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Resume

This thesis is devoted to option pricing, with applications on interest rates, equities and

credit derivatives, and is comprised of three separate and self-contained essays:

A Pricing Swaptions under Multifactor Gaussian HJM Models

Several approximations have been proposed in the literature for the pricing of

European-style swaptions under multifactor term structure models. However, none

of them provides an estimate for the inherent approximation error. Until now, only

the Edgeworth expansion technique of Collin-Dufresne and Goldstein (2002) is able

to characterize the order of the approximation error. Under a multifactor Heath,

Jarrow, and Morton (1992) Gaussian framework, this paper proposes a new approx-

imation for European-style swaptions, which is able to set bounds on the magnitude

of the approximation error and is based on the conditioning approach initiated by

Curran (1994) and Rogers and Shi (1995). All the proposed pricing bounds will

arise as a simple by-product of the Nielsen and Sandmann (2002) setup, and will be

shown to provide a better accuracy-efficiency trade-off than all the approximations

already proposed in the literature.

B Pricing of European-style Barrier Options under Stochastic Interest Rates

This paper offers an extremely fast and accurate novel methodology for the pricing

of (long-term) European-style single barrier options on underlying spot prices driven

by a geometric Brownian motion and under the stochastic interest rates framework

of Vasiček (1977). The proposed valuation methodology extends the stopping time

approach of Kuan and Webber (2003) to a more general setting, and expresses the

price of a European-style barrier option in terms of the first passage time density

of the underlying asset price to the barrier level. Using several model parameter

constellations and option maturities, our numerical results show that the proposed

pricing approach is much more accurate and faster than the two-dimensional ex-

tended Fortet method of Bernard et al. (2008).
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C Pricing Credit and Equity Default Swaps under the Jump to Default Ex-

tended CEV Model

This paper offers a novel methodology for the pricing of credit and equity default

swaps under the jump to default extended constant elasticity of variance (JDCEV)

model of Carr and Linetsky (2006). The proposed method extends the stopping

time approach of Kuan and Webber (2003), and expresses the value of the building

blocks of both contracts in terms of the first passage time density of the underlying

asset price to the contract triggering level. The numerical results show that the pro-

posed pricing methodology is extremely accurate and much faster than the Laplace

transform approach of Mendoza-Arriaga and Linetsky (2011).

JEL Classification: G13

Keywords: European-style swaptions; European-style barrier options; credit default

swaps; equity default swaps; Gaussian HJM multifactor models; CEV model; JDCEV

model.
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Resumo

Esta tese dedica-se ao tema da avaliação de opções, com aplicações a taxas de juro, ações

e derivados de crédito, e é composta por três artigos distintos:

A Pricing Swaptions under Multifactor Gaussian HJM Models

Várias aproximações foram já propostas na literatura para a avaliação de swap-

tions de estilo Europeu, no âmbito de modelos de taxa de juro multi-fator. Con-

tudo, nenhuma delas fornece uma estimativa para o erro de aproximação subjacente.

Até agora, apenas a Edgeworth expansion technique de Collin-Dufresne e Goldstein

(2002) é capaz de caracterizar a ordem do erro de aproximação. No âmbito de um

modelo Heath, Jarrow e Morton (1992) Gaussiano multi-fator, este artigo propõe

uma nova aproximação para swaptions de estilo Europeu, que é capaz de estabele-

cer limites para a magnitude do erro de aproximação e é baseada na conditioning

approach iniciada por Curran (1994) e Rogers e Shi (1995). Todos os limites de

preço propostos surgirão como um simples sub-produto da estrutura de Nielsen e

Sandmann (2002), e será demonstrado que estes proporcionam um melhor equiĺıbrio

entre precisão e eficiência do que todas as aproximações já propostas na literatura.

B Pricing of European-style Barrier Options under Stochastic Interest Rates

Este artigo oferece uma nova metodologia, extremamente rápida e precisa, para a

avaliação de opções de estilo Europeu com barreira sobre ativos subjacentes car-

acterizados por um geometric Brownian motion e no âmbito do modelo de taxas

de juro estocásticas de Vasiček (1977). A metodologia de avaliação proposta es-

tende a stopping time approach de Kuan e Webber (2003) a uma configuração mais

geral, e expressa o preço de uma opção de estilo Europeu com barreira em termos

da densidade de probabilidade do primeiro tempo de passagem do preço do ativo

subjacente pelo ńıvel da barreira. Utilizando várias configurações de parâmetros e

maturidades de opções, os nossos resultados numéricos mostram que a metodologia

de avaliação proposta é muito mais precisa e rápida do que o extended Fortet method

bi-dimensional de Bernard et al. (2008).
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C Pricing Credit and Equity Default Swaps under the Jump to Default

Extended CEV Model

Este artigo oferece uma nova metodologia para a avaliação de credit e equity default

swaps no âmbito do modelo jump to default extended constant elasticity of variance

(JDCEV) de Carr e Linetsky (2006). A abordagem proposta estende a stopping

time approach de Kuan e Webber (2003), e expressa o valor das componentes de

ambos os contratos em termos da densidade de probabilidade do primeiro tempo

de passagem do preço do ativo subjacente pelo ńıvel de acionamento do contrato.

Os resultados numéricos mostram que a abordagem de avaliação proposta é precisa

e muito mais rápida do que a Laplace transform approach de Mendoza-Arriaga e

Linetsky (2011).

Classificaçao JEL: G13

Palavras-chave: swaptions de estilo Europeu; opções de estilo Europeu com barreira;

credit default swaps ; equity default swaps ; modelos HJM Gaussianos multi-fator; modelo

CEV; modelo JDCEV.
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1 Introduction

This thesis is devoted to option pricing, with applications on interest rates, equities and

credit derivatives, and is comprised of three separate and self-contained essays.

The main purpose of the first paper is to offer a fast and extremely accurate analytical

approximation for European-style swaptions under a multifactor Gaussian Heath, Jarrow,

and Morton (1992)—HJM, hereafter—framework.

European-style swaptions are essentially options on coupon-bearing bonds, that is on

a portfolio of pure discount bonds. Under several single-factor term structure models,

a European-style swaptions can be valued analytically through its decomposition into a

portfolio of options on zero-coupon bonds—see, for instance, Jamshidian (1989) under the

Vasiček (1977) model, or Longstaff (1993) for the Cox et al. (1985) setup. However, under

a (more realistic) multifactor term structure framework, no exact closed-form solution

has ever been found for European-style swaptions, because the optimal exercise boundary

involves a nonlinear function of several random variables, whose joint probability density

is unknown.

The novel approximation for European-style swaptions proposed in this paper is based

on the conditioning approach initiated by Curran (1994) and Rogers and Shi (1995) in

the context of Asian option pricing, and extended by Nielsen and Sandmann (2002) to a

stochastic interest rate setting. This new pricing approach is restricted to a multifactor

HJM Gaussian setup, but should be faster to implement than the Edgeworth expansion

technique, and will provide explicit (and tight) bounds for the approximation error.

The analytical tractability provided by the multifactor Gaussian—but not necessarily

Markovian or time-homogeneous—HJM term structure model proposed is obtained at the

expense of an important theoretical drawback: Interest rates are assumed to be normally

distributed, and can therefore attain negative values with positive probability. But even

though the no-arbitrage Gaussian setup adopted in this paper is more restrictive than, for

instance, the more general affine framework used by Collin-Dufresne and Goldstein (2003),
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the extremely accurate pricing solutions to be proposed in this paper can always be used

as control variates for more general diffusion pricing models. Moreover and following, for

instance, Nunes et al. (1999, Theorem 1) or Kristensen and Mele (2011, Definition 1), the

Gaussian pricing formulae offered in this paper can also be used as the (most accurate)

zero-order term of the perturbed or Taylor series expansion pricing solution associated to

a more general affine term structure model.

The Gaussian framework adopted offers also a common ground for the comparison of

all alternative pricing methods. Since the conditioning approach proposed will provide ex-

tremely tight bounds for the approximation error, it will be possible to compare rigorously

the accuracy and efficiency of all the approximations already proposed in the literature

for European-style swaptions. The alternative approximations have been compared in the

literature against benchmark prices obtained through Monte Carlo studies that involve

different levels of accuracy. For instance, Collin-Dufresne and Goldstein (2002, Page 16)

run 2 × 106 simulations, whereas Schrager and Pelsser (2006, Page 689) simulate only

500, 000 paths, all using standard variance reduction techniques. Based on a much more

demanding setting—involving 109 simulations, coupled with antithetic variates—to pro-

duce the Monte Carlo proxy of the exact swaption price, this paper will show that the

conditioning approach significantly improves upon the existing literature in both speed

and accuracy.

The main objective of the second paper is to offer a fast and accurate novel method-

ology for the pricing of European-style single barrier options on asset prices driven by a

geometric Brownian motion and under the stochastic interest rates framework of Vasiček

(1977). This paper generalizes the stopping time approach (ST approach, hereafter) first

proposed by Kuan and Webber (2003) for options on pure discount bonds, under single-

factor term structure models, and later extended by Dias et al. (2014) to the pricing

of European-style single and double barrier options under the jump to default extended

constant elasticity of variance (JDCEV) framework of Carr and Linetsky (2006).

European-style barrier options are path-dependent contingent claims, which are char-

2



acterized by a strike price and an upper or lower barrier level. These contracts become

standard European-style options if the barrier level is—for knock-in options—or is not—

for knock-out options—breached by the underlying spot price, during the option lifetime.

If not, the option expires worthless, in which case a cash rebate may be received by the op-

tion holder. The existence of a barrier makes these contracts cheaper than their standard

counterparts, and allow investors to better express their views about the future evolution

of the underlying spot price.

To the authors’ knowledge, the pricing of European-style barrier options in the context

of a stochastic interest rate framework has only been pursued through the extended Fortet

method of Bernard et al. (2008). These authors extend the Fortet (1943) method and offer

a two-dimensional Markovian pricing approximation. In different contexts, the Fortet

(1943) method has also been adopted, for instance, by Longstaff and Schwartz (1995),

for the pricing of risky debt, and by Collin-Dufresne and Goldstein (2001), for credit risk

modelling.

Our pricing methodology extends the ST approach of Kuan and Webber (2003) to a

two-factor option pricing model with stochastic interest rates, and expresses the European-

style barrier option price in terms of the density function of the first passage time of the

underlying asset price to the barrier level. Using the standard partition method of Park

and Schuurmann (1976), we are able to recover this hitting density as the implicit solution

of a non-linear integral equation. However, and since we are working under a two-factor

model, our valuation approach involves a double integral, in both time and interest rate

dimensions. We will show that our proposed pricing solution can be simplified to require

only one integration with respect to time, because the probability density function of the

short-term interest rate, conditional on the knock-in or knock-out event, will be obtained

in closed-form. Therefore, the ST approach will be shown to be much more accurate and

efficient than the extended Fortet method of Bernard et al. (2008).

The main purpose of the third paper is to offer a novel valuation methodology for

credit default swaps (CDSs) and equity default swaps (EDSs) under the jump to default

3



extended constant elasticity of variance model proposed by Carr and Linetsky (2006).

This paper generalizes the stopping time approach first proposed by Kuan and Webber

(2003) for options on pure discount bonds, under single-factor term structure models, and

later extended by Dias et al. (2014) to the pricing of European-style single and double

barrier options under the JDCEV framework.

With the global financial crisis of 2007-09, CDSs became the most widely traded credit

derivative in financial markets. These securities can be thought of as an insurance con-

tract, which provides its buyer compensation in the case of a credit event of a reference

entity. A credit event can encompass, but is not limited to, bankruptcy of the refer-

ence entity, failure to pay, or a debt restructuring. In return, the credit default swap

(CDS) seller receives a series of periodic payments, up to the credit event or the contract

maturity, whichever occurs first. EDSs are hybrid credit-equity securities, which com-

bine characteristics of CDS contracts and equity barrier derivatives. These instruments,

originally launched around fifteen years ago, allow investors to simultaneously hedge the

equity and credit risk associated with a reference entity. Similarly to CDSs, the equity

default swap (EDS) pays its buyer a pre-determined amount in the case of a triggering

event, which in this case is defined as a sharp decrease (typically of 50% to 70%) in the

underlying stock of the reference entity. Conversely, the EDS seller also receives regular

payments through the life of the contract, up to the triggering event, if it occurs. Hence,

a CDS can be understood as an EDS with a triggering level equal to zero, since it is

expected that, in the event of a default, the stock price trades near zero.

To the authors’ knowledge, the valuation of EDSs under the JDCEV framework has

only been pursued by Mendoza-Arriaga and Linetsky (2011). In their paper, the authors

offer pricing formulae for the building blocks of an EDS contract (protection leg, premium

leg and accrued interest) via the inversion of Laplace transforms of several expectations

containing the first passage time of the underlying price process through the contract

triggering level. These authors are also able to price CDS contracts, by considering the

limit when the triggering level tends to zero.

4



Our faster pricing methodology extends the ST approach of Kuan and Webber (2003),

and expresses the value of the building blocks of CDS and EDS contracts in terms of

the density function of the first passage time of the underlying asset price to the contract

triggering level. Through the standard partition method of Park and Schuurmann (1976),

this hitting density is recovered as the implicit solution of a non-linear integral equation.

We note that the ST approach is able to accommodate the valuation of CDS and EDS

contracts under the constant elasticity of variance (CEV) model of Cox (1975), as a

special case. Moreover, we show that when the contract triggering level is set to zero, our

ST approach nests the CDS pricing solutions already offered, under the JDCEV model,

by Carr and Linetsky (2006), which do not depend on the first passage time density.

The remainder of this thesis is organized as follows. Chapter 2 presents the first paper.

Chapter 3 presents the second paper. Chapter 4 presents the third paper. Chapter 5

summarizes the main conclusions.

5



2 Pricing Swaptions under Multifactor Gaussian HJM

Models

Abstract

Several approximations have been proposed in the literature for the pricing of European-style

swaptions under multifactor term structure models. However, none of them provides an estimate

for the inherent approximation error. Until now, only the Edgeworth expansion technique of

Collin-Dufresne and Goldstein (2002) is able to characterize the order of the approximation

error. Under a multifactor Heath, Jarrow, and Morton (1992) Gaussian framework, this paper

proposes a new approximation for European-style swaptions, which is able to set bounds on the

magnitude of the approximation error and is based on the conditioning approach initiated by

Curran (1994) and Rogers and Shi (1995). All the proposed pricing bounds will arise as a simple

by-product of the Nielsen and Sandmann (2002) setup, and will be shown to provide a better

accuracy-efficiency trade-off than all the approximations already proposed in the literature.

This paper is based on Nunes and Prazeres (2013), published in Mathematical Finance.

JEL Classification: G13

Keywords: Gaussian HJM multifactor models; European-style swaptions; conditioning

approach; rank 1 approximation; lognormal approximation; stochastic duration; Edge-

worth expansion; hyperplane approximation; low-variance martingale approximation.

6



2.1 Introduction

The main purpose of the present paper is to offer a fast and extremely accurate analytical

approximation for European-style swaptions under a multifactor Gaussian Heath, Jarrow,

and Morton (1992)—HJM, hereafter—framework.

European-style swaptions are essentially options on coupon-bearing bonds, that is on

a portfolio of pure discount bonds. Under several single-factor term structure models,2.1

a European-style swaptions can be valued analytically through its decomposition into a

portfolio of options on zero-coupon bonds—see, for instance, Jamshidian (1989) under the

Vasiček (1977) model, or Longstaff (1993) for the Cox et al. (1985) setup. However, under

a (more realistic) multifactor term structure framework, no exact closed-form solution

has ever been found for European-style swaptions, because the optimal exercise boundary

involves a nonlinear function of several random variables, whose joint probability density

is unknown.

Since European-style swaptions are amongst the most widely traded fixed-income

derivatives, it is not surprising that several pricing approximations have been proposed

in the literature. El Karoui and Rochet (1989) obtained an analytical approximation

for European-style options on coupon-bearing bonds, under a multifactor Gaussian HJM

model, by using a proportionality assumption. Such assumption enables the exercise

boundary to be expressed as a monotonic function of a univariate normal random vari-

able and is equivalent to the rank 1 approximation suggested by Brace and Musiela (1994).

Still under the same framework, Pang (1996) approximates the probability distribution

of the underlying coupon-bearing bond by a lognormal distribution, which has the same

first two moments. Although it is well known that the sum of lognormal random vari-

ables is not lognormally distributed, the price of a coupon bond weighs mostly its last

pure discount bond price component (i.e. the one associated with the redemption of the

bond’s face value and with the payment of the last coupon). Therefore, the intuition

2.1As long as discount factors are monotonic functions of the single state variable, and if closed-form
solutions exist for options on zero-coupon bonds.
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behind the lognormal approximation proposed by Pang (1996) is that the probability

distribution of the coupon-bearing bond price should essentially depend upon the proba-

bilistic behaviour of its last component, which is lognormally distributed for the Gaussian

framework considered.

A completely different approach was undertaken by Wei (1997), for single-factor mod-

els, and developed by Munk (1999), for any multifactor term structure model. These

authors approximate the price of a European-style option on a coupon-bearing bond by

a multiple of the price of a European-style option on a zero-coupon bond with maturity

equal to the stochastic duration2.2 of the coupon-bearing bond (and with an adjusted

strike price). A similar approach is also pursued by Schrager and Pelsser (2006), since

these authors approximate the affine dynamics of the swap rate (under the relevant swap

measure) by replacing some (low variance) martingales by their expectations.

Under the Duffie and Kan (1996) general affine class of interest rate models, Singleton

and Umantsev (2002) approximate directly the optimal exercise boundary through a linear

function of the model’s factors, which enables all the relevant exercise probabilities to be

computed through the Fourier transform method of Duffie et al. (2000, Proposition 2).2.3

The basic idea is to use an hyperplane to approximate only the segment of the concave

exercise boundary where the density of the state variables is mostly concentrated. For an

A2 (2) specification, these authors outperform the stochastic duration approach, both in

terms of accuracy and speed.2.4

All the previous approximation schemes are uncontrolled in the sense that the order or

magnitude of the approximation error is unknown. The only exception corresponds to the

Edgeworth expansion technique, applied by Collin-Dufresne and Goldstein (2002) to the

2.2The stochastic duration of a coupon-bearing bond can be defined as the maturity of a pure discount
bond with the same instantaneous variance of relative price changes.

2.3Moreover, the numerical (and time-consuming) solution of the complex-valued ordinary differential
equations stated in Duffie et al. (2000, Equations (2.5) and (2.6)) can be also avoided through the
Gaussian approximation and the Gauss-Hermite quadrature approach proposed by Joslin (2010, Appendix
B). However, under the Gaussian framework adopted in this paper, such approximation is unnecessary
because the transition density function of the model’s factors is known in closed-form.

2.4Note that any n-factor affine term structure model can be cast (through an appropriate invariant
transformation) into the Am (n) canonical formulation of Dai and Singleton (2000, Definition 1), where
m (≤ n) is the number of state variables driving the factor’s variances.

8



family of affine term structure models, and extended by Collin-Dufresne and Goldstein

(2003) to the HJM and to the random field affine frameworks. As long as the moments of

the underlying coupon-bearing bond can be obtained analytically (under all the necessary

forward measures), the corresponding probability density functions can be approximated

through a (truncated) cumulant expansion, whose highest order term characterizes the

order of the approximation error. Through Monte Carlo experiments, these authors have

reported an accuracy level which is much higher than the one associated with earlier

applications of Edgeworth series expansions to the pricing of Asian options—see, for

example, Turnbull and Wakeman (1991). Since the Edgeworth expansion is a series

expansion about the normal distribution, the authors argue that it seems natural that its

accuracy increases for underlying assets characterized by lower volatility regimes, as it is

the case for interest rates (when compared against the equity market).

The novel approximation for European-style swaptions proposed in this paper is based

on the conditioning approach initiated by Curran (1994) and Rogers and Shi (1995) in

the context of Asian option pricing, and extended by Nielsen and Sandmann (2002) to a

stochastic interest rate setting. This new pricing approach is restricted to a multifactor

HJM Gaussian setup, but should be faster to implement than the Edgeworth expansion

technique, and will provide explicit (and tight) bounds for the approximation error.

The analytical tractability provided by the multifactor Gaussian—but not necessarily

Markovian or time-homogeneous—HJM term structure model proposed is obtained at the

expense of an important theoretical drawback: Interest rates are assumed to be normally

distributed, and can therefore attain negative values with positive probability. But even

though the no-arbitrage Gaussian setup adopted in this paper is more restrictive than, for

instance, the more general affine framework used by Collin-Dufresne and Goldstein (2003),

the extremely accurate pricing solutions to be proposed in this paper can always be used

as control variates for more general diffusion pricing models. Moreover and following, for

instance, Nunes et al. (1999, Theorem 1) or Kristensen and Mele (2011, Definition 1), the

Gaussian pricing formulae offered in this paper can also be used as the (most accurate)
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zero-order term of the perturbed or Taylor series expansion pricing solution associated to

a more general affine term structure model. However, the extension to stochastic volatility

term structure models is outside the scope of the present paper, whose contribution is,

nevertheless, the derivation of an extremely accurate and controlled approximation for

European-style swaptions under a multifactor Gaussian HJM framework.2.5

The Gaussian framework adopted offers also a common ground for the comparison of

all alternative pricing methods. Since the conditioning approach proposed will provide ex-

tremely tight bounds for the approximation error, it will be possible to compare rigorously

the accuracy and efficiency of all the approximations already proposed in the literature

for European-style swaptions. The alternative approximations have been compared in the

literature against benchmark prices obtained through Monte Carlo studies that involve

different levels of accuracy. For instance, Collin-Dufresne and Goldstein (2002, Page 16)

run 2 × 106 simulations, whereas Schrager and Pelsser (2006, Page 689) simulate only

500, 000 paths, all using standard variance reduction techniques. Based on a much more

demanding setting—involving 109 simulations, coupled with antithetic variates—to pro-

duce the Monte Carlo proxy of the exact swaption price, this paper will show that the

conditioning approach significantly improves upon the existing literature in both speed

and accuracy.

Next sections are organized as follows. Section 2.2 summarizes the multifactor Gaus-

sian HJM model adopted. Section 2.3 uses the conditioning approach to derive explicit

lower and upper bounds for the price of European-style swaptions. Section 2.4 runs sev-

eral Monte Carlo experiments to compare the accuracy and efficiency of these explicit

pricing solutions against all the approximations already proposed in the literature. The

main conclusion, stated in Section 2.5, is that the conditioning approach offers the best

accuracy-efficiency trade-off for the pricing of European-style swaptions.

2.5Following Nunes et al. (1999, Equation (14)) or Kristensen and Mele (2011, Equation (17)), the higher
order (although less significant) terms of the perturbed or Taylor series stochastic volatility expansion
must be obtained through the nontrivial differentiation of the proposed Gaussian pricing solution with
respect to the vector of state variables. Such extension is left for future research.
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2.2 Multifactor Gaussian HJM model

We consider a stochastic intertemporal economy defined on a finite trading interval T =

[t0, τ ], for some fixed time τ > t0. Uncertainty is represented by a filtered probability

space (Ω,F ,Q), where all the information accruing to all the agents in the economy is

described by the augmented, right continuous, and complete filtration F = {Ft : t ∈ T }

generated through the standard Brownian motion WQ (t) ∈ Rn, initialized at zero and

defined under Q. The probability measure Q represents the martingale measure obtained

when the “money market account” is taken as the numéraire of the economy underlying

the model under analysis.2.6

The Gaussian HJM model under use can be formulated in terms of pure discount bond

prices, which are assumed to evolve through time (under measure Q) according to the

following stochastic differential equation:

dP (t, T )

P (t, T )
= r (t) dt+ σ (t, T )′ · dWQ (t) , (2.1)

where P (t, T ) represents the time-t price of a (unit face value) zero-coupon bond expiring

at time T , for all T ∈ T and t ∈ [t0, T ], r (t) is the time-t instantaneous spot rate, and “·”

denotes the inner product in Rn. The n-dimensional adapted volatility function σ (·, T ) :

[t0, T ] → Rn is assumed to be deterministic and to satisfy the usual mild measurability

and integrability requirements—as stated, for instance, in Lamberton and Lapeyre (1996,

Theorem 3.5.5)—as well as the “pull-to-par” boundary condition σ (u, u) = 0 ∈ Rn,∀u ∈

[t0, T ].

Using, for instance, Nunes (2004, Proposition 2.2), it is well known that equation (2.1)

2.6Meaning that the relative prices of all assets with respect to the numéraire given by a “money market
account” are Q-martingales.
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yields the following solution, for any arbitrary forward measure Qc:

P (Ta, Tb) =
P (t0, Tb)

P (t0, Ta)
exp

{
−1

2
g (t0, Ta, Tb) + l (t0, Ta, Tb, Tc) (2.2)

+

∫ Ta

t0

[σ (s, Tb)− σ (s, Ta)]
′ · dWQc (s)

}
,

for t0 ≤ Ta ≤ Tb and Tc ≥ t0, with2.7

g (t0, Ta, Tb) :=

∫ Ta

t0

‖σ (s, Tb)− σ (s, Ta)‖2 ds, (2.3)

l (t0, Ta, Tb, Tc) :=

∫ Ta

t0

[σ (s, Tb)− σ (s, Ta)]
′ · [σ (s, Tc)− σ (s, Ta)] ds, (2.4)

and where

dWQc (t) = dWQ (t)− σ (t, Tc) dt

is also a vector of standard Brownian motion increments in Rn—with the same standard

filtration as dWQ (t)—but defined under the Qc forward measure, which arises if the

numéraire is changed to a zero-coupon bond with maturity at time Tc, and is defined

through the Radon-Nikodým derivative

dQc

dQ

∣∣∣∣Ft = exp

[∫ t

t0

σ (s, Tc)
′ · dWQ (s)− 1

2

∫ t

t0

‖σ (s, Tc)‖2 ds

]
.

2.3 Conditioning approach

This section adapts the conditioning approach of Nielsen and Sandmann (2002) to the

valuation of European-style receiver swaptions, that is European-style put options on a

swap rate. More precisely,2.8

Definition 2.1. The terminal payoff of a European-style receiver swaption with strike rate

2.7‖·‖ denotes the Euclidean norm in Rn.
2.8European-style payer swaptions can be priced through the payer-receiver swaption parity stated,

for instance, in Longstaff and Schwartz (2001, Page 2073): a long position in a European-style receiver
swaption and a short position in a European-style payer swaption (with the same strike rate and tenor
structure) is equivalent to a receiver forward swap with start date at the maturity date of the swaptions
and fixed interest rate equal to the strike rate.

12



C, maturity at date T0 (≥ t0), and on an interest rate swap (IRS) with a unit nominal

value and reset dates T0 < . . . < TN0−1 is equal to

[C − y0,N0 (T0)]+
N0∑
i=1

τiP (T0, Ti) , (2.5)

where τi is the year fraction between Ti−1 and Ti (under some market daycount conven-

tion), and

y0,N0 (T0) =
1− P (T0, TN0)∑N0

i=1 τiP (T0, Ti)
(2.6)

is the time-T0 spot swap rate.

Definition 2.1 assumes, as is common market practice, that the swaption maturity co-

incides with the first reset date of the underlying IRS (i.e. time T0). Therefore, combining

expressions (2.5) and (2.6), and as shown, for instance, by Singleton and Umantsev (2002,

Equation (5.2)), the terminal payoff of the T0×TN0 receiver swaption can be rewritten as

[
C

N0∑
i=1

τiP (T0, Ti) + P (T0, TN0)− 1

]+

, (2.7)

which corresponds to the terminal value of a European-style call with strike equal to the

unit nominal value, with maturity at time T0 , and on a coupon-bearing bond promising

N0 cash flows of value Cτi + I{i=N0} at times Ti (with i = 1, . . . , N0), where I{A} is the

indicator function of set A.

For simplicity, the pricing bounds derived in the next lines will be specified for European-

style calls on a coupon-bearing bond. Given the equivalence between expressions (2.5)

and (2.7), the valuation formulas obtained are also applied, in Section 2.4, to the pricing

of European-style receiver swaptions.

2.3.1 Lower Bound

Denote by ct0 [B (t0) ;X;T0] the time-t0 fair price of a European-style call with strike X,

expiry date at time T0 (≥ t0), and on a coupon-bearing bond with present value B (t0).

13



Following Geman et al. (1995), and since Q0 is assumed to be a martingale measure with

respect to the numéraire P (t0, T0), then2.9

ct0 [B (t0) ;X;T0] = P (t0, T0)EQ0

{
[B (T0)−X]+

∣∣Ft0} . (2.8)

As in Rogers and Shi (1995), let Z ∈ R be any FT0-measurable random variable. From

the law of iterative expectations and using Jensen’s inequality,

ct0 [B (t0) ;X;T0] = P (t0, T0)EQ0

{
EQ0

[
(B (T0)−X)+

∣∣Z]∣∣Ft0}
≥ clt0 [B (t0) ;X;T0] , (2.9)

where

clt0 [B (t0) ;X;T0] := P (t0, T0)EQ0

{
[EQ0 (B (T0)|Z)−X]+

∣∣Ft0} (2.10)

defines a lower bound for the true call option price. The next proposition provides an ex-

plicit solution for the conditional expectation contained on the right-hand side of equation

(2.10), by assuming a standard normal distribution for the conditioning variable. Later—

in Proposition 2.4—the conditioning variable Z will be completely defined in order to

minimize the inherent approximation error.

Proposition 2.1. Under the Gaussian HJM model (2.1), the time-t0 price of a European-

style call with strike X, with maturity at time T0 (≥ t0), and on a coupon-bearing bond

with present value B (t0) and generating N0 cash flows of value ki (i = 1, . . . , N0) at times

T1 < . . . < TN0 (with T1 ≥ T0), is bounded from below by

clt0 [B (t0) ;X;T0] (2.11)

= P (t0, T0)

×EQ0


[
N0∑
i=1

ki
P (t0, Ti)

P (t0, T0)
exp

(
−1

2
m (t0, T0, Ti)

2 +m (t0, T0, Ti)Z

)
−X

]+
∣∣∣∣∣∣Ft0

 ,

2.9EQc
(Y | Ft0) denotes the expected value of the random variable Y , conditional on Ft0 , and computed

under the equivalent martingale measure Qc.
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where Z ∼ N1 (0, 1) and2.10

m (t0, T0, Ti) := EQ0

{
Z

∫ T0

t0

[σ (s, Ti)− σ (s, T0)]′ · dWQ0 (s)

∣∣∣∣Ft0} . (2.12)

Proof. Since N0 cash flows ki (i = 1, . . . , N0) will be generated by the underlying coupon

bond between the option’s expiry date (T0) and the bond’s maturity date (TN0), then

EQ0 [B (T0)|Z] = EQ0

[
N0∑
i=1

kiP (T0, Ti)

∣∣∣∣∣Z
]

=

N0∑
i=1

kiEQ0 [P (T0, Ti)|Z] . (2.13)

The conditional expectation of each discount factor follows from equation (2.2), with

Ta = Tc = T0 and Tb = Ti:

EQ0 [P (T0, Ti)|Z] =
P (t0, Ti)

P (t0, T0)
exp

[
−1

2
g (t0, T0, Ti)

]
(2.14)

EQ0

{
exp

[∫ T0

t0

(σ (s, Ti)− σ (s, T0))′ · dWQ0 (s)

]∣∣∣∣Z} .
Assuming that Z possesses a standard univariate normal distribution, since

∫ T0

t0

[σ (s, Ti)− σ (s, T0)]′ · dWQ0 (s) ∼ N1 (0, g (t0, T0, Ti)) ,

and following, for instance, Mood et al. (1974, Page 167), then

∫ T0

t0

[σ (s, Ti)− σ (s, T0)]′ · dWQ0 (s)

∣∣∣∣Z ∼ N1
(
m (t0, T0, Ti)Z, v (Ti, Ti)

2) , (2.15)

with

v (Ti, Ti)
2 := g (t0, T0, Ti)−m (t0, T0, Ti)

2 , (2.16)

and where the deterministic function m (t0, T0, Ti) is defined by the covariance (2.12).

2.10Hereafter, the notation Y ∼ N1
(
µ, σ2

)
is intended to mean that the one-dimensional random variable

Y is normally distributed, with mean µ and variance σ2.
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Applying result (2.15) and attending to the definition of the moment generating func-

tion of a normal random variable, equation (2.14) becomes

EQ0 [P (T0, Ti)|Z] =
P (t0, Ti)

P (t0, T0)
exp

[
−1

2
m (t0, T0, Ti)

2 +m (t0, T0, Ti)Z

]
. (2.17)

Combining equations (2.10), (2.13) and (2.17), the lower bound (2.11) follows immediately

for the call price.

Note that the quasi-analytical pricing solution (2.11) still involves a single integration

over the domain of Z. In order to obtain an explicit solution for equation (2.11), and fol-

lowing Nielsen and Sandmann (2002), consider the following family {P ,N ,M} of disjoint

sets, such that P ∪N ∪M = {1, . . . , N0} ≡ D:

P := {i ∈ D : m (t0, T0, Ti) > 0} , (2.18)

N := {i ∈ D : m (t0, T0, Ti) < 0} , (2.19)

and

M := {i ∈ D : m (t0, T0, Ti) = 0} . (2.20)

Hence, equation (2.11) can be rewritten as

clt0 [B (t0) ;X;T0] = P (t0, T0)EQ0

{[ ∑
i∈P∪N

ki
P (t0, Ti)

P (t0, T0)
fi (Z)− X̂

]+∣∣∣∣∣Ft0
}
, (2.21)

where

X̂ := X −
∑
i∈M

ki
P (t0, Ti)

P (t0, T0)
, (2.22)

and

fi (Z) := exp

(
−1

2
m (t0, T0, Ti)

2 +m (t0, T0, Ti)Z

)
. (2.23)

Since ki and P (t0,Ti)
P (t0,T0)

are positive and because all functions fi (Z) are convex, for all values
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of i, then equation ∑
i∈P∪N

ki
P (t0, Ti)

P (t0, T0)
fi (Z) = X̂ (2.24)

possesses either zero, one or two solutions in Z. Similarly to Nielsen and Sandmann (2002,

Definition 1),

Definition 2.2. Let the two possible solutions of equation (2.24) be represented by z∗ and

z∗, where z∗ ≤ z∗.

• If P 6= ∅ but N = ∅, then define the unique solution by z∗ and set z∗ = −∞.

• If P = ∅ but N 6= ∅, then define the unique solution by z∗ and set z∗ =∞.

• If P 6= ∅ and N 6= ∅, then either two solutions z∗ and z∗ exist or no solution exists

and z∗ = z∗ =∞.

Proposition 2.2. Under the assumptions of Proposition 2.1,

clt0 [B (t0) ;X;T0] =
∑

i∈P∪N

kiP (t0, Ti) Φ [z∗ −m (t0, T0, Ti)]− X̂P (t0, T0) Φ (z∗) (2.25)

+
∑

i∈P∪N

kiP (t0, Ti) Φ [m (t0, T0, Ti)− z∗]− X̂P (t0, T0) Φ (−z∗) ,

where Φ (·) represents the cumulative density function of the univariate standard normal

distribution, X̂ is defined by equation (2.22), while z∗ and z∗ are given by Definition 2.2.

Proof. Applying Definition 2.2, equation (2.21) can be restated as

clt0 [B (t0) ;X;T0] (2.26)

= P (t0, T0)EQ0

{[ ∑
i∈P∪N

ki
P (t0, Ti)

P (t0, T0)
fi (Z)− X̂

]
I{Z≤z∗}

∣∣∣∣∣Ft0
}

+P (t0, T0)EQ0

{[ ∑
i∈P∪N

ki
P (t0, Ti)

P (t0, T0)
fi (Z)− X̂

]
I{Z≥z∗}

∣∣∣∣∣Ft0
}
.
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Since Z ∼ N1 (0, 1) and using equation (2.23), equation (2.26) yields

clt0 [B (t0) ;X;T0]

=
∑

i∈P∪N

kiP (t0, Ti)

∫ z∗

−∞

1√
2π

exp

{
−1

2
[z −m (t0, T0, Ti)]

2

}
dz − X̂P (t0, T0) Φ (z∗)

+
∑

i∈P∪N

kiP (t0, Ti)

∫ ∞
z∗

1√
2π

exp

{
−1

2
[z −m (t0, T0, Ti)]

2

}
dz − X̂P (t0, T0) Φ (−z∗) ,

and equation (2.25) follows immediately.

Instead of the method proposed by Nielsen and Sandmann (2002) that relies on the

numerical solution of equation (2.24), one could also have solved equation (2.11) through

Lord (2006, Theorem 1). However, and if the covariance function m (t0, T0, Ti) is not

monotone in Ti, Lord (2006, Theorem 1) would require the numerical and time-consuming

minimization of the function EQ0 (B (T0)|Z).

The pricing solution (2.25) will only become a completely explicit solution after the

specification of the conditioning random variable Z, which will define the deterministic

function m (t0, T0, Ti). For that purpose, and following Rogers and Shi (1995) and Nielsen

and Sandmann (2002), the minimization of the approximation error will be pursued.

2.3.2 Upper Bound

Following Rogers and Shi (1995, Equation 3.5),

EQ0

{
EQ0

[
(B (T0)−X)+

∣∣Z]− [EQ0 (B (T0)|Z)−X]+
∣∣Ft0} (2.27)

≤ 1

2
EQ0

{√
var [B (T0)|Z]

∣∣∣Ft0} ,
where

var [B (T0)|Z] := EQ0

{
[B (T0)− EQ0 (B (T0)|Z)]2

∣∣Z} (2.28)

represents the conditional variance of the time-T0 underlying coupon bond price. There-

fore,
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Proposition 2.3. Under the Gaussian HJM model (2.1), the time-t0 price of a European-

style call with strike X, with maturity at time T0 (≥ t0), and on a coupon-bearing bond

with present value B (t0) and generating N0 cash flows of value ki (i = 1, . . . , N0) at times

T1 < . . . < TN0 (with T1 ≥ T0), is bounded from above by

cut0 [B (t0) ;X;T0] = clt0 [B (t0) ;X;T0] + εt0 [B (t0) ;X;T0] , (2.29)

where the lower bound clt0 [B (t0) ;X;T0] is given by Proposition 2.2 and the implicit ap-

proximation error is defined by

εt0 [B (t0) ;X;T0] :=
1

2
P (t0, T0)

√
EQ0 {var [B (T0)|Z]| Ft0}, (2.30)

with

EQ0 {var [B (T0)|Z]| Ft0} (2.31)

=

N0∑
i=1

N0∑
j=1

kikj
P (t0, Ti)P (t0, Tj)

P (t0, T0)2

×{exp [l (t0, T0, Ti, Tj)]− exp [m (t0, T0, Ti)m (t0, T0, Tj)]} .

Proof. Multiplying both sides of inequality (2.27) by the discount factor P (t0, T0) and

applying Cauchy-Schwarz inequality, as in Nielsen and Sandmann (2002), then

ct0 [B (t0) ;X;T0]− clt0 [B (t0) ;X;T0] ≤ 1

2
P (t0, T0)

√
EQ0 {var [B (T0)|Z]| Ft0},

and equations (2.29) and (2.30) follow.

Concerning the conditional variance, equations (2.2) and (2.17) yield

B (T0)− EQ0 (B (T0)|Z)

=

N0∑
i=1

ki
P (T0, Ti)

P (t0, T0)

{
exp

[
−1

2
g (t0, T0, Ti) +

∫ T0

t0

(σ (s, Ti)− σ (s, T0))′ · dWQ0 (s)

]
− exp

[
−1

2
m (t0, T0, Ti)

2 +m (t0, T0, Ti)Z

]}
.
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Applying definition (2.28) and using the conditional probability distribution (2.15), then

var [B (T0)|Z] (2.32)

=

N0∑
i=1

N0∑
j=1

kikj
P (t0, Ti)P (t0, Tj)

P (t0, T0)2

{
exp

[
v (Ti, Tj)

2]− 1
}

× exp

{
[m (t0, T0, Ti) +m (t0, T0, Tj)]Z −

1

2

[
m (t0, T0, Ti)

2 +m (t0, T0, Tj)
2]} ,

where

v (Ti, Tj)
2 := l (t0, T0, Ti, Tj)−m (t0, T0, Ti)m (t0, T0, Tj) (2.33)

corresponds to the conditional covariance between

∫ T0

t0

[σ (s, Ti)− σ (s, T0)]′ · dWQ0 (s)

and

∫ T0

t0

[σ (s, Tj)− σ (s, T0)]′ · dWQ0 (s) .

Taking expectations of both sides of equation (2.32), and since Z ∼ N1 (0, 1), the analyt-

ical solution (2.31) arises.

Proposition 2.3 shows that, with the purpose of minimizing the option’ approximation

error, Z shall be chosen in order to reduce the quantity (2.31). Next proposition provides

a first-order approximation for the (unknown) arg min
Z

EQ0 {var [B (T0)|Z]| Ft0}.

Proposition 2.4. Under the Gaussian HJM model (2.1), if

Z :=
1

α

N0∑
i=1

ki
P (t0, Ti)

P (t0, T0)

∫ T0

t0

[σ (s, Ti)− σ (s, T0)]′ · dWQ0 (s) , (2.34)

with

α2 :=

N0∑
i=1

N0∑
j=1

kikj
P (t0, Ti)P (t0, Tj)

P (t0, T0)2 l (t0, T0, Ti, Tj) , (2.35)
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then

Z ∼ N1 (0, 1) , (2.36)

m (t0, T0, Ti) =
1

α

N0∑
j=1

kj
P (t0, Tj)

P (t0, T0)
l (t0, T0, Tj, Ti) , (2.37)

and

EQ0 {var [B (T0)|Z]| Ft0} ≈ 0. (2.38)

Proof. From equation (2.35), since α2 = EQ0

[
(αZ)2

∣∣Ft0], with Z defined through equa-

tion (2.34), then condition (2.36) is verified.

Using definition (2.12), then

m (t0, T0, Ti) =
1

α

N0∑
j=1

kj
P (t0, Tj)

P (t0, T0)
EQ0

{∫ T0

t0

[σ (s, Tj)− σ (s, T0)]′ · dWQ0 (s)

×
∫ T0

t0

[σ (s, Ti)− σ (s, T0)]′ · dWQ0 (s)

∣∣∣∣Ft0} ,
which yields equation (2.37) after considering definition (2.4).

Finally, applying the first-order approximation exp (x) ≈ 1+x to equation (2.31), then

EQ0 {var [B (T0)|Z]| Ft0} ≈
N0∑
i=1

N0∑
j=1

kikj
P (t0, Ti)P (t0, Tj)

P (t0, T0)2 (2.39)

×{l (t0, T0, Ti, Tj)−m (t0, T0, Ti)m (t0, T0, Tj)} .

Moreover and using the analytical solutions (2.35) and (2.37), it follows that

m (t0, T0, Ti)m (t0, T0, Tj)

=

[∑N0

p=1 kp
P (t0,Tp)

P (t0,T0)
l (t0, T0, Tp, Ti)

] [∑N0

q=1 kq
P (t0,Tq)

P (t0,T0)
l (t0, T0, Tq, Tj)

]
∑N0

p=1

∑N0

q=1 kpkq
P (t0,Tp)P (t0,Tq)

P (t0,T0)2 l (t0, T0, Tp, Tq)
.
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Therefore,

N0∑
i=1

N0∑
j=1

kikj
P (t0, Ti)P (t0, Tj)

P (t0, T0)2 m (t0, T0, Ti)m (t0, T0, Tj)

=

∑N0

p=1

∑N0

i=1 kpki
P (t0,Tp)P (t0,Ti)

P (t0,T0)2 l (t0, T0, Tp, Ti)∑N0

p=1

∑N0

q=1 kpkq
P (t0,Tp)P (t0,Tq)

P (t0,T0)2 l (t0, T0, Tp, Tq)

×

[
N0∑
q=1

N0∑
j=1

kqkj
P (t0, Tq)P (t0, Tj)

P (t0, T0)2 l (t0, T0, Tq, Tj)

]

=

N0∑
i=1

N0∑
j=1

kikj
P (T0, Ti)P (T0, Tj)

P (t0, T0)2 l (t0, T0, Ti, Tj) ,

where the second equality follows by replacing i by q in the numerator of the second line

and q by i in the third line. Consequently, the right-hand side of equation (2.39) becomes

equal to zero, i.e. result (2.38) is obtained.

2.4 Numerical analysis

The purpose of the numerical experiments contained in this section is to compare the

accuracy-efficiency performance of the conditioning approach against the rank 1 approx-

imation of Brace and Musiela (1994), the lognormal approximation of Pang (1996), the

stochastic duration approach of Munk (1999), the Edgeworth expansion technique of

Collin-Dufresne and Goldstein (2002), the hyperplane approximation of Singleton and

Umantsev (2002), and the low-variance martingale method of Schrager and Pelsser (2006).

Even though the pricing bounds proposed in Section 2.3 are applicable to the more

general class of HJM Gaussian term structure models, and in order to compare all the

approximations proposed in the literature for European-style swaptions, all numerical

examples will be run under the nested n-factor affine A0 (n) specification that is required

by both the hyperplane and the low-variance approximations. More precisely, a Gauss-

Markov and time-inhomogeneous version of the Duffie and Kan (1996) model will be

considered, which specifies the short-term interest rate r (t) as an affine function of the
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model’s factors:

r (t) = f +G′ · Y (t) , (2.40)

where f ∈ R and G ∈ Rn are model’s parameters, while Y (t) ∈ Rn denotes the time-

t vector of state variables. Additionally, the state variables are assumed to follow a

multivariate and time-inhomogeneous elastic random walk:

dY (t) = (a · Y (t) + b) dt+ Σ · dWQ (t) , (2.41)

where a,Σ ∈ Rn×n and b ∈ Rn are model’s parameters.

Given the affine specifications adopted for the drift and for the instantaneous variance of

the stochastic differential equation (2.41), it is easy to show—see, for instance, Langetieg

(1980, Equations (30), (32) and (33))—that pure discount bond prices are exponential-

affine functions of the state variables:

P (t, T ) = exp
[
A (t, T ) +B (t, T )′ · Y (t)

]
, (2.42)

where

B (t, T )′ = G′ · a−1 ·
[
In − ea(T−t)] , (2.43)

A (t, T ) = (T − t)
(
G′ · a−1 · b− f

)
+B (t, T )′ · a−1 ·

[
b+ Σ · Σ′ ·

(
a−1
)′ ·G](2.44)

+
1

2
G′ · a−1 · [(T − t) Σ · Σ′ + ∆ (t, T )] ·

(
a−1
)′ ·G,

and

∆ (t, T ) :=

∫ T

t

ea(T−s) · Σ · Σ′ · ea′(T−s)ds, (2.45)

with In ∈ Rn×n denoting an identity matrix. Note that equations (2.43) and (2.44) assume

that matrix a is non-singular. If this is not the case, functions A (t, T ) and B (t, T )

can always be obtained through the more general solutions described in Lund (1994,

Appendix A). Moreover, function ∆ (t, T ) can be computed explicitly from Langetieg
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(1980, Footnote 23), as long as matrix a is diagonalizable; otherwise, it is always possible

to evaluate ∆ (t, T ) numerically using Padé approximations with scaling and squaring,

based on Van Loan (1978, Theorem 1).

Using the diffusion process (2.41), applying Itô’s lemma to equation (2.42), and con-

sidering the stochastic differential equation (2.1), it is easy to show that the A0 (n) spec-

ification adopted can be cast into the more general Gaussian HJM model presented in

Section 2.2, as long as two conditions are met:

σ (t, T ) = Σ′ ·B (t, T ) ; (2.46)

and the discount function initially “observed” in the market must be replaced by equation

(2.42). Adopting these two conditions, the pricing solutions proposed in Section 2.3 will be

used under the nested A0 (n) specification, and function l (t0, Ta, Tb, Tc) will be computed

explicitly—see Appendix A.

[Please insert Table 2.1 about here.]

Table 2.1 values at-the-money-forward (ATMF) European-style swaptions, using dif-

ferent valuation approaches, and under the three-factor Gaussian and affine model speci-

fied in Collin-Dufresne and Goldstein (2002, Exhibit 1) or Schrager and Pelsser (2006,

Table 4.1), i.e. for f = 6%, G′ =
[

1 1 1
]
, Y (t) =

[
1% 0.5% −2%

]
, a =

diag {−1,−0.2,−0.5}, b′ =
[

0 0 0
]
, and Σ = diag {1%, 0.5%, 0.2%} · L, where L

is the lower triangular matrix obtained from the Cholesky decomposition of a (3× 3)

correlation matrix R, with R12 = −0.2, R13 = −0.1, and R23 = 0.3. Four different option

maturities (of 1, 2, 5 and 10 years) and eight different swap maturities (of 1, 2, 5, 10, 15,

20, 25 and 30 years) are considered, yielding a total of 32 swaptions.

Since there is no exact pricing solution in the literature for European-style swaptions

under multifactor term structure models, the accuracy of each alternative valuation ap-

proach is measured by its percentage error with respect to a proxy of the exact swaption

price. Such a proxy is obtained through Monte Carlo simulation, using the exact proba-
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bility distribution of the state variables at the maturity date of the swaption contract—as

described in Appendix B. All Monte Carlo experiments are run over 109 paths, and using

standard antithetic variables. Consequently, for all the 32 swaptions valued, the ratio be-

tween the standard error and the Monte Carlo price estimate (labeled as the percentage

standard error) is always below 0.3 basis points.

The Monte Carlo simulations were run under version 1.9.4.13 of GNU Pascal and

on an Intel Xeon 3.33 GHz processor with 12 GB of RAM memory, whereas all the

approximations tested (from the fourth to the last column of Table 2.1) were implemented

through Matlab (R2010a). All non-linear equations involved in the implementation of the

conditioning approach, the rank 1 approximation, the stochastic duration approach, or the

hyperplane approximation were solved through the built-in function “fsolve” of Matlab.

The lower bound (2.25) provided by the conditioning approach proposed is the most ac-

curate approximation tested: It yields a mean absolute percentage pricing error (MAPE,

henceforth) of only 0.14 basis points, which is even smaller than the Monte Carlo per-

centage standard error. Moreover, the tight upper bound shown on the fifth column of

Table 2.1 also provides a sharp forecast for the maximum approximation error attached

to the conditioning approach: On average, the maximum absolute percentage pricing er-

ror associated to the lower bound approximation is equal to only 3.96 basis points (i.e.

0.0410%− 0.0014%).

For ATMF swaptions, the low-variance martingale approach of Schrager and Pelsser

(2006), the lognormal approximation, and the hyperplane approximation of Singleton and

Umantsev (2002)—which is implemented at a 1% significance level—are almost as accu-

rate as the conditioning approach.2.11 Additionally, the low-variance martingale approach

is also the most efficient approximation: The whole set of 32 swaptions contracts is priced

2.11Note that equation (A.3) of Schrager and Pelsser (2006, Page 692) contains a typo and has been
replaced by

σn,N =

√√√√ M∑
i=1

Σ̂2
(ii)

(
C̃

(i)
n,N

)2 [e2A(ii)Tn − 1

2A(ii)

]
+ 2

M∑
i=1

M∑
j=i+1

ρijΣ̂(ii)Σ̂(jj)C̃
(i)
n,N C̃

(j)
n,N

[
e[A(ii)+A(jj)]Tn − 1

A(ii) +A(jj)

]
,

using the notation of the original paper.
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under a CPU time of only 0.29 seconds.

The Edgeworth expansion method of Collin-Dufresne and Goldstein (2002) is the most

time-consuming approximation tested: it takes more than 1, 903 seconds to price all the 32

swaptions. Since the m-th moment of the probability distribution of the model’s factors

Y (T0) requires the computation of (N0)m terms (where N0 represents the number of

cash flow payment dates of the underlying swap), then the inefficiency of the Edgeworth

expansion increases with the time to maturity of the underlying interest rate swap: For

instance, the CPU times associated to the 10× 1 and the 10× 30 swaptions are equal to

0.033 and 239.37 seconds, respectively. Given the inefficiency of the Edgeworth expansion

for long maturity swaps and following, for instance, Chu and Kwok (2007, Page 382), the

Taylor series expansion of the log-characteristic function of Y (T0) is truncated only up

to the third order.2.12

Overall, the less accurate methods are the rank 1 approximation, and the stochastic

duration approach: Their average absolute percentage errors are about 200 and 118 times

higher, respectively, than the MAPE associated to the lower bound of the conditioning

approach. Moreover, these two approximations systematically overvalue the ATMF swap-

tion contracts under analysis since their reported (positive) mean percentage errors are

consistently identical to the corresponding MAPE. Nevertheless, and since swaptions are

usually quoted in flat yield volatilities,2.13 the penultimate line of Table 2.1 recomputes

the mean absolute errors of each analytical approximation in terms of the Black (1976)

flat yield volatility implicit to each swaption price. As expected, the error differences

2.12Note that equations (26) and (30) of Collin-Dufresne and Goldstein (2002, Page 16) contain a typo
and have been replaced by

B0 (τ) = −δτ +
1

2

∑
i,j

σiσjρij
κiκj

[
τ −Bκi

(τ)−Bκj
(τ) +Bκi+κj

(τ)
]
,

and

M (τ) =
∑
i,j

σiσjρij
κj

Fi

[
Bκi

(τ)− e−κj(W−T ) − e−κiτ−κj(W−t)

κi + κj

]
+

1

2

∑
i,j

σiσjρijFiFjBκi+κj (τ)

respectively, using the notation of the original paper.
2.13I.e. under the usual “market” assumption of lognormally distributed forward swap rates.
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amongst all pricing methods are now less pronounced: All mean absolute volatility errors

are lower than 1 basis point, and hence, are also clearly within the typical bid-ask spreads

observed in the swaptions market.2.14

[Please insert Table 2.2 about here.]

The most challenging setup to test the accuracy of all the competing pricing approxima-

tions corresponds to the valuation of out-the-money-forward (OTMF) swaption contracts,

i.e. option contracts with zero intrinsic value. For this purpose, Table 2.2 prices OTMF

European-style swaptions under the three-factor Gaussian and affine model adopted in

Table 2.1, and for two different strikes that are set at 85% and 90% of the current forward

swap rate. Three different option maturities (of 1, 2 and 5 years) and six different swap

maturities (of 1, 2, 5, 10, 20 and 30 years) are considered, yielding a total of 36 swaptions.

Percentage pricing errors are computed, under different analytical approximations, for

only 27 out of the whole set of 36 swaption contracts. For nine of the swaption contracts

considered, the Monte Carlo price estimate is so close to zero (and its standard error

is so large) that the percentage pricing errors would not be meaningful for any of the

analytical approximations tested. All the nine contracts with missing pricing errors in

Table 2.2 possess Monte Carlo price estimates below 10−6 as well as percentage standard

errors above 0.3%.

As before, the lower bound of the conditioning approach yields the most precise ap-

proximation for OTMF swaptions, with a MAPE of only 2.18 basis points. However, and

specially for swaptions on long-dated swaps (with a time to maturity of 10 or more years),

the upper bound is so loose that can no longer serve as an indicator for the error of the

approximation.

Similarly to Table 2.1, the low-variance approximation of Schrager and Pelsser (2006)

is still the fastest pricing methodology (with a CPU time of only 0.27 seconds), but now

this is also the most inaccurate approximation tested—yielding an average percentage

2.14For instance, in 2011 the average bid-ask spread of US ATMF European-style swaptions (for the
maturities and tenors described in the first column of Table 2.1) ranged between 30 and 67 basis points—
data collected daily from Bloomberg between January 01, 2011 and December 31, 2011.
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error above 9.56%. The sixth column of Table 2.2 shows that the significant upward bias

of the low-variance approximation is mainly due to the large pricing errors attached to

the swaption contracts on 20 and 30 years interest rate swaps, which were not considered

in Schrager and Pelsser (2006, Table 6.2). However, and since these swaption contracts

with long-term tenors possess small dollar values, the penultimate line of Table 2.2 shows

that the corresponding mean absolute Black (1976) flat yield volatility errors are only

around 3 basis points.

Again, the Edgeworth expansion technique is the most time-consuming approximation

tested as well as one of the less accurate pricing methods: It yields a CPU time of

1, 906.56 seconds and a MAPE of 6.38%. Overall, the low-variance approximation and

the Edgeworth expansion technique are both dominated by the hyperplane approach,

and even by the simpler rank 1, lognormal and stochastic duration approximations: For

instance, the stochastic duration approach combines a CPU time of only 0.57 seconds

with a MAPE of 0.72%. Nevertheless, note that the mean absolute error of the Munk

(1999) approach is still 33 times higher than the MAPE reported by the lower bound of

the conditioning method.

[Please insert Table 2.3 about here.]

Table 2.3 shows that differences in accuracy among the alternative analytical approx-

imations tested are much less pronounced for in-the-money-forward (ITMF) swaption

contracts. Table 2.3 prices ITMF European-style swaptions under the same three-factor

Gaussian and affine model already adopted in Tables 2.1 and 2.2, and for two different

strikes that are set at 110% and 115% of the current forward swap rate. Similarly to

Table 2.2, three different option maturities (of 1, 2 and 5 years) and six different swap

maturities (of 1, 2, 5, 10, 20 and 30 years) are considered, yielding a total of 36 swaptions.

Once again, the lower bound of the conditioning approach is the most accurate valua-

tion method with a MAPE of only 0.02 basis points. Moreover, the conditioning approach

also offers tight error bounds since the upper bound on the swaption prices is even smaller

than most of the price estimates produced by the alternative approximations tested: Its
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MAPE of 0.52 basis points is only above the average pricing errors associated to the

hyperplane, the lognormal, and the Edgeworth approximations.

As before, the low-variance approximation—that is still the fastest valuation method—

is also the less accurate approach, yielding an average percentage error of −2.12 basis

points (that corresponds to a mean absolute volatility error of 4.34 basis points). However,

and in contrast with Table 2.2, the low-variance approximation consistently underprices

ITMF swaptions since its mean percentage error and MAPE are exactly symmetrical.

Finally, a word of caution must be said about the accuracy of the proxy used for the

exact price of the swaption contracts. Tables 2.1, 2.2, and 2.3 show that some of the

percentage errors computed for the lower (upper) bound of the conditioning approach are

slightly positive (negative), meaning that the Monte Carlo price estimate can be, for some

contracts, slightly below or above the exact lower or upper price bound, respectively. Nev-

ertheless, and given the large number of simulations run, the average pricing errors (over

all swaption contacts in Tables 2.1, 2.2, and 2.3) are always non-positive(non-negative)

for the lower (upper) bound of the conditioning approach.2.15

Note that this (small) bias occurs even though the Monte Carlo price estimates are

produced using a large number of simulations (109 paths), antithetic variables, and the

exact probability distribution of the state variables at the maturity date of the swaption

contract, which is, to the authors knowledge, the most demanding setting already used

in the literature on the pricing of swaption contracts. Therefore, one should expect

this Monte Carlo bias to be even more relevant in the previous literature on the pricing

of European-style swaptions; for instance, Schrager and Pelsser (2006, Page 689) test

their low-variance approximation using only 500, 000 Monte Carlo simulations. The use,

in this paper, of a more demanding Monte Carlo setting, and the inclusion of longer

2.15One way to avoid the noise introduced by the Monte Carlo estimates would be to consider a single-
factor Gaussian term structure model, because an exact analytical pricing solution for European-style
swaptions is provided by Jamshidian (1989). This approach is followed, for instance, by Schrager and
Pelsser (2006, Table 4.2). However, such a test would be redundant in our case, because it is easy
to show—following El Karoui and Rochet (1989, Page 22)—that the upper and lower bounds of the
conditioning approach collapse into the exact swaption price under any single-factor Gauss-Markov and
time-homogeneous term structure model.
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swaption contracts (with 5 and 10 years of time to maturity) on long-term interest rate

swaps (namely on 20 and 30 years’ swaps) explains the novel findings with respect to the

previous literature concerning the inaccuracy of the low-variance, and of the Edgeworth

approximations for OTMF contracts.

2.5 Conclusions

This paper offers two contributions to the literature on swaptions pricing. First, this

paper derives a new analytical approximation for European-style swaptions under a mul-

tifactor Gauss-Markov framework, and based on the conditioning approach proposed by

Curran (1994), Rogers and Shi (1995), and Nielsen and Sandmann (2002). Second, a

comprehensive and rigorous Monte Carlo study is run to compare, in terms of efficiency

and accuracy, all the approximations already proposed in the literature for European-style

swaptions under multifactor term structure models.

The numerical results obtained show that the exact lower bound of the swaption price

provided by the conditioning approach is the most accurate pricing method for ATMF,

OTMF and ITMF contracts. Moreover, the conditioning approach proposed in this paper

also offers tight bounds for the approximation error, because the analytical lower and

upper bounds proposed in Propositions 2.2 and 2.3 are usually very close to each other

(except for some deep OTMF contracts).

By contrast, the low-variance martingale method of Schrager and Pelsser (2006)—

which is the fastest pricing approach tested—and the Edgeworth expansion yield the

highest pricing errors for OTMF swaption contracts. The latter approach proposed by

Collin-Dufresne and Goldstein (2002) is also extremely time consuming for swaption con-

tracts on long-term swaps. The hyperplane approximation of Singleton and Umantsev

(2002) is more accurate and faster than the Edgeworth expansion technique, but still less

accurate and slower than the proposed conditioning approach. Finally, the simpler rank

1, lognormal, and stochastic duration approximations are also very fast to implement but,

nevertheless, still much less accurate than the lower bound of the conditioning approach.
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A Function l (t0, Ta, Tb, Tc) under the A0 (n) specification

Under the nested A0 (n) specification, function l (t0, Ta, Tb, Tc) can be computed explicitly.

For this purpose, equations (2.4) and (2.46) yield:

l (t0, Ta, Tb, Tc) (A-1)

= G′ · a−1 ·
∫ Ta

t0

[
ea(Ta−s) − ea(Tb−s)

]′ · Σ · Σ′ · [ea′(Ta−s) − ea′(Tc−s)] ds · (a−1
)′ ·G.

Using definition (2.45), equation (A-1) can be restated as

l (t0, Ta, Tb, Tc) = G′ · a−1 ·
[
∆ (t0, Ta)−∆ (t0, Ta) · ea

′(Tc−Ta) − ea(Tb−Ta) ·∆ (t0, Ta)

+ea(Tb−Ta) ·∆ (t0, Ta) · ea
′(Tc−Ta)

]
·
(
a−1
)′ ·G

= B (Ta, Tb)
′ ·∆ (t0, Ta) ·B (Ta, Tc) , (A-2)

where the last line follows from equation (2.43).

B Monte Carlo simulation

To implement equation (2.8) through Monte Carlo simulation, it is necessary to rewrite

the stochastic differential equation (2.41) under the forward probability measure Q0. For

this purpose, considering equation (2.46) and using, for instance, Nunes (2004, Equation

(2.9)), it follows that

dWQ0 (t) = dWQ (t)− Σ′ ·B (t, T0) dt (B-1)

is also a vector of standard Brownian motion increments in Rn and under the forward

measure Q0. Hence, equations (2.41) and (B-1) imply that

dY (t) = [a · Y (t) + b+ Σ · Σ′ ·B (t, T0)] dt+ Σ · dWQ0 (t) . (B-2)

Applying Itô’s lemma to e−at · Y (t) and using definition (2.43), the following strong
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solution is obtained for the stochastic differential equation (B-2):

Y (T0) = ea(T0−t0) · Y (t0) +
[
ea(T0−t0) − In

]
· a−1 ·

[
b+ Σ · Σ′ ·

(
a−1
)′ ·G] (B-3)

−∆ (t0, T0) ·
(
a−1
)′ ·G+

∫ T0

t0

ea(T0−u) · Σ · dWQ0 (u) .

Equation (B-3) yields the exact probability distribution of the state vector Y (T0) after

noting that Arnold (1992, Corollary 4.5.6) implies that the Itô integral
∫ T0

t0
ea(T0−u) · Σ ·

dWQ0 (u) possesses a n-dimensional normal distribution with zero mean and variance-

covariance matrix equal to ∆ (t0, T0). The Itô integral is simulated by generating n nor-

mally distributed deviates with zero mean and unit variance—through routines “ran3”

and “gasdev” of Press et al. (1994)—that are then correlated using the Cholesky decom-

position of matrix ∆ (t0, T0).
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Table 2.1: Prices of ATMF European-style swaptions on plain-vanilla interest rate swaps with semiannual cash flows and under a
three-factor Gauss-Markov HJM model

Swaption Monte Percentage Pricing Errors of Analytical Approximations
× Carlo CA bounds LVA HA EE SD LA R1A

Swap price % SE lower upper
1× 1 0.002082 0.0024% 0.0040% 0.0045% 0.0041% 0.0040% 0.0036% 0.0250% 0.0040% 0.0117%
1× 2 0.003312 0.0024% 0.0001% 0.0035% 0.0004% 0.0001% -0.0010% 0.0768% 0.0001% 0.0600%
1× 5 0.005331 0.0024% -0.0024% 0.0189% -0.0014% -0.0026% -0.0054% 0.0690% -0.0018% 0.3130%
1× 10 0.006558 0.0024% -0.0014% 0.0435% 0.0003% -0.0025% -0.0064% 0.0404% 0.0003% 0.5292%
1× 15 0.006893 0.0024% 0.0004% 0.0550% 0.0023% -0.0013% -0.0054% 0.0382% 0.0026% 0.5954%
1× 20 0.006984 0.0024% 0.0000% 0.0578% 0.0020% -0.0018% -0.0060% 0.0370% 0.0024% 0.6141%
1× 25 0.007009 0.0024% 0.0000% 0.0587% 0.0021% -0.0019% -0.0061% 0.0368% 0.0024% 0.6195%
1× 30 0.007016 0.0024% -0.0003% 0.0587% 0.0018% -0.0022% -0.0064% 0.0364% 0.0022% 0.6208%
2× 1 0.002355 0.0024% -0.0019% -0.0013% -0.0017% -0.0019% -0.0024% 0.0376% -0.0019% 0.0055%
2× 2 0.003843 0.0024% 0.0044% 0.0084% 0.0049% 0.0044% 0.0028% 0.1387% 0.0045% 0.0566%
2× 5 0.006369 0.0024% -0.0007% 0.0233% 0.0009% -0.0011% -0.0055% 0.1618% 0.0004% 0.2444%
2× 10 0.007907 0.0025% -0.0035% 0.0463% -0.0007% -0.0057% -0.0117% 0.1340% -0.0005% 0.3931%
2× 15 0.008327 0.0025% 0.0002% 0.0603% 0.0034% -0.0025% -0.0094% 0.1340% 0.0039% 0.4414%
2× 20 0.008442 0.0025% 0.0002% 0.0638% 0.0035% -0.0028% -0.0098% 0.1332% 0.0043% 0.4545%
2× 25 0.008474 0.0025% -0.0006% 0.0639% 0.0028% -0.0037% -0.0107% 0.1321% 0.0035% 0.4573%
2× 30 0.008483 0.0025% -0.0009% 0.0639% 0.0024% -0.0041% -0.0111% 0.1317% 0.0032% 0.4579%
5× 1 0.002321 0.0024% 0.0018% 0.0025% 0.0021% 0.0018% 0.0010% 0.0521% 0.0018% 0.0082%
5× 2 0.003872 0.0024% -0.0004% 0.0041% 0.0004% -0.0004% -0.0026% 0.1726% -0.0001% 0.0411%
5× 5 0.006568 0.0025% -0.0017% 0.0237% 0.0008% -0.0022% -0.0090% 0.2652% 0.0002% 0.1749%
5× 10 0.008216 0.0025% -0.0015% 0.0501% 0.0028% -0.0046% -0.0143% 0.2812% 0.0032% 0.2750%
5× 15 0.008667 0.0025% -0.0027% 0.0595% 0.0023% -0.0072% -0.0176% 0.2858% 0.0033% 0.3029%
5× 20 0.008792 0.0025% -0.0033% 0.0623% 0.0019% -0.0083% -0.0189% 0.2865% 0.0031% 0.3106%
5× 25 0.008826 0.0025% 0.0004% 0.0670% 0.0056% -0.0048% -0.0154% 0.2904% 0.0069% 0.3166%
5× 30 0.008836 0.0025% 0.0007% 0.0676% 0.0059% -0.0045% -0.0151% 0.2907% 0.0072% 0.3175%

(continued)
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Table 2.1—Continued

Swaption Monte Percentage Pricing Errors of Analytical Approximations
× Carlo CA bounds LVA HA EE SD LA R1A

Swap price % SE lower upper
10× 1 0.001800 0.0024% -0.0006% 0.0001% -0.0003% -0.0006% -0.0014% 0.0460% -0.0005% 0.0054%
10× 2 0.003020 0.0024% 0.0014% 0.0059% 0.0023% 0.0014% -0.0011% 0.1740% 0.0017% 0.0395%
10× 5 0.005153 0.0025% -0.0011% 0.0243% 0.0016% -0.0018% -0.0094% 0.2200% 0.0009% 0.1573%
10× 10 0.006459 0.0025% -0.0009% 0.0507% 0.0039% -0.0044% -0.0154% 0.3214% 0.0044% 0.2458%
10× 15 0.006816 0.0025% -0.0017% 0.0605% 0.0039% -0.0069% -0.0186% 0.2602% 0.0050% 0.2707%
10× 20 0.006914 0.0025% -0.0018% 0.0639% 0.0040% -0.0076% -0.0194% 0.3596% 0.0055% 0.2782%
10× 25 0.006941 0.0025% -0.0006% 0.0662% 0.0053% -0.0065% -0.0184% 0.3617% 0.0068% 0.2815%
10× 30 0.006948 0.0025% 0.0043% 0.0714% 0.0103% -0.0016% -0.0135% 0.3668% 0.0118% 0.2870%
MPE -0.0003% 0.0409% 0.0025% -0.0026% -0.0087% 0.1687% 0.0028% 0.2871%

MAPE 0.0014% 0.0410% 0.0027% 0.0033% 0.0092% 0.1687% 0.0031% 0.2871%
MAE vol. 0.0001% 0.0010% 0.0001% 0.0001% 0.0002% 0.0046% 0.0001% 0.0077%

CPU (sec.) 180,821.50 5.91 0.29 16.21 1,903.50 0.55 3.17 0.59

This table values 32 at-the-money-forward (ATMF) European-style swaptions under the three-factor Gaussian and affine model specified in Collin-Dufresne

and Goldstein (2002, Exhibit 1) or Schrager and Pelsser (2006, Table 4.1). The first column shows the maturity (in years) of the swaption contract and

of its underlying swap. The second and third columns contain the Monte Carlo option price estimate and its percentage standard error (%SE)—i.e. the

ratio between the standard error and the Monte Carlo price estimate—obtained using 109 paths, standard antithetic variables, and the exact probability

distribution of the state variables at the maturity date of the swaption contract. The bounds provided by the conditioning approach (CA) in Propositions

2.2 and 2.3 are implemented in the fourth and fifth columns. The sixth column contains the low-variance martingale approximation (LVA) of Schrager

and Pelsser (2006). The hyperplane approximation of Singleton and Umantsev (2002) is implemented at a 1% significance level in the seventh column.

The eighth column presents the Edgeworth expansion (EE) method of Collin-Dufresne and Goldstein (2002) using a third-order approximation for the

log-characteristic function of the terminal state vector. The last three columns contain the percentage pricing errors generated by the stochastic duration

(SD) approach of Munk (1999), the lognormal approximation (LA) of Pang (1996), and the rank 1 approximation (R1A) of Brace and Musiela (1994). The

last four lines report mean percentage pricing errors (MPE), mean absolute percentage pricing errors (MAPE), mean absolute volatility errors (MAE vol.),

and computation times (in seconds). All percentage errors are computed against the Monte Carlo price estimate.
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Table 2.2: Prices of OTMF European-style receiver swaptions on plain-vanilla interest rate swaps with semiannual cash flows and
under a three-factor Gauss-Markov HJM model

Swaption Monte Percentage Pricing Errors of Analytical Approximations
× Carlo CA bounds LVA HA EE SD LA R1A

Swap price % SE lower upper
Panel A: Swaptions quoted at 85% of the forward swap rate

1× 1 0.000154 0.0111% 0.0197% 0.0255% 1.0749% 0.0199% 0.0075% 0.0913% 0.0117% 0.0488%
1× 2 0.000103 0.0167% -0.0009% 0.0941% 1.8874% 0.0070% 0.0603% 0.3109% -0.0707% 0.2950%
1× 5 0.000013 0.0543% -0.1412% 7.3571% 6.9317% 0.3134% 4.3318% -0.3886% -0.9917% 2.6053%
1× 10 0.000000 0.4928% - - - - - - - -
1× 20 0.000000 72.5132% - - - - - - - -
1× 30 0.000000 NA - - - - - - - -
2× 1 0.000277 0.0089% 0.0009% 0.0047% 0.8982% 0.0012% -0.0206% 0.1194% -0.0065% 0.0242%
2× 2 0.000254 0.0117% 0.0150% 0.0674% 1.4757% 0.0233% -0.0242% 0.4851% -0.0462% 0.2199%
2× 5 0.000082 0.0252% 0.0115% 1.6128% 4.8410% 0.3809% 1.4967% 0.3586% -0.6443% 1.5382%
2× 10 0.000005 0.1010% -0.0290% 65.5140% 21.0190% 3.0352% 24.1319% -1.8662% -3.2955% 4.2996%
2× 20 0.000000 2.2576% - - - - - - - -
2× 30 0.000000 23.4079% - - - - - - - -
5× 1 0.000373 0.0076% 0.0057% 0.0091% 0.8107% 0.0060% -0.0211% 0.1388% -0.0016% 0.0235%
5× 2 0.000422 0.0093% -0.0062% 0.0286% 1.1962% 0.0025% -0.0914% 0.5094% -0.0625% 0.1300%
5× 5 0.000240 0.0156% 0.0142% 0.6121% 3.5897% 0.3248% 0.2654% 0.7578% -0.5167% 0.8544%
5× 10 0.000040 0.0399% -0.0153% 9.2530% 14.4558% 2.3050% 10.4057% -0.2691% -2.4444% 2.1306%
5× 20 0.000001 0.3067% - - - - - - - -
5× 30 0.000000 1.5701% - - - - - - - -

Panel B: Swaptions quoted at 90% of the forward swap rate
1× 1 0.000437 0.0067% -0.0039% -0.0019% 0.4571% -0.0037% -0.0150% 0.0476% -0.0075% 0.0164%
1× 2 0.000432 0.0085% -0.0064% 0.0175% 0.7705% -0.0030% -0.0445% 0.2124% -0.0366% 0.1872%
1× 5 0.000185 0.0159% -0.0124% 0.5469% 2.5783% 0.1643% 0.1077% 0.0149% -0.3427% 1.5981%
1× 10 0.000023 0.0460% -0.0519% 11.6615% 10.4281% 1.4425% 5.3939% -1.3531% -1.6902% 4.5859%
1× 20 0.000000 0.4229% - - - - - - - -
1× 30 0.000000 2.4067% - - - - - - - -

(continued)
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Table 2.2—Continued

Swaption Monte Percentage Pricing Errors of Analytical Approximations
× Carlo CA bounds LVA HA EE SD LA R1A

Swap price % SE lower upper
2× 1 0.000642 0.0058% -0.0020% -0.0001% 0.4063% -0.0018% -0.0140% 0.0854% -0.0055% 0.0149%
2× 2 0.000758 0.0069% 0.0074% 0.0259% 0.6397% 0.0112% -0.0387% 0.3438% -0.0204% 0.1483%
2× 5 0.000523 0.0106% 0.0165% 0.2826% 1.9030% 0.1684% -0.1359% 0.3738% -0.2524% 0.9671%
2× 10 0.000143 0.0216% -0.0183% 2.4887% 7.1171% 1.1153% 1.4861% -0.4124% -1.2304% 2.4083%
2× 20 0.000007 0.0890% 0.0265% 67.5232% 32.4355% 4.4250% 24.2704% -2.6396% -4.0460% 5.0962%
2× 30 0.000001 0.2661% 0.0630% 700.0488% 69.2668% 7.3914% 59.6131% -4.7587% -6.6443% 7.0860%
5× 1 0.000756 0.0053% -0.0038% -0.0020% 0.3744% -0.0036% -0.0168% 0.0973% -0.0074% 0.0095%
5× 2 0.001010 0.0060% 0.0190% 0.0344% 0.5624% 0.0232% -0.0314% 0.4012% -0.0076% 0.1167%
5× 5 0.000938 0.0082% -0.0100% 0.1511% 1.4690% 0.1244% -0.2617% 0.5970% -0.2387% 0.5424%
5× 10 0.000408 0.0136% -0.0114% 0.9370% 5.2659% 0.8892% -0.0271% 0.3407% -0.9567% 1.2640%
5× 20 0.000053 0.0360% -0.0265% 9.9383% 22.0731% 3.2570% 9.9860% -0.7644% -3.0194% 2.4497%
5× 30 0.000011 0.0753% 0.0511% 49.4814% 44.4240% 5.4328% 30.0070% -1.8024% -4.7930% 3.3877%
MPE -0.0033% 34.3597% 9.5686% 1.1427% 6.3267% -0.3322% -1.1617% 1.5573%

MAPE 0.0218% 34.3600% 9.5686% 1.1436% 6.3817% 0.7237% 1.1626% 1.5573%
MAE vol. 0.0002% 0.0319% 0.0311% 0.0030% 0.0131% 0.0041% 0.0037% 0.0067%

CPU (sec.) 175,024.62 5.48 0.27 15.40 1,906.56 0.57 2.93 0.60

This table values 36 out-the-money-forward (OTMF) European-style swaptions under the three-factor Gaussian and affine model specified in Table 2.1.

The first column shows the maturity (in years) of the swaption contract and of its underlying swap. The second and third columns contain the Monte

Carlo option price estimate and its percentage standard error (%SE) obtained using 109 paths, standard antithetic variables, and the exact probability

distribution of the state variables at the maturity date of the swaption contract. The %SE that are not available (NA) correspond to Monte Carlo price

estimates that are equal to zero. The bounds provided by the conditioning approach (CA) in Propositions 2.2 and 2.3 are implemented in the fourth and

fifth columns. The sixth column contains the low-variance martingale approximation (LVA) of Schrager and Pelsser (2006). The hyperplane approximation

of Singleton and Umantsev (2002) is implemented at a 1% significance level in the seventh column. The eighth column presents the Edgeworth expansion

(EE) method of Collin-Dufresne and Goldstein (2002) using a third-order approximation for the log-characteristic function of the terminal state vector. The

last three columns contain the percentage pricing errors generated by the stochastic duration (SD) approach of Munk (1999), the lognormal approximation

(LA) of Pang (1996), and the rank 1 approximation (R1A) of Brace and Musiela (1994). The last four lines report mean percentage pricing errors (MPE),

mean absolute percentage pricing errors (MAPE), mean absolute volatility errors (MAE vol.), and computation times (in seconds).All percentage errors

are computed against the Monte Carlo price estimate, except for the nine contracts with percentage standard errors above 0.3%.
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Table 2.3: Prices of ITMF European-style receiver swaptions on plain-vanilla interest rate swaps with semiannual cash flows and
under a three-factor Gauss-Markov HJM model

Swaption Monte Percentage Pricing Errors of Analytical Approximations
× Carlo CA bounds LVA HA EE SD LA R1A

Swap price % SE lower upper
Panel A: Swaptions quoted at 110% of the forward swap rate

1× 1 0.005634 0.0005% 0.0008% 0.0010% -0.0349% 0.0008% -0.0001% 0.0063% 0.0011% 0.0027%
1× 2 0.010674 0.0004% 0.0001% 0.0012% -0.0313% -0.0001% -0.0015% 0.0137% 0.0016% 0.0096%
1× 5 0.024284 0.0001% -0.0002% 0.0049% -0.0201% -0.0018% 0.0005% 0.0063% 0.0029% 0.0150%
1× 10 0.042493 0.0000% 0.0000% 0.0075% -0.0061% -0.0011% 0.0032% 0.0014% 0.0011% 0.0034%
1× 20 0.065979 0.0000% 0.0000% 0.0066% -0.0002% 0.0000% 0.0006% 0.0001% 0.0000% 0.0001%
1× 30 0.078861 0.0000% 0.0000% 0.0057% 0.0000% 0.0000% 0.0001% 0.0000% 0.0000% 0.0000%
2× 1 0.005689 0.0007% 0.0002% 0.0004% -0.0458% 0.0001% -0.0012% 0.0131% 0.0006% 0.0025%
2× 2 0.010659 0.0005% 0.0001% 0.0017% -0.0447% -0.0002% -0.0031% 0.0338% 0.0026% 0.0123%
2× 5 0.023572 0.0003% 0.0001% 0.0072% -0.0418% -0.0039% -0.0036% 0.0243% 0.0073% 0.0259%
2× 10 0.040481 0.0001% 0.0001% 0.0107% -0.0259% -0.0047% 0.0044% 0.0093% 0.0055% 0.0113%
2× 20 0.062458 0.0000% 0.0000% 0.0093% -0.0045% -0.0008% 0.0048% 0.0011% 0.0008% 0.0011%
2× 30 0.074583 0.0000% 0.0000% 0.0080% -0.0010% -0.0002% 0.0021% 0.0002% 0.0001% 0.0002%
5× 1 0.005142 0.0008% 0.0002% 0.0005% -0.0552% 0.0002% -0.0017% 0.0196% 0.0009% 0.0026%
5× 2 0.009537 0.0007% -0.0005% 0.0015% -0.0577% -0.0010% -0.0058% 0.0552% 0.0030% 0.0121%
5× 5 0.020483 0.0004% 0.0003% 0.0092% -0.0669% -0.0071% -0.0112% 0.0592% 0.0132% 0.0312%
5× 10 0.034347 0.0002% -0.0002% 0.0132% -0.0636% -0.0129% -0.0027% 0.0321% 0.0137% 0.0190%
5× 20 0.052436 0.0001% 0.0000% 0.0119% -0.0248% -0.0046% 0.0104% 0.0079% 0.0044% 0.0039%
5× 30 0.062523 0.0000% 0.0000% 0.0104% -0.0096% -0.0016% 0.0090% 0.0027% 0.0016% 0.0012%

Panel B: Swaptions quoted at 115% of the forward swap rate
1× 1 0.007948 0.0002% -0.0002% -0.0001% -0.0207% -0.0002% -0.0005% 0.0021% 0.0000% 0.0006%
1× 2 0.015460 0.0001% -0.0001% 0.0008% -0.0127% -0.0001% 0.0003% 0.0040% 0.0006% 0.0026%
1× 5 0.036149 0.0000% 0.0000% 0.0036% -0.0027% -0.0002% 0.0018% 0.0007% 0.0004% 0.0014%
1× 10 0.063698 0.0000% 0.0000% 0.0052% -0.0001% 0.0000% 0.0004% 0.0000% 0.0000% 0.0000%
1× 20 0.098967 0.0000% 0.0000% 0.0046% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
1× 30 0.118291 0.0000% 0.0000% 0.0040% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

(continued)
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Table 2.3—Continued

Swaption Monte Percentage Pricing Errors of Analytical Approximations
× Carlo CA bounds LVA HA EE SD LA R1A

Swap price % SE lower upper
2× 1 0.007845 0.0003% -0.0001% 0.0001% -0.0319% -0.0001% -0.0009% 0.0062% 0.0002% 0.0010%
2× 2 0.015098 0.0002% 0.0002% 0.0014% -0.0245% 0.0000% -0.0006% 0.0135% 0.0016% 0.0049%
2× 5 0.034636 0.0001% 0.0001% 0.0051% -0.0117% -0.0011% 0.0033% 0.0056% 0.0022% 0.0052%
2× 10 0.060483 0.0000% 0.0000% 0.0073% -0.0021% -0.0004% 0.0034% 0.0007% 0.0004% 0.0006%
2× 20 0.093669 0.0000% 0.0000% 0.0065% 0.0000% 0.0000% 0.0002% 0.0000% 0.0000% 0.0000%
2× 30 0.111871 0.0000% 0.0000% 0.0056% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%
5× 1 0.006950 0.0004% -0.0005% -0.0002% -0.0437% 0.0005% -0.0019% 0.0102% 0.0000% 0.0008%
5× 2 0.013205 0.0003% 0.0010% 0.0025% -0.0374% 0.0007% -0.0017% 0.0278% 0.0035% 0.0069%
5× 5 0.029533 0.0002% -0.0002% 0.0062% -0.0295% 0.0036% 0.0008% 0.0196% 0.0056% 0.0092%
5× 10 0.050896 0.0001% 0.0000% 0.0093% -0.0122% 0.0026% 0.0087% 0.0053% 0.0028% 0.0026%
5× 20 0.078540 0.0000% 0.0000% 0.0083% -0.0009% 0.0002% 0.0031% 0.0002% 0.0001% 0.0001%
5× 30 0.093753 0.0000% 0.0000% 0.0071% -0.0001% 0.0001% 0.0008% 0.0000% 0.0000% 0.0000%
MPE 0.0000% 0.0052% -0.0212% -0.0013% 0.0006% 0.0106% 0.0022% 0.0053%

MAPE 0.0002% 0.0052% 0.0212% 0.0014% 0.0026% 0.0106% 0.0022% 0.0053%
MAE vol. 0.0076% 0.1455% 0.0434% 0.0124% 0.0387% 0.0138% 0.0093% 0.0129%

CPU (sec.) 174,856.55 5.46 0.28 15.47 1,903.70 0.56 2.96 0.60

This table values 36 in-the-money-forward (ITMF) European-style swaptions under the three-factor Gaussian and affine model specified in Tables 2.1 and

2.2. The first column shows the maturity (in years) of the swaption contract and of its underlying swap. The second and third columns contain the Monte

Carlo option price estimate and its percentage standard error (%SE) obtained using 109 paths, standard antithetic variables, and the exact probability

distribution of the state variables at the maturity date of the swaption contract. The bounds provided by the conditioning approach (CA) in Propositions

2.2 and 2.3 are implemented in the fourth and fifth columns. The sixth column contains the low-variance martingale approximation (LVA) of Schrager

and Pelsser (2006). The hyperplane approximation of Singleton and Umantsev (2002) is implemented at a 1% significance level in the seventh column.

The eighth column presents the Edgeworth expansion (EE) method of Collin-Dufresne and Goldstein (2002) using a third-order approximation for the

log-characteristic function of the terminal state vector. The last three columns contain the percentage pricing errors generated by the stochastic duration

(SD) approach of Munk (1999), the lognormal approximation (LA) of Pang (1996), and the rank 1 approximation (R1A) of Brace and Musiela (1994). The

last four lines report mean percentage pricing errors (MPE), mean absolute percentage pricing errors (MAPE), mean absolute volatility errors (MAE vol.),

and computation times (in seconds). All percentage errors are computed against the Monte Carlo price estimate.
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3 Pricing European-style Barrier Options under Stochas-

tic Interest Rates

Abstract

This paper offers an extremely fast and accurate novel methodology for the pricing of (long-term)

European-style single barrier options on underlying spot prices driven by a geometric Brownian

motion and under the stochastic interest rates framework of Vasiček (1977). The proposed

valuation methodology extends the stopping time approach of Kuan and Webber (2003) to a

more general setting, and expresses the price of a European-style barrier option in terms of the

first passage time density of the underlying asset price to the barrier level. Using several model

parameter constellations and option maturities, our numerical results show that the proposed

pricing approach is much more accurate and faster than the two-dimensional extended Fortet

method of Bernard et al. (2008).

JEL Classification: G13

Keywords: European-style barrier options; geometric Brownian motion; Vasiček model;

first passage time.
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3.1 Introduction

The main objective of this paper is to offer a fast and accurate novel methodology for

the pricing of European-style single barrier options on asset prices driven by a geometric

Brownian motion and under the stochastic interest rates framework of Vasiček (1977).

This paper generalizes the stopping time approach (ST approach, hereafter) first proposed

by Kuan and Webber (2003) for options on pure discount bonds, under single-factor term

structure models, and later extended by Dias et al. (2014) to the pricing of European-style

single and double barrier options under the jump to default extended constant elasticity

of variance (JDCEV) framework of Carr and Linetsky (2006).

European-style barrier options are path-dependent contingent claims, which are char-

acterized by a strike price and an upper or lower barrier level. These contracts become

standard European-style options if the barrier level is—for knock-in options—or is not—

for knock-out options—breached by the underlying spot price, during the option lifetime.

If not, the option expires worthless, in which case a cash rebate may be received by the op-

tion holder. The existence of a barrier makes these contracts cheaper than their standard

counterparts, and allow investors to better express their views about the future evolution

of the underlying spot price.

The pricing of European-style single barrier options has already been extensively an-

alyzed over the last decades—see, for instance, Merton (1973), Goldman et al. (1979),

Rubinstein and Reiner (1991) and Rich (1994)—but these studies are confined to a con-

stant interest rates setup. However, and as argued, for example, by Amin and Bodurtha

(1995), the underlying assumption regarding the evolution of interest rates has a signifi-

cant impact on the option price, namely when valuing long-maturity contracts.

To the authors’ knowledge, the pricing of European-style barrier options in the context

of a stochastic interest rate framework has only been pursued through the extended Fortet

method of Bernard et al. (2008). These authors extend the Fortet (1943) method and offer

a two-dimensional Markovian pricing approximation. In different contexts, the Fortet
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(1943) method has also been adopted, for instance, by Longstaff and Schwartz (1995),

for the pricing of risky debt, and by Collin-Dufresne and Goldstein (2001), for credit risk

modelling.

Our pricing methodology extends the ST approach of Kuan and Webber (2003) to a

two-factor option pricing model with stochastic interest rates, and expresses the European-

style barrier option price in terms of the density function of the first passage time of

the underlying asset price to the barrier level. Using the standard partition method of

Park and Schuurmann (1976), we are able to recover this hitting density as the implicit

solution of a non-linear integral equation. However, and since we are working under a two-

factor model, our valuation approach involves a double integral, in both time and interest

rate dimensions. In Section 3.3, we will show that our proposed pricing solution can be

simplified to require only one integration with respect to time, because the probability

density function of the short-term interest rate, conditional on the knock-in or knock-out

event, will be obtained in closed-form. Therefore, the ST approach will be shown to

be much more accurate and efficient than the extended Fortet method of Bernard et al.

(2008).

The remainder of this work is organized as follows. Section 3.2 succinctly describes the

model framework and the main features of the contracts under analysis. Sections 3.3 and

3.4 describe the novel pricing methodology proposed. Section 3.5 reviews the extended

Fortet method of Bernard et al. (2008). Section 3.6 implements the ST and the extended

Fortet valuation approaches, and compares both methodologies in terms of efficiency and

accuracy. Section 3.7 summarizes the main conclusions. All auxiliary results are relegated

to the Appendix.

3.2 Modelling architecture and contractual features

This section summarizes the pricing model adopted as well as the contractual features of

the barrier option contracts under analysis.
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3.2.1 Model set-up

The valuation of European-style barrier options will be explored in the context of an

arbitrage-free and frictionless financial market with continuous trading on the interval

T := [t0, T ], for some fixed time T > 0. As usual, uncertainty will be represented by a

complete probability space (Ω,G,Q), where Q, taken as given, will denote the equivalent

martingale measure obtained when the numéraire of the economy is a money market

account.

The underlying asset price S is specified through the geometric Brownian motion

dSt
St

= (rt − q) dt+ σSdW
Q
S (t) , (3.1)

where q ∈ R represents the dividend yield, rt denotes the time-t risk-free short-term

interest rate, σS ∈ R+ corresponds to the instantaneous volatility of asset returns, and

{WQ
S (t) , t ≥ t0} is a standard Brownian motion, defined under measure Q, and initialized

at zero. Furthermore, the short-term interest rate dynamics are described by the Ornstein-

Uhlenbeck process adopted by Vasiček (1977):

drt = α (γ − rt) dt+ σrdW
Q
r (t) , (3.2)

where γ ∈ R is the risk-adjusted long-term mean of r, α ∈ R+ is the speed of mean

reversion, σr ∈ R+ is the instantaneous volatility of r, and {WQ
r (t) , t ≥ t0} is also

a standard Brownian motion, defined under measure Q, and initialized at zero. The

Brownian motions {WQ
S (t) , t ≥ t0} and {WQ

r (t) , t ≥ t0} generate the augmented, right

continuous, and completed filtration F = {Ft : t ≥ t0}, and are assumed to be correlated:

d〈WQ
S ,W

Q
r 〉 (t) = ρdt, (3.3)

where |ρ| < 1.

In order to simplify the exposition, the correlated Brownian motions {WQ
S (t) , t ≥
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t0} and {WQ
r (t) , t ≥ t0} can be decomposed into two independent Brownian motions

{ZQ
S (t) , t ≥ t0} and {ZQ

r (t) , t ≥ t0}, such that

dWQ
S (t) = dZQ

S (t) , (3.4)

and

dWQ
r (t) = ρdZQ

S (t) +
√

1− ρ2dZQ
r (t) . (3.5)

Moreover, and using, for instance, Musiela and Rutkowski (2005, Equation (9.33)), it

follows that

dZQT
S (t) = dZQ

S (t) + ρσrBα (t, T ) dt (3.6)

and

dZQT
r (t) = dZQ

r (t) +
√

1− ρ2σrBα (t, T ) dt, (3.7)

where dZQT
S (t) and dZQT

r (t) are now standard Brownian motion increments in R and

under the forward martingale measure QT , which is obtained when the numéraire is

taken to be a default-free pure discount bond with maturity at time T (≥ t), whose time-t

price is defined as

P (rt, T ) = EQ

[
exp

[
−
∫ T

t

rudu

]∣∣∣∣Ft] , (3.8)

where EQ [X| Ft] denotes the expected value of a random variable X, conditional on the

σ-algebra Ft, and computed under the equivalent martingale measure Q.

Under the Vasiček (1977) model, and following, for instance, Brigo and Mercurio (2006,

Section 3.2.1), it is well known that P (rt, T ) is an exponential-affine function of the state

43



variable r:

P (rt, T ) = exp [A (t, T )−Bα (t, T ) rt] , (3.9)

where

A (t, T ) := [Bα (t, T )− (T − t)]
(
γ − σ2

r

2α2

)
− σ2

r

4α
B2
α (t, T ) , (3.10)

and

Bα (t, T ) :=
1− e−α(T−t)

α
. (3.11)

Hereafter, the analysis will be focused on the time-t value of European-style up barrier

put options on the asset price S, with strike price K, constant barrier level U ∈ R+ and

maturity at date T (≥ t), under a stochastic interest rate framework.3.1 For this pur-

pose, under the framework described by equations (3.1)-(3.3), and following, for instance,

Nunes (2011, Equations (29)-(31)), it is straightforward to show that the time-t price of

a standard European-style put on the asset price S, with strike price K, with maturity

date T (≥ t), and defined by

pt (S, r,K, T ) := P (rt, T )EQT
[
(K − ST )+

∣∣Ft] , (3.12)

can be computed through the following closed-form solution:

pt (S, r,K, T ) = KP (rt, T ) Φ [−d (S, rt) + vx (t, T )]− Ste−q(T−t)Φ [−d (S, rt)] , (3.13)

with

d (S, rt) :=
ln
[

St
KP (rt,T )

]
− q (T − t) + v2

x(t,T )
2

vx (t, T )
, (3.14)

3.1The corresponding down barrier, as well as European-style barrier call options, with similar technical
features, can be valued in a similar fashion, but will be omitted to contain the paper length.
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v2
x (t, T ) := σ2

S (T − t) +
2ρσSσr
α

[T − t−Bα (t, T )] (3.15)

+
σ2
r

α2
[T − t− 2Bα (t, T ) +B2α (t, T )] ,

and where P (rt, T ) is given by equation (3.9), Bα (t, T ) is given by definition (3.11),

B2α (t, T ) :=
1− e−2α(T−t)

2α
, (3.16)

and Φ (.) represents the cumulative density function of the univariate standard normal

law.

3.2.2 European-style barrier options

The holder of an up-and-out put owns a standard put if and only if the barrier is never

breached by the underlying spot price, during the option lifetime. However, if at any time

between the contract inception and its expiration date, the barrier is breached, then the

option contract is canceled (i.e. it is knocked out) and expires worthless, in which case a

cash rebate may be received, either when the barrier is breached, or at the maturity date

of the option. The next definition summarizes the contractual features of an up-and-out

put, with no rebate and with a constant barrier level.3.2

Definition 3.1. The time-T price of a unit face value and zero-rebate European-style

up-and-out put on the asset price S, with strike K, upper barrier level U ∈ R+, inception

at time t0, and maturity at time T (≥ t0) is equal to:

EKOT (S, r, U,K, T ) = (K − ST )+ I{τU>T}, (3.17)

where

τU := inf{u > t0 : Su = U} (3.18)

3.2Similarly to Bernard et al. (2008), we will ignore the existence of rebates.
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is the first passage time (from below) of the underlying asset price to the upper barrier

level, while I{A} denotes the indicator function of the set A.

On the other hand, the holder of an up-and-in barrier put owns a standard put if and

only if the barrier is breached by the underlying spot price during the option lifetime

(i.e. if the option is knocked in). However, if the barrier is never breached between the

contract inception and its expiration date, then the option contract is canceled and expires

worthless, in which case a cash rebate may be received at the maturity date of the option.

The next definition summarizes the contractual features of an up-and-in put, with no

rebate and with a constant barrier level.

Definition 3.2. The time-T price of a unit face value and zero-rebate European-style

up-and-in put on the asset price S, with strike K, upper barrier level U ∈ R+, inception

at time t0, and maturity at time T (≥ t0) is equal to:

EKIT (S, r, U,K, T ) = (K − ST )+ I{τU≤T}, (3.19)

where τU is still defined by equation (3.18).

3.3 The stopping time approach

This section offers a new approach for pricing European-style barrier options under the

financial model specified by equations (3.1) through (3.3). Assuming that the up-and-out

put option is still alive at the valuation date, i.e. τU > t0, equation (3.17) implies that its

time-t0 price is

EKOt0 (S, r, U,K, T ) = EQ

[
exp

[
−
∫ T

t0

rudu

]
(K − ST )+ I{τU>T}

∣∣∣∣Ft0] . (3.20)

Applying the change of measure technique of Geman et al. (1995, Corollary 2), equation

(3.20) can be restated as

EKOt0 (S, r, U,K, T ) = P (rt0 , T )EQT
[
(K − ST )+ I{τU>T}

∣∣Ft0] . (3.21)
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Since I{τU>T} = 1 − I{τU≤T}, equations (3.12), (3.19) and (3.21) yield the usual in-out

parity relation

EKOt0 (S, r, U,K, T ) = pt0 (S, r,K, T )− EKIt0 (S, r, U,K, T ) , (3.22)

where pt0 (S, r,K, T ) and

EKIt0 (S, r, U,K, T ) = P (rt0 , T )EQT
[
(K − ST )+ I{τU≤T}

∣∣Ft0] (3.23)

are, respectively, the time-t0 price of a standard European-style put and the time-t0 price

of a European-style up-and-in put, both contracts with technical features identical to

those of the up-and-out put under analysis.

The next proposition provides a quasi-analytical solution for the up-and-in put defined

by equation (3.23). Although this term involves three different random variables—namely,

the terminal asset price ST , the short-term interest rate r, and the first passage time τU—,

the Markov property inherent to equations (3.1) and (3.2) enables the decomposition of

their joint density via the convolution of their marginal probability laws.

Proposition 3.1. Under the financial model described by equations (3.1)-(3.3), the time-

t0 value of a unit face value and zero-rebate European-style up-and-in put on the asset

price S, with strike K, upper barrier level U ∈ R+ and maturity at time T (≥ t0) is equal

to

EKIt0 (S, r, U,K, T ) (3.24)

= P (rt0 , T )

∫ T

t0

{∫
R

pu (U, r,K, T )

P (r, T )
QT (ru ∈ dr|Su = U, rt0)

}
QT (τU ∈ du| Ft0) ,

where QT (τU ∈ du| Ft0) is the density function of the first passage time (3.18) under the

forward martingale measure QT .

Proof. Using identity (3.18), the expectation of the right-hand side of equation (3.23) can

be written as a function of the joint density of only two random variables: r and τU . That
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is,

EQT
[
(K − ST )+ I{τU≤T}

∣∣Ft0] (3.25)

=

∫
R

∫ T

t0

EQT
[
(K − ST )+

∣∣Su = U, ru
]
QT (ru ∈ dr, τU ∈ du| Ft0) .

Because both state variables (S and r) follow a Markov process, the joint density contained

in the right-hand side of equation (3.25) is simply the convolution between the density of

the first passage time τU , and the transition probability density function of r (conditional

on the asset price crossing the barrier U):

QT (ru ∈ dr, τU ∈ du| Ft0) = QT (ru ∈ dr|Su = U, rt0)QT (τU ∈ du| Ft0) . (3.26)

Combining equations (3.23), (3.25) and (3.26), then

EKIt0 (S, r, U,K, T ) (3.27)

= P (rt0 , T )

∫ T

t0

{∫
R
EQT

[
(K − ST )+

∣∣Su = U
]
QT (ru ∈ dr|Su = U, rt0)

}
×QT (τU ∈ du| Ft0) ,

and equation (3.24) follows from equation (3.12).

To solve explicitly the inner integration on the right-side of equation (3.24), it is essen-

tial to obtain a closed-form solution for the probability density of the short-term interest

rate, under the forward measure, and conditional on the asset price crossing the barrier

level U . Such result is provided in the following proposition.

Proposition 3.2. For the pricing model described through equations (3.1)-(3.3), and for

t0 ≤ t ≤ u ≤ T ,

QT (ru ∈ dr|Su = U, rt0) = φ
[
r;µr|x (xt0 , rt0 , t0, lnU, u) , v2

r|x (t0, u)
]
dr, (3.28)
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with

µr|x (xt, rt, t, xu, u) := µr (t, u) +
vr,x (t, u)

v2
x (t, u)

(xu − µx (xt, rt, t, u)) , (3.29)

v2
r|x (t, u) := v2

r (t, u)−
v2
r,x (t, u)

v2
x (t, u)

, (3.30)

µr (t, u) := e−α(u−t)rt + µ̄r (t, u) , (3.31)

µ̄r (t, u) :=

(
αγ − σ2

r

α

)
Bα (t, u) +

σ2
r

α
e−α(T−u)B2α (t, u) , (3.32)

v2
r (t, u) := σ2

rB2α (t, u) , (3.33)

µx (xt, rt, t, u) := xt +Bα (t, u) rt + µ̄x (t, u) , (3.34)

µ̄x (t, u) :=

(
γ − σ2

r

α2

)
[u− t−Bα (t, u)] (3.35)

+

[(
σ2
r

2α2
+
ρσSσr
α

)
e−α(T−u) − σ2

r

2α2
e−α(T−t)

]
Bα (t, u)

−
(
ρσSσr
α

+ q +
σ2
S

2

)
(u− t) ,

v2
x (t, u) := σ2

S (u− t) +
2ρσSσr
α

[u− t−Bα (t, u)]

+
σ2
r

α2
[u− t− 2Bα (t, u) +B2α (t, u)] , (3.36)

vr,x (t, u) :=

(
ρσSσr +

σ2
S

α

)
Bα (t, u)− σ2

r

α
B2α (t, u) , (3.37)
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and where

xt := lnSt, (3.38)

while φ (z;µ, σ2) represents the probability density function of a normally distributed uni-

variate random variable z, with mean µ and standard deviation σ.

Proof. Please see Appendix C.

Combining Propositions 3.1 and 3.2, as well as equations (3.9) and (3.13), the next

proposition offers a closed-form solution for the fair value of a European-style up-and-in

put that involves only one time-integral; i.e. the integration with respect to the short-term

interest rate state variable is solved explicitly.

Proposition 3.3. Under the financial model described by equations (3.1)-(3.3), the time-

t0 price of a unit face value and zero-rebate European-style up-and-in put on the asset

price S, with strike price K, upper barrier level U ∈ R+, and maturity at time T (≥ t0)

is equal to:

EKIt0 (S, r, U,K, T ) (3.39)

=

∫ T

t0

QT (τU ∈ du| Ft0)

{
KΦ [η (xt0 , rt0 , t0, u, T )]

−ϕ (xt0 , rt0 , t0, u, T ) Φ
[
η (xt0 , rt0 , t0, u, T )−

√
v2
x (u, T ) +B2

α (u, T ) v2
r|x (t0, u)

]}
,

with

ϕ (xt, rt, t, u, T ) (3.40)

:= exp

{
lnU − q (T − u)− A (u, T ) +Bα (u, T )µr|x (xt, rt, t, lnU, u)

+
1

2
B2
α (u, T ) v2

r|x (t, u)

}
,
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and

η (xt, rt, t, u, T ) (3.41)

:=
lnK − lnU + A (u, T ) + q (T − u) + v2

x(u,T )
2
−Bα (u, T )µr|x (xt, rt, t, lnU, u)[

v2
x (u, T ) +B2

α (u, T ) v2
r|x (t, u)

] 1
2

.

Proof. Please see Appendix D.

3.4 First passage time density

To implement the pricing solution offered by Proposition 3.3, it is necessary to compute

the first passage time density of the underlying asset price through the barrier level U .

The next proposition offers a Volterra integral equation of the second kind for this density.

Proposition 3.4. Under the pricing model described by equations (3.1)-(3.3), the first

passage time density of the underlying asset price to the barrier level U is the implicit

solution of the following nonlinear integral equation:

Φ [f (t0, u)] =

∫ u

t0

Φ [g (t0, l, u)]QT (τU ∈ dl| Ft0) , (3.42)

for u ∈ [t0, T ], with

f (t0, u) :=
µx (xt0 , rt0 , t0, u)− lnU

vx (t0, u)
, (3.43)

and

g (t0, l, u) :=
µ̄x (l, u) +Bα (l, u)µr|x (xt0 , rt0 , t0, lnU, l)√

v2
x (l, u) +B2

α (l, u) v2
r|x (t0, l)

. (3.44)
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Proof. By the law of total probability, and since St0 < U ,

QT (τU ≤ u| Ft0) = QT

{
sup
t0≤l≤u

(Sl) ≥ U, Su ≥ U

∣∣∣∣Ft0} (3.45)

+QT

{
sup
t0≤l≤u

(Sl) ≥ U, Su < U

∣∣∣∣Ft0} .
Given that

QT

{
sup
t0≤l≤u

(Sl) ≥ U, Su ≥ U

∣∣∣∣Ft0} = QT (Su ≥ U | Ft0) , (3.46)

and because both the underlying price process and the short-term interest rate are Marko-

vian, then equations (3.18), (3.45) and (3.46) yield

QT (τU ≤ u| Ft0)

= QT (Su ≥ U | Ft0) + QT (τU ≤ u, Su < U | Ft0)

= QT (Su ≥ U | Ft0) + QT (τU ≤ u| Ft0) (3.47)

−
∫ u

t0

∫
R
QT (Su ≥ U |Sl = U, r)QT (rl ∈ dr, τU ∈ dl| Ft0) .

Furthermore, equation (3.26) allows equation (3.47) to be rewritten as

QT (Su ≥ U | Ft0) (3.48)

=

∫ u

t0

[∫
R
QT (Su ≥ U |Sl = U, r)QT (rl ∈ dr|Sl = U, rt0)

]
QT (τU ∈ dl| Ft0) .

Using the marginal density function (C-12), the left-hand side of equation (3.48) be-

comes

QT (Su ≥ U | Ft0) = QT (xu ≥ lnU | Ft0)

= Φ [f (t0, u)] , (3.49)

where function f (.) is defined by equation (3.43). Furthermore, equations (3.34) and
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(C-12) imply that

∫
R
QT (Su ≥ U |Sl = U, r)QT (rl ∈ dr|Sl = U, rt0)

=

∫
R
QT (xu ≥ lnU |xl = lnU, r)QT (rl ∈ dr|xl = lnU, rt0)

=

∫
R

Φ

[
µ̄x (l, u) +Bα (l, u) r

vx (l, u)

]
QT (rl ∈ dr|xl = lnU, rt0) . (3.50)

Through Lemma D.1, the previous equation can be rewritten more concisely as

∫
R
QT (Su ≥ U |Sl = U, r)QT (rl ∈ dr|Sl = U, rt0) = Φ [g (t0, l, u)] , (3.51)

where function g (.) is defined by equation (3.44). Combining equations (3.48), (3.49) and

(3.51), equation (3.42) follows immediately.

Following, for instance, Kuan and Webber (2003) or Nunes (2009, Proposition 6),

the first passage time density can be efficiently computed through the standard partition

method proposed by Park and Schuurmann (1976). Thus, dividing the time interval [t0, T ]

into NPS subintervals of size h := (T − t0) /NPS, the probabilities Q (τU = t0 + ih| Ft0)

are obtained from the following recurrence relation:

Q (τU = t0 + ih| Ft0)

= Q (τU = t0 + (i− 1)h| Ft0) +

[
g

(
t0, t0 +

(2i− 1)h

2
, t0 + ih

)]−1

(3.52)

×

{
f (t0, t0 + ih)−

i−1∑
j=1

g

(
t0, t0 +

(2j − 1)h

2
, t0 + ih

)

× [Q (τU = t0 + jh| Ft0)−Q (τU = t0 + (j − 1)h| Ft0)]

}
,

for i = 1, ..., NPS and where Q (τU = t0| Ft0) = 0.
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3.5 Review of the extended Fortet method

To benchmark the accuracy and efficiency of the pricing approach proposed in Sections

3.3 and 3.4, this section briefly summarizes the extended Fortet method proposed by

Bernard et al. (2008) for the pricing of European-style barrier put options, under the

financial model defined by equations (3.1)-(3.3).

Following, for instance, Bernard et al. (2008) or Collin-Dufresne and Goldstein (2001,

Appendix B), the extended Fortet method starts by dividing the interval [t0, T ] into nT

subintervals of length δt = (T − t0) /nT , and the interest rate domain [rmin, rmax] into

nr subintervals of length δr = (rmax − rmin) /nr, where rmin and rmax are arbitrarily

defined bounds that induce a truncation error. In this setting, the time-t0 price of a

European-style up-and-out put is given by the in-out parity relation (3.22), where the

plain-vanilla European-style put price is still given by equation (3.13), while the corre-

sponding European-style up-and-in put price is equal to

EKIt0 (S, r, U,K, T ) = P (rt0 , T ) (KB −A) . (3.53)

Denoting by tj = t0 + jδt (for j = 1, ..., nT ) and ri = rmin + iδr (for i = 1, ..., nr) the

discretized time-periods and short-term interest rate values, it can be shown that A and

B can be computed through the following quasi-analytical formulas:

A ≈
nT∑
j=1

nr∑
i=1

κ (µx (lnU, ri, tj, T ) , vx (tj, T ) , K) q (i, j) (3.54)

and

B ≈
nT∑
j=1

nr∑
i=1

Φ

[
lnK − µx (lnU, ri, tj, T )

vx (tj, T )

]
q (i, j) , (3.55)

with

κ (m,σ, a) := em+σ2

2 Φ

[
ln a−m− σ2

σ

]
, (3.56)
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and where

q (i, j) := QT {rτU ∈ [ri, ri+1] , τU ∈ [tj, tj+1]| Ft0} (3.57)

represents the discretized version of the joint density of the short-term interest rate and

the first passage time (3.18), while µx (.) and v2
x (.) are computed through equations (3.34)

and (3.36), respectively. The densities q (i, j) can be computed through

q (i, 1) = δrΨ (xt0 , rt0 , t0, ri, t1;U) , (3.58)

for j = 1, and

q (i, j) = δr

[
Ψ (xt0 , rt0 , t0, ri, tj;U)−

j−1∑
k=1

nr∑
p=1

q (p, k) Ψ (lnU, rp, tk, ri, tj;U)

]
, (3.59)

for j = 2, ..., nT , with

Ψ (xt, rt, t, ru, u;U) := f (rt, t, ru, u) Φ

[
µx|r (xt, rt, t, ru, u)− lnU

vx|r (t, u)

]
, (3.60)

f (rt, t, ru, u) := φ
[
ru;µr (t, u) , v2

r (t, u)
]
, (3.61)

µx|r (xt, rt, t, ru, u) := EQT [xu| ru, xt]

= µx (xt, rt, t, u) +
vr,x (t, u)

v2
r (t, u)

(ru − µr (t, u)) , (3.62)

and

v2
x|r (t, u) := E2

QT
[
(xu − EQT [xu| ru, xt])2

∣∣ ru, xt]
= v2

x (t, u)−
v2
r,x (t, u)

v2
r (t, u)

, (3.63)

where µr (.) and v2
r (.) are given by equations (3.31) and (3.33), respectively.
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Equations (3.54), (3.55) and (3.59) show that the extended Fortet method is a two-

dimensional pricing approach since a double summation is run over both the time and

interest rate dimensions. This is similar, in nature, to the double integral that is presented

in Proposition 3.1, which constitutes a general result that can be applied to any Markovian

single factor interest rate model. However, under the Gaussian interest rate setup provided

equations (3.1)-(3.3), Proposition 3.3 shows that the integration with respect to the short-

term interest rate process can be solved explicitly. Therefore, one should expect the one-

dimensional ST approach to be more efficient than the two-dimensional extended Fortet

method.

3.6 Numerical results

This section implements the methods described in Sections 3.3, 3.4 and 3.5, by pricing

European-style up-and-out options, under the financial model described by equations

(3.1)-(3.3). The efficiency and accuracy of the novel ST approach is compared against the

methodology proposed by Bernard et al. (2008). Under the same framework, and in order

to obtain a benchmark to evaluate the accuracy of both alternative pricing methods, a

proxy for the exact European-style up-and-out put price is obtained through the numerical

solution of the following partial differential equation:

0 =
1

2
σ2
S

∂2EKOt (S, r, U,K, T )

∂x2
+ ρσSσr

∂2EKOt (S, r, U,K, T )

∂x∂r
(3.64)

+
1

2
σ2
r

∂2EKOt (S, r, U,K, T )

∂r2
+

(
rt − q −

σ2
S

2

)
∂EKOt (S, r, U,K, T )

∂x

+α (γ − rt)
∂EKOt (S, r, U,K, T )

∂r
+
∂EKOt (S, r, U,K, T )

∂t

−rtEKOt (S, r, U,K, T ) ,

subject to the boundary conditions

 limx→∞
∂EKOt(S,r,U,K,T )

dx
= 0

limx→−∞
∂EKOt(S,r,U,K,T )

dx
= −1

(3.65)
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and  limr→∞
∂EKOt(S,r,U,K,T )

dr
= 0

limr→−∞
∂EKOt(S,r,U,K,T )

dr
= 0

. (3.66)

Table 3.1 reports at-the-money one-year European-style up-and-out option prices, for

different initial asset price values, and under various model specifications retrieved from

Menkveld and Vorst (2000) or Nunes (2011, Table 2). The ST approach proposed is im-

plemented through Propositions 3.3 and 3.4, and equation (3.52) is applied with different

numbers of discretization time steps. The extended Fortet method proposed by Bernard

et al. (2008) is also implemented with different numbers of discretization steps for both

the time and interest rate dimensions.

In order to perceive the magnitude of the corresponding European-style up-and-in put,

the sixth column of Table 3.1 reports the value of the corresponding standard European-

style put, computed through equation (3.13). The benchmark for the true European-style

up-and-out price (seventh column of Table 3.1) is obtained by solving the partial differ-

ential equation (3.64) via an explicit finite difference method with 20, 000 time intervals

(using a forward difference approximation) and 200 space steps (using a central difference

approximation, in both x and r dimensions).3.3 The ST and the extended Fortet valuation

approaches are implemented through Matlab (R2013a), while the benchmark prices are

obtained through Python 3.4.4 (all computations are made on an Intel Core i7 PC).

[Please insert Table 3.1 about here]

Table 3.1 shows that the ST approach is the most accurate pricing approximation,

yielding a mean absolute percentage error (MAPE, hereafter) of only 11.2 basis points,

3.3It is well known that the convergence of numerical methods based on trees for pricing barrier options
can be very slow, since the barrier level assumed by the tree is different from the true barrier level.
Therefore, and in order to improve the accuracy of the benchmark price, we follow a simple procedure
described in Hull (2008, Section 26.6). First, we compute inner and outer barrier levels, corresponding to
the lattice nodes immediately before and after the true barrier level, respectively. Second, we calculate
the price of the barrier option, assuming that the inner barrier is the true barrier, and then repeat the
same procedure, assuming that the outer barrier is the true barrier. The benchmark price is then obtained
via interpolation between the two previously computed prices.
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even for a discretization involving only 256 time steps. The novel approach demonstrates

an excellent speed of convergence, since prices are virtually indistinguishable using 256,

512 or 1024 time steps. This applies across all contract specifications, including the ones

in which the initial underlying asset price is closer to the barrier level, thus suggesting that

our proposed approach does not suffer from the well known near barrier problem. The

ST approach is also the most efficient approximation, since the whole set of 36 contracts

is priced under a CPU time of only 2.7 seconds.

In contrast, the extended Fortet method of Bernard et al. (2008) is considerable less

accurate, yielding a MAPE of 57.4 basis points for a discretization with as much as 200

space steps. The accuracy of this approach considerably deteriorates as the instantaneous

volatility of asset returns increases, and the distance between the initial asset price and

the barrier level decreases. The extended Fortet method is also very time-consuming, as

it takes 16, 881.9 seconds to price all the 36 contracts. This is mainly the consequence of

the double summations involved in equations (3.54), (3.55) and (3.59).

[Please insert Table 3.2 about here]

Table 3.2 repeats the previous exercise, but for contracts with a time-to-maturity of

two years, yielding similar results: The ST approach yields a MAPE of 9.1 basis points

with a CPU time of only 6.1 seconds, using 512 time steps, while the extended Fortet

method is less accurate and much slower to convergence, reporting a MAPE of 68.3 basis

points and a CPU time of 16, 992.8 seconds.

[Please insert Table 3.3 about here]

The most challenging setup to test the efficiency and accuracy of both pricing methods

corresponds to the valuation of long-dated contracts. For this purpose, Table 3.3 reports

at-the-money European-style up-and-out option prices with a time-to-maturity of five

years. As before, the performance ST approach offers the best accuracy/efficiency trade-

off: It yields a MAPE of 12.4 basis points for a CPU time of only 6.1 seconds, using

512 time steps. On the other hand, the performance of the extended Fortet method
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substantially worsens with the increased contract maturity, reporting a MAPE of 98 basis

points—more than 8 times higher than the MAPE offered by the ST approach—and a

CPU time of 17, 035.7 seconds.

3.7 Conclusions

This paper extends the ST approach originally proposed by Kuan and Webber (2003) and

offers a novel approach for pricing European-style barrier options on asset prices driven

by a geometric Brownian motion and under the stochastic interest rates setup specified

by the Vasiček (1977) model.

Similarly to Kuan and Webber (2003), Proposition 3.1 writes the barrier option price

in terms of the first passage time density of the underlying asset price through the barrier

level. Again, this density is recovered—in Proposition 3.4—as the implicit solution of a

non-linear integral equation. However, and since we are dealing with a two-factor model,

our pricing solution involves a double integral, in both time and interest rate dimensions.

Given the Gaussian specification adopted for the short-term interest rate, and following

Nunes (2011), we are able to obtain an explicit solution—in Proposition 3.2—for the

probability density of the short-term interest rate, conditional on the knock-in or knock-

out event, and, therefore, we are left with a pricing solution—in Proposition 3.3—that

only involves an integration with respect to time. Moreover, and as shown by Nunes

(2011), our one-dimensional pricing solutions can be easily extended from the single-

factor Vasiček (1977) model to a multifactor Gaussian Heath, Jarrow, and Morton (1992)

framework, without increasing the dimensionality of the pricing problem. In contrast, the

extended Fortet method adopted by Bernard et al. (2008) is a two-dimensional pricing

approach.

The accuracy and efficiency of the ST approach is compared against the extended

Fortet method of Bernard et al. (2008) using several model parameter constellations and

option maturities. The numerical results obtained show that the ST approach is the
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most accurate and efficient pricing method, considering both short-term and long-term

contracts.
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C Proof of Proposition 3.2

Starting with the short-term interest rate, applying Itô’s lemma to yt = eαtrt, and using

equations (3.2) as well as (3.4)-(3.7), yields

dyt = αeαtrtdt+ eαtdrt

= eαt
[
αrt + α (γ − rt)− σ2

rBα (t, T )
]
dt+ eαt

[
ρσrdZ

QT
S (t) +

√
1− ρ2σrdZ

QT
r (t)

]
= eαt

[
αγ − σ2

rBα (t, T )
]
dt+ eαt

[
ρσrdZ

QT
S (t) +

√
1− ρ2σrdZ

QT
r (t)

]
. (C-1)

Integrating both sides of equation (C-1) between t and u (≥ t), and using definition (3.11),

yields

yu = yt +

∫ u

t

eαl
[
αγ − σ2

rBα (l, T )
]
dl

+ρσr

∫ u

t

eαldZQT
S (l) +

√
1− ρ2σr

∫ u

t

eαldZQT
r (l)

= yt + γ
(
eαu − eαt

)
− σ2

r

α2

(
eαu − eαt

)
+

σ2
r

2α2

[
e−α(T−2u) − e−α(T−2t)

]
(C-2)

+ρσr

∫ u

t

eαldZQT
S (l) +

√
1− ρ2σr

∫ u

t

eαldZQT
r (l) .

Attending to the definition of yt, and using definitions (3.11) and (3.16), the previous

equation yields the following strong solution for the stochastic differential equation (3.2):

ru = e−α(u−t)rt +

(
αγ − σ2

r

α

)
Bα (t, u) +

σ2
r

α
e−α(T−u)B2α (t, u) (C-3)

+ρσr

∫ u

t

e−α(u−l)dZQT
S (l) +

√
1− ρ2σr

∫ u

t

e−α(u−l)dZQT
r (l) .

Since any Itô’s integral with a deterministic integrand possesses a normal distribution

with zero mean and variance equal to its quadratic variation, equation (C-3) implies that

QT (ru ∈ dr| Ft) = φ
[
r;µr (t, u) , v2

r (t, u)
]
dr, (C-4)
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where µr (.) is given by equation (3.31), and the variance v2
r (.) is equal to

v2
r (t, u) = EQT

{
[ru − EQT (ru| Ft)]2

∣∣Ft}
= EQT

{[
ρσr

∫ u

t

e−α(u−l)dZQT
S (l) +

√
1− ρ2σr

∫ u

t

e−α(u−l)dZQT
r (l)

]2
∣∣∣∣∣Ft
}

= σ2
r

∫ u

t

e−2α(u−l)dl, (C-5)

where the last line follows from Itô’s isometry. Equation (3.33) follows directly from

equations (3.16) and (C-5).

Concerning the underlying asset price, combining equations (3.1) and (3.4)-(3.7), while

applying Itô’s lemma to xt = lnSt, yields

dxt =

[
rt − q −

σ2
S

2
− ρσSσrBα (t, T )

]
dt+ σSdZ

QT
S (t) . (C-6)

Integrating both sides of equation (C-6) between t and u (≥ t), while using equation (C-3),

yields

xu = xt +Bα (t, u) rt + µ̄x (t, u) (C-7)

+ρσr

∫ u

t

∫ l

t

e−α(l−s)dZQT
S (s) dl +

√
1− ρ2σr

∫ u

t

∫ l

t

e−α(l−s)dZQT
r (s) dl

+σS

∫ u

t

dZQT
S (l) ,

where

µ̄x (t, u) (C-8)

=

∫ u

t

[(
αγ − σ2

r

α

)
Bα (t, l) +

σ2
r

α
e−α(T−l)B2α (t, l)− q − σ2

S

2
− ρσSσrBα (l, T )

]
dl

yields equation (3.35) with the help of definitions (3.11) and (3.16). Changing the order

of integration, the second and third lines on the right-hand side of equation (C-7) can be
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restated as

ρσr

∫ u

t

∫ l

t

e−α(l−s)dZQT
S (s) dl +

√
1− ρ2σr

∫ u

t

∫ l

t

e−α(l−s)dZQT
r (s) dl

+σS

∫ u

t

dZQT
S (l)

= ρσr

∫ u

t

∫ u

s

e−α(l−s)dl dZQT
S (s) +

√
1− ρ2σr

∫ u

t

∫ u

s

e−α(l−s)dl dZQT
r (s)

+σS

∫ u

t

dZQT
S (l)

=

∫ u

t

[σS + ρσrBα (s, u)] dZQT
S (s) +

√
1− ρ2σr

∫ u

t

Bα (s, u) dZQT
r (s) , (C-9)

and, therefore, equation (C-7) can be rewritten as

xu = xt +Bα (t, u) rt + µ̄x (t, u) (C-10)

+

∫ u

t

[σS + ρσrBα (s, u)] dZQT
S (s) +

√
1− ρ2σr

∫ u

t

Bα (s, u) dZQT
r (s) .

Using equation (C-10),

v2
x (t, u) := EQT

{
[xu − EQT (xu| Ft0)]2

∣∣Ft0}
=

∫ u

t

[σS + ρσrBα (l, u)]2 dl +
(
1− ρ2

)
σ2
r

∫ u

t

B2
α (l, u) dl

=

∫ u

t

[
σ2
S + 2ρσSσrBα (l, u) + σ2

rB
2
α (l, u)

]
dl, (C-11)

where the second line follows from Itô’s isometry, and equation (3.36) is obtained from

definitions (3.11) and (3.16). Again using the fact that any Itô’s integral with a deter-

ministic integrand possesses a normal distribution with zero mean and variance equal to

its quadratic variation, then equations (C-10) and (C-11) imply that

QT (xu ∈ dx| Ft) = φ
[
x;µx (xt, rt, t, u) , v2

x (t, u)
]
dx, (C-12)

where µx (.) is given by equation (3.34).

Finally, in order to obtain the conditional density function (3.28), and following Mood
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et al. (1974, Page 167), it is necessary to show that the random variables r and x possess

a bivariate normal distribution. For this purpose, consider a linear combination of both

random variables,

y = ar + bx, (C-13)

for a, b ∈ R. Given the distribution functions (C-4) and (C-12), it follows directly that

such linear combination also possesses a univariate normal density function of the following

form:

QT (yu ∈ dy| Ft) (C-14)

= φ
[
y; aµr (t, u) + bµx (xt, rt, t, u) , a2v2

r (t, u) + b2v2
x (t, u) + 2abvx,y (t, u)

]
dy,

where the covariance vx,y (.) is given by

vx,y (t, u) := EQT { [ru − EQT (ru| Ft)] [xu − EQT (xu| Ft)]| Ft}

=

∫ u

t

[σS + ρσrBα (l, u)]
[
ρσre

−α(u−l)] dl
+

∫ u

t

[√
1− ρ2σrBα (l, u)

] [√
1− ρ2σre

−α(u−l)
]
dl

=

∫ u

t

[
ρσSσre

−α(u−l) + σ2
re
−α(u−l)Bα (l, u)

]
dl, (C-15)

from which equation (3.37) is obtained. Consequently, the moment generating function

of y is equal to

EQT {exp [s (aru + bxu)]| Ft} (C-16)

= exp
{
s [aµr (t, u) + bµx (xt, rt, t, u)]

+
s2

2

[
a2v2

r (t, u) + b2v2
x (t, u) + 2abvx,y (t, u)

] }
for any s ∈ R. Taking s = 1, and following Mood et al. (1974, Page 164), the right-hand

side of equation (C-16) can be understood as the joint moment generating function of r
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and x. The condition density function (3.28) follows directly.

D Proof of Proposition 3.3

Using equations (3.9) and (3.13), the inner integral on the right-hand side of equation

(3.24) can be rewritten as

∫
R

pu (U, r,K, T )

P (r, T )
QT (ru ∈ dr|Su = U, rt0) (D-1)

= K

∫
R

Φ [−d (U, r) + vx (u, T )]QT (ru ∈ dr|Su = U, rt0)

− exp [lnU − q (T − u)− A (u, T )]∫
R

exp [Bα (u, T ) r] Φ [−d (U, r)]QT (ru ∈ dr|Su = U, rt0) .

Through equation (3.14), the first integral on the right-hand side of equation (D-1)

becomes

K

∫
R

Φ [−d (U, r) + vx (u, T )]QT (ru ∈ dr|Su = U, rt0) (D-2)

= K

∫
R

Φ

[
lnK − lnU + A (u, T ) + q (T − u) + v2

x(u,T )
2
−Bα (u, T ) r

vx (u, T )

]
×QT (ru ∈ dr|Su = U, rt0) ,

where v2
x (.) is given by equation (3.15), and following Nunes (2011, Appendix B), the

integral contained in equation (D-2) can be explicitly computed through the following

lemma.

Lemma D.1. For a, b, c, θ, µ ∈ R and σ ∈ R+,

∫
R

exp (θz)φ
(
z;µ, σ2

)
Φ

(
a− bz
c

)
dz = exp

(
µθ +

1

2
σ2θ2

)
Φ

[
a− b (µ+ σ2θ)√

c2 + b2σ2

]
. (D-3)
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Applying Lemma D.1 to equation (D-2), while using Proposition 3.2, then

K

∫
R

Φ [−d (U, r) + vx (u, T )]QT (ru ∈ dr|Su = U, rt0) = KΦ [η (xt0 , rt0 , t0, u, T )] , (D-4)

where η (.) is given by equation (3.41).

Furthermore, and using again equation (3.14), the second integral on the right-hand

side of equation (D-1) can be rewritten as

∫
R

exp [Bα (u, T ) r] Φ [−d (U, r)]QT (ru ∈ dr|Su = U, rt0)

=

∫
R

exp [Bα (u, T ) r] Φ

[
lnK − lnU + A (u, T ) + q (T − u)− v2

x(u,T )
2
−Bα (u, T ) r

vx (u, T )

]
×QT (ru ∈ dr|Su = U, rt0)

= exp

[
µ r|x (xt0 , rt0 , t0, lnU, u)Bα (u, T ) +

1

2
v2
r|x (t0, u)B2

α (u, T )

]
(D-5)

×Φ

{[
lnK − lnU + A (u, T ) + q (T − u)− v2

x (u, T )

2

−Bα (u, T )
(
µ r|x (xt0 , rt0 , t0, lnU, u) + v2

r|x (t0, u)Bα (u, T )
)]

×
[
v2
x (u, T ) +B2

α (u, T ) v2
r|x (t0, u)

]− 1
2

}
where the second equality follows from Proposition 3.2 and Lemma D.1. Using definitions

(3.40) and (3.41), equation (D-5) implies that

exp [lnU − q (T − u)− A (u, T )]

∫
R

exp [Bα (u, T ) r] Φ [−d (U, r)] (D-6)

×QT (ru ∈ dr|Su = U, rt0)

= ϕ (xt0 , rt0 , t0, u, T ) Φ
[
η (xt0 , rt0 , t0, u, T )−

√
v2
x (u, T ) +B2

α (u, T ) v2
r|x (t0, u)

]
.

Proposition 3.3 arises after combining equations (D-1), (D-4) and (D-6).
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Table 3.1: Prices of European-style up-and-out puts under the financial framework defined
by equations (3.1)-(3.3), with a time-to-maturity of one year

T − t St0 σS rt0 γ EPut FD ST Approach Ext. Fortet method
(Yrs.) (%) (%) 256 512 1, 024 50 100 200

1 100 20 4 0.04332 5.91 5.90 5.90 5.90 5.90 5.90 5.90 5.90
1 110 20 4 0.04332 6.50 6.35 6.36 6.36 6.36 6.38 6.37 6.36
1 120 20 4 0.04332 7.09 5.94 5.95 5.95 5.95 6.03 5.98 5.96
1 130 20 4 0.04332 7.68 2.93 2.94 2.94 2.94 3.09 2.98 2.95
1 100 20 8 0.08332 4.33 4.32 4.32 4.32 4.32 4.33 4.32 4.32
1 110 20 8 0.08332 4.76 4.65 4.65 4.65 4.65 4.66 4.66 4.65
1 120 20 8 0.08332 5.20 4.30 4.30 4.30 4.30 4.36 4.32 4.31
1 130 20 8 0.08332 5.63 2.06 2.06 2.06 2.06 2.11 2.08 2.07
1 100 20 12 0.12332 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09
1 110 20 12 0.12332 3.40 3.31 3.31 3.31 3.31 3.32 3.32 3.31
1 120 20 12 0.12332 3.71 3.03 3.03 3.03 3.03 3.06 3.04 3.03
1 130 20 12 0.12332 4.02 1.41 1.41 1.41 1.41 1.43 1.41 1.41
1 100 30 4 0.04332 9.73 9.50 9.51 9.51 9.51 9.54 9.52 9.51
1 110 30 4 0.04332 10.71 9.56 9.58 9.58 9.58 9.68 9.61 9.59
1 120 30 4 0.04332 11.68 7.90 7.92 7.92 7.92 8.13 7.99 7.95
1 130 30 4 0.04332 12.65 3.45 3.46 3.46 3.46 3.81 3.54 3.50
1 100 30 8 0.08332 7.93 7.73 7.73 7.73 7.73 7.76 7.74 7.74
1 110 30 8 0.08332 8.72 7.74 7.75 7.75 7.75 7.83 7.78 7.76
1 120 30 8 0.08332 9.52 6.33 6.34 6.34 6.34 6.49 6.39 6.36
1 130 30 8 0.08332 10.31 2.71 2.72 2.72 2.72 2.87 2.78 2.74
1 100 30 12 0.12332 6.39 6.22 6.22 6.22 6.22 6.24 6.23 6.22
1 110 30 12 0.12332 7.03 6.20 6.20 6.20 6.20 6.27 6.22 6.21
1 120 30 12 0.12332 7.67 5.02 5.02 5.02 5.02 5.13 5.05 5.03
1 130 30 12 0.12332 8.31 2.11 2.12 2.12 2.12 2.21 2.15 2.13
1 100 50 4 0.04332 17.36 14.83 14.85 14.85 14.85 15.07 14.93 14.88
1 110 50 4 0.04332 19.09 13.40 13.42 13.42 13.42 13.79 13.55 13.47
1 120 50 4 0.04332 20.83 9.88 9.89 9.89 9.89 10.46 10.07 9.97
1 130 50 4 0.04332 22.56 3.92 3.93 3.93 3.93 4.81 4.14 4.03
1 100 50 8 0.08332 15.28 12.99 13.00 13.00 13.00 13.20 13.07 13.03
1 110 50 8 0.08332 16.81 11.68 11.70 11.70 11.70 12.00 11.80 11.74
1 120 50 8 0.08332 18.34 8.56 8.57 8.57 8.57 8.95 8.71 8.63
1 130 50 8 0.08332 19.86 3.38 3.38 3.38 3.38 3.81 3.57 3.45
1 100 50 12 0.12332 13.40 11.34 11.34 11.34 11.34 11.51 11.40 11.37
1 110 50 12 0.12332 14.74 10.15 10.16 10.16 10.16 10.42 10.25 10.20
1 120 50 12 0.12332 16.08 7.39 7.40 7.40 7.40 7.74 7.51 7.45
1 130 50 12 0.12332 17.42 2.89 2.90 2.90 2.90 3.21 3.02 2.95

MPE 0.112% 0.112% 0.112% 3.408% 1.187% 0.574%
MAPE 0.112% 0.112% 0.112% 3.408% 1.187% 0.574%
CPU 25,136.4 2.7 6.1 14.3 222.6 1,831.6 16,881.9

This table reports at-the-money European-style up-and-out put option prices under the financial model

described by equations (3.1)-(3.3), with a time to maturity of one year. The initial asset value (St0), the

instantaneous volatility of asset returns (σS), the short-term interest rate (rt0), and the risk-adjusted long

term mean of rt (γ) are given in the second to fifth columns. It is assumed that the barrier level is $135,

the dividend yield (q) is 0%, the speed of mean reversion (α) is 0.1, the instantaneous volatility of the

short-term interest rate (σr) is 1%, and the correlation coefficient between asset returns and the short-

term interest rate (ρ) is equal to −0.5. The sixth column contains the price provided by equation (3.13) for

the corresponding standard European-style put contracts, while the seventh column reports benchmark

prices computed through finite differences, with 20, 000 time intervals and 200 space steps. The next

three columns report option prices obtained via the ST approach implemented through Propositions 3.3

and 3.4, and using different numbers of time steps. Finally, the last three columns report prices obtained

via the extended Fortet method, as described in Section 3.5, also using different numbers of steps in the

time and interest rate dimensions. The last three lines report mean percentage pricing errors (MPE),

mean absolute percentage pricing errors (MAPE) and computation times (in seconds), for the whole set

of contracts under analysis.
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Table 3.2: Prices of European-style up-and-out puts under the financial framework defined
by equations (3.1)-(3.3), with a time-to-maturity of two years

T − t St0 σS rt0 γ EPut FD ST Approach Ext. Fortet method
(Yrs.) (%) (%) 256 512 1, 024 50 100 200

2 100 20 4 0.04332 7.15 7.01 7.01 7.01 7.01 7.03 7.02 7.02
2 110 20 4 0.04332 7.86 7.10 7.11 7.11 7.11 7.15 7.13 7.12
2 120 20 4 0.04332 8.58 5.88 5.88 5.88 5.88 5.97 5.92 5.90
2 130 20 4 0.04332 9.29 2.53 2.54 2.54 2.54 2.63 2.57 2.56
2 100 20 8 0.08332 4.42 4.33 4.33 4.33 4.33 4.34 4.33 4.33
2 110 20 8 0.08332 4.86 4.34 4.34 4.34 4.34 4.37 4.35 4.35
2 120 20 8 0.08332 5.31 3.52 3.52 3.52 3.52 3.55 3.53 3.52
2 130 20 8 0.08332 5.75 1.46 1.46 1.46 1.46 1.47 1.47 1.46
2 100 20 12 0.12332 2.59 2.52 2.53 2.53 2.53 2.53 2.53 2.53
2 110 20 12 0.12332 2.85 2.51 2.51 2.51 2.51 2.52 2.52 2.51
2 120 20 12 0.12332 3.11 1.99 1.99 1.99 1.99 2.00 1.99 1.99
2 130 20 12 0.12332 3.36 0.80 0.80 0.80 0.80 0.78 0.79 0.79
2 100 30 4 0.04332 12.33 11.11 11.12 11.12 11.12 11.20 11.16 11.14
2 110 30 4 0.04332 13.57 10.30 10.31 10.31 10.31 10.46 10.38 10.34
2 120 30 4 0.04332 14.80 7.75 7.76 7.76 7.76 7.96 7.84 7.80
2 130 30 4 0.04332 16.03 3.11 3.12 3.12 3.12 3.37 3.21 3.16
2 100 30 8 0.08332 9.01 8.05 8.05 8.05 8.05 8.11 8.08 8.06
2 110 30 8 0.08332 9.91 7.39 7.39 7.39 7.39 7.48 7.43 7.41
2 120 30 8 0.08332 10.81 5.47 5.48 5.48 5.48 5.58 5.52 5.50
2 130 30 8 0.08332 11.71 2.16 2.16 2.16 2.16 2.24 2.20 2.18
2 100 30 12 0.12332 6.43 5.69 5.70 5.70 5.70 5.73 5.71 5.70
2 110 30 12 0.12332 7.07 5.17 5.18 5.18 5.18 5.23 5.20 5.19
2 120 30 12 0.12332 7.71 3.78 3.78 3.78 3.78 3.83 3.80 3.79
2 130 30 12 0.12332 8.35 1.46 1.46 1.46 1.46 1.48 1.47 1.47
2 100 50 4 0.04332 22.63 16.18 16.19 16.19 16.19 16.51 16.33 16.26
2 110 50 4 0.04332 24.89 13.77 13.78 13.78 13.78 14.20 13.96 13.87
2 120 50 4 0.04332 27.15 9.62 9.63 9.63 9.63 10.17 9.85 9.74
2 130 50 4 0.04332 29.42 3.65 3.66 3.66 3.66 4.41 3.93 3.79
2 100 50 8 0.08332 18.58 13.11 13.12 13.12 13.12 13.35 13.22 13.17
2 110 50 8 0.08332 20.44 11.08 11.09 11.09 11.09 11.39 11.22 11.16
2 120 50 8 0.08332 22.29 7.69 7.69 7.69 7.69 8.03 7.85 7.77
2 130 50 8 0.08332 24.15 2.90 2.90 2.90 2.90 3.29 3.08 2.99
2 100 50 12 0.12332 15.13 10.54 10.54 10.54 10.54 10.72 10.62 10.58
2 110 50 12 0.12332 16.65 8.85 8.86 8.86 8.86 9.08 8.95 8.90
2 120 50 12 0.12332 18.16 6.10 6.10 6.10 6.10 6.34 6.20 6.15
2 130 50 12 0.12332 19.68 2.28 2.28 2.28 2.28 2.53 2.39 2.33

MPE 0.095% 0.091% 0.091% 2.956% 1.277% 0.658%
MAPE 0.095% 0.091% 0.091% 3.085% 1.331% 0.683%
CPU 26,165.4 2.7 6.1 14.6 217.3 1,832.7 16,992.8

This table reports at-the-money European-style up-and-out put option prices under the financial model

described by equations (3.1)-(3.3), with a time to maturity of two years. The initial asset value (St0), the

instantaneous volatility of asset returns (σS), the short-term interest rate (rt0), and the risk-adjusted long

term mean of rt (γ) are given in the second to fifth columns. It is assumed that the barrier level is $135,

the dividend yield (q) is 0%, the speed of mean reversion (α) is 0.1, the instantaneous volatility of the

short-term interest rate (σr) is 1%, and the correlation coefficient between asset returns and the short-

term interest rate (ρ) is equal to −0.5. The sixth column contains the price provided by equation (3.13) for

the corresponding standard European-style put contracts, while the seventh column reports benchmark

prices computed through finite differences, with 20, 000 time intervals and 200 space steps. The next

three columns report option prices obtained via the ST approach implemented through Propositions 3.3

and 3.4, and using different numbers of time steps. Finally, the last three columns report prices obtained

via the extended Fortet method, as described in Section 3.5, also using different numbers of steps in the

time and interest rate dimensions. The last three lines report mean percentage pricing errors (MPE),

mean absolute percentage pricing errors (MAPE) and computation times (in seconds), for the whole set

of contracts under analysis.
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Table 3.3: Prices of European-style up-and-out puts under the financial framework defined
by equations (3.1)-(3.3), with a time-to-maturity of five years

T − t St0 σS rt0 γ EPut FD ST Approach Ext. Fortet method
(Yrs.) (%) (%) 256 512 1, 024 50 100 200

5 100 20 4 0.04332 7.84 6.79 6.80 6.80 6.80 6.84 6.82 6.81
5 110 20 4 0.04332 8.62 6.09 6.09 6.09 6.09 6.15 6.12 6.11
5 120 20 4 0.04332 9.41 4.39 4.39 4.39 4.39 4.44 4.41 4.40
5 130 20 4 0.04332 10.19 1.67 1.68 1.68 1.68 1.68 1.68 1.68
5 100 20 8 0.08332 3.18 2.69 2.69 2.69 2.69 2.70 2.70 2.70
5 110 20 8 0.08332 3.50 2.35 2.35 2.35 2.35 2.36 2.36 2.36
5 120 20 8 0.08332 3.82 1.64 1.64 1.64 1.64 1.63 1.63 1.64
5 130 20 8 0.08332 4.14 0.60 0.60 0.60 0.60 0.56 0.58 0.59
5 100 20 12 0.12332 1.11 0.91 0.91 0.91 0.91 0.91 0.91 0.91
5 110 20 12 0.12332 1.22 0.78 0.78 0.78 0.78 0.78 0.78 0.78
5 120 20 12 0.12332 1.33 0.53 0.53 0.53 0.53 0.51 0.52 0.52
5 130 20 12 0.12332 1.44 0.18 0.18 0.18 0.18 0.16 0.17 0.18
5 100 30 4 0.04332 15.03 10.73 10.74 10.74 10.74 10.88 10.81 10.77
5 110 30 4 0.04332 16.53 9.05 9.06 9.06 9.06 9.22 9.14 9.10
5 120 30 4 0.04332 18.04 6.24 6.25 6.25 6.25 6.42 6.33 6.28
5 130 30 4 0.04332 19.54 2.34 2.33 2.33 2.33 2.50 2.41 2.37
5 100 30 8 0.08332 8.42 5.81 5.82 5.82 5.82 5.87 5.84 5.83
5 110 30 8 0.08332 9.27 4.82 4.83 4.83 4.83 4.87 4.85 4.83
5 120 30 8 0.08332 10.11 3.26 3.26 3.26 3.26 3.29 3.27 3.27
5 130 30 8 0.08332 10.95 1.19 1.19 1.19 1.19 1.19 1.19 1.19
5 100 30 12 0.12332 4.43 2.96 2.96 2.96 2.96 2.98 2.97 2.96
5 110 30 12 0.12332 4.88 2.42 2.42 2.42 2.42 2.42 2.42 2.42
5 120 30 12 0.12332 5.32 1.60 1.61 1.61 1.61 1.59 1.60 1.60
5 130 30 12 0.12332 5.76 0.57 0.57 0.57 0.57 0.53 0.55 0.56
5 100 50 4 0.04332 29.23 15.14 15.15 15.15 15.15 15.61 15.38 15.26
5 110 50 4 0.04332 32.15 12.22 12.23 12.23 12.23 12.77 12.50 12.36
5 120 50 4 0.04332 35.07 8.16 8.17 8.17 8.17 8.81 8.47 8.32
5 130 50 4 0.04332 38.00 2.99 3.00 2.99 2.99 3.80 3.37 3.17
5 100 50 8 0.08332 20.22 10.12 10.13 10.13 10.13 10.38 10.25 10.19
5 110 50 8 0.08332 22.24 8.10 8.11 8.11 8.11 8.39 8.25 8.17
5 120 50 8 0.08332 24.27 5.36 5.37 5.37 5.37 5.68 5.52 5.44
5 130 50 8 0.08332 26.29 1.95 1.96 1.95 1.95 2.31 2.12 2.03
5 100 50 12 0.12332 13.71 6.64 6.64 6.64 6.64 6.77 6.70 6.67
5 110 50 12 0.12332 15.09 5.27 5.28 5.28 5.28 5.41 5.34 5.30
5 120 50 12 0.12332 16.46 3.46 3.46 3.46 3.46 3.59 3.52 3.49
5 130 50 12 0.12332 17.83 1.24 1.25 1.25 1.25 1.38 1.31 1.28

MPE 0.140% 0.124% 0.120% 2.224% 1.090% 0.554%
MAPE 0.140% 0.124% 0.120% 4.127% 1.985% 0.980%
CPU 25,137.2 2.7 6.1 14.5 217.9 1,848.3 17,035.7

This table reports at-the-money European-style up-and-out put option prices under the financial model

described by equations (3.1)-(3.3), with a time to maturity of five years. The initial asset value (St0), the

instantaneous volatility of asset returns (σS), the short-term interest rate (rt0), and the risk-adjusted long

term mean of rt (γ) are given in the second to fifth columns. It is assumed that the barrier level is $135,

the dividend yield (q) is 0%, the speed of mean reversion (α) is 0.1, the instantaneous volatility of the

short-term interest rate (σr) is 1%, and the correlation coefficient between asset returns and the short-

term interest rate (ρ) is equal to −0.5. The sixth column contains the price provided by equation (3.13) for

the corresponding standard European-style put contracts, while the seventh column reports benchmark

prices computed through finite differences, with 20, 000 time intervals and 200 space steps. The next

three columns report option prices obtained via the ST approach implemented through Propositions 3.3

and 3.4, and using different numbers of time steps. Finally, the last three columns report prices obtained

via the extended Fortet method, as described in Section 3.5, also using different numbers of steps in the

time and interest rate dimensions. The last three lines report mean percentage pricing errors (MPE),

mean absolute percentage pricing errors (MAPE) and computation times (in seconds), for the whole set

of contracts under analysis.
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4 Pricing Credit and Equity Default Swaps under the

Jump to Default Extended CEV Model

Abstract

This paper offers a novel methodology for the pricing of credit and equity default swaps under the

jump to default extended constant elasticity of variance (JDCEV) model of Carr and Linetsky

(2006). The proposed method extends the stopping time approach of Kuan and Webber (2003),

and expresses the value of the building blocks of both contracts in terms of the first passage

time density of the underlying asset price to the contract triggering level. The numerical results

show that the proposed pricing methodology is extremely accurate and much faster than the

Laplace transform approach of Mendoza-Arriaga and Linetsky (2011).

JEL Classification: G13

Keywords: credit risk; default; credit default swaps; equity default swaps; CEV model;

JDCEV model; first passage time.
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4.1 Introduction

The main purpose of the present paper is to offer a novel valuation methodology for

credit default swaps (CDSs) and equity default swaps (EDSs) under the jump to default

extended constant elasticity of variance (hereafter, JDCEV) model proposed by Carr and

Linetsky (2006). This paper generalizes the stopping time approach (from now on, ST

approach) first proposed by Kuan and Webber (2003) for options on pure discount bonds,

under single-factor term structure models, and later extended by Dias et al. (2014) to the

pricing of European-style single and double barrier options under the JDCEV framework.

With the global financial crisis of 2007-09, CDSs became the most widely traded credit

derivative in financial markets.4.1 These securities can be thought of as an insurance

contract, which provides its buyer compensation in the case of a credit event of a ref-

erence entity. A credit event can encompass, but is not limited to, bankruptcy of the

reference entity, failure to pay, or a debt restructuring. In return, the credit default swap

(CDS) seller receives a series of periodic payments, up to the credit event or the contract

maturity, whichever occurs first. EDSs are hybrid credit-equity securities, which com-

bine characteristics of CDS contracts and equity barrier derivatives. These instruments,

originally launched around fifteen years ago, allow investors to simultaneously hedge the

equity and credit risk associated with a reference entity. Similarly to CDSs, the equity

default swap (EDS) pays its buyer a pre-determined amount in the case of a triggering

event, which in this case is defined as a sharp decrease (typically of 50% to 70%) in the

underlying stock of the reference entity. Conversely, the EDS seller also receives regular

payments through the life of the contract, up to the triggering event, if it occurs. Hence,

a CDS can be understood as an EDS with a triggering level equal to zero, since it is

expected that, in the event of a default, the stock price trades near zero.

There are two important consequences stemming from the differences between the

structures of CDSs and EDSs. First, the EDS swap rate is always greater than the CDS

4.1According to summary statistics reported by the Bank of International Settlements, the notional
amount of CDS contracts outstanding rose from $6.4 trillion in 2004, to $58.2 trillion in 2007, decreasing
thereafter to $12.3 trillion, at the end of 2015.
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swap rate. This is because the probability of a sharp stock decrease that triggers the

EDS protection payment is larger than the probability of default. Second, EDSs can

be considered more transparent and unambiguous than CDSs, since these contracts are

triggered when the stock price, an observable market variable, reaches a new low, whereas

CDSs are only triggered when a credit event occurs, which in many cases is not simple to

determine.

The pricing of EDS contracts has already been the subject of analysis in the academic

literature. Albanese and Chen (2005), based on the results of Davydov and Linetsky

(2001, 2003) for European-style barrier options with rebates, price EDS contracts under

the constant elasticity of variance (CEV, hereafter) model; Campi and Sbuelz (2009) em-

ploy a Laplace transform approach to price EDS contracts also under the CEV framework;

Atlan and Leblanc (2005, 2006) also work under the CEV assumption, but analyze other

specifications for the underlying price evolution, such as the constant elasticity of stochas-

tic variance (CESV) process—i.e. the Heston (1993) stochastic volatility model, coupled

with an uncorrelated CEV diffusion for the underlying price process; Baaquie et al. (2011)

study this issue from an empirical perspective, performing a calibration exercise of a CEV

process to market observed CDS and EDS spreads, using a data sample between 2004 and

2005.

The aforementioned models are consistent with two well-known empirical facts docu-

mented in the literature: the existence of a negative correlation between asset returns and

historical volatility—the leverage effect, shown, for instance, by Bekaert and Wu (2000)—,

and the inverse relation between option strike prices and implied volatility—the implied

volatility skew, observed, for example, by Dennis and Mayhew (2002). However, they do

not comply with the evidence of a positive link between default probabilities and stock

volatility, as described, for instance, by Campbell and Taksler (2003). To circumvent this

issue, Carr and Linetsky (2006) propose the JDCEV model, a unified framework to price

equity and credit derivatives, in which the stock price is modeled as a CEV process, prior

to default. Under this model, a default event can occur by diffusion of the underlying
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price process to zero, or by a jump to default, with an intensity specified as an affine

function of the instantaneous stock variance. Thus, this framework is able to link the

underlying stock price, the volatility of stock returns and the default intensity function.

To the authors’ knowledge, the valuation of EDSs under the JDCEV framework has

only been pursued by Mendoza-Arriaga and Linetsky (2011). In their paper, the authors

offer pricing formulae for the building blocks of an EDS contract (protection leg, premium

leg and accrued interest) via the inversion of the Laplace transform of several expectations

containing the first passage time of the underlying price process through the contract

triggering level. These authors are also able to price CDS contracts, by considering the

limit when the triggering level tends to zero.

Our faster pricing methodology extends the ST approach of Kuan and Webber (2003),

and expresses the value of the building blocks of CDS and EDS contracts in terms of

the density function of the first passage time of the underlying asset price to the contract

triggering level. Through the standard partition method of Park and Schuurmann (1976),

this hitting density is recovered as the implicit solution of a non-linear integral equation.

We note that the ST approach is able to accommodate the valuation of CDS and EDS

contracts under the constant elasticity of variance (CEV) model of Cox (1975), as a

special case. Moreover, we show that when the contract triggering level is set to zero, our

ST approach nests the CDS pricing solutions already offered, under the JDCEV model,

by Carr and Linetsky (2006), which do not depend on the first passage time density.

The remainder of this paper is organized as follows. Section 4.2 briefly describes the

JDCEV model framework and the main features underlying CDS and EDS contracts.

Sections 4.3, 4.4 and 4.5 generalize the ST approach for the valuation of the building blocks

of an EDS contract under the CEV and JDCEV models, thus nesting pricing formulas

for CDSs as a particular case. Section 4.6 reviews the Laplace transform approach of

Mendoza-Arriaga and Linetsky (2011). Section 4.7 implements the ST and the Laplace

transform approach, and compares both methodologies in terms of efficiency and accuracy.

Finally, Section 4.8 summarizes the main conclusions.
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4.2 Model setup

The valuation of CDSs and EDSs will be explored in the context of an arbitrage-free and

frictionless financial market, with continuous trading on the time interval T := [t0, T ], for

some fixed time T > 0. As usual, uncertainty will be represented by a complete probability

space (Ω,G,Q), where Q, taken as a given, will denote the equivalent martingale measure

obtained when the numéraire of the economy is a money market account.

In the JDCEV framework of Carr and Linetsky (2006), the (pre-default) price of the de-

faultable stock is modeled as a time-inhomogeneous diffusion process solving the stochastic

differential equation

dSt
St

= [r (t)− q (t) + λ(t, S)]dt+ σ(t, S)dWQ
t , (4.1)

with St0 > 0, and where the time-t risk-free short-term interest rate r (t) ∈ R and the

time-t dividend yield q (t) ∈ R are both modeled as deterministic functions of time.

Furthermore, the hazard rate λ (t, S) ≥ 0 (which compensates equityholders for default

with no recovery, thus ensuring an expected rate of return equal to the risk-free interest

rate, under measure Q) and the instantaneous volatility of returns σ (t, S) ∈ R+ can also

be state-dependent. Finally, {WQ
t , t ≥ t0} denotes a standard Brownian motion, defined

under measure Q, initialized at 0, and generating the filtration F = {Ft : t ≥ t0}.

Following Carr and Linetsky (2006, Page 311), and in order to ensure consistency with

the well-known leverage effect and the implied volatility skew, the instantaneous stock

volatility is specified as a power function of the stock price:

σ (t, S) = a (t)Sβ̄t , (4.2)

where β̄ < 0 is the elasticity of volatility, and a (t) > 0 is a deterministic volatility

scale function. Also, to be coherent with the empirical evidence of a positive relationship

between default probabilities and equity volatility, the default intensity is modeled as an
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affine function of the instantaneous stock variance:

λ (t, S) = b (t) + cσ (t, S)2

= b (t) + ca (t)2 S2β̄
t , (4.3)

where b (t) ≥ 0, and c ≥ 0 measures the sensitivity of λ to σ2.

In the JDCEV model, a default event is formally modeled as the stock price dropping

to zero, which can happen by diffusion of the underlying price process, or by a jump to

default. In the first case, default occurs at the first passage time of the stock price to 0:

τ0 := inf{t > t0 : St = 0}. (4.4)

Alternatively, the stock price can jump to an absorbing cemetery state (given that the

stock price has not yet reached zero by diffusion) whenever the integrated hazard process

Λt =

∫ t

t0

λ(u, S)du (4.5)

is greater or equal to the level drawn from an exponential random variable Θ independent

of {WQ
t , t ≥ t0} and with unit mean, i.e. at the first jump time

ζ̃ := inf{t > t0 : Λt ≥ Θ} (4.6)

of a doubly stochastic Poisson process with intensity λ(t, S). The default time is therefore

decomposable into a predictable component, τ0, whenever the diffusion process hits zero

via diffusion, and a totally inaccessible part, ζ̃, associated to the jump to default, i.e.:

ζ = τ0 ∧ ζ̃ . (4.7)

Moreover, D = {Dt : t ≥ t0} is the filtration generated by the default indicator process

Dt = I{t>ζ}, and G = {Gt : t ≥ t0} defines the enlarged filtration, i.e. Gt = Ft ∨ Dt.
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This general framework encompasses several other option pricing models as special

cases: if r, q and σ are assumed to be constant, and b = c = 0, then the standard

geometric Brownian motion (GBM) arises; also, if r and q are constant, b = c = 0, and

σ (t, S) = δS
β
2
−1

t , with δ ∈ R+ and β ∈ R, then the CEV model of Cox (1975) is obtained.

4.2.1 Contractual features

An EDS is a financial contract between two parties, through which the EDS buyer (also

known as the protection buyer or the holder of the protection leg) receives a protection

payment if and when the stock price drops below a pre-specified triggering level (defined

as a percentage of the stock price at the contract initiation4.2) until the expiry date of

the contract. The protection payment corresponds to the loss given default, calculated as

a percentage of the EDS nominal amount deducted from the recovery value. Conversely,

the EDS seller (the protection seller or the holder of the premium leg) receives periodic

premium payments at the EDS swap rate, up to the triggering event or the contract

maturity, whichever occurs first. Additionally, if the triggering event occurs between

premium payment dates, the EDS seller also receives accrued interest up to that time.

Therefore, and since no cash flows are exchanged at the inception of the contract,

the time-t0 arbitrage-free EDS swap rate % must be such that the present value of the

protection leg is equal to the present value of the premium leg, plus accrued interest. The

following definitions summarize the contractual features of these three building blocks.

Hereafter, and without loss of generality, a nominal amount of 1 is assumed.

Definition 4.1. The time-t0 value of the protection leg of an EDS contract written on

the asset price S, with triggering level L (> 0), recovery rate R ∈ (0, 1] and maturity at

time T (≥ t0) is equal to

PROTt0 (S, L,R, T ) = I{τD>t0} (1−R)EQ

[
e−

∫ τD
t0

r(l)dlI{τD≤T}
∣∣∣Gt0] , (4.8)

4.2If the triggering level is set to 0%, then the problem boils down to the pricing of a CDS.
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where

τD := ζ̃ ∧ τL (4.9)

is the contract triggering event time, and

τL := inf{t > t0 : St = L} (4.10)

is the first time the stock price drops below the triggering level L (≥ 0).

Definition 4.2. The time-t0 value of the stream of periodic premium payments of an EDS

contract on the asset price S, with an EDS swap rate %, and at times ti = t0 + i∆, for

i = 1, 2, ..., N , where ∆ := (T − t0) /N represents the length of each time interval, and N

is the maximum number of premium payments, is equal to4.3

PREMt0 (S, L, %,N, T ) = I{τD>t0}%∆
N∑
i=1

e−
∫ ti
t0
r(l)dlEQ

[
I{τD≥ti}

∣∣Gt0] . (4.11)

Definition 4.3. The time-t0 value of the accrued interest of an EDS contract on the asset

price S, with an EDS swap rate %, payable if the triggering event occurs between premium

4.3To ease the notation, we have assumed that ∆ is constant for all time intervals. In practice, the
length of the time intervals [ti, ti+1] must be adjusted attending to the daycount convention adopted.
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payment dates, is equal to

ACCINTt0 (S, L, %,N, T )

= I{τD>t0}%EQ

[
e−

∫ τD
t0

r(l)dl

(
τD −∆

⌊
τD
∆

⌋)
I{τD≤T}

∣∣∣∣Gt0]
= I{τD>t0}%

N−1∑
i=0

EQ

[
e−

∫ τD
t0

r(l)dl (τD − i∆) I{ti≤τD≤ti+1}

∣∣∣Gt0

]
= I{τD>t0}%

N−1∑
i=0

EQ

[
e−

∫ τD
t0

r(l)dlτD
(
I{τD≤ti+1} − I{τD<ti}

)∣∣∣Gt0]
−I{τD>t0}%

N−1∑
i=0

EQ

[
e−

∫ τD
t0

r(l)dli∆
(
I{τD≤ti+1} − I{τD<ti}

)∣∣∣Gt0]
= I{τD>t0}%EQ

[
e−

∫ τD
t0

r(l)dlτDI{τD≤T}
∣∣∣Gt0] (4.12)

−I{τD>t0}%
N−1∑
i=0

i∆
(
EQ

[
e−

∫ τD
t0

r(l)dlI{τD≤ti+1}

∣∣∣Gt0]− EQ

[
e−

∫ τD
t0

r(l)dlI{τD<ti}
∣∣∣Gt0]) .

where the b.c denotes the floor function.

From now on, and to lighten the notation, we will assume that neither the triggering

event nor the jump to default have occurred yet (i.e., τD > t0).

4.3 The stopping time approach

This section offers a new method for pricing EDSs under the time-inhomogeneous JDCEV

model. The pricing formulas for CDS contracts are also obtained as a particular case.

Before presenting our main results, the following proposition, taken as a special case

of Nunes et al. (2015, Proposition A.1), provides a general result for further reference

throughout the paper.
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Proposition 4.1. Under the JDCEV framework, and for τL defined through equation

(4.10),

EQ

[
e−

∫ τL
t0

λ(l,S)dlI{inft0<l<τL (Sl)>0}γ (τL) I{τL≤T}
∣∣∣Ft0] (4.13)

=

∫ T

t0

γ (u)SP (St0 , t0;u)Q (τL ∈ du| Ft0) ,

where γ : T → R+ is any real-valued deterministic function of time, Q (τL ∈ dv| Ft0)

denotes the Q-measured density function of the first passage time τL, and

SP (St0 , t0;T ) := EQ
[
I{ζ>T}

∣∣Gt0]
= I{ζ>t0}EQ

[
e
−

∫ T
t0
λ(l,S)dlI{τ0>T}

∣∣∣Ft0] (4.14)

represents the risk-neutral survival probability beyond time T (> t0), as defined in Carr

and Linetsky (2006, Equation 3.1).

Proof. Since St follows a pure Markovian process with respect to Ft0 , the left-hand side

of equation (4.13) can be restated in terms of the convolution between the densities of

the first passage time τL and of the random vector (S, τ0):

EQ

[
e−

∫ τL
t0

λ(l,S)dlI{inft0<l<τL (Sl)>0}γ (τL) I{τL≤T}
∣∣∣Ft0]

= EQ

[
e−

∫ τL
t0

λ(l,S)dlγ (τL) I{τ0≥τL}I{τL≤T}
∣∣∣Ft0]

=

∫ T

t0

EQ

[
e
−

∫ u
t0
λ(l,S)dl

γ (u) I{τ0≥u}
∣∣∣σ (Ft0 ∪ {τL = u})

]
Q (τL ∈ du| Ft0)

=

∫ T

t0

EQ

[
EQ [γ (u)|Su = L] e

−
∫ u
t0
λ(l,S)dlI{τ0≥u}

∣∣∣Ft0]Q (τL ∈ du| Ft0) , (4.15)

where the last line follows from the tower law of conditional expectations. Taking into

account that γ (u) is nonrandom, equation (4.15) becomes:

EQ

[
e−

∫ τL
t0

λ(l,S)dlI{inft0<l<τL (Sl)>0}γ (τL) I{τL≤T}
∣∣∣Ft0] (4.16)

=

∫ T

t0

γ (u)EQ

[
e
−

∫ u
t0
λ(l,S)dlI{τ0≥u}

∣∣∣Ft0]Q (τL ∈ du| Ft0) ,
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and equation (4.13) follows immediately from definition (4.14).

Remark 4.1. To use equation (4.13) under the CEV model, it is only necessary to take

b (t) = c = 0, for all t ∈ T .

Under the JDCEV framework and following Carr and Linetsky (2006, Equation 5.14),

the survival probability given by equation (4.14) can be obtained as

SP (St0 , t0;T ) = e
−

∫ T
t0
b(l)dl

(
x2 (St0)

θ (t0, T )

) 1
2|β̄|
M

(
− 1

2
∣∣β̄∣∣ ; 2 (1 + v+) ,

x2 (St0)

θ (t0, T )

)
, (4.17)

where

x (S) :=
1∣∣β̄∣∣S|β̄|, (4.18)

v+ :=
c+ 1

2∣∣β̄∣∣ , (4.19)

θ (t0, T ) :=

∫ T

t0

a (u)2 e
−2|β̄| ∫ ut0 [r(l)−q(l)+b(l)]dl

du, (4.20)

andM (p; v, λ) := Eχ2(v,λ) [Xp] is the p-th raw moment of a non-central chi-square random

variable X with v degrees of freedom and non-centrality parameter λ, as defined in Carr

and Linetsky (2006, Equation 5.10). As in Ruas et al. (2013), Dias et al. (2014) or Nunes

et al. (2015), the algorithm proposed by Dias and Nunes (2014) will be used for valuing

the truncated p-th moments

Φξ (p, y; v, λ) := Eχ2(v,λ)
[
XpI{ξX≥ξy}

]
, (4.21)

with ξ ∈ {−1, 1}. The raw moments M (p; v, λ) are then computed via the following
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identity, provided by Carr and Linetsky (2006, Equation 5.13):

M (p; v, λ) = Φ−1 (p, y; v, λ) + Φ+1 (p, y; v, λ) , (4.22)

for any y ∈ R.

4.3.1 CEV model

The next proposition offers a new approach for valuing the building blocks of an EDS

contract, under the CEV model.

Proposition 4.2. Under the CEV model, equations (4.8), (4.11) and (4.12) can be re-

stated as

PROTt0 (S, L,R, T ) = (1−R)

∫ T

t0

e−r(u−t0)Q (τL ∈ du| Ft0) , (4.23)

PREMt0 (S, L, %,N, T ) = %∆
N∑
i=1

[
e−r(ti−t0) − e−r(ti−t0)

∫ ti

t0

Q (τL ∈ du| Ft0)

]
, (4.24)

and

ACCINTt0 (S, L, %,N, T ) (4.25)

= %

∫ T

t0

e−r(u−t0)uQ (τL ∈ du| Ft0)− %
N−1∑
i=1

i∆

∫ ti+1

ti

e−r(u−t0)Q (τL ∈ du| Ft0) .

Proof. In the CEV model there is no jump to default, i.e., τD = τL, and the interest

rate r is constant. Moreover, τ0 > τL, i.e., the default time occurs always after the first

passage time of the price process through L. Therefore, the protection leg value (4.8) can

be rewritten as

PROTt0 (S, L,R, T ) = (1−R)EQ
[
e−r(τL−t0)I{τL≤T}

∣∣Ft0] . (4.26)
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Using Proposition 4.1, with γ (τL) = e−r(τL−t0) and b (t) = c = 0, equation (4.23) follows

from equation (4.26). Similarly, the premium leg value (4.11) becomes

PREMt0 (S, L, %,N, T ) = %∆
N∑
i=1

e−r(ti−t0)EQ
[
I{τL≥ti}

∣∣Ft0]
= %∆

N∑
i=1

{
e−r(ti−t0) − e−r(ti−t0)EQ

[
I{τL<ti}

∣∣Ft0]}.(4.27)

Using Proposition 4.1, with γ (τL) = 1 and b (t) = c = 0, equation (4.24) follows immedi-

ately. Finally, the accrued interest component (4.12) becomes

ACCINTt0 (S, L, %,N, T )

= %EQ
[
e−r(τL−t0)τLI{τL≤T}

∣∣Gt0] (4.28)

−%
N−1∑
i=1

i∆

{
EQ
[
e−r(τL−t0)I{τL≤ti+1}

∣∣Gt0]− EQ
[
e−r(τL−t0)I{τL<ti}

∣∣Gt0]}.
Using Proposition 4.1 with γ (τL) = e−r(τL−t0)τL and b (t) = c = 0, for the first expectation

on the right-hand side of equation (4.28), and with γ (τL) = e−r(τL−t0) and b (t) = c = 0,

for the second and third expectations, equation (4.25) is obtained.

Remark 4.2. In order to compute the time-t0 value of the three building blocks for a CDS

contract, Proposition 4.2 can be used while taking L = 0.

4.3.2 JDCEV model

Next proposition contains our main result and generalizes the previous analysis to the

context of the JDCEV framework. Again, we are able to price the three building blocks

of an EDS in terms of the first passage time density through the triggering level L.
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Proposition 4.3. Under the JDCEV model, equations (4.8), (4.11) and (4.12) can be

rewritten as

PROTt0 (S, L,R, T )

= (1−R)

{∫ T

t0

e
−

∫ u
t0
r(l)dl

SP (St0 , t0;u)Q (τL ∈ du| Ft0) (4.29)

+

∫ T

t0

e
−

∫ u
t0
r(l)dl

[
HD
t0

(St0 ;u)−
∫ u

t0

HD
v (L;u)SP (St0 , t0; v)Q (τL ∈ dv| Ft0)

]
du

}
,

PREMt0 (S, L, %,N, T ) (4.30)

= %∆
N∑
i=1

e−
∫ ti
t0
r(l)dl

[
SP (St0 , t0; ti)−

∫ ti

t0

SP (L, u; ti)SP (St0 , t0;u)Q (τL ∈ du| Ft0)

]
,

and

ACCINTt0 (S, L, %,N, T )

= %

∫ T

t0

ue
−

∫ u
t0
r(l)dl

(4.31)

×
[
HD
t0

(St0 ;u)−
∫ u

t0

HD
v (L;u)SP (St0 , t0; v)Q (τL ∈ dv| Ft0)

]
du

+%

∫ T

t0

e
−

∫ u
t0
r(l)dl

uSP (St0 , t0;u)Q (τL ∈ du| Ft0)− %
N−1∑
i=1

i∆

{∫ ti+1

ti

e
−

∫ u
t0
r(l)dl

×
[
HD
t0

(St0 ;u)−
∫ u

t0

HD
v (L;u)SP (St0 , t0; v)Q (τL ∈ dv| Ft0)

]
du

+

∫ ti+1

ti

e
−

∫ u
t0
r(l)dl

SP (St0 , t0;u)Q (τL ∈ du| Ft0)

}
,

where

HD
t (St;T )

:= b (T ) e−
∫ T
t b(l)dl

[
x2(St)

θ (t, T )

] 1
2|β̄|

M
(
− 1

2|β̄|
; 2 (1 + v+) ,

x2(St)

θ (t, T )

)
(4.32)

+ca (T )2 e
∫ T
t [2β̄(r(l)−q(l)+b(l))−b(l)]dl

× [x(St)]
1
|β̄| |β̄|−2 [θ (t, T )]

−1− 1
2|β̄|M

(
2β̄ − 1

2|β̄|
; 2 (1 + v+)

x2(St)

θ (t, T )

)
.
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Proof. Concerning the protection leg, and using definition (4.9), equation (4.8) can be

restated as

PROTt0 (S, L,R, T ) = (1−R)EQ

[
e−

∫ ζ̃∧τL
t0

r(l)dlI{ζ̃∧τL≤T}

∣∣∣∣Gt0]
= (1−R)EQ

[
e−

∫ τL
t0

r(l)dlI{ζ̃≥τL,τL≤T}
∣∣∣Gt0] (4.33)

+ (1−R)EQ

[
e
−

∫ ζ̃
t0
r(l)dlI{ζ̃<τL,ζ̃≤T}

∣∣∣∣Gt0] .
For the first term on the right-hand side of equation (4.33), we get

(1−R)EQ

[
e−

∫ τL
t0

r(l)dlI{ζ̃≥τL,τL≤T}
∣∣∣Gt0]

= (1−R)EQ

[
e−

∫ τL
t0

(r(l)+λ(l,S))dlI{τ0≥τL,τL≤T}
∣∣∣Ft0]

= (1−R)

∫ T

t0

e
−

∫ u
t0
r(l)dl

SP (S0, t0;u)Q (τL ∈ du| Ft0) , (4.34)

where the last line follows from Proposition 4.1, with γ (τL) = e−
∫ τL
t0

r(l)dl. For the second

term on the right-hand side of equation (4.33), and using, for instance, Carr and Linetsky

(2006, Equation 3.4), then

(1−R)EQ

[
e
−

∫ ζ̃
t0
r(l)dlI{ζ̃<τL,ζ̃≤T}

∣∣∣∣Gt0] (4.35)

= (1−R)

∫ T

t0

e
−

∫ u
t0
r(l)dlEQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τL>u}
∣∣∣Ft0] du.

Since τ0 ≥ τL and I{τ0≥τL,τL>u} = I{τ0>u,τL>u}, the expectation on the right-hand side of

equation (4.35) becomes

EQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τ0>u,τL>u}
∣∣∣Ft0]

= EQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τ0>u}
∣∣∣Ft0] (4.36)

−EQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τ0>u,τL≤u}
∣∣∣Ft0] .

Since the pre-default stock price S follows a Markovian process with respect to Ft0 , the

second expectation on the right-hand side of equation (4.36) can be rewritten in terms
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of the convolution between the densities of the first passage time τL and of the random

vector (Su, τ0). Therefore, equation (4.36) yields

EQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τ0>u,τL>u}
∣∣∣Ft0]

= EQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τ0>u}
∣∣∣Ft0]

−
∫ u

t0

EQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τ0>u}
∣∣∣σ (Ft0 ∪ {τL = v})

]
Q (τL ∈ dv| Ft0)

= EQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τ0>u}
∣∣∣Ft0]

−
∫ u

t0

EQ

[
EQ

[
e−

∫ u
v λ(l,S)dlλ (u, S) I{infv≤l≤u(Sl)>0}

∣∣∣Sv = L
]

e
−

∫ v
t0
λ(l,S)dlI{inft0<l≤v(Sl)>0}

∣∣∣Ft0]Q (τL ∈ dv| Ft0)

= HD
t0

(St0 ;u)−
∫ u

t0

HD
v (L;u)SP (St0 , t0; v)Q (τL ∈ dv| Ft0) , (4.37)

where the second equality follows from the tower law of conditional expectations, and the

last line uses equation (4.14) and the following definition:

HD
t (S;T ) := EQ

[
e−

∫ T
t λ(l,S)dlλ (T, S) I{inft≤l≤T (Sl)>0}

∣∣∣St = S
]
. (4.38)

Following Carr and Linetsky (2006, Proposition 5.4), the right-hand side of equation

(4.38) can be restated as an expectation over a function of a time-changed Bessel process
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{Rθ(t,u);u ≥ t} of index v+, and started at Rθ(t,t) = x (St):

HD
t (St;T )

= e−
∫ T
t b(l)dlE(v+)

x(St)

[(
Rθ(t,T )

x(St)

)− 1
|β̄|
(
b (T ) + ca (T )2 e2β̄

∫ T
t [r(l)−q(l)+b(l)]dl (|β̄|Rθ(t,T )

) 2β̄
|β̄|

)]

= e−
∫ T
t b(l)dl

{
b (T )

(
1

x(St)

)− 1
|β̄|

E(v+)
x(St)

[(
Rθ(t,T )

)− 1
|β̄|
]

+ca (T )2 e2β̄
∫ T
t [r(l)−q(l)+b(l)]dl

(
1

x(St)

)− 1
|β̄| (
|β̄|
) 2β̄
|β̄| E(v+)

x(St)

[(
Rθ(t,T )

) 2β̄−1
|β̄|

]}

= b (T ) e−
∫ T
t b(l)dl

[
θ (t, T )

x2(St)

]− 1
2|β̄|

E(v+)
x(St)

( R2
θ(t,T )

θ (t, T )

)− 1
2|β̄|
+ ca (T )2 (4.39)

×e
∫ T
t [2β̄(r(l)−q(l)+b(l))−b(l)]dl [x(St)]

1
|β̄|
(
|β̄|
) 2β̄
|β̄| [θ (t, T )]

2β̄−1
2|β̄| E(v+)

x(St)

( R2
θ(t,T )

θ (t, T )

) 2β̄−1
2|β̄|
 ,

where the expectation is taken with respect to a Bessel process {Rθ(t,u);u ≥ t} of index

v+ and started at Rθ(t,t) = x (St). Equation (4.39) yields equation (4.32) because
R2
θ(t,T )

θ(t,T )

follows a non-central chi-square law with 2 (1 + v+) degrees of freedom and non-centrality

parameter x2(St)
θ(t,T )

. Finally, combining equations (4.33)-(4.35) and (4.37)-(4.39), equation

(4.29) follows immediately.

For the premium leg, using again definition (4.9), the expectation on the right-hand

side of equation (4.11) can be written as

EQ
[
I{τD≥ti}

∣∣Gt0] = EQ

[
I{ζ̃∧τL≥ti}

∣∣∣Gt0]
= EQ

[
I{ζ̃≥ti,ζ̃≤τL} + I{τL≥ti,ζ̃>τL}

∣∣∣Gt0]
= EQ

[
I{ti≤ζ̃≤τL} + I{ti≤τL<ζ̃}

∣∣∣Gt0] . (4.40)

Since

I{ti≤τL} = I{ζ̃<ti≤τL} + I{ti≤ζ̃≤τL} + I{ti≤τL<ζ̃},
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then equation (4.40) becomes

EQ
[
I{τD≥ti}

∣∣Gt0] = EQ

[
I{ti≤τL} − I{ζ̃<ti≤τL}

∣∣∣Gt0]
= EQ

[
I{ti≤τL} − I{ζ̃<ti,ti≤τL}

∣∣∣Gt0]
= EQ

[
I{ζ̃≥ti,ti≤τL}

∣∣∣Gt0]
= EQ

[
I{ζ̃≥ti}

∣∣∣Gt]− EQ

[
I{ζ̃≥ti,τL<ti}

∣∣∣Gt0] . (4.41)

Using definition (4.7) and equation (4.14), the first term on the right-hand side of equation

(4.41) becomes

EQ

[
I{ζ̃≥ti}

∣∣∣Gt0] = SP (St0 , t0; ti) . (4.42)

Similarly, the second term on the right-hand side of equation (4.41) yields

EQ

[
I{ζ̃≥ti,τL<ti}

∣∣∣Gt0]
= EQ

[
e−

∫ ti
t0
λ(l,S)dlI{τ0≥ti,τL<ti}

∣∣∣Ft0]
=

∫ ti

t0

EQ

[
e−

∫ ti
t0
λ(l,S)dlI{τ0≥ti}

∣∣∣σ (Ft0 ∪ {τL = u})
]
Q (τL ∈ du| Ft0)

=

∫ ti

t0

EQ

{
EQ

[
e−

∫ ti
u λ(l,S)dlI{infu≤l<ti (Sl)>0}

∣∣∣Su = L
]

e
−

∫ u
t0
λ(l,S)dlI{inft0<l≤u(Sl)>0}

∣∣∣Ft0}Q (τL ∈ du| Ft0)

=

∫ ti

t0

SP (L, u; ti)SP (St0 , t0;u)Q (τL ∈ du| Ft0) , (4.43)

where the last line follows from equation (4.14). Combining equations (4.11), (4.41),

(4.42) and (4.43), equation (4.30) is obtained.

Finally, for the accrued interest component, and using again definition (4.7), the first
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expectation on the right-hand side of equation (4.12) can be rewritten as

EQ

[
e−

∫ τD
t0

r(l)dlτDI{τD≤T}
∣∣∣Gt0]

= EQ

[
e−

∫ ζ̃∧τL
t0

r(l)dl
(
ζ̃ ∧ τL

)
I{ζ̃∧τL≤T}

∣∣∣∣Gt0]
= EQ

[
e
−

∫ ζ̃
t0
r(l)dl

ζ̃I{ζ̃<τL,ζ̃≤T}

∣∣∣∣Gt0]+ EQ

[
e−

∫ τL
t0

r(l)dlτLI{τL≤ζ̃,τL≤T}
∣∣∣Gt0]

=

∫ T

t0

ue
−

∫ u
t0
r(l)dlEQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τL>u}
∣∣∣Ft0] du (4.44)

+EQ

[
e−

∫ τL
t0

[r(l)+λ(l,S)]dlτLI{τ0≥τL,τL≤T}
∣∣∣Ft0] ,

where the last line uses, for instance, Carr and Linetsky (2006, Equation 3.4). The inner

expectation on the first term of the right-hand side of equation (4.44) is exactly given by

equation (4.37). For the second term on the right-hand side of equation (4.44), Proposition

4.1, with γ (τL) = τLe
−

∫ τL
t0

r(l)dl implies that

EQ

[
e−

∫ τL
t0

[r(l)+λ(l,S)]dlτLI{τ0≥τL,τL≤T}
∣∣∣Ft0] (4.45)

=

∫ T

t0

e
−

∫ u
t0
r(l)dl

uSP (St0 , t0;u)Q (τL ∈ du| Ft0) .

The other two expectations on the right-hand side of (4.12) are similar to the one contained

in equation (4.8) and, hence, can be obtained from equation (4.29) with T replaced by ti

or ti+1:

EQ

[
e−

∫ τD
t0

r(l)dlI{τD≤ti+1}

∣∣∣Gt0]− EQ

[
e−

∫ τD
t0

r(l)dlI{τD<ti}
∣∣∣Gt0]

=

∫ ti+1

ti

e
−

∫ u
t0
r(l)dl

SP (St0 , t0;u)Q (τL ∈ du| Ft0) (4.46)

+

∫ ti+1

ti

e
−

∫ u
t0
r(l)dl

[
HD
t0

(St0 ;u)−
∫ u

t0

HD
v (L;u)SP (St0 , t0; v)Q (τL ∈ dv| Ft0)

]
du.

In summary, combining equations (4.12), (4.37), (4.44), (4.45) and (4.46), then equation

(4.31) arises immediately.
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Remark 4.3. For the pricing of CDS contracts, the above formulae can be further sim-

plified since we can take τL = τ0, and, hence, τD = ζ̃.

Taking τD = ζ̃ in equation (4.8), and using Carr and Linetsky (2006, Equation 5.15),

the time-t0 value of the protection leg is now given by

PROTt0 (S, 0, R, T ) = (1−R)

∫ T

t0

e
−

∫ u
t0
r(l)dl

HD
t0

(St0 ;u) du. (4.47)

Likewise, the expectation contained in the right-hand side of equation (4.11) is now the

survival probability of Carr and Linetsky (2006, Equation 5.14), and, therefore, the present

value of premium payments is equal to

PREMt0 (S, 0, %, R, T ) = %∆
N∑
i=1

e−
∫ ti
t0
r(l)dlSP (St0 , t0; ti) . (4.48)

Finally, and concerning the accrued interest value, equation (4.44) can be rewritten as

EQ

[
e−

∫ τD
t0

r(l)dlτDI{τD≤T}
∣∣∣Gt0] = EQ

[
e
−

∫ ζ̃
t0
rldlζ̃I{ζ̃≤T}

∣∣∣∣Gt0]
=

∫ T

t0

ue
−

∫ u
t0
r(l)dlEQ

[
e
−

∫ u
t0
λ(l,S)dl

λ (u, S) I{τ0>u}
∣∣∣Ft0] du

=

∫ T

t0

ue
−

∫ u
t0
r(l)dl

HD
t0

(St0 ;u) du, (4.49)

where the last line follows from definition (4.38). Since the last two expectations on the

right-hand side of equation (4.12) are now given by Carr and Linetsky (2006, Equation

5.15), equations (4.12) and (4.49) yield

ACCINTt0 (S, 0, %,N, T ) (4.50)

= %

{∫ T

t0

ue
−

∫ u
t0
r(l)dl

HD
t0

(St0 ;u) du−
N−1∑
i=1

i∆

∫ ti+1

ti

e
−

∫ u
t0
r(l)dl

HD
t0

(St0 ;u) du

}
.

Equations (4.47) and (4.48) correspond exactly to Carr and Linetsky (2006, Equations

5.15 and 5.14). Hence, our formulae for EDS contracts yield the pricing solutions for

CDS contracts already offered by Carr and Linetsky (2006) when L = 0. Furthermore,
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equations (4.47), (4.48) and (4.50) do not depend on the density of τL and, therefore,

should be very fast to implement.

4.4 First passage time density

To implement the pricing solutions offered by Propositions 4.2 and 4.3, it is necessary to

compute the first passage time density of the underlying asset price through the triggering

level L.

4.4.1 CEV model

We recall that under the CEV model of Cox (1975) the risk free interest rate (r) and the

dividend yield (q) are both assumed to be constant. Moreover, the elasticity parameter

(β) is related to the one of the JDCEV model through the relation β = 2
(
β̄ + 1

)
.

Proposition 4.4. Assuming that the underlying asset price S follows a CEV process, the

first passage time density of the underlying asset price through the triggering level L is

the implicit solution of the following nonlinear integral equation:

G−1 (t0, St0 ;u, L) =

∫ u

t0

G−1 (v, L;u, L)Q (τL ∈ dv| Ft0) , (4.51)

for u ∈ [t0, T ], with

G−1 (v, Sv;u, Su) =


Qχ2( 2

2−β ,2κv,uS
2−β
u )

(
2κv,uS

2−β
v e(2−β)(r−q)(u−v)

)
⇐ β < 2

Qχ2(2+ 2
β−2

,2κv,uS
2−β
v e(2−β)(r−q)(u−v))

(
2κv,uS

2−β
u

)
⇐ β > 2

, (4.52)

κv,u :=
2 (r − q)

(2− β) δ2 [e(2−β)(r−q)(u−v) − 1]
, (4.53)

and where Qχ2(v,λ) (x) represents the complementary distribution function of a non-central

chi-square law with v degrees of freedom, and non-centrality parameter λ.
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Proof. By the law of total probability,

Q (Su ≤ L| Ft0) = Q (Su ≤ L, τL ≤ u| Ft0) + Q (Su ≤ L, τL > u| Ft0)

= Q (Su ≤ L, τL ≤ u| Ft0) . (4.54)

The left-hand side of equation (4.54), which will be denoted by G−1 (t0, St0 ;u, L), rep-

resents the cumulative probability distribution function of the time-u (≥ t0) value for the

CEV process, conditional on its value at time-t0, and can be computed using equations

(4.52) and (4.53)—see, for instance, Schroder (1989, Equation 1) for β < 2, or Emanuel

and MacBeth (1982, Equation 7) for β > 2. Equation (4.52) can be rewritten in terms of

the function Φ+1 (.) defined in equation (4.21), with zero as its first argument, and it will

be also computed using the algorithm proposed by Dias and Nunes (2014).

Concerning the right-hand side of equation (4.54), and since S follows a Markovian

process, such probability can be written in terms of the convolution between the densities

of the first passage time τL and of the random vector (Su, τL):

Q (Su ≤ L, τL ≤ u| Ft0) = EQ
[
I{Su≤L,τL≤u}

∣∣Ft0]
=

∫ u

t0

EQ
[
I{Su≤L}

∣∣Sv = L
]
Q (τL ∈ dv| Ft0)

=

∫ u

t0

Q (Su ≤ L|Sv = L)Q (τL ∈ dv| Ft0) . (4.55)

Since Q (Su ≤ L|Sv = L) = G−1 (v, L;u, L), equation (4.51) follows immediately from

equations (4.54) and (4.55).

Following, for instance, Kuan and Webber (2003) or Nunes (2009, Proposition 6),

the first passage time density can be efficiently computed through the standard partition

method proposed by Park and Schuurmann (1976). Thus, dividing the time interval [t0, T ]

into NPS subintervals of size h := (T − t0) /NPS, the probabilities Q (τL = t0 + ih| Ft0)
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are obtained from the following recurrence relation:

Q (τL = t0 + ih| Ft0)

= Q (τL = t0 + (i− 1)h| Ft0) +

[
G−1

(
t0 +

(2i− 1)h

2
, L; t0 + ih, L

)]−1

(4.56){
G−1 (t0, St0 ; t0 + ih, L)−

i−1∑
j=1

G−1

(
t0 +

(2j − 1)h

2
, L; t0 + ih, L

)

[Q (τL = t0 + jh| Ft0)−Q (τL = t0 + (j − 1)h| Ft0)]

}
,

for i = 1, ..., NPS, and where Q (τL = t0| Ft0) = 0.

4.4.2 JDCEV model

Under the JDCEV model, the first passage time density of τL is still recovered through

the same type of Volterra integral equation as in Proposition 4.4. However, we now have

to consider also the possibility of a default event.

Proposition 4.5. Assuming that the underlying asset price S follows a JDCEV process,

the first passage time density of the underlying asset price through the triggering level L

is the implicit solution of the following nonlinear integral equation:

G−1 (t0, St0 ;u, L) =

∫ u

t0

G−1 (v, L;u, L)SP (St0 , t0; v)Q (τL ∈ dv| Ft0) , (4.57)

for u ∈ [t0, T ], where

G−1 (v, Sv;u, Su) (4.58)

= e−
∫ u
v b(l)dl

[
k2 (v, v;Sv)

θ (v, u)

] 1
2|β̄|

Φ−1

[
− 1

2
∣∣β̄∣∣ , k2 (v, u;Su)

θ (v, u)
; 2 (1 + v+) ,

k2 (v, v;Sv)

θ (v, u)

]
,

and

k (v, u;S) :=
1∣∣β̄∣∣S|β̄|e−|β̄| ∫ uv [r(l)−q(l)+b(l)]dl, (4.59)
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while v+ and θ (.) are still given by equations (4.19) and (4.20), respectively.

Proof. By the law of total probability,

Q (Su ≤ L, ζ > u| Gt0)

= Q (Su ≤ L, ζ > u, τL ≤ u| Gt0) + Q (Su ≤ L, ζ > u, τL > u| Gt0)

= Q (Su ≤ L, ζ > u, τL ≤ u| Gt0) . (4.60)

Using Carr and Linetsky (2006, Equation 3.2), the left-hand side of equation (4.60) be-

comes

Q (Su ≤ L, ζ > u| Gt0) = EQ
[
I{Su≤L,ζ>u}

∣∣Gt0]
= EQ

[
e
−

∫ u
t0
λ(l,S)dlI{Su≤L,τ0>u}

∣∣∣Ft0] . (4.61)

Furthermore, applying Carr and Linetsky (2006, Proposition 5.4) to equation (4.61), then

Q (Su ≤ L, ζ > u| Gt0)

= e
−

∫ u
t0
b(l)dlE(v+)

k(t0,t0;St0)

( Rθ(t0,u)

k (t0, t0;St0)

)− 1

|β̄|
I{

e
∫u
t0

[r(l)−q(l)+b(l)]dl
(|β̄|Rθ(t0,u))

1
|β̄| ≤L

}


= e
−

∫ u
t0
b(l)dl

E(v+)

k(t0,t0;St0)

(R2
θ(t0,u)

θ(t0,u)

)− 1
2|β̄|

I{
R2
θ(t0,u)
θ(t0,u)

≤L
2|β̄|e−2|β̄| ∫ut0 [r(l)−q(l)+b(l)]dl

|β̄|2θ(t0,u)

}


[
k2(t0,t0;St0)

θ(t0,u)

]− 1
2|β̄|

, (4.62)

where the expectation is taken with respect to the law of a Bessel process {Rθ(t0,u);u ≥ t0}

of index v+ and started at Rθ(t0,t0) = k (t0, t0;St0) = x (St0). Finally, and since
R2
θ(t0,u)

θ(t0,u)

follows a non-central chi-square law with 2 (1 + v+) degrees of freedom and non-centrality
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parameter
k2(t0,t0;St0)

θ(t0,u)
, equation (4.62) yields

Q (Su ≤ L, ζ > u| Gt0) = e
−

∫ u
t0
b(l)dl

Φ−1

[
− 1

2|β̄| ,
k2(t0,u;L)
θ(t0,u)

; 2 (1 + v+) ,
k2(t0,t0;St0)

θ(t0,u)

]
[
k2(t0,t0;St0)

θ(t0,u)

]− 1
2|β̄|

= G−1 (t0, St0 ;u, L) , (4.63)

where the last line follows from definition (4.58).

Concerning the right-hand side of equation (4.60),

Q (Su ≤ L, ζ > u, τL ≤ u| Gt0) = EQ
[
I{Su≤L,ζ>u,τL≤u}

∣∣Gt0]
= EQ

[
e
−

∫ u
t0
λ(l,S)dlI{Su≤L,τ0>u,τL≤u}

∣∣∣Ft0] , (4.64)

where the last line follows again from Carr and Linetsky (2006, Equation 3.2). Since S

is a Markovian process with respect to the filtration F, equation (4.64) can be rewritten

in terms of the convolution between the densities of the first passage time τL and of the

random vector (Su, τ0):

Q (Su ≤ L, ζ > u, τL ≤ u| Gt0)

=

∫ u

t0

EQ

[
e
−

∫ u
t0
λ(l,S)dlI{Su≤L,τ0>u}

∣∣∣σ (Ft0 ∪ {τL = v})
]
Q (τL ∈ dv| Ft0)

=

∫ u

t0

EQ

[
EQ

[
e−

∫ u
v λ(l,S)dlI{Su≤L,infv≤l≤u(Sl)>0}

∣∣∣Sv = L
]

(4.65)

e
−

∫ v
t0
λ(l,S)dlI{inft0<l≤v(Sl)>0}

∣∣∣Ft0]Q (τL ∈ dv| Ft0) ,

where the last line follows from the tower law for conditional expectations. Comparing

the inner expectation on the right-hand side of equation (4.65) with equation (4.61), and

using equation (4.63), then

EQ

[
e−

∫ u
v λ(l,S)dlI{Su≤L,infv≤l≤u(Sl)>0}

∣∣∣Sv = L
]

= G−1 (v, L;u, L) , (4.66)

94



and, hence, equation (4.65) can be rewritten as

Q (Su ≤ L, ζ > u, τL ≤ u| Gt0)

=

∫ u

t0

G−1 (v, L;u, L)EQ

[
e
−

∫ v
t0
λ(l,S)dlI{inft0<l≤v(Sl)>0}

∣∣∣Ft0]Q (τL ∈ dv| Ft0)

=

∫ u

t0

G−1 (v, L;u, L)SP (St0 , t0; v)Q (τL ∈ dv| Ft0) , (4.67)

where the last line follows from the definition of the survival probability, as given by

equation (4.14). Finally, combining equations (4.60), (4.63) and (4.67), equation (4.57)

follows immediately.

To compute the first passage time density, under the JDCEV model, equation (4.56) can

be easily adapted by replacing the term G−1 (v, L;u, L) with G−1 (v, L;u, L)SP (St0 , t0; v):

Q (τL = t0 + ih| Ft0)

= Q (τL = t0 + (i− 1)h| Ft0) (4.68)

+

[
G−1

(
t0 +

(2i− 1)h

2
, L; t0 + ih, L

)
SP

(
t0, St0 ; t0 +

(2i− 1)h

2

)]−1

{
G−1 (t0, St0 ; t0 + ih, L)

−
i−1∑
j=1

G−1

(
t0 +

(2j − 1)h

2
, L; t0 + ih, L

)
SP

(
t0, St0 ; t0 +

(2j − 1)h

2

)

[Q (τL = t0 + jh| Ft0)−Q (τL = t0 + (j − 1)h| Ft0)]

}
,

for i = 1, ..., NPS, and where Q (τL = t0| Ft0) = 0.

4.5 Review of the Laplace transform pricing methodology

To benchmark the accuracy and efficiency of the approach proposed in Sections 4.3 and

4.4, this section briefly summarizes the Laplace transform approach of Mendoza-Arriaga

and Linetsky (2011). The Laplace transform methodology is only applicable when working
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under the time-homogeneous version of the JDCEV model (as well as under the CEV

model), and expresses the present value of the building blocks of CDS and EDS contracts

in terms of infinite sums.

In this setting, the time-t0 value of the protection payment of an EDS contract, with

L > 0 and r − q + b > 0,4.4 is equal to

PROTt0 (S, L,R, T )

= (1−R)

S
1
2
−c+β̄Γ

(
c

|β̄| + 1

)
Γ (1 + v)

e−
A
2
S−2β̄

(4.69)

×
+∞∑
n=1

{
bL+ (n− 1, 0)

r + b+ ω (n− 1)

(
1− e−(r+b+ω(n−1))T

)
+

∣∣β̄∣∣ a2L+

(
n− 1, 2β̄

)
r + b+ ωn

(
1− e−(r+b+ωn)T

)
+
bM+ (n, 0) +

∣∣β̄∣∣ a2M+

(
n, 2β̄

)
r + ω

(
xn − v−1

2

)
+ ξ

(
1− e−(r+ω(xn− v−1

2 )+ξ)T
)}

+

(
S

L

)β̄−c+ 1
2

e−
A
2 (S−2β̄−L−2β̄)

W v−1
2
− r+ξ

ω
, v
2

(
AS−2β̄

)
W v−1

2
− r+ξ

ω
, v
2

(
AL−2β̄

)
+

+∞∑
n=1

ωe−(ω(xn− v−1
2 )+r+ξ)T

ω
(
xn − v−1

2

)
+ r + ξ

Wxn,
v
2

(
AS−2β̄

)
[
∂
∂x
Wx, v

2

(
AL−2β̄

)]∣∣
x=xn


 ,

with

L+ (n, p)

:=

A
1−2c
4|β̄| + 1

2
−δp
(

1 + 1

2|β̄| − δp
)
n

n!
×

{
M 1−2c

4|β̄| + 2n+1
2
−δp, v2

(
AS−2β̄

)
(4.70)

−
M 1−2c

4|β̄| + 2n+1
2
−δp, v2

(
AL−2β̄

)
W 1−2c

4|β̄| + 2n+1
2
−δp, v2

(
AL−2β̄

)W 1−2c
4|β̄| + 2n+1

2
−δp, v2

(
AS−2β̄

)}
,

4.4Mendoza-Arriaga and Linetsky (2011, Appendix B) also offer pricing solutions for the case r−q+b <
0. Nevertheless, the analysis carried out in Section 4.6 will be limited to the case r − q + b > 0.
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M+ (n, p)

:=
Mxn,

v
2

(
AL−2β̄

)
Wxn,

v
2

(
AS−2β̄

)
[
∂
∂x
Wx, v

2

(
AL−2β̄

)]∣∣
x=xn

(4.71)

×


Γ (v) 2F2

(
δp − 1

2|β̄| ,
1−v−2xn

2

1 + δp − 1

2|β̄| , 1− v ;AL−2β̄

)

A
v−1

2 L2β̄δp+1Γ

(
c

|β̄| + δp

)(
1

2|β̄| − δp
)

+A
1−2c
4|β̄| + 1

2
−δp

Γ

(
δp − 1

2|β̄|

)
Γ

(
1−2c

4|β̄| + 1
2
− δp − xn

)
Γ
(

1−v
2
− xn

)

−

Γ (−v) Γ
(

1+v−2xn
2

)
2F2

(
δp + c

|β̄| ,
1+v−2xn

2

1 + δp + c

|β̄| , 1 + v
;AL−2β̄

)

A−
1+v

2 L2β̄δp−2cΓ

(
c

|β̄| + δp + 1

)
Γ
(

1−v
2
− xn

)

,

v :=
1 + 2c

2
∣∣β̄∣∣ , (4.72)

A :=
|r − q + b|
a2
∣∣β̄∣∣ , (4.73)

ω := 2
∣∣β̄ (r − q + b)

∣∣ , (4.74)

ξ := 2c (r − q + b) + b, (4.75)

{xn, n = 1, 2, ...} :=
{
xn|Wx, v

2

(
AL−2β̄

)
= 0
}
, (4.76)
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δp :=

1 ⇐ p = 0

0 ⇐ p = 2
∣∣β̄∣∣ , (4.77)

and where Mx,m (z) and Wx,m (z) denote the first and second Whittaker functions, respec-

tively, Γ (z) is the Euler Gamma function, 2F2 is the generalized hypergeometric function,

(z)n = Γ (z + n) /Γ (z) is the Pochhammer symbol, and n! is the factorial of n.

Furthermore, the present value of the EDS periodic premium payments, also with L > 0

and r − q + b > 0, is given by

PREMt0 (S, L, %,N, T )

= %∆

S
1
2
−c+β̄Γ

(
c

|β̄| + 1

)
Γ (1 + v)

e−
A
2
S−2β̄

(4.78)

×
+∞∑
n=1

{
L+ (n− 1, 0)

(
1− e−(r+b+ω(n−1))∆N

e(r+b+ω(n−1))∆ − 1

)

+M+ (n, 0)

(
1− e−(r+ω(xn− v−1

2 )+ξ)∆N

e(r+ω(xn− v−1
2 )+ξ)∆ − 1

)}
,
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whereas the present value of the accrued interest component is

ACCINTt0 (S, L, %,N, T )

= %∆

S
1
2
−c+β̄Γ

(
c

|β̄| + 1

)
Γ (1 + v)

e−
A
2
S−2β̄

(4.79)

×
∞∑
n=1

{
bL+ (n− 1, 0)

(
1− e−(r+b+ω(n−1))T

)
r + b+ ω (n− 1)

×
(

1

r + b+ ω (n− 1)
+

∆

1− e(r+b+ω(n−1))∆

)
+
L+

(
n− 1, 2β̄

) (
1− e−(r+b+ωn)T

)
(r + b+ ωn) /

(∣∣β̄∣∣ a2
) (

1

r + b+ ωn
+

∆

1− e(r+b+ωn)∆

)

+

(
b+ L+ (n, 0) +

∣∣β̄∣∣ a2M+

(
n, 2β̄

)) (
1− e−(r+ω(xn− v−1

2
+ξ)T)

)
r + b+

(
xn − v−1

2

)
+ ξ

×

(
1

r + ω
(
xn − v−1

2

)
+ ξ

+
∆

1− e(r+ω(xn− v−1
2 )+ξ)∆

)}

+%

(
S

L

)β̄−c+ 1
2

+
e−

AS−2β̄

2

e−
AL−2β̄

2


∞∑
n=1

Wxn,
v
2

(
AS−2β̄

)
(

2xn−v+1
2

+ r+ξ
ω

) [
∂
∂x
Wx, v

2

(
AL−2β̄

)]∣∣
x=xn

×

 e−(ω(xn− v−1
2 )+r+ξ)T

ω
(
xn − v−1

2

)
+ r + ξ

−
∆
(

1− e−(ω(xn− v−1
2 )+r+ξ)T

)
1− e(ω(xn− v−1

2 )+r+ξ)∆



+


[
∂
∂ρ
Wρ, v

2

(
AS−2β̄

)]
ω
[
∂
∂ρ
Wρ, v

2

(
AL−2β̄

)] − Wρ, v
2

(
AS−2β̄

) [
∂
∂ρ
Wρ, v

2

(
AL−2β̄

)]
ω
[
∂
∂ρ
Wρ, v

2

(
AL−2β̄

)]2


∣∣∣∣∣∣∣
ρ= v−1

2
− r+ξ

ω

 .

For the pricing of CDS contracts, since L = 0, equations (4.69), (4.78) and (4.79) can
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be simplified into:

PROTt0 (S, 0, R, T )

= (1−R)

S
1
2
−c+β̄Γ

(
c

|β̄| + 1

)
Γ (1 + v)

e−
A
2
S−2β̄

(4.80)

×
+∞∑
n=1

{
bD+ (n− 1, 0)

r + b+ ω (n− 1)

(
1− e−(r+b+ω(n−1))T

)
+

∣∣β̄∣∣ a2D+

(
n− 1, 2β̄

)
r + b+ ωn

(
1− e−(r+b+ωn)T

)}
,

PREMt0 (S, 0, %,N, T ) (4.81)

= %∆

S
1
2
−c+β̄Γ

(
c

|β̄| + 1

)
Γ (1 + v)

e−
A
2
S−2β̄ ×

+∞∑
n=1

D+ (n− 1, 0)

(
1− e−(r+b+ω(n−1))∆N

e(r+b+ω(n−1))∆ − 1

)
,

and

ACCINTt0 (S, 0, %,N, T )

= %∆

S
1
2
−c+β̄Γ

(
c

|β̄| + 1

)
Γ (1 + v)

e−
A
2
S−2β̄

(4.82)

×
+∞∑
n=1

{
bD+ (n− 1, 0)

(
1− e−(r+b+ω(n−1))T

)
r + b+ ω (n− 1)

×
(

1

r + b+ ω (n− 1)
+

∆

1− e(r+b+ω(n−1))∆

)
+
D+

(
n− 1, 2β̄

) (
1− e−(r+b+ωn)T

)
(r + b+ ωn) /

(∣∣β̄∣∣ a2
) (

1

r + b+ ωn
+

∆

1− e(r+b+ωn)∆

)}
,

where

D+ (n, p) := A
1−2c

|β̄| + 1
2
−δp

(
1 + 1

2|β̄| − δp
)
n

n!
M 1−2c

4|β̄| + 2n+1
2
−δp, v2

(
AS−2β̄

)
. (4.83)
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4.6 Numerical results

This section implements the methods described in Sections 4.3, 4.4 and 4.5, by pricing

CDS and EDS contracts written on CEV and JDCEV processes. The efficiency and ac-

curacy of the novel ST approach is compared against the Laplace transform approach

proposed by Mendoza-Arriaga and Linetsky (2011). Both valuation approaches are im-

plemented through Mathematica 9, running on an Intel Core i7 PC.

For the ST approach, all numerical integrations are performed through a 5-point Gauss-

Legendre quadrature, as described in Press et al. (1994, Page 184). For the Laplace

transform approach, and following Mendoza-Arriaga and Linetsky (2011, Footnote 2),

the first and second Whittaker functions are computed via the algorithm offered by Abad

and Sesma (1995, Page 76). Moreover, the zeros of the second Whittaker function, defined

by equation (4.76), are computed using the built-in Mathematica function FindRoot. In

order to obtain a benchmark to evaluate the accuracy of both alternative pricing methods,

we also present the results reported by Mendoza-Arriaga and Linetsky (2011, Tables 2

and 3).

Table 4.1 reports CDS and EDS swap rates under the standard CEV model, for a

set of 8 contract maturities specified in the first column, and using the same parameter

constellation as in Mendoza-Arriaga and Linetsky (2011, Table 2), i.e. St0 = 50, r = 5%,

q = 0%, δ = 20, β = 0, R = 50% and ∆ = 0.25. Under this framework, the ST approach

proposed is implemented through Propositions 4.2 and 4.4, and equation (4.56) is applied

with different numbers of discretization time steps. The Laplace transform approach

of Mendoza-Arriaga and Linetsky (2011) is also implemented with different numbers of

summation terms.

[Insert Table 4.1 about here]

Table 4.1 shows that the ST approach yields extremely accurate swap rates, identical

to the ones reported by Mendoza-Arriaga and Linetsky (2011, Table 2), even for a crude

discretization involving as few as 128 time steps. The computational efficiency of the
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novel ST approach is also remarkable: It takes only 16.9 seconds for CDS rates, and 31.7

(38.9) seconds for EDS rates with L = 30% (L = 50%, respectively), when using 128 time

steps.

In contrast, the Laplace transform approach of Mendoza-Arriaga and Linetsky (2011)

involves a larger computational burden: It takes 116.4 seconds for computing the whole set

of CDS rates, with 250 summation terms, and 232.9 (271.2) seconds for EDS rates, with

L = 30% (L = 50%, respectively), when using 500 summation terms. This methodology is

substantially slower than the ST approach we propose, mainly because the computation of

EDS swap rates involves the time-consuming search for the roots of the second Whittaker

function.

Table 4.2 repeats the previous analysis, but for the time-homogeneous version of the

JDCEV model. Since we test the accuracy of our results against the Laplace transform

approach of Mendoza-Arriaga and Linetsky (2011), the analysis will be focused on the

time-independent parameterization, even though it is straightforward to extend the ST

approach proposed for the time-inhomogeneous case.

Remark 4.4. Under the time-homogeneous JDCEV model, equations (4.20) and (4.59)

are reduced to

θ (v, u) :=


a2

2|β̄|(r−q+b)
(

1− e−2|β̄|(r−q+b)(u−v)
)
⇐ r − q + b 6= 0

a2 (u− v) ⇐ r − q + b = 0
, (4.84)

and

k (v, u;S) :=
1∣∣β̄∣∣S|β̄|e−|β̄|(r−q+b)(u−v). (4.85)

The JDCEV model parameters considered are also borrowed from Mendoza-Arriaga

and Linetsky (2011, Table 3): St0 = 50, r = 5%, q = 0%, a = 20, b = 0.02, c = 1,

β̄ = −1, R = 50% and ∆ = 0.25. The ST approach is now implemented using Remark

4.2 for CDSs, and Propositions 4.3 and 4.5, for EDSs, while equation (4.68) is applied
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considering different numbers of discretization time steps.

[Insert Table 4.2 about here]

Table 4.2 further highlights the superiority of the ST approach, in terms of accuracy

and efficiency: For CDS rates, it takes only 0.3 seconds to price all the 8 contracts, which

is substantially faster than under the CEV model (see Table 4.1), since, in this setting,

equations (4.47), (4.48) and (4.50) do not depend on the density of τL, and hence on the

number of time steps used. For EDS rates with L = 30% (L = 50%), the CPU time

corresponds to 853.4 (863.7, respectively) seconds, when using 211 time steps.

The methodology proposed by Mendoza-Arriaga and Linetsky (2011) is considerably

less efficient: It takes 619.1 seconds to compute the whole set of CDS rates (using 9, 000

summation terms), and 1, 702, 8 (1, 493.3) seconds for EDS rates with L = 30% (L = 50%,

respectively) and 4, 000 (3, 000, respectively) summation terms. As before, the efficiency

of the Laplace transform approach is negatively impacted by the need to find the zeros of

the second Whittaker function for the computation of EDS swap rates.

4.7 Conclusions

This paper extends the ST approach of Kuan and Webber (2003) and offers a novel

approach for valuing CDS and EDS contracts under the CEV model of Cox (1975) and

the JDCEV model of Carr and Linetsky (2006). Under the CEV model, the triggering

event may occur only by diffusion of the underlying price process; under the JDCEV

framework, the triggering event may also occur via a jump-to-default of the price process.

Propositions 4.2 (under the CEV model) and 4.3 (under the JDCEV framework) offer

pricing solutions for each one of the building blocks of CDS and EDS contracts, which

involve only one integration with respect to the density function of the first passage time

of the underlying asset price to the contract triggering level. Furthermore, for the pricing

of CDS contracts under the JDCEV model, Remark 4.3 shows that the ST approach

nests the pricing solutions already offered by Carr and Linetsky (2006) when the contract
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triggering level is set to zero. Again, under both models, the hitting time density is

recovered—in Propositions 4.4 and 4.5—as the implicit solution of a non-linear equation.

The accuracy and efficiency of ST approach is compared against the Laplace transform

valuation methodology proposed by Mendoza-Arriaga and Linetsky (2011). The numerical

results show that the ST approach is the most efficient pricing method. Moreover, and in

opposition to the Laplace transform methodology, the ST approach has been formulated

under the most general time-inhomogeneous formulation of the JDCEV model.
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Table 4.1: Time-t0 value of the protection leg, premium leg and accrued interest of CDS and EDS contracts, and the corresponding
premium rates % (in basis points per annum), under the CEV model

Panel A - CDS spreads
Time Reported Stopping time approach Laplace transform approach
(Yrs.) MA-L (2011) NPS = 64 NPS = 128 n = 250 n = 500

PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT %
0.25 0.0000 0.2469 0.0000 0 0.0000 0.2469 0.0000 0 0.0000 0.2469 0.0000 0 0.0000 0.2469 0.0000 0 0.0000 0.2469 0.0000 0
0.5 0.0002 0.4906 0.0001 3 0.0002 0.4906 0.0001 3 0.0002 0.4906 0.0001 3 0.0002 0.4906 0.0001 3 0.0002 0.4906 0.0001 3
1 0.0050 0.9660 0.0014 52 0.0050 0.9660 0.0014 52 0.0050 0.9660 0.0014 52 0.0050 0.9660 0.0014 52 0.0050 0.9660 0.0014 52
2 0.0295 1.8497 0.0077 159 0.0295 1.8497 0.0077 159 0.0295 1.8497 0.0077 159 0.0295 1.8497 0.0077 159 0.0295 1.8497 0.0077 159
3 0.0547 2.6397 0.0139 206 0.0547 2.6397 0.0139 206 0.0547 2.6397 0.0139 206 0.0547 2.6397 0.0139 206 0.0547 2.6397 0.0139 206
5 0.0905 3.9880 0.0228 226 0.0905 3.9880 0.0228 226 0.0905 3.9880 0.0228 226 0.0905 3.9880 0.0228 226 0.0905 3.9880 0.0228 226
7 0.1119 5.1055 0.0281 218 0.1119 5.1055 0.0280 218 0.1119 5.1055 0.0281 218 0.1119 5.1055 0.0281 218 0.1119 5.1055 0.0281 218
10 0.1300 6.4778 0.0325 200 0.1300 6.4778 0.0325 200 0.1300 6.4778 0.0325 200 0.1300 6.4778 0.0325 200 0.1300 6.4778 0.0325 200

MPE – – – – 0.000% 0.000% -0.044% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
MAPE – – – – 0.000% 0.000% 0.044% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
CPU – – – – 7.9 16.9 116.4 154.6

Panel B - EDS spreads (with L = 30%)
Time Reported Stopping time approach Laplace transform approach
(Yrs.) MA-L (2011) NPS = 64 NPS = 128 n = 250 n = 500

PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT %
0.25 0.0002 0.2468 0.0001 8 0.0002 0.2468 0.0001 8 0.0002 0.2468 0.0001 8 0.0002 0.2468 0.0001 9 0.0002 0.2468 0.0001 8
0.5 0.0056 0.4878 0.0018 114 0.0056 0.4878 0.0018 114 0.0056 0.4878 0.0018 114 0.0056 0.4878 0.0018 114 0.0056 0.4878 0.0018 114
1 0.0329 0.9414 0.0088 346 0.0329 0.9414 0.0088 346 0.0329 0.9414 0.0088 346 0.0329 0.9413 0.0088 346 0.0329 0.9414 0.0088 346
2 0.0852 1.7335 0.0217 485 0.0852 1.7335 0.0217 485 0.0852 1.7335 0.0217 485 0.0852 1.7335 0.0217 485 0.0852 1.7335 0.0217 485
3 0.1194 2.4078 0.0301 490 0.1194 2.4078 0.0301 490 0.1194 2.4078 0.0301 490 0.1194 2.4078 0.0301 490 0.1194 2.4078 0.0301 490
5 0.1577 3.5237 0.0395 443 0.1577 3.5237 0.0395 443 0.1577 3.5237 0.0395 443 0.1577 3.5237 0.0396 443 0.1577 3.5237 0.0396 443
7 0.1773 4.4332 0.0444 396 0.1773 4.4332 0.0444 396 0.1773 4.4332 0.0444 396 0.1773 4.4332 0.0444 396 0.1773 4.4332 0.0444 396
10 0.1925 5.5443 0.0481 344 0.1925 5.5443 0.0481 344 0.1925 5.5443 0.0481 344 0.1925 5.5443 0.0482 344 0.1925 5.5443 0.0482 344

MPE – – – – 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% -0.001% 0.058% 1.563% 0.000% 0.000% 0.058% 0.000%
MAPE – – – – 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.001% 0.058% 1.563% 0.000% 0.000% 0.058% 0.000%
CPU – – – – 11.3 31.7 144.5 232.9
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Table 4.1—Continued

Panel C - EDS spreads (with L = 50%)
Time Reported Stopping time approach Laplace transform approach
(Yrs.) MA-L (2011) NPS = 64 NPS = 128 n = 250 n = 500

PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT %
0.25 0.0054 0.2442 0.0022 221 0.0054 0.2442 0.0022 221 0.0054 0.2442 0.0022 221 0.0054 0.2442 0.0022 221 0.0054 0.2442 0.0022 221
0.5 0.0333 0.4715 0.0097 693 0.0333 0.4715 0.0097 693 0.0333 0.4715 0.0097 693 0.0333 0.4715 0.0097 693 0.0333 0.4715 0.0097 693
1 0.0896 0.8748 0.0234 997 0.0896 0.8748 0.0234 997 0.0896 0.8748 0.0234 997 0.0896 0.8748 0.0234 997 0.0896 0.8748 0.0234 997
2 0.1550 1.5392 0.0392 982 0.1550 1.5392 0.0392 982 0.1550 1.5392 0.0392 982 0.1550 1.5392 0.0392 982 0.1550 1.5392 0.0392 982
3 0.1890 2.0866 0.0475 885 0.1890 2.0866 0.0475 885 0.1890 2.0866 0.0475 885 0.1890 2.0866 0.0475 885 0.1890 2.0866 0.0475 885
5 0.2228 2.9778 0.0558 734 0.2228 2.9778 0.0558 735 0.2228 2.9778 0.0558 734 0.2228 2.9778 0.0558 734 0.2228 2.9778 0.0558 734
7 0.2389 3.6994 0.0598 636 0.2389 3.6994 0.0597 636 0.2389 3.6994 0.0598 636 0.2389 3.6994 0.0598 636 0.2389 3.6994 0.0598 636
10 0.2508 4.5804 0.0627 540 0.2508 4.5804 0.0626 540 0.2508 4.5804 0.0627 540 0.2508 4.5804 0.0627 540 0.2508 4.5804 0.0627 540

MPE – – – – 0.000% 0.000% -0.041% 0.017% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
MAPE – – – – 0.000% 0.000% 0.041% 0.017% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
CPU – – – – 13.1 38.9 155.2 271.2

This table reports the time-t0 value of the building blocks of CDS and EDS contracts, and the corresponding premium rates (in basis points per annum)

under the CEV model, using the same model parameters as in Mendoza-Arriaga and Linetsky (2011, Table 2), i.e. St0 = 50, r = 5%, q = 0%, δ = 20, β = 0,

R = 50% and ∆ = 0.25, for the contract maturities specified in the first column. Panel A reports results for CDS contracts, while Panels B and C report

results for EDS contracts, with L = 30% and L = 50%, respectively. In the three panels, columns 2 to 5 reproduce the values reported in Mendoza-Arriaga

and Linetsky (2011, Table 2). Columns 6 to 13 are obtained via the ST approach of Propositions 4.2 and 4.4, and using different numbers of time steps.

Columns 14 to 21 describe the results generated by the MA-L valuation approach of Mendoza-Arriaga and Linetsky (2011), as described in Section 4.6,

with different numbers of summation terms. The last three lines report mean percentage pricing errors (MPE), mean absolute percentage pricing errors

(MAPE) and computation times (in seconds), for the whole set of maturities under analysis.
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Table 4.2: Time-t0 value of the protection leg, premium leg and accrued interest of CDS and EDS contracts, and the corresponding
premium rates % (in basis points per annum), under the JDCEV model

Panel A - CDS spreads
Time Reported Stopping time approach Laplace transform approach
(Yrs.) MA-L (2011) NPS = 1, 024 NPS = 2, 048 n = 8, 000 n = 9, 000

PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT %
0.25 0.0219 0.2360 0.0054 908 0.0219 0.2360 0.0054 908 0.0219 0.2360 0.0054 908 0.0219 0.2360 0.0054 909 0.0219 0.2360 0.0054 908
0.5 0.0427 0.4588 0.0106 909 0.0427 0.4588 0.0106 909 0.0427 0.4588 0.0106 909 0.0427 0.4588 0.0106 910 0.0427 0.4588 0.0106 909
1 0.0799 0.8680 0.0197 900 0.0799 0.8680 0.0197 900 0.0799 0.8680 0.0197 900 0.0799 0.8680 0.0197 900 0.0799 0.8680 0.0197 900
2 0.1341 1.5689 0.0330 837 0.1341 1.5689 0.0330 837 0.1341 1.5689 0.0330 837 0.1341 1.5689 0.0330 837 0.1341 1.5689 0.0330 837
3 0.1689 2.1553 0.0416 769 0.1689 2.1553 0.0416 769 0.1689 2.1553 0.0416 769 0.1690 2.1553 0.0416 769 0.1689 2.1553 0.0416 769
5 0.2097 3.1019 0.0516 665 0.2097 3.1019 0.0516 665 0.2097 3.1019 0.0516 665 0.2097 3.1019 0.0516 665 0.2097 3.1019 0.0516 665
7 0.2324 3.8472 0.0572 595 0.2324 3.8472 0.0572 595 0.2324 3.8472 0.0572 595 0.2324 3.8472 0.0572 595 0.2324 3.8472 0.0572 595
10 0.2521 4.7191 0.0621 527 0.2521 4.7191 0.0621 527 0.2521 4.7191 0.0621 527 0.2521 4.7191 0.0621 527 0.2521 4.7191 0.0621 527

MPE – – – – 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.007% 0.000% 0.000% 0.028% 0.000% 0.000% 0.000% 0.000%
MAPE – – – – 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.007% 0.000% 0.000% 0.028% 0.000% 0.000% 0.000% 0.000%
CPU – – – – 0.3 0.3 527.3 619.1

Panel B - EDS spreads (with L = 30%)
Time Reported Stopping time approach Laplace transform approach
(Yrs.) MA-L (2011) NPS = 1, 024 NPS = 2, 048 n = 3, 000 n = 4, 000

PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT %
0.25 0.0220 0.2360 0.0055 910 0.0220 0.2360 0.0055 910 0.0220 0.2360 0.0055 910 0.0220 0.2360 0.0055 909 0.0220 0.2360 0.0055 910
0.5 0.0437 0.4582 0.0109 932 0.0437 0.4582 0.0109 932 0.0437 0.4582 0.0109 932 0.0437 0.4582 0.0109 932 0.0437 0.4582 0.0109 932
1 0.0841 0.8640 0.0208 950 0.0841 0.8640 0.0208 950 0.0841 0.8640 0.0208 950 0.0841 0.8640 0.0208 950 0.0841 0.8640 0.0208 950
2 0.1405 1.5536 0.0346 884 0.1405 1.5536 0.0346 884 0.1405 1.5536 0.0346 884 0.1405 1.5536 0.0346 884 0.1405 1.5536 0.0346 884
3 0.1752 2.1282 0.0431 807 0.1752 2.1282 0.0431 807 0.1752 2.1282 0.0431 807 0.1752 2.1282 0.0431 807 0.1752 2.1282 0.0431 807
5 0.2150 3.0554 0.0530 692 0.2150 3.0554 0.0530 692 0.2150 3.0554 0.0530 692 0.2150 3.0554 0.0530 692 0.2150 3.0554 0.0530 692
7 0.2371 3.7861 0.0584 617 0.2371 3.7861 0.0584 617 0.2371 3.7861 0.0584 617 0.2371 3.7861 0.0584 617 0.2371 3.7861 0.0584 617
10 0.2563 4.6418 0.0632 545 0.2563 4.6418 0.0631 545 0.2563 4.6418 0.0632 545 0.2563 4.6418 0.0632 545 0.2563 4.6418 0.0632 545

MPE – – – – 0.000% 0.000% -0.020% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% -0.014% 0.000% 0.000% 0.000% 0.000%
MAPE – – – – 0.000% 0.000% 0.020% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.014% 0.000% 0.000% 0.000% 0.000%
CPU – – – – 373.8 853.4 1,303.0 1,702.8
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Table 4.2—Continued

Panel C - EDS spreads (with L = 50%)
Time Reported Stopping time approach Laplace transform approach
(Yrs.) MA-L (2011) NPS = 1, 024 NPS = 2, 048 n = 2, 000 n = 3, 000

PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT % PROT PREM ACCINT %
0.25 0.0242 0.2349 0.0064 1004 0.0242 0.2349 0.0064 1004 0.0242 0.2349 0.0064 1004 0.0242 0.2349 0.0064 1005 0.0242 0.2349 0.0064 1004
0.5 0.0552 0.4514 0.0142 1187 0.0552 0.4514 0.0142 1187 0.0552 0.4514 0.0142 1187 0.0552 0.4514 0.0142 1187 0.0552 0.4514 0.0142 1187
1 0.1065 0.8371 0.0266 1233 0.1065 0.8371 0.0266 1233 0.1065 0.8371 0.0266 1233 0.1065 0.8371 0.0266 1233 0.1065 0.8371 0.0266 1233
2 0.1661 1.4786 0.0410 1093 0.1661 1.4786 0.0410 1093 0.1661 1.4786 0.0410 1093 0.1661 1.4786 0.0410 1093 0.1661 1.4786 0.0410 1093
3 0.1993 2.0086 0.0492 969 0.1993 2.0086 0.0492 969 0.1993 2.0086 0.0492 969 0.1993 2.0086 0.0492 969 0.1993 2.0086 0.0492 969
5 0.2359 2.8628 0.0582 808 0.2359 2.8628 0.0582 808 0.2359 2.8628 0.0582 808 0.2359 2.8628 0.0582 808 0.2359 2.8628 0.0582 808
7 0.2558 3.5375 0.0631 711 0.2558 3.5375 0.0631 711 0.2558 3.5375 0.0631 711 0.2558 3.5375 0.0631 711 0.2558 3.5375 0.0631 711
10 0.2732 4.3297 0.0674 621 0.2732 4.3297 0.0673 621 0.2732 4.3297 0.0674 621 0.2732 4.3297 0.0674 621 0.2732 4.3297 0.0674 621

MPE – – – – 0.000% 0.000% -0.019% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.012% 0.000% 0.000% 0.000% 0.000%
MAPE – – – – 0.000% 0.000% 0.019% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.012% 0.000% 0.000% 0.000% 0.000%
CPU – – – – 392.0 863.7 1,014.3 1,493.3

This table reports the time-t0 value of the building blocks of CDS and EDS contracts, and the corresponding premium rates (in basis points per annum)

under the time-homogeneous JDCEV model, using the same model parameters as in Mendoza-Arriaga and Linetsky (2011, Table 2), i.e. St0 = 50, r = 5%,

q = 0%, a = 20, b = 0.02, c = 1, β̄ = −1, R = 50% and ∆ = 0.25, for the contract maturities specified in the first column. Panel A reports results for CDS

contracts, while Panels B and C report results for EDS contracts, with L = 30% and L = 50%, respectively. In the three panels, columns 2 to 5 reproduce

the values reported in Mendoza-Arriaga and Linetsky (2011, Table 2). Columns 6 to 13 are obtained via the ST approach of Propositions 4.3 and 4.5 (or

Remark 4.3, for Panel A), and using different numbers of time steps. Columns 14 to 21 describe the results generated by the MA-L valuation approach of

Mendoza-Arriaga and Linetsky (2011), as described in Section 4.6, with different numbers of summation terms. The last three lines report mean percentage

pricing errors (MPE), mean absolute percentage pricing errors (MAPE) and computation times (in seconds), for the whole set of maturities under analysis.
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5 Conclusions

This thesis presents three essays on option pricing, providing important results with ap-

plications on interest rates, equity and credit derivatives.

The first paper offers two contributions to the literature on swaptions pricing. First,

this paper derives a new analytical approximation for European-style swaptions under a

multifactor Gauss-Markov framework, and based on the conditioning approach proposed

by Curran (1994), Rogers and Shi (1995), and Nielsen and Sandmann (2002). Second, a

comprehensive and rigorous Monte Carlo study is run to compare, in terms of efficiency

and accuracy, all the approximations already proposed in the literature for European-style

swaptions under multifactor term structure models.

The numerical results obtained show that the exact lower bound of the swaption price

provided by the conditioning approach is the most accurate pricing method for ATMF,

OTMF and ITMF contracts. Moreover, the conditioning approach proposed in this paper

also offers tight bounds for the approximation error, because the analytical lower and

upper bounds proposed are usually very close to each other (except for some deep OTMF

contracts).

The second paper extends the ST approach originally proposed by Kuan and Webber

(2003) and offers a novel approach for pricing European-style barrier options on asset

prices driven by a geometric Brownian motion and under the stochastic interest rates

setup specified by the Vasiček (1977) model.

Similarly to Kuan and Webber (2003), we are able to write the barrier option price in

terms of the first passage time density of the underlying asset price through the barrier

level. Again, this density is recovered as the implicit solution of a non-linear integral

equation. However, and since we are dealing with a two-factor model, our pricing solution

involves a double integral, in both time and interest rate dimensions.

Given the Gaussian specification adopted for the short-term interest rate, and following
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Nunes (2011), we are able to obtain an explicit solution for the probability density of the

short-term interest rate, conditional on the knock-in or knock-out event, and, therefore,

we are left with a pricing solution that only involves an integration with respect to time.

Moreover, and as shown by Nunes (2011), our one-dimensional pricing solutions can be

easily extended from the single-factor Vasiček (1977) model to a multifactor Gaussian

Heath, Jarrow, and Morton (1992) framework, without increasing the dimensionality of

the pricing problem. In contrast, the extended Fortet method adopted by Bernard et al.

(2008) is a two-dimensional pricing approach.

The accuracy and efficiency of the ST approach is compared against the extended

Fortet method of Bernard et al. (2008) using several model parameter constellations and

option maturities. The numerical results obtained show that the ST approach is the

most accurate and efficient pricing method, considering both short-term and long-term

contracts.

The third paper extends the ST approach of Kuan and Webber (2003) and offers a novel

approach for valuing CDS and EDS contracts under the CEV model of Cox (1975) and

the JDCEV model of Carr and Linetsky (2006). Under the CEV model, the triggering

event may occur only by diffusion of the underlying price process; under the JDCEV

framework, the triggering event may also occur via a jump-to-default of the price process.

We offer pricing solutions for each one of the building blocks of CDS and EDS contracts,

which involve only one integration with respect to the density function of the first passage

time of the underlying asset price to the contract triggering level. Furthermore, for the

pricing of CDS contracts under the JDCEV model, we show that the ST approach nests the

pricing solutions already offered by Carr and Linetsky (2006) when the contract triggering

level is set to zero. Again, under both models, the hitting time density is recovered as the

implicit solution of a non-linear equation.

The accuracy and efficiency of ST approach is compared against the Laplace transform

valuation methodology proposed by Mendoza-Arriaga and Linetsky (2011). The numerical
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results show that the ST approach is the most efficient pricing method. Moreover, and in

opposition to the Laplace transform methodology, the ST approach has been formulated

under the most general time-inhomogeneous formulation of the JDCEV model.
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