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Abstract: Technological development and production processes require statistical process control in the use 
of alternative techniques to evaluate a productive process. This paper proposes an alternative procedure for 
monitoring a multivariate productive process using residuals obtained from the principal component scores 
modeled by the general class of autoregressive integrated moving average (ARIMA) and the generalized 
autoregressive conditional heteroskedasticity (GARCH) processes. We seek to obtain and investigate non-
correlated and independent residuals by means of X-bar and exponentially weighted moving average 
(EWMA) charts as a way to capture large and small variations in the productive process. The principal 
component analysis deals with the correlation among the variables and reduces the dimensions. The 
ARIMA-GARCH model estimates the mean and volatility of the principal components selected, providing 
independent residuals that are analyzed using control charts. Thus, a multivariate process can be assessed 
using univariate techniques, taking into account both the mean and the volatility behavior of the process. 
Therefore, we present an alternative procedure to evaluate a process with multivariate features to determine 
the level of volatility persistence in the productive process when an external action occurs. 
 
Key words: statistical process control, ARIMA models, GARCH models, residual control chart, 
autocorrelated process, volatility, multivariate statistical process control 

 
 
1    INTRODUCTION 

The quality of manufactured products is often 
determined by the joint evaluation of different 
characteristics. In this case, univariate control charts 
become inefficient. An alternative procedure for this 
monitoring could be to monitor these quality 
characteristics using multiple univariate control charts. 
However, this would also be unsatisfactory, since they do 
not consider the correlation among variables [1][2], and in 
turn do not show precisely when the process is out-of-
control, showing many false alarms. Thus, a multivariate 
control chart is preferred to monitor all the features 
simultaneously. 

 
 
 

If a multivariate control chart signals an out-of-control 
situation in a T2 Hotelling control chart, a diagnosis should 
be carried out to find out which variables are causing the 
out-of-control situation. Several studies have suggested 
performing p-control charts applied to the principal 
components (PCs) derived from the original data [3-7]. In 
this way, PCs are used to identify which variables or group 
of variables have the largest contribution in the PCs as a 
way to detect responsibility for the out-of-control signal, 
so that the special acting cause can be found in the system 
later. In the presence of non-independent variables, the 
univariate control charts are inefficient in detecting out-of-
control points as shown by Refs. [8-10] because the 
variables are under the autocorrelation effect. 

 
Based on the discussion above, the aim of this research 

was to present an alternative procedure for monitoring a 
multivariate productive process using the residuals that 
come from the general class of autoregressive integrated 
moving average (ARIMA) and generalized autoregressive 
conditional heteroskedasticity (GARCH) models applied 
to the selected PCs. These residuals are investigated by 
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means of X-bar and exponentially weighted moving 
average (EWMA) control charts as a way to capture large 
and small variations around the mean that may occur in 
the process. Moreover, we also aim to determine the 
persistence of volatility when an external action occurs in 
the production process. 

The alternative procedure used to evaluate the 
autocorrelation using ARIMA-GARCH models is useful 
because it brings the best parameter estimative that is 
reflected in the residual series. Furthermore, the GARCH 
models provide useful information regarding the 
variability process and its impact in the system by means 
of the persistence parameter. 

 
In this study, the forecasting ARIMA models 

developed in Ref. [11], the autoregressive conditional 
heteroskedasticity (ARCH) models developed in Ref. [12], 
and the GARCH models developed in Ref. [13] are used. 
The control charts, X-bar and EWMA, developed in Refs. 
[14] and [15], respectively, were used to evaluate the 
stability. 

 
2    METHODOLOGY 

The process of continuous iron casting can be 
considered a heat-transfer process, where the liquid metal 
is converted by the solidification of a solid, semi-finished 
product. 

 
The data used in this research are mold temperature, 

measured by 30 thermocouples (T1, T2, …, T30) positioned 
along the template. Each thermocouple displays 245 
temperature observations hourly. 

 
Determining these variables and their values along the 

production process is essential to achieving product 
quality. 

 
After the liquid metal is modeled according to a 

specific form, it is cooled by means of water sprays to 
reduce the high temperature (approx. 1,200°C) as shown 
in Fig. 1. After refreshment, the metal keeps losing heat in 
contact with air and maintains the pre-defined form. This 
stage is very important in cast iron production. 

 
The metal bar in a specific shape is monitored by 30 

sensors in the zone-denominated sprays, where the metal 
liquid iron is refreshed to avoid defects such as different 

size specifications due to metal shrinkage, which are 
consequently considered out-of-control cases. The lack of 
control also occurs because of the presence of different 
kinds of material resistance in the same production lot, 
which after refreshment may interfere in the bounding 
shape or in the material surface if the refreshment zone is 
not properly calibrated. In this stage, the stability of 
refreshment temperature is very important in keeping the 
process under control. 

 

Fig. 1  Schematic representation of the iron casting cut-
ting machine adapted from Moreira (2010). 

 
The methodological aspects are described below: 
 
1) Firstly, the stationarity of the series is analyzed in 

order to obtain stable parameters in the forecasting model 
[16][17].  

 
2) Next, the series standardization is performed for 

the decomposition into PCs as a way to avoid measure and 
scale influences [18]. Thus, the original variables are 
decomposed into PCs in order to identify sources of 
instability in the process and to remove the correlation 
effect among the variables [19]. 

 
The principal component analysis (PCA) method was 

developed in Ref. [20] and later studied in Ref. [21]. 
Afterwards, several authors [22-28] developed more 
studies where the main idea was to reduce the data set to 
be analyzed, especially when the data consisted of a large 
number of interrelated variables. 

 
The    dimensionality     reduction     is    achieved     by 
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transforming the original data set into a new set of 
variables which maintains the maximum of the variability 
of the original data set. The new variables are called PCs 
and they are independent and uncorrelated. This 
characteristic of independence is useful for future analysis, 
especially when the original data set is composed of many 
variables and the correlation is considered a problem, 
which usually occurs in statistical process control. The Ref. 
[29] criterion is used to select the PCs derived from the 
original data, selecting the PCs originating from 
eigenvalue greater than 1, according to Ref. [29], which in 
general show a good percentage of explained variance. 
Another method used had a corresponding cumulative 
variance of approximately 70% of the total [30]. 

 
Considering random vector variables that present a 

mean vector μ and variance-covariance matrix Σ, we try to 
find a new set of variables Y1, Y2, …, Yp, which are 
uncorrelated with each other, and whose variances of each 
variable are described in order of decreasing values. So the 
PCs are ordered from large to small percentage of 
explained variance calculated by means of its eigenvalue 
ordered from large to small. These new variables can be 
written in linear combination, which is called the PC [31]. 

 
Each PC will be represented by: 

pjpjjj XaXaY ++= 11  (1) 

In order to guarantee that the linear combination has a 
unique solution and elements are uncorrelated with each 
other, Eqs. (2) and (3) must be followed. 
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Equation (2) assumes that the system has a unique 

solution and Eq. (3) says that for i≠ k with i, k = 1, 2, ..., p; 
the principal components are independent, i.e., they are 
orthogonal. 

 
The method of Lagrange multiplier is used to 

satisfy the conditions of normality and orthogonality, 

finding the  eigenvalues  and  eigenvectors  resulting  from 

 

the solution to Eq. (4). The PCs are estimated based on a 

correlation matrix since it is the way used to standardize 

data and avoid the scale and magnitude influence among 

variables as in Eq. (4), where R is the correlation matrix. 

0IR =− 1aλ  (4) 

Therefore, from this step on, only univariate procedures 
are used to represent and study the system of variables 
[27]. Furthermore, the dimensionality reduction is also 
performed as in Ref. [28] and used for forecasting 
purposes. 

 
3) After selecting the PCs and detecting the 

autocorrelation effect, the ARIMA models are fitted to 
find the residuals that are, in turn, investigated regarding 
their heteroskedasticity. 

 
ARIMA models are based on the theory that the 

behavior of the variable itself answers for its future 
dynamics [11], and are used to remove serial correlation. 
Thus, the residual series may present the correct properties 
to apply control charts, using the residual series to 
evaluate the process. Generally, a process that is non-
stationary follows an ARIMA (p, d, q) process, as in Eq. 
(5) or its variants as AR(p), MA(q) among other models. 

 
( ) ( ) tt

d uBXB θφ =∆  (5) 

 
If the process is stationary, generically it can be 

represented by an ARIMA (p, q) model, as in Eq. (6). 
 

( ) ( ) tt uBXB θφ =  (6) 

where, B is a backshift operator, d represents the order 
of integration, ϕ is the term represented by the 
autoregressive order p, θ is the moving average parameter 
represented by q, and ut ≈ N(0, σ2), which is white noise. 

 
Several authors [32-36] have shown that an ARIMA 

model can be constructed iteratively in four steps: 
identification, estimation, diagnostic test or check, and 
forecasting. After several models to be fitted to the PCs, 
penalty criteria are used to help choose the best forecast 
model. They are useful because the number of parameters 
to be estimated is taken into account. Here, the Akaike 
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Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) are applied in the forecast step. 

 
nLAIC 2)ln(2 +−=  

)ln()ln(2 TnLBIC +−=  
(7) 
(8) 

Here, T is the sample size; n is the number of parameters 
and L is the maximized value of the likelihood function 
for the estimated model. 

 
After the appropriate estimated ARIMA model, the 

residual assumptions are verified. Even though the 
residuals are white noise, the ARCH-test is performed to 
verify the homoskedasticity. If this supposition is not met, 
it is necessary to fit an ARCH model to estimate the 
variability behavior. This becomes important because the 
heteroskedasticity presence is a signal that the process 
may have large variability and can influence the mean 
trajectory as the control limit estimation. 

 
From the linear model estimation (ARIMA models), 

we look for a residual series with zero mean and constant 
variance and which is non-autocorrelated. These 
suppositions are necessary to apply residue control charts, 
with residues independent and identically distributed 
(i.i.d.) [8]. If this condition is satisfied, the ARIMA model 
is able to remove the autocorrelation effect from the data. 
However, if the quadratic residual series is correlated, the 
residual series is denoted as heteroskedastic and a non-
linear model should be used to represent it because the 
series has non-pure random behavior. 

 
As it is known, the control charts analysis is divided in 

two phases: phase I, used to analyze the process stability 
and set up the estimated process parameters, and phase II, 
used to monitor the process. According to the quality 
control manager at the industry, the variables are under 
control, thus we go straight to phase II using the 
alternative methodology to monitor the process. 

 
4) If volatility is present, a general ARIMA-

GARCH model is fitted to select PCs [37]. The joint 
modeling non-linear modeling - ARCH (p) is performed 
via ARIMA-ARCH models and considers the level and 
volatility effects in the series [38], which is simultaneously 
estimated by means of the EViews 7.0 software. 
Heteroskedasticity residual tests are performed in order to 
verify the presence of autoregressive conditional 

heteroskedasticity using the ARCH-LM test proposed in 
Ref. [12]. 

 
The main idea behind the ARCH model is the fact that 

the variance ut in time t, depends on u2
t-1. As the variability 

can be explained by the volatility that exists between the 
residual that comes from the linear prediction model, we 
can observe that the variance of these errors is not constant 
over time, but it varies from one period to another. Thus, 
there is an autocorrelation in the variance residual forecast 
[39]. 

 
According to Refs. [13] and [38], if a residual of a 

linear process follows an ARCH process, it can be set as in 
Eq. (9), where there is the expression of the ARCH model. 

tttu εσ 2=  (9) 

In this way, we can observe that the conditional 
variance of the error εt to the information available to the 
period (t-1) is distributed, and according to Ref. [36], Eq. 
(10) is obtained. 
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In the case of an ARCH (1) model, one has the 
conditional variance defined by Eq. (11). 

2
110

2
−+= tt uαασ  (11) 

Thus, it is expected that ARCH (1) modeling provides 
a residual with i.i.d. characteristics as shown in Eq. (12). 

( )2
110;0 −+≈ tt uN ααε  (12) 

where, α0 and α1 are the parameters that explain the 
residual variance term [40]. 

 
As a model process, the ARCH model must go through 

a process of identification, estimation and residual 
diagnostic testing to evaluate the residual characteristics to 
be useful in forecasting or to help evaluate a productive 
process. 

 
An ARCH (m) model, where m denotes the model 

order, expresses the conditional variance model for the 
conditional mean as a quadratic function of past 
innovations [41]. 

 
To ensure that the conditional variance is positive and 

weakly stationary, the following parametric restrictions are 
necessary: α0> 0, αt ≥ 0 for all t = 2, …, m and ∑ αt < 1. It  
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is important to note that the ARCH (p) model can be 
improved by the GARCH (p, q) model to obtain a 
parsimonious model in terms of parameters, i.e., the 
generalized ARCH model as in Eq. (11) 
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Comparing Eq. (11) and Eq. (13), it can be seen that 
the ARCH model is a reduced type of GARCH. 

 
In practice, following the original model proposed by 

Engle, it is assumed that εt has a normal or t-student 
standardized distribution. Large values of εt are followed 
by other large values of the series. If we assume that εt 

follows an ARCH model, the distribution tails are heavier 
than those of a normal distribution, which is a necessary 
condition for applying the model. 

 
5) When ARIMA-GARCH models are estimated 

using the selected PCs, the joint model is estimated, and 
its residuals are used to evaluate the productive process by 
means of X-bar [8], [41] and EWMA control charts [42-
44]. Thus, the residual from the ARIMA-ARCH model is 
expected to be free of autocorrelation and 
heteroskedasticity effects. Runs tests are used to support 
the determination of the process stability. This test helps to 
identify samplings of subgroups that behave non-randomly. 
This step is applied using the Statistica 7.0 software. 

 
The stability is evaluated using not only the sample 

out-of-control limits [8] but also the runs test rules [45] to 
improve the determination of the process stability. 

 
It is important to highlight that in the presence of non-

independent data, the control charts are not effective in 
detecting out-of-control points. Authors such as in Refs. 
[8] and [9] suggest using a forecasting model to eliminate 
the autocorrelation and using the residual from this 
forecast model to evaluate the process stability. Thus, the 
model that best explains the variable of interest is the best 
one to produce a residual that can represent the process 
and be investigated by control charts. 

 
In this case, the forecasted model will be fitted in the PCs 
and thus a multivariate problem can be analyzed using 
only univariate techniques. The assumptions required to 
apply control charts are accomplished because the new 
data that come from ARIMA-GARCH models give 

samples that are non-correlated as they follow an i.i.d. 
distribution. 
 
3    RESULTS AND DISCUSSION 

The stability of temperature in the refreshment zone is 
very important to maintain the characteristics and the 
metal specifications. Thus, in this stage we choose to 
conduct analysis using 30 thermocouples that measure the 
variable temperatures involved in the production process, 
which are of great importance in maintaining the product 
quality characteristics. 

Since the variables are correlated and autocorrelated 
and their properties can mask the control chart 
performance, it is important and necessary to solve this 
problem to set a control chart to the data. The solution is to 
carry out the PCA on the original data set and then use a 
forecast model on the PCs to obtain independent and non-
correlated residuals. 

 
Non-stationary tests such as the ADF test [46] and 

KPSS test [47] were applied to the original series in levels 
and then in first differences, showing that the variables T9, 
T11 , T13, T18, T20, T21, T22, T23, and T29 are non-
stationary before running PCA analysis. Therefore, these 
variables are integrated (d=1 or d=2) and a differencing 
process must be carried out to make the series stationary. 
A stationary series is important to obtain stable parameters 
and enable the model to make accurate predictions. To 
eliminate the correlation among the variables, PCA is 
performed in the standardized series using the correlation 
matrix to extract the PCs. The number of selected PCs, the 
eigenvalues and the explained variance are presented in 
Table 1. 

 
The PCs selected were those with eigenvalues greater 

than 1 [25]. The explained variance of 83% was greater 
than 70%, and seven PCs were thus obtained to represent 
the original data. 

 
To find the most highly correlated variables with each 

PC in order to identify the variable influence in each PC 
and those most likely to cause instability in the system 
[26], the factor loadings were used. The most important 
variables in each PC are shown with own factor loadings 
in parentheses and only the variables that were statistically 
significant are displayed. 
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Table 1  Eigenvalues and percentage of variance 
explained with their respective accumulated 
values for the PC selected. 

PC Eigenvalue Explained 
variance 

(%) 

Accumulated 
eigenvalue 

Accumulated 
variance (%) 

1 11.78296 39.2765 11.7829 39.2765 

2 3.97911 13.2637 15.7620 52.5402 

3 2.92801 9.7600 18.6900 62.3003 

4 2.02273 6.7424 20.7128 69.0427 

5 1.63875 5.4625 22.3515 74.5052 

6 1.36904 4.5634 23.7206 79.0687 

7 1.23003 4.1001 24.9506 83.1688 

 
PC 1: T6 (0.8701), T7 (0.7789), T8 (0.8728),  

T16 (0.7219), T17 (0.7391), T26 (0.8535), 
T27 (0.893856) and T28 (0.883953). 

PC 2: T5 (0.9070), T15 (0.9152), T19 (0.8998),  
T25 (0.9195). 

PC 3: ∆T11 (0.9480); ∆T21 (0.9673). 
PC 4: ∆T13 (0.9080); ∆T23 (0.8880). 
PC 5: T10 (0.8995). 
PC 6: ∆T29 (0.9539). 
PC 7: T3 (0.9759). 
 
Investigating by means of autocorrelation and 

autocorrelation partial function in the PCs, we found that 
they are autocorrelated. An ARIMA model was used to 
estimate the residuals and then to investigate their 
volatility. Thus, likewise in this stage, the stationarity of 
the PCs is tested as mentioned in step 1 before proceeding 
with the modeling stage. 

 
Finally, a joint ARIMA-GARCH family model was 

estimated. The joint model of the PC selected is shown in 
Table 2. The residuals may be useful to evaluate the 
process by means of residual control [31][49][50] because 
they are free of correlation and autocorrelation, thus 
avoiding false alarms. The models presented in Table 2 
show significant parameters and white noise residuals. 
Competing models were estimated and did not produce 
better results than those presented. 

 

Table 2  Models representing the PC selected to obtain the 
residuals that come from the ARIMA-GARCH 
model estimated using a ML-ARCH (Marquardt) 
method with normal distribution. 

Model 1: PC1–AR (1) 
Parameter Coeff. SE z-stat 

 0.429 0.049 8.597 
Variance equation – ARCH (1) 
 0.384 0.056 6.737 
 0.844 0.098 8.592 
Model 2: ∆ PC2- IMA (1,1) 

 Coeff. SE z-stat 
 -0.868 0.042 -20.61 
Variance equation - ARCH (1) 
 0.593 0.055 10.642 
 0.417 0.128 3.238 
Model 3: ∆ PC3 – IMA (1,1) 

 Coeff. SE z-stat 
 -0.759 0.0465 -16.307 
Variance equation - ARCH (1) 
 0.280 0.031 8.880 
 0.663 0.088 7.485 
Model 4: PC4 – ARMA (1, 1) 

 Coeff. SE z-stat 
 0.974 0.028 33.65 
 -0.850 0.055 -15.29 

Variance equation - GARCH (1,1) 
 0.087 0.045 1.938 
 0.099 0.043 2.290 
 0.818 0.066 12.344 
Model 5: PC5 – ARMA (1, 1) 

 Coeff. SE z-stat 
 0.975 0.023 42.143 
 -0.716 0.057 -12.367 
Variance Equation - ARCH (1) 
 0.376 0.034 11.025 
 0.768 0.123 6.230 
Model 6: PC6 - ARMA(1, 2) 

 Coeff. SE z-stat 
 0.958 0.028 33.272 
 -1.157 0.084 -13.741 
 0.248 0.076 3.271 
Variance Equation - ARCH (1) 
 0.521 0.065 7.942 
 0.518 0.067 7.731 
Model 7: ∆ PC7 – IMA (1,1) 

 Coeff. SE z-stat 

 -0.961 0.010 
-

91.1708 
Variance Equation - GARCH (1,1) 

 0.438 0.049 8.881 
 0.542 0.074 7.251 
 0.131 0.043 3.035 

*∆ refers to the series in first differences. 
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As we know, the first PC comes from the first 
eigenvalue, i.e., the highest value. Thus, consequently, it 
has the maximum explained variance. This is important in 
ordering PCs from high to low values of explained 
variance. In this way, it is possible to order PC1 to PC7. 

 
Table 3 shows the adjustment statistics, such as the 

AIC and BIC, as well as the Durbin-Watson (DW) 
statistics for the selected models to represent the PCs. The 
selected model must exhibit a white noise characteristic 
and the minimum values to AIC and BIC criteria. The 
ARCH test is used to detect heteroskedasticity. The null 
hypothesis postulates that there is no heteroskedasticity 
effect in the series [51]. 

 
To confirm the absence of conditional 

heteroskedasticity in the residuals of the estimated model, 
the Lagrange multiplier test proposed in Ref. [12] is 
applied to the final models, where we observed that the 
residuals were non-heteroskedastic. This was confirmed 
by the DW test, whose null hypothesis postulates the 
absence of autocorrelation, showing that the residuals can 
be considered independent because all the series of major 
components had values close to 2.0 [35]. 

 

Table 3  Statistics of adjustments applied to the residuals 
of PCs of the joint ARIMA-GARCH model. 

Model 
PC 

AIC BIC DW ARCH test 

1 6.180 6.209 1.999 0.823 

2 3.272 3.301 2.011 0.608 
3 3.886 3.915 2.003 0.079 
4 4.241 4.270 2.003 0.273 
5 4.085 4.114 2.001 0.840 
6 4.351 4.409 2.001 0.907 
7 4.276 4.305 2.003 0.717 

Note: This table shows data obtained using the AIC, 
BIC, DW statistics and ARCH test to detect the 
heteroskedasticity effect, using F(1, 239) chi-square 
distribution. 

 
The PCA method was applied to the original data, and 

the forecasting models were applied to the selected PC. 
Thus, a new i.i.d. data set is obtained, represented by the 
residuals from the ARIMA-ARCH model that match the 

presuppositions to use control charts and help to evaluate 
the process stability [52]. 

 
To evaluate the stability process, the X-bar and EWMA 

charts are applied together to capture large and small 
variations that may affect the production system under 
study. The parameters set up to build the charts are defined 
to maintain the same value of ARL = 370. Thus, the charts 
can be compared. Under these conditions, a range L = 3 is 
used for the X-bar chart, corresponding to the number of 
standard deviations. For the EWMA chart, the parameters 
were set to L = 2.50 standard deviations with a smooth 
constant of λ = 0.05; both charts use the same subgroup 
sample size equal to 5. 

 
The run tests, applied to the residuals originating from 

the PC modeled by the general ARIMA-GARCH model 
and analyzed using the X-bar chart, assist in characterizing 
the stability of the process, signaling when a random 
pattern does not occur. Figures 2-4 show the X-bar, R and 
EWMA charts of the residuals from the selected PC, fitted 
by the general ARIMA-GARCH model only for the first 
PC selected. The others are displayed in Table 4. 

 
The runs test considers three zones: zone A, bounded 

by three standard deviations from the axis, zone B, the 
area bounded by two standard deviations from the axis, 
and zone C, bounded by one standard deviation from the 
axis, given the X-bar graph. 

 
PC1: Nine subgroup samples on the same side of the 

axis, starting at subgroup 2 and ending at 10; 6 subgroup 
samples in line with growth or decline beginning at 
subgroup 26 and ending at 34; 2 out of 3 subgroup 
samples in zone A or beyond, beginning at subgroup 9 and 
ending at 11; 4 out of 5 subgroup samples in zone B or 
beyond, beginning at subgroup 8 and ending at 12. 

PC2: Two out of 3 subgroup samples in zone A or 
beyond, starting at subgroup 37 and ending at 39. 

PC3: This PC only shows random variation, without a 
special pattern. 

PC4: Four out of 5 subgroup samples in zone B or 
beyond, starting at subgroup 25 and ending at 29. 

PC5: Fourteen subgroup samples alternating above and 
below the center line, starting at subgroup 20 and ending 
at 33; 15 subgroup samples in zone C, beginning at 
subgroup 27 and ending at 45. 
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PC6: This PC only shows random variation, without a 
special pattern. 

PC7: Two out of 3 subgroup samples in zone A or 
beyond, beginning at subgroup 9 and ending at 11, and 
starting at subgroup 12 and ending at 14; 4 out of 5 
subgroup samples in zone B or beyond, starting at 
subgroup 10 and ending at 14. 

 

 
Fig. 2  X-bar chart for the residuals of the first PC 

obtained from an AR(1)- ARCH (1) model. 

 

 
Fig. 3  R chart for the residuals of the first PC obtained 

from an AR(1)- ARCH (1) model. 

 

 
Fig. 4  EWMA chart for the residuals of the first PC 

obtained from an AR(1)-ARCH(1) model. 

Table 4 presents a summary of the subgroups found to 
be out-of-control based on X-bar, R and EWMA charts, 

applied to the PC residuals. The runs tests and the out-of-
control subgroups are helpful in determining the process 
stability. 

Table 4  Subgroup out-of-control limits detected using X-
bar, R and EWMA charts. 

 Type of chart 

Total of points outside of control limits  

PC X-bar R EWMA 
1 1 2 2 
2 2 1 0 
3 0 1 0 
4 2 2 0 
5 1 1 0 
6 1 2 0 
7 2 5 0 

 
Table 5 shows that the X-bar and R chart capture points 

outside the control limits of the residuals when analyzing 
the mean and variability process, respectively. EWMA 
charts, which are responsible for capturing small 
variations, detected only small deviations in the first PC. 
PC1 is the only one showing an out-of-control situation in 
all charts. The others PCs show an out-of-control situation 
in at least two charts, except PC3, which is unstable only 
in the R-chart.  

 
All the situations detected by the runs tests are outlined 

in Table 5. Only PC1 and PC3 do not show any special 
characteristics that could be considered as non-random 
distribution by the runs tests. For example, PC1 and PC7 
are the components that present a higher quantity of 
sequences, which is a sign of possible instability in the 
process. 

 
When analyzing the volatility reaction coefficient 

shown by an ARCH model fitted to the PC1, we observe 
the value 0.8443. This value shows that an external shock 
to the system takes a long time to make the volatility 
return to its usual level. Thus, this volatility may affect the 
variability process, causing an out-of-control situation in 
the following periods. 

 
Although the residuals of PC2 have points outside the 

control limits, their volatility reaction, 0.4172, is 
considered low, which means that an external action may 
not have a great impact on the productive system. 
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The EWMA chart reveals that the process is under 
control, considering small discrepancies from the mean. 
Thus, external actions that may cause large changes in the 
process detected by the X-bar chart need to be monitored. 

 

Table 5  Runs tests applied to principal component 
residues derived from the joint ARIMA-ARCH 
model when analyzed using the X-bar chart. 

 PC 
1 

PC 
2 

PC 
3 

PC
4 

PC 
5 

PC 
6 

PC 
7 

Runs tests* X-bar chart 
 S/F S/F S/F S/F S/F S/F S/F 
9 samples 
on same 
side of 
center 

2/10 - - - - - - 

6 samples 
in a row in 
decreasing 
order 

26/34 - - - - - - 

14 samples 
alternating 
up & down 

- - - - 20/33 - - 

2 of 3 
samples in 
zone A or 
beyond 

9/11 37/ 
39 

- -  - 9/11 
12/14 

4 of 5 
samples in 
zone B or 
beyond 

8/12 - - 25/
29 

  10/1
4 

15 samples 
in zone C 

- - - - 27/4
5 

- - 

8 samples 
beyond 
zone 8  

- - - -  - - 

Total of 
points 
beyond d 

- - - -  - - 

*Zone A = 3 standard deviations; zone B = 2 standard 
deviations; zone C = 1 standard deviation; S = point where 
the identified sequence starts; and F = point where the 
identified sequence finishes. 

Table 5 reveals only the points outside the control 
limits of the residuals and a non-random situation in 
relation to the mean equation. The joint ARIMA-ARCH 
model is only estimated in combined form because Ref. 
[53] states that ARCH estimation changes the mean 
equation specification, as well as the forecasts and the 
residues behavior. We can see that the PCs were able to 
maintain all the information of other variables as stated in 
Ref. [54]. 

 
4    CONCLUSION 

Statistical process control requires tools for the proper 
evaluation of the productive processes in order to keep the 

technology updated following advances in the production 
process. Thus, an alternative method for control chart 
evaluation, respecting the necessary conditions, was 
suggested. 

 
The PCA provides a new uncorrelated data set, 

resulting in a reduction from 30 to 7 new variables, 
maintaining high explanatory power over the productive 
process. 

 
The general ARIMA-GARCH model was able to 

understand the mean and the volatility behavior in the 
system. Another important piece of information provided 
by this joint modeling is the analysis of the volatility 
persistence, and one external shock to the process could be 
quantified. 

 
In conclusion, it is important to highlight three 

important aspects. The first aspect is how to deal with a 
multivariate process using univariate techniques. 
Regarding the quality control aspects, our method offered 
a significant simplification in the parameter estimations 
and a reduction in the dimension. The second aspect is 
related to the modeling techniques presented. Although 
ARIMA-ARCH models are not so straightforward, the 
parameter estimates using the joint methodology are 
efficient, providing a better fit to the process. Finally, the 
ARCH family of models was able quantify the impact of 
an external effect that can occur in the process. This 
quantity, represented by the volatility coefficient could be 
interpreted as a coefficient of reaction in statistical process 
control. 

 
Further studies are necessary to find new applications 

in other productive processes as well as for the use of 
other volatility models. 
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