners to use both techniques in a complementary
way as well as give pointers for a theoretical research on the subject concerned.

In our on going research, we are trying to ”invert” the GoM analysis in a way to
construct new variables that directly relate the latent parameters gik and λkjl and
the observed variables Xi. Our purpose is to find out any particular relation that
leads such variables to PCs. The results we achieved so far are not conclusive and
need further development.

Meanwhile, we believe that using PCA and GoM techniques in a complementary
basis potentially enhance the quality and the granularity of data analysis. Clearly,
this is the main message of our study.
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Appendix A. List of Skill Items

The 30 skill items used to access retail bankers belong to four different dimen-
sions, namely Knowledge; Behaviour and Attitude toward Others; Behaviour and
Attitude toward the Organisation; Cognitive and Technical Skills, as follows.

Skill Dimension Items Specification

Knowledge 1. General technical knowledge
2. Specific technical knowledge
3. Foreign languages

Behaviours and Attitudes 4. Relationship with colleagues
toward Others 5. Team working

6. Communication skills
7. Willingness to help others
8. Negotiation skills
9. Persuasion skills

Behaviours and Attitudes 10. Perseverance and goal-oriented attitudes
toward Organisation 11. Client-oriented attitudes

12. Autonomy
13.Responsibility
14. Adaptability
15. Innovative attitudes
16. Favourable learning attitudes
17. Proactive attitudes toward learning
18. Following rules and procedures
19. Cooperation (with organisational goals)
20. Working time flexibility
21. Punctuality

Cognitive and Technical Skills 22. Work planning
23. Computer skills
24. Analytical skills
25. Ability to select and process information
26. Problem solving
27. Learning ability
28. Ability to transfer knowledge and experience
29. Ability to understand the banking specificities
30. Ability to understand corporation strategy

Appendix B. Principal Component Analysis Output

We present the PCs computed from the sample correlation matrix and omit the
components derived from covariance matrix to avoid information overload. In the
table below, the column 3 labelled ”% of Variance” contains the percent of variance
accounted for by each PC, and column 4 labelled ”Cumulative %” contains the
cumulative percentage of variance accounted for by the current and all preceding
PCs. Only four PCs have eigenvalues equal to 1 or greater. These four components
together account for 69.16% of the total variance.
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Component Eigenvalue % Variance Cumulative %

1 16.88 56.25 56.25
2 1.61 5.35 61.61
3 1.20 4.01 65.62
4 1.06 3.54 69.16
5 0.77 2.57 71.73
6 0.70 2.33 74.06
7 0.64 2.12 76.17
8 0.62 2.06 78.23
9 0.52 1.74 79.97
10 0.50 1.65 81.62
11 0.46 1.53 83.15
12 0.43 1.43 84.59
13 0.40 1.32 85.91
14 0.36 1.21 87.12
15 0.35 1.17 88.29
16 0.34 1.14 89.44
17 0.33 1.11 90.54
18 0.32 1.06 91.60
19 0.29 0.96 92.56
20 0.27 0.90 93.47
21 0.26 0.85 94.32
22 0.24 0.79 95.11
23 0.22 0.74 95.85
24 0.21 0.71 96.56
25 0.21 0.70 97.27
26 0.19 0.63 97.89
27 0.18 0.61 98.51
28 0.16 0.55 99.05
29 0.15 0.51 99.56
30 0.13 0.44 100.00

Appendix C. Partial GoM Model Output

We present here the estimates of λkjl parameters denoted by λ̂kjl, for k =
1, 2, 3, 4. For the purpose of fuzzy clusters characterization we follow closely the cri-
teria established in [2]. Thus, excepting for high frequencies, the variable-category
(j, l) pair is considered to substantively contribute to discriminate the fuzzy cluster

Ak if λ̂kjl ≥ (1 + δ)× fjl, where fjl is the observed relative frequency of that pair.
We fixed δ = 0.2 in this empirical study. For high frequencies, the (j, l) pair is tagged

as a discriminant condition whenever the conjunction
(
λ̂kjl ≥ fjl

)
∧
(
λ̂kjl ≥ 0.9

)
holds. The observed frequencies are listed under the column labelled ”Frequency”.
The discriminant conditions are displayed in boldface figures. Where applicable, a
code 0 is added for missing data. Non-observed categories are omitted. All figures
are represented in ×100% format.
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Variable (j) Category (l) Frequency λ̂1jl λ̂2jl λ̂3jl λ̂4jl
1. General technical knowledge 0. missing 1.33 0.00 3.93 0.00 0.00

1. Very Low 2.87 17.41 1.35 0.00 0.00
2. Low 17.23 74.69 19.70 0.00 0.00
3. Medium 39.36 0.00 75.70 27.07 17.90
4. High 34.97 7.90 3.26 72.93 36.43
5. Very High 5.57 0.00 0.00 0.00 45.67

2. Specific technical knowledge 0. missing 0.67 0.00 1.96 0.00 0.00
1. Very Low 1.68 10.46 0.88 0.00 0.00
2. Low 17.79 80.05 21.62 0.00 0.00
3. Medium 36.58 9.49 77.50 20.92 9.45
4. High 38.09 0.00 0.00 79.08 48.18
5. Very High 5.87 0.00 0.00 0.00 42.38

3. Foreign languages 0. missing 10.00 15.74 11.43 7.54 8.34
1. Very Low 4.81 37.57 0.00 0.00 0.00
2. Low 19.44 51.79 24.53 10.28 0.93
3. Medium 44.63 7.53 58.20 46.81 37.47
4. High 27.22 3.10 17.27 40.60 36.57
5. Very High 3.89 0.00 0.00 2.30 25.04

4. Relationship with colleagues 2. Low 5.17 48.33 0.00 0.00 0.00
3. Medium 21.17 39.86 53.10 0.00 0.00
4. High 55.83 11.81 46.90 100.00 3.19
5. Very High 17.83 0.00 0.00 0.00 96.81

5. Team working 1. Very Low 0.67 5.84 0.64 0.00 0.00
2. Low 7.83 68.57 0.00 0.00 0.00
3. Medium 23.67 25.60 70.42 0.00 0.00
4. High 53.33 0.00 28.93 100.00 0.00
5. Very High 14.50 0.00 0.00 0.00 100.00

6. Communication skills 1. Very Low 0.50 4.52 0.00 0.00 0.00
2. Low 6.17 55.81 0.00 0.00 0.00
3. Medium 34.17 34.36 82.34 0.00 0.00
4. High 50.83 5.31 17.66 100.00 25.91
5. Very High 8.33 0.00 0.00 0.00 74.09

7. Willingness to help others 0. missing 0.17 0.75 0.54 0.00 0.00
1. Very Low 0.83 6.83 0.00 0.00 0.00
2. Low 8.68 71.06 0.00 0.00 0.00
3. Medium 23.04 22.11 65.82 0.00 0.00
4. High 53.26 0.00 34.18 100.00 5.56
5. Very High 14.19 0.00 0.00 0.00 94.44

8. Negotiation skills 0. missing 1.00 0.00 1.98 0.00 2.71
1. Very Low 2.36 15.22 0.00 0.00 0.00
2. Low 13.13 84.78 0.00 0.00 0.00
3. Medium 40.07 0.00 100.00 8.66 0.00
4. High 36.70 0.00 0.00 91.34 35.78
5. Very High 7.74 0.00 0.00 0.00 64.22

9. Persuasion skills 0. missing 1.00 0.00 2.43 0.00 1.46
1. Very Low 2.53 14.42 0.00 0.00 0.00
2. Low 14.98 85.58 0.00 0.00 0.00
3. Medium 44.78 0.00 100.00 31.69 0.00
4. High 31.99 0.00 0.00 68.31 51.43
5. Very High 5.72 0.00 0.00 0.00 48.57

10. Perseverance and 0. missing 0.17 0.00 0.49 0.00 0.00
goal-oriented attitudes 1. Very Low 2.67 20.51 0.00 0.00 0.00

2. Low 10.35 79.49 0.00 0.00 0.00
3. Medium 34.56 0.00 100.00 3.53 0.00
4. High 41.74 0.00 0.00 96.47 0.00
5. Very High 10.68 0.00 0.00 0.00 100.00

11. Client-oriented attitudes 0. missing 0.33 0.00 0.00 0.00 2.76
1. Very Low 0.84 6.58 0.56 0.00 0.00
2. Low 9.87 77.69 0.00 0.00 0.00
3. Medium 30.60 15.72 84.10 0.00 0.00
4. High 45.65 0.00 15.34 100.00 7.28
5. Very High 13.04 0.00 0.00 0.00 92.72

12. Autonomy 0. missing 0.17 0.00 0.49 0.00 0.00
1. Very Low 1.84 13.21 0.00 0.00 0.00
2. Low 11.69 84.05 0.00 0.00 0.00
3. Medium 35.73 2.74 89.52 13.64 0.00
4. High 42.90 0.00 10.48 86.36 27.68
5. Very High 7.85 0.00 0.00 0.00 72.32

13. Responsibility 0. missing 0.17 0.40 0.59 0.00 0.00
1. Very Low 1.34 11.82 0.00 0.00 0.00
2. Low 7.85 69.47 0.00 0.00 0.00
3. Medium 30.72 18.71 83.37 0.00 0.00
4. High 48.58 0.00 16.63 100.00 6.59
5. Very High 11.52 0.00 0.00 0.00 93.41

14. Adaptability 0. missing 0.17 0.40 0.59 0.00 0.00
1. Very Low 1.34 12.32 0.00 0.00 0.00
2. Low 8.01 73.94 0.00 0.00 0.00
3. Medium 28.38 13.74 100.00 0.00 0.00
4. High 53.26 0.00 0.00 100.00 0.00
5. Very High 9.02 0.00 0.00 0.00 100.00

15. Innovative attitudes 0. missing 0.17 0.00 0.49 0.00 0.00
1. Very Low 2.17 10.66 0.00 0.00 0.00
2. Low 18.20 89.34 0.00 0.00 0.00
3. Medium 43.91 0.00 100.00 30.13 0.00
4. High 32.55 0.00 0.00 69.87 72.63
5. Very High 3.17 0.00 0.00 0.00 27.37
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Variable (j) Category (l) Frequency λ̂1jl λ̂2jl λ̂3jl λ̂4jl
16. Favourable learning 1. Very Low 1.67 14.97 0.00 0.00 0.00

attitudes 2. Low 7.17 64.38 0.00 0.00 0.00
3. Medium 24.33 20.64 82.26 0.00 0.00
4. High 54.33 0.00 17.74 100.00 0.00
5. Very High 12.50 0.00 0.00 0.00 100.00

17. Proactive attitudes 0. missing 0.17 1.31 0.00 0.00 0.00
toward learning 1. Very Low 1.84 14.10 0.00 0.00 0.00

2. Low 11.19 85.90 0.00 0.00 0.00
3. Medium 27.05 0.00 100.00 0.00 0.00
4. High 49.75 0.00 0.00 100.00 0.00
5. Very High 10.18 0.00 0.00 0.00 100.00

18. Following rules 1. Very Low 0.50 4.53 0.60 0.00 0.00
and procedures 2. Low 3.83 34.72 0.00 0.00 0.00

3. Medium 26.00 51.03 56.84 4.82 0.00
4. High 59.33 9.72 42.57 95.18 0.00
5. Very High 10.33 0.00 0.00 0.00 100.00

19. Cooperation (with 0. missing 0.17 0.00 0.49 0.00 0.00
organisational goals) 1. Very Low 1.17 10.91 0.00 0.00 0.00

2. Low 9.35 87.27 0.00 0.00 0.00
3. Medium 29.55 1.82 100.00 0.00 0.00
4. High 47.91 0.00 0.00 100.00 0.00
5. Very High 12.02 0.00 0.00 0.00 100.00

20. Working time flexibility 0. missing 0.67 3.06 0.82 0.00 0.00
1. Very Low 2.01 15.36 0.00 0.00 0.00
2. Low 6.21 47.37 0.00 0.00 0.00
3. Medium 18.46 10.46 52.39 0.00 0.00
4. High 51.85 22.00 47.61 80.54 4.64
5. Very High 21.48 5.23 0.00 19.46 95.36

21. Punctuality 0. missing 0.33 0.00 0.00 0.81 0.00
1. Very Low 1.00 8.00 0.00 0.00 0.00
2. Low 3.01 9.48 5.49 0.00 0.00
3. Medium 11.20 14.49 25.19 2.68 0.00
4. High 38.96 39.18 51.50 43.88 0.00
5. Very High 45.82 28.86 17.82 53.44 100.00

22. Work planning 0. missing 0.83 0.00 0.82 1.34 0.00
1. Very Low 1.51 9.78 0.00 0.00 0.00
2. Low 13.95 90.22 0.00 0.00 0.00
3. Medium 41.18 0.00 100.00 0.00 0.00
4. High 37.14 0.00 0.00 100.00 43.44
5. Very High 6.22 0.00 0.00 0.00 56.56

23. Computer skills 1. Very Low 1.33 12.15 0.00 0.00 0.00
2. Low 6.83 62.29 0.00 0.00 0.00
3. Medium 32.17 25.38 71.77 9.29 0.00
4. High 45.83 0.17 28.23 82.17 18.70
5. Very High 13.83 0.00 0.00 8.54 81.30

24. Analytical skills 0. missing 0.50 0.00 0.81 0.55 0.00
1. Very Low 1.01 7.06 0.00 0.00 0.00
2. Low 13.23 92.94 0.00 0.00 0.00
3. Medium 43.05 0.00 100.00 0.00 0.00
4. High 38.02 0.00 0.00 100.00 57.33
5. Very High 4.69 0.00 0.00 0.00 42.67

25. Ability to select and 0. missing 0.33 0.00 0.98 0.00 0.00
process information 1. Very Low 0.67 5.26 0.00 0.00 0.00

2. Low 12.04 94.74 0.00 0.00 0.00
3. Medium 42.14 0.00 100.00 0.00 0.00
4. High 39.97 0.00 0.00 100.00 53.16
5. Very High 5.18 0.00 0.00 0.00 46.84

26. Problem solving 0. missing 0.17 0.00 0.49 0.00 0.00
1. Very Low 1.00 7.06 0.00 0.00 0.00
2. Low 13.19 92.94 0.00 0.00 0.00
3. Medium 39.40 0.00 100.00 0.00 0.00
4. High 39.57 0.00 0.00 100.00 36.25
5. Very High 6.84 0.00 0.00 0.00 63.75

27. Learning ability 1. Very Low 1.00 9.11 0.00 0.00 0.00
2. Low 5.33 48.58 0.00 0.00 0.00
3. Medium 27.00 42.31 82.26 0.00 0.00
4. High 54.83 0.00 17.74 100.00 0.00
5. Very High 11.83 0.00 0.00 0.00 100.00

28. Ability to transfer knowledge 0. missing 0.33 2.28 0.00 0.00 0.00
and experience 1. Very Low 1.17 12.73 0.00 0.00 0.00

2. Low 8.03 82.27 0.00 0.00 0.00
3. Medium 39.97 0.00 100.00 0.00 0.00
4. High 46.15 0.00 0.00 100.00 48.66
5. Very High 4.68 0.00 0.00 0.00 51.34

29. Ability to understand the 1. Very Low 0.67 6.72 0.53 0.00 0.00
banking specificities 2. Low 6.67 67.18 0.00 0.00 0.00

3. Medium 36.50 26.10 95.37 0.00 0.00
4. High 50.00 0.00 4.10 100.00 19.02
5. Very High 6.17 0.00 0.00 0.00 80.98

30. Ability to understand 1. Very Low 1.67 17.24 0.00 0.00 0.00
corporation strategy 2. Low 8.00 82.76 0.00 0.00 0.00

3. Medium 37.17 0.00 100.00 0.00 0.00
4. High 46.17 0.00 0.00 100.00 29.45
5. Very High 7.00 0.00 0.00 0.00 70.55
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