

THE IMPACT OF INTERNATIONAL FISCAL AND MONETARY SPILLOVERS ON SHANGHAI STOCK EXCHANGE RETURNS

Pedro Manuel Rato dos Santos

Dissertation submitted as partial requirement for the conferral of

Master in Economics

and

Master in International Economics

Supervisor:

Dr. Michał Brzozowski, Senior Lecturer, Faculty of Economic Sciences, University of Warsaw, Department of Macroeconomics and International Trade

Co-supervisor:

Dr. Rui Manuel Campilho Pereira de Menezes, Senior Lecturer, ISCTE-IUL Business School, Department of Quantitative Methods for Management and Economics

January 2017

The impact of international fiscal and monetary spillovers on Shanghai stock exchange returns

Abstract

The impact of international fiscal and monetary spillovers on Shanghai stock exchange

returns

by Pedro M. Santos

In responding to subprime crisis with its peak with the bankruptcy of investment

bank Lehman brothers in September of 2008, marking the end of the "great moderation",

several governments and central banks of developed and emerging economies change the

respective fiscal and monetary policies, in order to stimulate the economy, some more

than others, creating spillovers and transmit them by different channels through the stocks

market worldwide.

Furthermore, due to recent debate of the implementation of similar monetary

stimulus program in China, like to the ones implemented in US and in currently in

development in Euro Area, is relevant access the f policies consequences in China.

The present work particularly focusses on the consequences of monetary and fiscal

policies implemented in the United States, United Kingdom, Euro Area, Japan in China.

The results show that the spillovers of the international fiscal and monetary policy are

overall nonexistent or weak at best. However, there are significant spillovers of United

States and Japan with China, the monetary policy of US has positive impact and the fiscal

has negative impact on Shanghai stock returns, the same is true of the Japanese monetary

policy.

Key words: Fiscal policy, monetary policy, spillovers, stock returns, Structural

Vector Autoregressive Model - SVAR

JEL – Codes: C32, C51, E52, E62

7

Resumo

O impacto dos spillovers provenientes das politicas monetária e fiscal

internacional no mercado accionista de Shanghai

por Pedro M. Santos

Na resposta a crise do *subprime* com o seu auge com a falência do banco Lehman

Brothers em setembro de 2008, marcando o fim da "grande moderação", vários governos

e bancos centrais de países desenvolvidos e em desenvolvimento mudaram as suas

respetivas fiscais e monetárias, em ordem a estimular a economia, alguns com maior

ímpeto que outas, criando *spillovers* e transmitindo os mesmos por diferentes canais para

os mercados acionistas a nível mundial.

Para alem do mais, devido ao recente debate de implementação de um programa de

estímulos monetários semelhante na China aos que foram implementados nos EUA e

atualmente em desenvolvimento na Área do Euro, é pertinente avaliar se os impactos das

consequências destas politicas nos países desenvolvidos nos países emergente e vice-

versa.

O presente trabalho foca-se nas consequências das politicas fiscais implementas nos

Estados Unidos, Reino Unido, Área do Euro, Japão e China. Os resultados mostram que

os spillovers das politicas monetária e fiscais seguidas por estes países são nulos ou muito

residuais. Contudo, existe spillovers significativos dos Estados Unidos e do Japão com a

China, a politica monetária dos Estados Unidos tem um impacto positivo e a politica fiscal

tem um impacto negativo nos retornos do mercado acionista de Shanghai, o mesmo é

verdade para a politica monetária japonesa.

Palavras-chave: politica fiscal, politica monetária, retornos das ações, Modelo

Autorregressivo Estrutural

JEL – códigos: C32, C51, E52, E62

8

Wpływ międzynarodowej transmisji impulsów polityki pieniężnej I fiskalnej na giełdę

papierów wartościowych w Szanghaju.

W odpowiedzi na kryzysu kredytów "subprime", który zapoczątkował upadek

banku inwestycyjnego Lehman Brothers we wrześniu 2008, co oznaczało koniec okresu

"Wielkiej stabilizacji", wiele rządów i banków centralnych krajów rozwiniętych i

wschodzących w różnym stopniu zmieniło politykę fiskalną i pieniężną, próbując

pobudzić gospodarkę, których rozprzestrzeniły się w skali międzynarodowej różnymi

kanałami, w tym za pośrednictwem giełd papierów wartościowych.

Ponadto, w świetle niedawnej debaty o wdrożeniu polityk stymulujących w

Chinach, podobnych do tych stosowanych przez kraje europejskie i USA, warto jest

ocenić wpływ konsekwencji polityki chińskiej.

Niniejsza praca koncentruje uwagę na skutkach polityki pieniężnej i fiskalnej

Stanów Zjednoczonych, Wielkiej Brytanii, strefy euro oraz Japonii odczuwanych w

Chinach. Osiagniete rezultaty pokazuja, że ogólnie miedzynarodowe efekty

rozprzestrzeniania polityki fiskalnej i monetarnej sa nieistniejace, albo co najwyżej słabe.

Jednakże, stwierdzono występowanie znaczących efektów rozprzestrzeniania między

Stanami Zjednoczonymi I Japonią z jednej strony, a Chinami z drugiej. Polityka pieniężna

USA ma pozytywny, a polityka fiskalna negatywny wpływ na stopę zwrotu na giełdzie

papierów wartościowych w Szanghaju. Podobny jest wpływ japońskiej polityki

pieniężnej.

Key words: Polityka fiskalna, polityka monetarna, efekty rozprzestrzeniania, stopa

zwrotu z rynku giełdowego, Strukturalny Model VAR – SVAR

JEL – kody : C32, C51, E52, E62

9

To my family and to my friends

Accomplishing the Double Degree in Economics and International Economics is the first step of a life project in order to follow my dream of be a professional Economist.

First, I want to thank to my supervisor Michał Brzozowski for providing inspiration and support. Moreover, I would like to thank to co-supervisor Rui Menezes for the support and the comments regarding this project.

Doing research, for the first time, I realize all the challenges, difficulties and successes of this process. This work is a special achievement for myself, it was my first estimations of subject (SVAR models) that were not covered in my masters (or very limited) that forced to learn by myself a new subject, challenge myself and put in practice the knowledge acquired in more than these past five years.

Nevertheless. Is important to note that none of these people are responsible for any mistake or week point(s) of this dissertation, which is my full responsibility.

Moreover, I also thank to professors Vivaldo Mendes and Sofia Vale for support and answer of my questions and over this academic year and to my closest friends to their support on the crucial moments of my academic path.

Finally, I would like to give special thanks, first to my parents and family who gave indispensable support and attention to achieve my goals until now and to ADT (Associação Duarte Tarré) to believe in my work and in my capabilities.

CONTENTS

1	Intro	oduction	13
2	Lite	rature review	15
	2.1	The recent developments of economic policy in China	15
	2.1.	The health of the factory of the world: an overview	16
	2.1.	Fiscal policy and the stimulus package	17
	2.1.	The impact of the stimulus package and future challenges	20
	2.1.	4 Monetary policy	22
	2.2	Monetary Policy	22
	2.2.	1 Introduction	22
	2.2.	Objectives and limitations of interest rate	23
	2.2.	Transmission channels of usual monetary policy	24
	2.2.	4 Transmission channels under unusual monetary policy	27
	2.2.	Quantitative Easing versus Credit Easing	28
	2.2.	6 Empirical studies	29
	2.3	Fiscal policy	30
	2.3.	1 Empirical studies	30
	2.4	Interactions of fiscal and monetary policies	32
	2.5	Spillovers	35
	2.5.	1 Monetary policy	35
	2.5.	2 Excess of liquidity	37
3	Data	a and methodology description	38
	3.1	Data description	38
	3.2	Methodology	38
4	Emp	pirical results	41
	4.1	Contemporaneous relationships	41
5	Con	cluding remarks	44
6	Refe	erences	45
7	Ann	exes	51
	7.1	Data definitions and sources	51
	7.2	Synthesis of Unit Root and seasonality Tests	52
	7.3	Stationarity tests	53
	7.3.	1 Close 1	53
	7.3.	2 Close 2	58
	7.3.	3 CPI	63
	7.3.	4 GDP	68

	7.3	.5	GOV	73
	7.3	6	IR	78
	7.3	.7	M2	83
7	7.4	Cor	relograms (Seasonality)	88
	7.4	1	Close 1	88
	7.4	2	Close 2	90
	7.4	.3	CPI	93
	7.4	4	GDP	95
	7.4	.5	GOV	98
	7.4	6	M2	100
	7.4	.7	IR	103
7	7.5	Nor	mal and histogram graph	106
	7.5	1	Close 1	106
	7.5	2	Close 2	108
	7.5	.3	CPI	110
	7.5	4	GDP	78 83 88 90 95 98 100 106 108 110 111 112 114 115 119 120 121 122 123 124 126 Programs 127
	7.5	.5	Government	114
	7.5	6	IR	116
	7.5	.7	M2	118
7	7.6	Rou	tine	119
7	7.7	Opt	imal lag length	120
7	7.8	Mo	del Validation Tests	122
	7.8	1	Stability	122
	7.8	.2	Autocorrelation	123
	7.8	.3	Heteroscedasticity	123
	7.8	.4	Normality	123
	8	Gro	up Unit Root test for Residuals	124
9	Арр	endi	<	126
9	9.1	List	of figures	126
9	9.2	List	of tables	126
10	A	ppen	dix A: History of Quantitative Easing Programs	127
11	Α	ppen	dix B: Table of abbreviations	131

1 Introduction

The main purpose of this thesis is to analyze the effects of fiscal and monetary policy on stock market returns developments of the United States (US), United Kingdom (UK), Euro area (EA) and Japan in China. In the economic literature, is agreed that monetary policy should not be examined without the fiscal policy, and vice-versa.

Although many studies have concentrated in studying just the effects of monetary policy in stock market returns (see (Tarhan, 1995; Thorbecke, 1997; Darrat, 1988; Donal Bredin et al., 2005; Crowder, 2006; Bohl et al., 2008; Bjørnland & Leitemo, 2009; Don Bredin et al., 2009; Kholodilin et al., 2009; Gregoriou et al., 2009; Aziza, 2010; Laopodis, 2010; Zhang et al., 2011)), only a few investigate the effects of the fiscal policy on stock market returns [see (Jansen et al., 2008; Antonio et al., 2009; Agnello et al., 2010; Antonio et al., 2011; António et al., 2012; Da et al., 2014)]; and a few investigate the impact of the interaction of both policies, in just one country(for instance (Hsing, 2013) or in a cross-section of countries [see (Van et al., 2003; Sun et al., 2013; Mukherji, 2015)] and even less considering/analyzing the spillovers/spillbacks effects of the expansionary monetary and fiscal policies implemented after the bankruptcy of Lehman Brothers in the end of 2008 on majority of developed economies to developing economies such as or China. The goal of this research is to fill this gap in the literature.

Distinguishing the impact of monetary and fiscal policy in stock markets is extremely relevant once that following (Aziza, 2010) "Stock market indicators such as market capitalization, all-shares index, value and volume of stocks traded in the stock exchange are announced on the news daily. This shows the great importance of the stock markets to any economy in the world. Many African countries are still classified as underdeveloped in economic journals and publications of the IMF and the World Bank because their stock markets are still in their infancy stage."

In (Caporale et al., 2004) the author reinforce the role of the stock market for the policy making process and economic growth of one country: "An efficient stock market provides guidelines as a means to keep appropriate monetary policy through the issuance and repurchase of government securities in liquid market which is an important step towards financial liberalization. Similarly, a well-organized and active stock market could modify patterns of demand for money and would help create liquidity that eventually enhances economic growth."

Furthermore, it is very relevant to assess not only the impact of quantitative easing program of the more developed economies in the developing ones (Bhattarai et al. 2015)

as well as the impact of the potential quantitative easing program consequences of developing countries as China in the developed countries, especially after the stock market crash in 2007/2008 (Evans-Pritchard, 2014; Lavigne et al, 2014).

In this work, an attempt will be made to validate research hypothesis/questions defined:

- 1) There are spillovers impact of foreign fiscal and monetary policy on China stock exchange returns;
- 2) The spillovers impact of foreign fiscal and monetary policy in China stock exchange returns are positive;
- 3) There are several monetary channels that conduct the spillovers; their relative strength in each country determines if the impact is strong/weak, negative/positive.

In a nutshell, the results are the spillovers of the international fiscal and monetary policy are overall null or near zero. However, there are significant spillovers of United States and Japan with China, the monetary policy of US has positive impact and the fiscal have negative impact on Shanghai stock returns, in other hand the monetary policy of Japan have as well. Furthermore, regarding the other transmission channels the internal GDP and inflation play the major role determining the stock returns and finally the specific innovations associated with stock market, in a transversal way to all models.

In this work, with the goal of validate the hypothesis is used an SVAR as the one implemented by (Van Aarle et al., 2003; Chatziantoniou et al., 2013) but considering the variables used in (IMF, 2010); this model will be used to assess the foreign spillovers on the Shanghai stock market returns.

Regarding the monetary of aggregate, normally is used the M0 (monetary base to access the impact on money in circulation of the QE programs), however, the definition of the monetary is very mixed all over the world (Lim & Sriram, 2003), is used the money aggregate M2 in the analysis, this is the money in circulation and checkable deposits very liquid; furthermore, M2 reflects the impact on the deposits and M0 not (Dennis, 1983).

The remaining thesis is organized as follows: Section 1 introduces., section 2 the literature review, section 3 shows the data and methodology description, section 4 the outcomes/results, the section 5 concludes, the section 6 the annexes and in the section 7 there is the appendixes.

2 LITERATURE REVIEW

2.1 THE RECENT DEVELOPMENTS OF ECONOMIC POLICY IN CHINA

Due to fact of being the "factory of the world" (Ngai, 2006), China has consolidated his net lender position after joining the World Trade Organization in December of 2001, in contrast with other countries like Brazil that have a net borrower situation, both of them in "BRICS" club (O'neill & Goldman, 2001); enhancing his economic power to the world and contributing to the global GDP aproximately for 14% of world GDP in 2014 (figure 2-1).

Furthermore, after the asian financial crisis in 1998 and more recently (2011 – nowadays) due to impact of financial crisis and the buble in stock market started in 2015-2016, the chinese government implemented a stimulus program of fiscal and monetary policy.

However, due to big and incrising contribution of China to global liquidity in Asia and in the world (see figure 2-2), what it will be the effects not only of the fiscal but of the monetary policy shocks, not only for these countries but only for the major industrialed countries?

Figure 2-1 The Role of China in the World

Source: World Bank – World Development Indicators and International Monetary

Fund - Balance of Payments and International Investment Position Statistics

[Computations by the author]

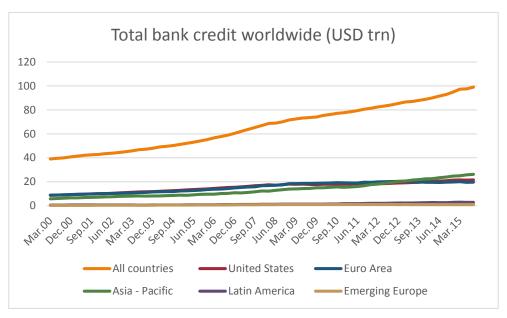


Figure 2-2 Total bank credit worldwide (USD trn)

Source: Bank of International Settlements

2.1.1 The health of the factory of the world: an overview

Following (Christine Wong, 2011), the subprime crisis have an extreme significant impact on the Chinese industry as the author related "Factories closed seemingly overnight, and workers were laid off. In the coastal export enclave of Dongguan in Guangdong province, so many workers had been sent home by mid-2009 that huge industrial parks resembled ghost towns. Given that exports had comprised one-third of GDP in value, the sharp downturn in exports exerted a drag on GDP growth that was a stunning –41% in 2009".

Empirical studies like (Li & Zhang, 2014) show that main financial channels of China are (using the example of the recent final crisis of 2007/8), in first place the demand channel [with a sharp fall in the net exports of 9 perceptual points between 2007 to 2008, represented by the current account in graph 2-3]; and financial channel (in a less extent than the previous one), have been an reallocation of the investment and portfolio by investors, cause the first negative growth in the Foreign Direct Investment in China since the country joined the World Trade Organisation and the sharp drop in the portfolio investment liabilities, as consequence of the big depreciation of US financial assets and to the deterioration balance sheet for China banking sector.

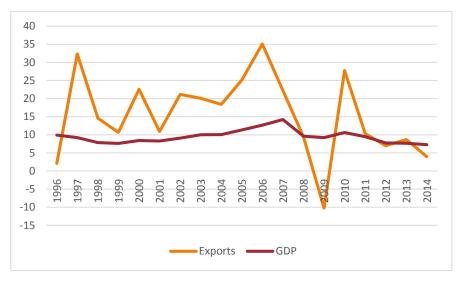


Figure 2-3 GDP and Exports of China (growth rates)

Source: World Bank – world Development Indicators

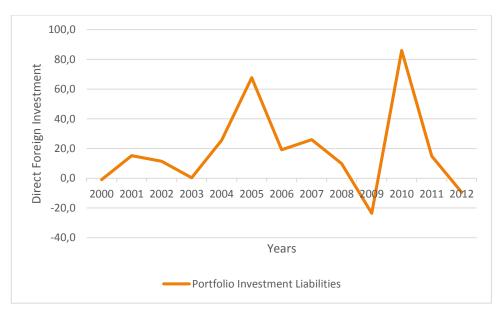


Figure 2-4 Portfolio Investment Liabilities in China (growth rates)

Source: FRED of Saint Louis

2.1.2 Fiscal policy and the stimulus package

In (Xinhua, 2009; Christine Wong, 2011), refers that "the growth in government revenues had already been declining throughout 2008, but turned steeply downward during the second half of the year, ending in negative growth at year-end. In beginning of 2009, the Minister of Finance was seriously worried about the fiscal balance, as government revenues decrease 17.1% that month from a year earlier. Given the

importance for government of maintaining high rates of growth, policy makers became alarmed and determined to do everything necessary to reverse the trend."

Therefore, the government created countercyclical measures to stop the economic slowdown: First, in 1998 it had intervened with a fiscal stimulus programme that was a success in helping China prevent the contagion in the Asian financial crisis (The World Bank, 1999). Second, unlike the first time – when the fiscal stimulus was implement the public finances were fragile, better than in 2008. However, before Asian crisis, in 1994 was implanted a fiscal reform, China had restructured its revenue mechanism with the implementation of a new taxation mechanism, what contributed to face better the storm.

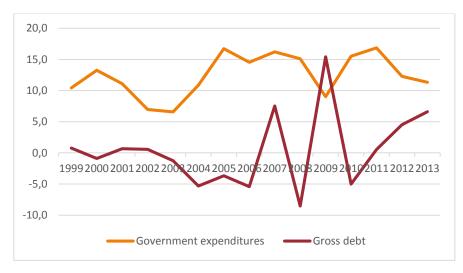


Figure 2-5 Government expenditures and gross debt in China

Source: FRED of Saint Louis

Following (Naughton, 2009; Kang, 2010; Li & Zhang, 2014) due to slowdown in chinese economy, consequence of subprime crisis with bankruptcy of Lehman Brothers, the national central government implemented an overall stimulus program from the last quarter of 2008 (5th November) until 2012 can be divided into **three interconnected components**: an investment plan, a set of funding instruments, and a sequence of industrial policies.

First, the investment plan, with a value of 4 trillion RMB or 586 billion U.S dollars, representing 12.5% of China GDP in 2008, this plan was organized by mainly five axes:

A) **Increasing public investments** in 104 billion yuan (from the central government for public investments);

- B) **Promoting consumption** by reducing the taxes of the firms and households; creating direct subsidies the products going to the countryside for home purposes (e.g. farming automobiles); reduce the consumption credit lending obstacles; reforming healthcare system and lowering the cost of individual healthcare; raise the pension for retirement and reduce the basic costs of living.
- C) **Support the export sector** by raising the export rebate rate and distinguishing the rate by industry and product;
- D) **Reforms in tax and fee systems** by reforming the value-added tax legislation in order to encourage enterprise expansions; reduce the real estate taxes and fees and providing temporary vehicle tax breaks for standard cars;
- E) Increase the fiscal deficit and government debt, the State Council, approved local governments to raise 200 billion yuan public debt, however this debt is used by the central government.

Disbursements	Period	Amount (RMB billion)
First tranche	2008 – 4Q	108
Second tranche	2009 – 1Q	130
Third tranche	2009 - 2Q	70
Fourth tranche	2009 - 3Q	80
Fifth tranche	2009 - 4Q	223.8
Final year	2010	992.7
Total injection		1604.5

Table 2-1 The phases of central government stimulus spending

Sources: Website of the NDRC (National Development and Reform Commission),

Regarding the sectoral composition of stimulus investment:

Transport and power infrastructure (railroads, roads, airports, electricity	37,5
grids)	
Earthquake reconstruction	25,0
Rural village infrastructure	9,3
Environment, energy efficiency and carbon emission reduction	5,3
Affordable housing	10,0
Technological innovation and restructuring	9,3
Health and education	3,8

Table 2-2 Sectoral composition of stimulus investment

Source: Website of the NDRC (National Development and Reform Commission),
China.

Second, the Funding mechanisms was organized as follows: first the center gives the localities attribute to each province/territory an (i) a list of approved investments and quota of the total and (ii) amount that the government want to spend. The main goal of the center distributes significant amounts of money to the localities for these investments.

The central government established three rules according to the financing:

- 1. The central government borrow the money to be distributed to local government, but the revenue and the repayment is an obligation is of the local government;
- 2. Implementation of a special program of long-term bank loans to provide capital for investment projects, requiring a minimum of 20 to 35 percent of the funding for investment projects;
- 3. Allowance of the growth of the issuance of corporate debt by local governments, in order to develop the Corporate bond markets and therefore the Chinese financial system.

Finally, the industrial policy combining investment and restructuring initiatives that the government has launched in response to the economic crisis and to achieve long-held objectives: injecting money in the firms that suffered more with the crisis and by the achievement of some technological upgrading goals in key sectors such as flat-panel displays.

2.1.3 The impact of the stimulus package and future challenges

Regarding the impact, (Yongding, 2009; Li & Zhang, 2014) the consequences were very limited and this stimulus package was inefficient, as follows:

First, the GDP growth became a benchmark for the investment/ expenditure level of the government, resulting in an overcapacity of the economy.

Second, the reduction in the investment efficiency because the stimulus package is focused in infrastructure, instead of new factories.

Third, infrastructure investment is long-term investment and will take a long time to being paid, once that is not accompanied by investment in productive capacity.

Fourth, the new responsibility of manage the central government loans by the local governments may worsen the overall fiscal position once that provincial governments were encouraged to raise money to create their own policies/stimulus, complementing the central government plan.

Fifth, the investment capital went to firms that had invested more before the financial crisis but not the ones that were dependent on external capital

Sixth, the state-owned companies are favored in long-term financing in the credit expansion but still underperform non-state-owned companies in the stock market.

Seventh, and regarding the bank credit evolution, there is evidence in (Naughton, 2009; Rawdanowicz et al., 2014) that central government stimulus efforts in order to ease provision of credit, had as consequence the explosive growth of bank credit; furthermore, total assets of banking sector exceed the 200% of GDP by end-2012 due to the "rapid expansion of domestic claims of depositary institutions increasing by 30% of GDP between 2008 and 2012, when they reached 155% of GDP. "

Total assets of Chinese banking sector (% of GDP)

2007	2008	2009	2010	2011 2012		2013
199.8	201.1	233.2	237.4	239.5	257.5	266.2

Table 2-3 Total assets of Chinese banking sector (% of GDP)

Source: (Rawdanowicz et al., 2014) (Adapted)

Eight, in the line of showed in (Liang, 2016) this expansion of credit had place also in the regular banking sector, mainly after the 2008 crisis, leading to a rapid expansion of the so-called shadow banking sector with the size of between 44% and 69% of GDP in 2012.

However, the bank system is highly exposed to:

- 1) Local Government Financing Vehicles (LGFVs), established by local governments to finance infrastructure and public real estate projects;
- 2) Private real estate projects, and namely the variability of the prices and expected profitability.

And other risks:

- 3) "panic runs", once that the majority of products don't explicit guarantee of the principal;
- 4) Possible need for liquidity in future in case of bailout, what cannot be compatible with a stimulus program to the real economy.

2.1.4 Monetary policy

After 2008 financial crisis the Chinese Central Bank implemented an expansionary monetary policy to support the expansionary fiscal policy, resulting in increase of bank and therefore the money supply, which "grew at a record rate relative to GDP." (Yongding, 2009:10), as is possible to see in table 2-5.

With the liquidity increase the inter-bank money market interest rates dropped and forcing the PBOC to intervene in the exchange market, in order to balance the appreciation of the RMB, consequence of the trade and capital account surplus, selling central bank bills in order to "dry the excess liquidity."

Table 2-4 Money aggregates for China, average

Source: FRED

2.2 MONETARY POLICY

2.2.1 Introduction

According to (Thorbecke, 1997), the money neutrality has long been debated by financial economists; according to the evidence found in the literature some authors defend that have a positive impact or null/negligible impact.

Regarding the evidence found (Rozeff, 1974) presents evidence that increases in the growth rate of money raises stock returns. In Black (1987), on the other hand, argues that monetary policy cannot affect interest rates, stock returns, investment, or employment.

According to the types of monetary policy, following (Aziza, 2010), the are three as follows: Accommodative, if the interest rate set by the central monetary authority is intended to create economic growth; Neutral, if it is intended neither to create growth nor combat inflation; or Tight if it is intended to reduce inflation.

2.2.2 Objectives and limitations of interest rate

According and following (Fawley & Neely, 2013), central banks conduct monetary policy in order to control short-term nominal interest rates that affect the economy via several channels; the assumption is that monetary policy changes real (inflation-adjusted) short-term rates to influence economic decisions through their effect on other asset prices.

Once that depositants hold currency at banks, therefore interest rates cannot go below zero (this is, to a client not to pay to the bank to deposit there his/her money), which constraint the conventional monetary policy.

This unusual situation happened first in the early 2000s in Japan and then after the 2007-09 financial crisis in the United States, United Kingdom, Japan, and the euro area.

With the interest rates approaching zero (as shown in figure 2-6), the big four central banks (FED, ECB, BOE, BOJ) began to introduce unconventional monetary policies—including different forms of quantitative easing (QE)— to stimulate economic growth, this is expanding the monetary base.

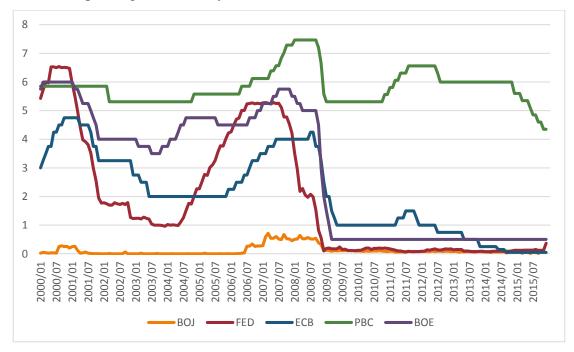


Figure 2-6 Main interest rates (%)

Source: Data from the respective central banks

2.2.3 Transmission channels of usual monetary policy

In (Mishkin, 1996) has provided evidence that there are the following channels of monetary transmission: (i) interest rate channels, (ii) exchange rate channels; (iii) equity price channels: (iv) tobin's q theory, (v) wealth effects, (vi) housing and land price channels; (vii) credit channels: (viii) bank lending channel, (ix) balance sheet channels, (x) household balance sheet effect and (xi) financial crisis.

Following now onwards the same study, is possible synthetize those channels as follows:

According to the interest channel, an expansion in monetary policy will lead to a fall in real interest rate, decreasing the cost of capital and rising the investment spending and therefore a rise in output as well.

Regarding the interest rate transmission mechanism, the real (long term) interest rate has a major impact on nominal (short run) interest rate; once that the first one which play a major role in the consumer and businessmen decisions.

The real interest rate mechanism in which the central bank can stimulate the economy, even if the nominal interest rates are zero or near zero allow that, an increase in money supply can rise the expected price level and therefore the expected inflation, lowering the real interest rate.

In terms of interest rate channel, an expansion in monetary base has as consequence the raise in expected prices and therefore in expected inflation which decrease nominal interest rise and therefore increase investment which increases the output.

Regarding the exchange rate channel, if there is for instance, a fall in domestic real interest rate, the deposits on the home country become less attractive in relative terms to the foreign ones, leading to a fall in domestic deposits in relation to the deposits in other currencies, this is a depreciation of home currency. Therefore, now the home goods becomes relatively cheaper, causing a rise in the net exports and therefore in the output.

Regarding the equity price channels, namely Tobin's q theory (Tobin, 1969) [defined as market value of firms divided by the replacement cost of capital], affect the economy via the valuation of equities. For instance, if q is high, the market price of firms is high in relation to the replacement cost of capital, and the new capital is cheap relative to the market value of firms.

A fall in interest rates from expansionary monetary policy have as consequence bonds less attractive relative to equities, thereby causing the price of equities to rise. Combining these views with the fact that higher equity prices will lead to a higher output and thus higher investment spending and therefore higher output.

Regarding the wealth effect, the component of financial wealth in stocks play the major role in the household's income, therefore when his prices rise, the value of financial wealth increases, increasing positively the household wealth and have a positive effect on consumption and output.

Regarding the housing and land price channels, an increase in house prices, which raises their prices relative to replacement cost, leads to a rise of the Tobin's q for housing, thereby stimulating its production. As the real estate and lands have a very significative weight in household's assets, when his prices rise, the wealth increases leading to a rise in the consumption, contributing positively to the global output.

Credit channels

The balance-sheet channel is related to the asymmetric information problems in credit markets, as follows: The lower the net worth of the firms, the worst the adverse selection and moral hazard problems are in lending to these firms.

In first place, regarding adverse selection, the lower net worth means that lenders (firms) have less collateral for their loans, and the possibly of don't pay the loan is higher, leading to a decrease lending to finance investment spending.

In second place, the moral hazard problem, the lower net worth of business firms means that the owners have a lower equity stake in their firms, giving them more incentive to engage in risky investment projects, being more certain that lenders will not be paid back.

Regarding the transmission mechanism states that nominal interest rates that affect firms' cash flow. The nominal interest rate plays have short-run/immediate impact on interest payments on short-term rather than long-term debt that typically have the greatest impact on firm cash flow.

A related mechanism involving adverse selection and the transmission mechanism under expansionary monetary policy is credit rationing, demonstrated by (Stiglitz & Weiss, 1981), this occurs where borrowers are refused loans even when they are available to pay a higher interest rate (and the interest rate is reducing due to expansionary monetary policy).

Regarding the Bank Lending Channel, the expansionary monetary policy, which increase bank reserves and deposits has as consequence the increase of bank loans

available, which will cause investment and consumption spending to rise, have a positive impact on output.

In other hand, in terms of stock market, causes a rise in equity prices, raising the net worth of firms and so leads to higher investment spending and aggregate demand, decreasing the adverse selection and moral hazard problems.

Finally, for firms lowers nominal interest rates, improving their balance sheets due to the increase in cash flow, and therefore reducing adverse selection and moral hazard problems.

A third balance-sheet channel operates through monetary policy effects on the general price level, due to monetary expansion that leads to a rise in the price, this as consequences: (i) as the debt payments are contractually fixed in nominal terms, this lowers the value of firms' liabilities in real terms; and (ii) lowers adverse selection and moral hazard problems, thereby leading to a rise in investment spending and aggregate output.

Regarding the Household Balance-Sheet Effects, Declines in bank lending induced by a monetary contraction should cause a decline in durables and housing purchases by consumers who do not have access to other sources of credit. Similarly, increases in interest rates cause a deterioration in household balance-sheets because consumers' cash flow is adversely affected. Specifically, when consumers have a large amount of financial assets relative to their debts, their estimate of the probability of financial distress is low, and they will be more willing to purchase consumer durables or housing.

When stock prices rise cause also a rise of the value of financial assets, the consumer as higher wealth, will increase consumption and contribute to a higher output.

Regarding the financial crises, is a strong disturbance to financial markets, this have as consequence sharply and severely increases asymmetric information problems as mentioned before, so that financial markets are no longer able to efficiently channel funds to those who have the most productive investment opportunities. According to the evidence presented in (Mishkin, 1994) there are five factors that can promote a financial crisis: 1) increases in interest rates, 2) stock market declines, 3) an unanticipated decline in the price level, 4) increases in uncertainty, and 5) bank panics.

2.2.4 Transmission channels under unusual monetary policy

Research by (Krishnamurthy & Vissing-Jorgensen, 2011) has provided evidence that channels through which QE may be expected to operate, which are: (i) Signaling Channel, (ii) Duration Risk Channel, (iii) Liquidity Channel, (iv) Safety Premium Channel, (v) Prepayment Risk Premium Channel, (vi) Default Risk Channel, (vii) Inflation Channel.

Following now onwards the same study, is possible synthetize those channels as follows:

Regarding the Signaling Channel, the central bank buys assets in QE giving a signal of credible commitment to preserve interest rates low; affecting the bond market interest rates (depending on bond maturity) since lower funds rates, through the expectations hypothesis, can be expected to affect all interest rates, however should have a larger impact in lowering intermediate maturity rates rather than long maturity rates.

Regarding the Duration Risk Channel, QE decreases the yield on all long-term nominal assets, for instance Treasuries, or corporate bonds. The effect is longer as longer is the duration of the asset.

Regarding the Liquidity Channel, The QE includes purchasing long-term securities and pay the same by the increase of reserve balances. As reserve balances are a more liquid asset than long-term securities there is an increase of liquidity in the hands of investors and thereby decreases the liquidity premium on the majority of the bonds.

Regarding the Safety Premium Channel, according to evidence of (Krishnamurthy & Vissing-Jorgensen, 2011) that there are significant demand for safe assets that lower the yields on such assets, for instance QE involving Treasuries and Agencies lowers the yields on very safe assets such as Treasuries, Agencies, and possible high-grade corporate bonds, relative to less safe assets such as lower-grade corporate bonds.

Regarding Prepayment Risk Premium Channel, the mortgage prepayment risk has a positive risk premium, and that this premium depends on the quantity of prepayment risk borne by mortgage investors.

Regarding the Default Risk Channel means that lower grade bonds have higher default risk than Treasury bonds. QE programs affect the default risk as well the risk premium, when this programs are successfully implemented, the default risk of firms will fall: furthermore, standard asset pricing models predict that investor risk aversion will fall as the output rises, decreasing the default risk premium.

Regarding the Inflation Channel, as QE programs expand the money supply, it increases inflation expectations, affecting the interest rates. This channel predicts: (i) QE increases the rate of inflation as well inflation expectations; (ii) QE may increase or decrease interest rate uncertainty.

2.2.5 Quantitative Easing versus Credit Easing

According to the evidence presented in (Fawley & Neely, 2013), credit easing policies have the goal of reduce specific interest rates, in other hand, QE is any policy that unusually increases the central bank liabilities (currency and bank reserves) when the official rate hits the zero bound (see figure 2-7); for further details about the QE evolution please see Appendix A.

With the bankruptcy of Lehman Brothers and the financial market chaos and the lack of liquidity in the commercial banks were assisted by national authorities in order to provide liquidity to banks and firms.

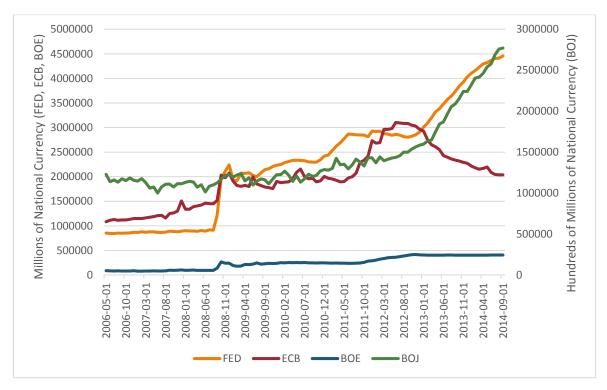


Figure 2-7 Total assets of Central Banks

Source: Federal Bank of Saint Louis

2.2.6 Empirical studies

One of the first studies to assess the impact of monetary policy is (Darrat, 1988) who assess the stock market efficiency hypothesis, or in other words, if the markets reflect all the publicity available information (which is validated); in this case in Canada in the period of 1st quarter of 1960 to the last quarter of 1984; regressing a model of growth rate of stock prices in terms of growth rate on money stock, the change in the real employment budget deficits relative to real potential GNP, these two variable with 2 lags to the past.

Studying the United States (Thorbecke, 1997), employ a VAR approach to evaluate the impact of FED funds rate changes in Dow Jones Industrial Average and Dow Jones Composite average, the results indicate that positive monetary policy shocks have increase stock returns; in other hand, the results are subscribed also by (Crowder, 2006) using a structural VAR to estimate the response of the stock market returns to innovations in the federal funds rate; regarding the results, specifically an unanticipated increase in the federal funds rate leads to an increase in equity returns, but a fall in the federal funds rate if the increase is unanticipated; in (Ozdagli & Yu, 2011), the stock prices of firms with higher external finance cost are more responsive to monetary policy shocks than the ones that are more financially constraint.

Regarding United Kingdom, In (Don Bredin et al., 2009), analyze the impact of changes in the UK and Euro area policy rates on the UK and German aggregate and sectoral equity returns in an event study; is found that UK monetary policy surprises have an insignificant influence on both aggregate and industry level returns on those countries; in (Gregoriou et al., 2009) this findings are also in line with previous study, this is, analyzing stock returns dataset covers 70 FTSE industrial subsectors that form the 10 basic UK industries, in which h expansionary monetary policy did not reverse the negative trend in stock prices.

Regarding Euro Area, In (Bohl et al.,, 2008), is analyzed the reaction of European stock market returns to unexpected interest rate decisions by the European Central Bank (ECB) and is found a negative relation between unexpected ECB decisions and European stock market returns; however in (Semeniuk, 2012) or in (Filbien & Fabien, 2011) is found that the stock market there is "no significant response" to changes in monetary policy.

Finally, in Japanese case in (Ioannidis & Kontonikas, 2006), and confirmed by (Shibamoto & Tachibana, 2014) a positive relation between the decrease in interest rate and the increase in stock market returns.

2.3 FISCAL POLICY

According to (Agnello & Sousa, 2010), refers that "over the history, there have been important historical events regarding the use, effectiveness and limits of fiscal policy. Namely, the tax cuts during Reagan's presidency in the U.S. and the fiscal consolidations in Europe linked to the Maastricht convergence criteria, the Economic Growth and Stability Pact are just a few examples of the renewed interest on the role of fiscal policy as a tool for stabilizing the economy and its potential effects on asset markets."

Due to financial crisis discussed previously, some governments like in the United States, China and some Euro Area adopted an expansionist fiscal policy in order to stimulate the respective economies.

However, in (Chatziantoniou et al., 2013) refers in a nutshell that "economic effects of fiscal policy on the stock market may be positive, negative or inconsequential depending on whether one is to take a Keynesian, Classical or Ricardian view, respectively" (my own words).

2.3.1 Empirical studies

The first study assessing the effects of fiscal policy on the stock market (or asset prices/returns) by Tobin (1969), estimating an equilibrium approach of the financial sector, emphasized the role of stock returns as the relationship between the real and the financial areas of the economy. More precisely, he underlined both money growth and budget deficits as having an important impact on stock returns.

The impact is also later confirmed in (Blanchard, 1981) the author augmented the IS-LM model and distinguish the effects if the shock in fiscal or monetary variables is anticipated or not under flexible or fixed prices.

Later, with the contribution of (Barro, 1974, p. 197) with the assumption of Ricardian Equivalence (or debt-neutrality) the empirical front on the issue has been lagging. However, some studies question this assumption, while some studies have shown that budget deficits do not matter, that is, they support the proposition (Boothe & Reid, 1989), other studies have gathered opposite results (Darrat & Mukherjee, 1986; Frenkel & Razin, 1986; Zahid, 1988).

Research by (Darrat, 1988) provide evidence that fiscal deficit employs a negative effect on current stock prices using a regression of stock prices in order of fiscal policy, growth rate of money stock and short term interest rates, lagged values of inflation, real

GNP and a time trend; in the same line, using Canadian data (Darrat, 1990) provided also evidence that fiscal policy plays an important role in determining stock market returns.

In (Tavares & Valkanov, 2001) employing and VAR model using US data from 1960 to 2000 in variables such Net tax receipts (excluding transfers) and Government purchases (net of transfers) as a share of GDP; Log stock return of the S&P 500 index portfolio in excess of the 3-month Treasury bill rate; federal funds rate, inflation rate; Rate of per capita output growth; Rate of per capita consumption growth; Term spread (of 10-year bond minus 3-month bill); and conclude "that fiscal policy is at least as important a source of return variability as is the policy of the Federal Reserve" and confirm the Ricardian equivalence, or by other words, unanticipated increase in the government spending will result in higher future taxes imply lower market returns, as individuals expected pay-off net of taxes decreases.

In (Jansen et al., 2008), using semiparametric models with the variable of S&P 500 stock price index, U.S. 10-year Treasury bond yield, Federal funds rate, industrial production (IP), CPI, and the U.S. government budget, with the data from July 1954 to December 2005. The conclusion is to maintain that the impact of monetary policy on the stock market varies, depending on fiscal policy stance.

In (Antonio Afonso & Sousa, 2009) is employed an Bayesian VAR Structural model to assess the relation between fiscal policy shocks and movements in asset markets, using the following variables: GDP, the GDP deflator, the unemployment rate, the average cost of financing the debt, and the housing price index; is used quarterly fiscal data to analyze empirical evidence from the U.S., the U.K., Germany, and Italy in different periods; the evidence found is that fiscal policies have a negative effect on stock prices, although the time of reaction is faster than for real estate market.

In (Ardagna, 2009), using several regressions, with a time span from 1960 to 2002 and with a panel of countries included in the sample are: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan, the Netherlands, New Zealand, Spain, Sweden, the United Kingdom, and the United States; this research concludes that fiscal adjustments based on expenditure reductions are related to an increase in stock market prices.

As for the link between fiscal policy and stock prices, fiscal consolidations that lead to a permanent and substantial fall in government debt are typically related with increases in stock market prices.

In (Agnello & Sousa, 2010), employing a Panel Vector Auto-Regression (PVAR) with quarterly data and using a panel of countries (Belgium, Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, the U.K. and the U.S), the vector of endogenous variables includes the property price index, the Gross Domestic Product, the price level, the primary government deficit, the interest rate, and the equity price index; is provided evidence positive fiscal shock has a negative impact in both stock, a contractionary effect of fiscal policy on output in line with the existence of crowding-out effects.

In (Antonio Afonso & Sousa, 2011), employing a VAR, is showed that spending shocks have a negative effect on stock prices; the VAR counter-factual exercise suggests that fiscal shocks play a minor role in the asset markets of the U.S. and Germany; in other hand, the government revenue shocks have increased volatility in Italy.

In (António Afonso & Sousa, 2012) employing an Bayesian Structural Vector Auto regression (B-SVAR) approach, analyze empirical evidence from the US, the UK, Germany and Italy, using the following variables: log real GDP, the GDP deflator, and the unemployment rate, the average cost of financing the debt, he housing price index and the stock price. The results show that government spending shocks leads to important 'crowding-out' effects namely to a fall in stock returns.

2.4 INTERACTIONS OF FISCAL AND MONETARY POLICIES

There is a strong and intrinsically connection between the fiscal and monetary policies of a country, as (Laopodis, 2010) refers "actions by the government authorities that increase spending (and add to existing debt) are likely to increase the interest rate. To the extent that a higher interest rate will put a pressure on economic growth, the Central Bank will be forced to reverse (or ease) that pressure by increasing money supply (or decreasing its main policy tool, the federal funds rate). Therefore, it is necessary to explicitly include a monetary policy variable in the investigation of the dynamics between fiscal policy and the stock market."

Regarding the literature studying the interaction between fiscal and monetary policy spillovers on stock returns,

In (Singh & Talwar, 1982), using bivariate and multivariate modeling with data from 1956 to 1977 in order to investigate the causal linkages between monetary and fiscal policy (variables) and the stock market for Canada, is found evidence that these policies affect significally the stock market returns in Canada.

In (Jansen et al., 2008) employing a flexible semiparametric varying coefficient model specification, analyses the impact of fiscal policy on the U.S. asset markets (stocks, corporate and treasury bonds), considering two possible roles of fiscal deficits (or surpluses). Is found evidence that the increase in the deficit leads to lower stock returns, this is justified once that large increases in the fiscal deficit will lead to higher inflation rates in the future higher funds rate, in order to decrease inflation).

In (Chatziantoniou et al., 2013) is used a Structural VAR model is order to analyze the effects of monetary and fiscal policy shocks on stock market performance in Germany, UK and the US; is considered the following variables in our model: global economic activity, GDP, inflation, government spending, money supply (M1), interest rates and stock market returns. Regarding the results, the fiscal and monetary policies as well as their interaction, directly affect the UK stock market returns, in Germany, there is no evidence found that fiscal policy affect stock returns, but the monetary policy affects positively; regarding the US there is a negative effect of the monetary policy and no effect of fiscal policy.

Summing up, it is possible to synthetize in the following graph, in the next page.

Fiscal Policy

Fiscal and monetary policy

ates, in order to crease in interes target

Prepayment risk premium Safety premium channel

Default risk channel

Inflation channel

Onusual (quantitative easin

Financial crises

Duration risk channel

Signaling channel;

- Liquidity channel;

Monetary Policy

Household balance sheet efect Housing and land price effects: Usual (Credit easing?) Exchange rate channel Equity price channe interest rate channe Tobin's Q Theory Wealth effects;

Figure 2-8 Synthesis of literature review

2.5 SPILLOVERS

2.5.1 Monetary policy

Regarding the impact of quantitative of external of quantitative easing programs / monetary policy, we have the following evidence of impact in the Shanghai stock exchange:

First, in global terms (Fic, 2013) examines the impact of unconventional monetary policy measures adopted in developed countries (the US, UK, Euro Area and Japan) on developing economies (Brazil, China, India and Russia), applying a NIGEM with about 40 countries (both developed and developing); regarding China, this study concludes that there are positive spillovers between these countries and China stock exchange returns.

Second regarding United States (and also Euro Area in this study), in (Chen et al.,2012), using a global vector error-correcting model (GVECM). is analyzed the cross-border impact of quantitative easing (QE) in the major advanced economies, especially on emerging market economies; in this study China is positively affected.

In line with the results of the previous study, (Moessner, 2015) quantified the international spillovers of explicit Federal Open Market Committee (FOMC) policy rate guidance used as an unconventional monetary policy tool at the zero lower bound of the policy rate on international equity markets, considering equity indices of both advanced and emerging economies. Regarding the dataset, is used the following indicators: CPI inflation, GDP, hourly earnings, housing starts, industrial production, the ISM manufacturing index, nonfarm payrolls, PPI inflation, retail sales, the trade balance and the unemployment rate. Regarding the results found that explicit FOMC policy rate guidance announcements at the zero lower bound led to higher equity prices in China.

In other hand (Chen et al., 2015) shows negative spillovers for China after analyzed and compared using an estimated global vector error-correction model (GVECM) in terms of the domestic and cross-border effects of US and euro area unconventional monetary policy measures on 24 major advanced and emerging economies, based on Unconventional monetary policies are measured using shadow interest rates. Is taking into account the international interdependences and feedbacks manifested in the growing macro-financial linkages among 24 economies. The sample includes six advanced economies (the United States, euro area, Japan, Sweden, Switzerland and the United Kingdom); nine emerging economies in Asia, four economies in Latin America, three emerging European economies and Saudi Arabia and South Africa.

In (Kishor & Marfatia, 2013) is used a TVP-GARCH model to assess the change stock returns due to U.S. monetary policy surprises; The sample period for our study uses daily data from May 1994 through June 2008. It is examined all the Federal Open Market Committee (FOMC) meetings for the whole sample period. The impact in Shanghai stock returns are null.

Third, regarding Japan in (Ganeli & Tawk, 2016) is used a Global VAR model to study spillovers from the Bank of Japan's quantitative and qualitative easing (QQE) on emerging Asia that allows examining the propagation of shocks through various macroeconomic linkages between countries. The methodology involves setting up country specific individual VARs, and then linking them through the inclusion of foreign variables; the results shows positive spillovers on Shanghai stock returns due to Japanese monetary policies.

In addition to Japan, we include in our sample five ASEAN economies including China, the variables used are real GDP, CPI inflation, the exchange rate, claims on the private sector, equity prices, capital inflows, short-term interest rates and the monetary base, from January 2000 up to December 2014. Finally, the price of oil is used as a global variable. Regarding the results, there is positive spillovers of Japanese monetary policy over Shanghai stock returns.

In contrast with last study, (IMF, 2011) using an event study examines the external effects of domestic policies in five systemic economies, i.e., the S5, comprising China, Euro Area, Japan, United Kingdom, and the United States; regarding the results, there are negligible spillovers with Shanghai stock index returns.

** 7	.1 .*	.1 •	•	C 11
M/A CO	an synthetiz	o thic	revien	ac tollowe.
** C C	m synancazi	c uns.	ICVICW.	as fullows.

Type of Q.E. program / Effect	Global	US	UK	EA	JP
Positive	(Fic, 2013)	(Chen, Filardo, He, & Zhu, 2012), (Moessner, 2015)			(Ganeli & Tawk, 2016),
Negligible, near zero		(Fratzscher, Lo Duca, & Straub, 2013) ,(Kishor & Marfatia, 2013)			(IMF, 2011)
Negative		(Chen, Lombardi, et al., 2015)		(Chen, Lombardi, Ross, & Zhu, 2015)	

Table 2-5 Monetary spillovers over China

As it is evident on these tables, there is a gap in the literature in the impact of monetary and even a bigger one in the fiscal policies spillovers on China stock exchange that must be filled.

2.5.2 Excess of liquidity

The excess of liquidity is defined in (Rueffer & Stracca, 2006, p. 8) as "aggregation of broad money in the G5 countries (Canada, euro area, Japan, United Kingdom and United States) unadjusted for nominal GDP ", normally used as an indicator of inflationary pressure at global level.

In (Borja & Goyeau, 2011) determine if international liquidity affects asset prices in three particular markets, namely: the United States (U.S.), the Euro area and the ASEAN (5 countries) region, using a standard regression of money growth and asset prices through a real asset return, using quarterly data covering these markets from 1995 to 2005. Is found monetary spillovers from one market to another that affect asset prices, furthermore there is evidence of excess liquidity in the US and Euro area had contributed to inflationate asset prices of both markets; however, the asset prices in the ASEAN 5 region are unaffected by international liquidity.

In (Brana et al.,, 2012) is accessed the impact of global excess liquidity on goods and asset prices for a set of 16 emerging market countries in Asia and Latin America by a estimation of a panel VAR model. The impact on share prices in emerging countries is weak.

In (Brana & Prat, 2016) examines the impact of global excess liquidity on asset prices for a set of seventeen emerging market countries taking into account nonlinearity by using a panel threshold model. Is found that global excess liquidity is a positive determinant of asset prices in emerging market countries.

3DATA AND METHODOLOGY DESCRIPTION

3.1 DATA DESCRIPTION

In this work it is used quarterly data from 1996.q2 until 2015.q2 of five countries, United States, United Kingdom, Euro Area, China and Japan. The variables under consideration (gathered from OECD) are GDP, consumer price index, government expenditure, M2 money aggregate, 24 hours' interbank rate and the stock market returns (computed from Yahoo Finance) for these six countries, which are S&P 500 for United States, FTSE 100 for United Kingdom, Euro Stoxx 50 index for Euro Area, Shanghai index for China, and Nikkei 225 index for Japan.

All variables are real, seasonally adjusted by X-12 Arima method and are expressed in growth rates.

For further information regarding data definitions and sources, please check the respective section with the same name in the annexes.

Regarding the difficulties in this research I had very difficulty in find the most recent data in some time series such as government expenditure, GDP or M2 for some countries that fit in the same period than the reaming series (as for previous periods than 1995, as for more recent periods (2015 to 2016), therefore this could influence in the model estimation, once that I had a lot of attempts with autocorrelation (Some of them could be corrected, increasing the number of lags, others not like the models C2-EA and C2-JP).

3.2 METHODOLOGY

In the estimation of this SVAR is followed by close the models implemented by (Van Aarle et al., 2003; Chatziantoniou et al., 2013) and considered the variables used in (IMF, 2010).

According to (Fernández et al.,, 2001), the SVAR methodology have the main advantages:

- 1) the methodology is widely implemented in econometric software packages;
- 2) relatively simple to estimate and interpret;
- 3) is a popular approach, therefore there are many routines available on internet;
- 4) is possible identify assumptions to isolate estimates;
- 5) allow to justify the model / the variables included on it.

Regarding the monetary of aggregate, normally is used the M0 (monetary base to access the impact on money in circulation of the QE programs), however, the definition of the monetary is very mixed all over the world (Lim & Sriram, 2003), is used the money aggregate M2 in the analysis, this is the money in circulation and checkable deposits very liquid; furthermore, M2 reflects the impact on the deposits and M0 not (Dennis, 1983).

The structural representation of the VAR model o order p takes the following general form:

$$A_0 y_t = c_0 + \sum_{i=1}^{p} A_i y_{t-i} + \varepsilon_t$$
 (1)

Where y_t is an 8x1 vector or endogenous variables, i.e. $y_t = [govx_t msx_t, \pi_t, gov_t, ms_t, i_t, sm_t]$, A_0 represents the 8x8 contemporaneous matrix, A_i are 8x8 autoregressive coefficient matrices, ε_t is an 8x1 vector of structural disturbances, assumed to have zero covariance. The covariance matrix of the structural disturbances takes the following form $E[\varepsilon_t \varepsilon_t'] = D = [\sigma_1^2 \quad \sigma_2^2 \quad \sigma_3^2 \quad \sigma_4^2 \quad \sigma_5^2 \quad \sigma_6^2 \quad \sigma_7^2 \quad \sigma_8^2] \times I$. In order to get the reduced form of our structural model (1) we multiply both sides with A_0^{-1} , such as that:

$$y_t = a_0 + \sum_{i=1}^p B_i y_{t-i} + e_t$$
 (2)

Where, $a_0 = A_0^{-1}c_0$, $B_i = A_0^{-1}A_i$, and $e_y = A_0^{-1}\varepsilon_t$, i.e. $\varepsilon_t = A_0e_t$. The reduced form errors e_t are linear combinations of the structural errors ε_t , with a covariance matrix of the form $E[\varepsilon_t \varepsilon_t'] = A_0^{-1}AD_0^{-1}$.

The structural disturbances can be derived by imposing suitable restrictions on A_0 . The short-run restrictions that are applied in this model as the following:

$$\begin{bmatrix} \mathcal{E}_{1,t}^{exs} \\ \mathcal{E}_{2,t}^{mxs} \\ \mathcal{E}_{2,t}^{is} \\ \mathcal{E}_{3,t}^{is} \\ \mathcal{E}_{3,t}^{ess} \\ \mathcal{E}_{4,t}^{ps} \\ \mathcal{E}_{5,t}^{ess} \\ \mathcal{E}_{6,t}^{mss} \\ \mathcal{E}_{7,t}^{mss} \\ \mathcal{E}_{8,t}^{mss} \end{bmatrix} = \begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 0 & 0 & 0 & 0 \\ a_{31} a_{32} a_{33} & 0 & 0 & 0 & 0 & 0 & 0 \\ a_{41} a_{42} a_{43} a_{44} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{53} a_{54} a_{55} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{53} a_{54} a_{65} a_{66} & 0 & 0 & 0 \\ 0 & 0 & a_{63} a_{64} a_{65} a_{66} & 0 & 0 & 0 \\ a_{71} a_{72} & 0 & 0 & a_{75} a_{76} a_{77} a_{78} \\ a_{81} a_{82} a_{83} a_{84} a_{85} a_{86} a_{87} a_{88} \end{bmatrix} \times \begin{bmatrix} \mathcal{E}_{1,t}^{gov} \\ \mathcal{E}_{3,t}^{ms} \\ \mathcal{E}_{3,t}^{e} \\ \mathcal{E}_{4,t}^{e} \\ \mathcal{E}_{5,t}^{e} \\ \mathcal{E}_{6,t}^{e} \\ \mathcal{E}_{7,t}^{e} \\ \mathcal{E}_{8,t}^{e} \end{bmatrix}$$

where, exist = government expenditure shock in country i, exs = M2 money agregate shock in country i, is = income shock in China, ps = price shock in China, es = government expenditure shock in China, mss = M2 money aggregate shock in China, mpt = interest rate shock in China and ss = stock market shock in China; country I can be United States, Euro Area, United Kingdom or Japan.

The main focus of this analysis will be the interaction/comparison between the macroeconomic policies and stock market developments, and in other plan the impact of the other channels on stock market returns. As in (Bjørnland & Leitemo, 2009), is identified the global demand shock, the income shock and the price shock; however their are uninterpreted.

The restrictions in this model can be explained, as follows: Income influenced by an exogenous global shock, which is denoted by the foreign fiscal and monetary policies (of US, UK, EA and JP). However, GDP cannot be influenced by any other variable, as the evidence presented in (Kim & Roubini, 2000). Despite this, it can contemporaneously influence all other variables. Furthermore, according to the evidence presented (Kim & Roubini, 2000); (Bjørnland et al.,, 2008)), the inflation reacts only to imported inflation (income and foreign monetary and fiscal policies shocks).

Both monetary and fiscal policies react to income and price shocks, according to ((Kim & Roubini, 2000; Antonio Afonso & Sousa, 2011); regarding monetary policy is also influenced by the government expenditure due to the interaction between the two policies in reaction to income and price shocks (Wyplosz, 1999; Melitz, 2000). Interest rates are influenced by the foreign fiscal and monetary policies (global) shock, the national public expenditure shock and the national money supply shock (Elbourne, 2008; Kim & Roubini, 2000; Sims & Zha, 2006a, 2006b; Van Aarle et al., 2003) and the stock market shock(Bjørnland & Leitemo, 2009). Finally, stock market returns are influenced by all variables (Bjørnland et al., 2008).

To proceed to the estimation of the reduced form of model, it is first necessary to ensure that all variables used are stationary. The ADF and PP unit root tests suggest that all variables are I(1) and some I(2) (government expenditures of US and UK and all interest rates), as shown in the annexes; all models residuals are I(0).

The order of the (S)VAR models was identified using the best criteria according to the Lag length test and in order to validate the models. The models are validated does not have autocorrelation or heteroscedasticity, as showed by the serial autocorrelation LM test, portmanteau joint test and White heteroscedasticity test.

For further information / details regarding the models validation and tests results please check the annexes section.

However, note that the models C2-EA and C2-JP, are not fully validated once that have correlation in three and one lag respectively.

4EMPIRICAL RESULTS

4.1 CONTEMPORANEOUS RELATIONSHIPS

The following table should be interpreted as follows: it was estimated a model with c1 (end of month returns of Shanghai stock index) or with c2 (simple average of month returns), to assess the fiscal and monetary policies spillovers of US, UK, EA and JP over China.

In respect of restrictions imposed on SVAR model, visible on matrix (3), should be interpret as follows, for instance in the model C1-US, this is considering the close returns of the final of the month and the fiscal and monetary spillovers of US over China (Shanghai stock returns): the external monetary innovations depends of its own, and not of another variables [for instance, there is a "shock" (an abrupt increase or decrease) in M2 of US], this in the first line of the matrix; in the second line, the external innovations depends of its own (for instance an [for instance, there is a "shock" (an abrupt increase or decrease) in government spending of US]; in the third line, the income in shock in china is dependent of monetary and fiscal policy in US and other innovations in income in China; in the last line, the stock returns of Shanghai stock index are dependent of all variables listed and specific shocks/innovations of the stock market (a_{88}).

As the last equation is the one who represents the Shanghai stock index returns, it will be focus in the analysis of the coefficients of the last line of the matrix [this is from coefficients a_{81} to a_{88} , or respectively to 23 to 30 (external monetary policy, external fiscal policy, national income, national prices, national government expenditure, national monetary policy, national interest rate and national stock index)], in terms of the restriction inserted of the econometric software).

Note that coefficients 23 and 24 represents the foreign monetary and fiscal policy, or by other words, the spillovers that these variables have on Shanghai Stock Exchange returns.

Co	C1-US	C1-UK	C1-	C1-JP	C2-US	C2-UK	C2-EA	C2-JP
ef.			EA					
1	-	-	0.004	-	-		-	-
	0.00315	0.00543	300*	0.0071	0.0031	0.00505	0.00446	0.00829
	4*	0*		35*	89*	0*	8*	7*
2	0.00074	0.01511	0.006	0.0063 59*	0.0114	0.01667	0.00639 6*	0.00500
	0.00974	0.01511 1*	160*	39"	35*	5*	0	0.00509 6*
3	2	1	100	_	33	3		0
	0.05204	0.37872	0.468	0.1089	0.3209	0.23731	0.54640	0.05350
	9	0*	883*	70	37	5	2*	5
4	-			-	-			-
	0.26826	0.11811	0.024	0.0930	0.3105	0.10723	0.03725	0.12665
	9*	2**	354	91	41*	5**	4	4
5	0.00701	0.00674	-	0.0063	0.0071	0.00697	0.00655 4*	0.00824 6*
	0.00701	0.00674	0.006 886*	89*	61*	0.00687 5*	4*	0*
6	-	<i>-</i>	000	_	_	<i>J</i>		_
	0.42289	0.09974	0.120	0.0308	0.3939	0.17273	0.03483	0.16761
	3*	3	816	98	45*	5***	1	2**
7	-	-	-	-		-	-	-
	0.00134	0.12142	0.085	0.1460	0.0040	0.08308	0.13250	0.09896
	3	5*	453	44**	48	1*	7***	4
8	0.04022		-	-	-	-	-	-
	0.04033	0.02373	0.075	0.1682	0.0525	0.02144	0.07551	0.06295
9	0.00451	0.00370	087	36*	0.0040	1	8	6
	1*	7*	0.004	0.0034	41*	0.00427	0.00441	0.00512
		,	110*	68*	11	2*	9*	1*
10		-	-			-	-	
	1.43715	1.26761	1.000	0.6744	0.5092	0.33555	1.46797	0.23142
	5***	5***	198	37	95	7	5**	0
11	-	-	-	-	-	-	-	-
	3.37539	2.18817	3.538	4.3562	6.0646	3.66481 7*	3.88230	2.72184 9**
12	4* 0.05228	0.04687	459* 0.045	86*	32*	/*	1* 0.04537	0.05997
12	5*	2*	145*	0.0400	0.0429	0.04691	7*	4*
		_	115	23*	20*	3*	,	
13		_		-	_	_	_	
	0.03905	0.19067	0.015	0.2801	0.0207	0.10224	0.11549	0.04966
	3	6	223	31	41	5	6	7
14	-	0.00=05	-	0.465.	-	-	-	-
	0.64727	0.00708	0.530	0.1804	0.8674	1.04507	0.99013	0.83090
15	9*	5	163	77	29**	8*	8*	0*
15	0.03225	0.00799	0.008	0.0154	0.0235	0.00454	0.02638	0.00511
	7	0.00799	811	0.0134	80	0.00434	6	1
16	-	-	-	0.0133	0.0113	0.01147	-	0.01348
	0.00974	0.01124	0.011	12*	70*	9*	0.01190	8*
	8*	8*	423*				0*	
		•	•			•	•	•

17				_	_	_		_
1 /	0.75200	0.61327	42000	0.9673	1.0299	533928.	1.71624	1.54736
	7	2	6.3	59	42	7	0	4
18	_	_	_	_	_		_	_
	2.68914	2.44033	27067	4.1529	2.0793	5506.69	2.95791	2.92586
	5**	9*	6.4	65	44*	2	3	9
19	-		-	-	-		-	-
	0.31703	0.37934	9169.	0.1800	0.1375	1205.93	0.42707	0.18419
	1	2***	171	25**	74	6	8***	5
20	-	-	-	-	-		-	-
	0.67854	2.40308	10764	0.8591	1.1209	59228.0	1.91269	1.29802
	3	8*	.53	57	30	6	0***	5***
21	-	-	12192	-	-	6029.84	0.11062	-
	0.10601	0.07327	.76	0.1044	0.0700	7	9*	0.08866
	1*	1*		48*	75*			1*
22					-	-		
	0.35078	0.15425	83034	0.3714	0.0534	60621.7	0.66192	0.45767
	2	4	.61	41	53	6	1**	1
23 -	-	-	-		-			
gov	4.78878	4.37668	10547	2.6805	7.0446	100824.	0.23129	0.37208
ext	7	3	9.2	20	63**	6	8	2
24 -	-	0.70000	1.4550	-	2.5220	-	0.4.60.64	-
m2	5.33589	0.73039	14753	2.7172	2.5339	57789.4	0.16061	7.22682 5**
ext	2	8	7.3	16	47**	8	0	3**
25-	1 01050	5.07061	42102	0.6562	4 1261	00507.9	<i>E (</i> 1070	4.20610
gdp	1.81850	5.97961 4**	42183	9.6563 77*	4.1361 33*	99507.8	5.61878 2*	4.29610 3*
26-	4	4****	3.8	11"	33"	/	Z**	3"
dt	10.3324	11.2166	91914	14.835	7.9219	355290.	16.2958	6.65007
αι	2**	3**	3.2	09*	41*	6	3*	0.03007
27-	_	_	J.2	07	71	_	_	_
	0.19400	0.22165	33589	1.1948	0.1718	4067.06	0.10905	0.07761
gov	7	0.22103	.36	49*	46	2	3	5
28-	_	1	.50	12	10	_	3	
m2	1.26439	1.64749	36946	0.7620	0.0447	128577.	1.00967	0.00247
****	7	1.04745	.88	35	0.0447	8	6	8
29-	-	_		-		-	-	-
ir	1.78422	1.06440	14034	1.5578	0.0001	80153.9	1.15984	1.01041
	8***	9	3.1	12*	45	6	3*	0***
30	-	0.14998	10480	0.1252	_	5523.65	-	0.11189
	0.16743	5*	.97	55*	0.0814	6	0.11320	6*
	3*				23*		8*	

Table 4-1 Contemporaneous relationships

^{*}significant at 1% significance level (p-value less than 0.01); **significant at 5% level (more than 0.01 but less 0.05); ***significant at 10% level (more than 0.05 but less 0.10);

However, note that the models C2-EA and C2-JP, are not fully validated once that have correlation in three and one lag respectively.

The results show that the spillovers of the international fiscal and monetary policy are overall null or near zero. However, there are significant spillovers of United States and Japan with China, the monetary policy of US has positive impact and the fiscal have negative impact on Shanghai stock returns, in other hand the monetary policy of Japan have as well. Furthermore, regarding the other transmission channels the internal GDP and inflation play the major role determining the stock returns and finally the specific innovations associated with stock market, in a transversal way to all models.

5 CONCLUDING REMARKS

The results show that the spillovers of the international fiscal and monetary policy are overall nonexistent or weak at best. However, there are significant spillovers of United States and Japan with China, the monetary policy of US has positive impact and the fiscal has negative impact on Shanghai stock returns, the same is true of the Japanese monetary policy.

In other hand, the average of stock returns is better explained by the regressors than just the end of the month of the stock returns.

The conclusions validate the research hypothesis/questions defined:

- 1) There are spillovers impact of external fiscal and monetary policy in China stock exchange returns;
- 2) The spillovers impact of external fiscal and monetary policy in China stock exchange returns are positive;
- 3) There are several monetary channels that conduct the spillovers; their relative strength in each country determines if the impact is strong/weak, negative/positive.

And validate the research question that is to verify if there are spillovers of fiscal and monetary policy.

These results seem consistent with the recent literature and with the empirical results suggested by several authors in their studies.

Regarding future research, i believe there are three main paths to follow.

Firstly, is investigate further the impact of external fiscal policies of Shanghai stock returns; the second to investigate further the impact of monetary policies of Euro Area

and United Kingdom in the same stock market returns, and the final one is the estimate models with both policies, like this work.

6 REFERENCES

- Afonso, Antonio, & Sousa, R. (2009). *Fiscal Policy, Housing and Stock Prices* (SSRN Scholarly Paper No. ID 1311408). Rochester, NY: Social Science Research Network. Retrieved from http://papers.ssrn.com/abstract=1311408
- Afonso, Antonio, & Sousa, R. M. (2011). What are the effects of fiscal policy on asset markets? *Economic Modelling*, 28(4), 1871–1890.
- Afonso, António, & Sousa, R. M. (2012). The macroeconomic effects of fiscal policy. *Applied Economics*, 44(34), 4439–4454.
- Agnello, L., & Sousa, R. M. (2010). Fiscal policy and asset prices. Retrieved from http://repositorium.sdum.uminho.pt/handle/1822/11677
- Ardagna, S. (2009). Financial markets' behavior around episodes of large changes in the fiscal stance. *European Economic Review*, 53(1), 37–55.
- Aziza, F. O. F. (2010). *The Effects of Monetary Policy on Stock Market Performance: A Cross-Country Analysis* (SSRN Scholarly Paper No. ID 1743834). Rochester, NY: Social Science Research Network. Retrieved from http://papers.ssrn.com/abstract=1743834
- Barro, R. J. (1974). Are government bonds net wealth? *Journal of Political Economy*, 82(6), 1095–1117.
- Bhattarai, S., Chatterjee, A., & Park, W. Y. (2015). Effects of US quantitative easing on emerging market economies. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2700497
- Bjørnland, H. C., Jacobsen, D. H., & others. (2008). The role of house prices in the monetary policy transmission mechanism in the US. *Scandinavian Journal of Economics*. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.3605&rep=rep1& type=pdf
- Bjørnland, H. C., & Leitemo, K. (2009). Identifying the interdependence between US monetary policy and the stock market. *Journal of Monetary Economics*, 56(2), 275–282.
- Blanchard, O. J. (1981). Output, the stock market, and interest rates. *The American Economic Review*, 71(1), 132–143.
- Bohl, M. T., Siklos, P. L., & Sondermann, D. (2008a). European Stock Markets and the ECB's Monetary Policy Surprises. *International Finance*, 11(2), 117–130.
- Bohl, M. T., Siklos, P. L., & Sondermann, D. (2008b). European Stock Markets and the ECB's Monetary Policy Surprises. *International Finance*, 11(2), 117–130. https://doi.org/10.1111/j.1468-2362.2008.00219.x
- Boothe, P. M., & Reid, B. G. (1989). Asset returns and government budgets in a small open economy: Empirical evidence for Canada. *Journal of Monetary Economics*, 23(1), 65–77.
- Borja, D. V. H., & Goyeau, D. (2011). International liquidity, monetary spillovers and asset prices. *Philippine Management Review*. Retrieved from http://journals.upd.edu.ph/index.php/pmr/article/view/2091
- Brana, S., Djigbenou, M.-L., & Prat, S. (2012). Global excess liquidity and asset prices in emerging countries: A PVAR approach. *Emerging Markets Review*, *13*(3), 256–267. https://doi.org/10.1016/j.ememar.2012.02.002

- Brana, S., & Prat, S. (2016). The effects of global excess liquidity on emerging stock market returns: Evidence from a panel threshold model. *Economic Modelling*, 52, *Part A*, 26–34. https://doi.org/10.1016/j.econmod.2015.06.026
- Bredin, Don, Hyde, S., Nitzsche, D., & O'reilly, G. (2009). European monetary policy surprises: the aggregate and sectoral stock market response. *International Journal of Finance & Economics*, *14*(2), 156–171.
- Bredin, Donal, Hyde, S., & O'Reilly, G. (2005). UK Stock returns & the impact of domestic monetary policy shocks. Retrieved from http://irserver.ucd.ie/handle/10197/1167
- Caporale, G. M., Howells, P. G., Soliman, A. M., & others. (2004). Stock market development and economic growth: the causal linkage. *Journal of Economic Development*, 29(1), 33–50.
- Cavallo, E. (2015, February 22). A Brief History of Quantitative Easing. Retrieved March 15, 2016, from http://themarketmogul.com/brief-history-quantitative-easing/
- Chatziantoniou, I., Duffy, D., & Filis, G. (2013). Stock market response to monetary and fiscal policy shocks: Multi-country evidence. *Economic Modelling*, *30*, 754–769.
- Chen, Q., Filardo, A. J., He, D., & Zhu, F. (2012). International spillovers of central bank balance sheet policies. *BIS Paper*, (66p). Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2185394
- Chen, Q., Lombardi, M., Ross, A., & Zhu, F. (2015). Global Impact of US and Euro Area Unconventional Monetary Policies: A Comparison (p. 42). Presented at the 16th Jacques Polak Annual Research Conference, Washington, DC: IMF. Retrieved from https://www.imf.org/external/np/res/seminars/2015/arc/pdf/Zhu.pdf
- Christine Wong. (2011). The Fiscal Stimulus Programme and Public Governance Issues in China. *OECD Journal on Budgeting*, 11(3), 1–22. https://doi.org/10.1787/budget-11-5kg3nhljqrjl
- Crowder, W. J. (2006). The interaction of monetary policy and stock returns. *Journal of Financial Research*, 29(4), 523–535.
- Da, Z., Warachka, M., & Yun, H. (2014). Fiscal Policy, Consumption Risk, and Stock Returns: Evidence from US States (SSRN Scholarly Paper No. ID 2020907). Rochester, NY: Social Science Research Network. Retrieved from http://papers.ssrn.com/abstract=2020907
- Darrat, A. F. (1988). On Fiscal Policy and the Stock Market. *Journal of Money, Credit & Banking (Ohio State University Press)*, 20(3), 353–363.
- Darrat, A. F. (1990). Stock returns, money, and fiscal deficits. *Journal of Financial and Quantitative Analysis*, 25(03), 387–398.
- Darrat, A. F., & Mukherjee, T. K. (1986). The behavior of the stock market in a developing economy. *Economics Letters*, 22(2), 273–278.
- Dennis, G. (1983). *Monetary aggregates and economic activity: Evidence from five industrial countries* (BIS Economic Papers No. 7) (p. 70). Basel, Switzerland: Bank for International Settlements. Retrieved from http://www.bis.org/publ/econ7.pdf
- ECB. (2015, January 22). ECB announces expanded asset purchase programme. Retrieved May 20, 2016, from https://www.ecb.europa.eu/press/pr/date/2015/html/pr150122_1.en.html
- Elbourne, A. (2008). The UK housing market and the monetary policy transmission mechanism: An SVAR approach. *Journal of Housing Economics*, *17*(1), 65–87. https://doi.org/10.1016/j.jhe.2007.09.002
- Euronews. (2015, January 23). So what exactly is quantitative easing, and how is it going to get the eurozone growing again? Retrieved May 20, 2016, from

- http://www.euronews.com/2015/01/23/so-what-exactly-is-quantitative-easing-and-how-is-it-going-to-get-the-eurozone-/
- Evans-Pritchard, A. (2014, June 1). China explores bond buying in first hint of QE. Retrieved from http://www.telegraph.co.uk/finance/china-business/10868381/China-explores-bond-buying-in-first-hint-of-QE.html
- Fawley, B. w., & Neely, C. j. (2013). Four stories of quantitative easing. *Federal Reserve Bank of St. Louis Review*, 95(1), 51–88.
- Fic, T. (2013). The spillover effects of unconventional monetary policies in major developed countries on developing countries (p. 39). New York, USA: United Nations, Department of Economic and Social Affairs. Retrieved from http://www.un.org/esa/desa/papers/2013/wp131 2013.pdf
- Filbien, J.-Y., & Fabien, L. (2011). Eurozone Stock Market Reactions to Unexpected ECB Monetary Policy Announcements. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.1833622
- Fratzscher, M., Lo Duca, M., & Straub, R. (2013). On the international spillovers of US quantitative easing. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2276855
- Frenkel, J. A., & Razin, A. (1986). Fiscal policies in the world economy. *The Journal of Political Economy*, 564–594.
- Gregoriou, A., Kontonikas, A., MacDonald, R., & Montagnoli, A. (2009). Monetary policy shocks and stock returns: evidence from the British market. *Financial Markets and Portfolio Management*, 23(4), 401–410. https://doi.org/10.1007/s11408-009-0113-2
- Hsing, Y. (2013). Effects of Fiscal Policy and Monetary Policy on the Stock Market in Poland. *Economies*, 1(3), 19–25. https://doi.org/10.3390/economies1030019
- IMF. (2010). Chapter IV. Global Liquidity Expansion: Effects on "Receiving" Economies and Policy Response Options. In *Global Financial Stability Report: Meeting New Challenges to Stability and Building a Safer System* (1st ed., pp. 1–33). Washington D.C., United States: IMF International Monetary Found. Retrieved from https://www.imf.org/external/pubs/ft/gfsr/2010/01/pdf/chap4.pdf
- IMF. (2011). *Japan: Spillover Report for the 2011 Article IV Consultation and Selected Issues* (No. 11/183) (p. 69). Washington, D.C.: IMF International Monetary Found. Retrieved from https://www.imf.org/external/pubs/ft/scr/2011/cr11183.pdf
- Jansen, D. W., Li, Q., Wang, Z., & Yang, J. (2008). Fiscal policy and asset markets: A semiparametric analysis. *Journal of Econometrics*, 147(1), 141–150.
- Jones, C. (2015, September 3). Downbeat Draghi ready to beef up quantitative easing package. Retrieved May 20, 2016, from http://www.ft.com/cms/s/0/a1b49bae-5226-11e5-8642-453585f2cfcd.html
- Kang, J. (2010). Meeting the challenges of financial crisis—China's practice: From developing countries' prospective. *Public Policy Review*, 6(4), 645–658.
- Kapetanios, G., Mumtaz, H., Stevens, I., & Theodoridis, K. (2012). Assessing the Economy-wide Effects of Quantitative Easing*. *The Economic Journal*, 122(564), F316–F347. https://doi.org/10.1111/j.1468-0297.2012.02555.x
- Kholodilin, K., Montagnoli, A., Napolitano, O., & Siliverstovs, B. (2009). Assessing the impact of the ECB's monetary policy on the stock markets: A sectoral view. *Economics Letters*, 105(3), 211–213.
- Kim, S., & Roubini, N. (2000). Exchange rate anomalies in the industrial countries: A solution with a structural VAR approach. *Journal of Monetary Economics*, 45(3), 561–586. https://doi.org/10.1016/S0304-3932(00)00010-6

- Kishor, N. K., & Marfatia, H. A. (2013). The time-varying response of foreign stock markets to U.S. monetary policy surprises: Evidence from the Federal funds futures market. *Journal of International Financial Markets, Institutions and Money*, 24, 1–24. https://doi.org/10.1016/j.intfin.2012.11.004
- Krishnamurthy, A., & Vissing-Jorgensen, A. (2011). *The Effects of Quantitative Easing on Interest Rates: Channels and Implications for Policy* (Working Paper No. 17555). National Bureau of Economic Research. Retrieved from http://www.nber.org/papers/w17555
- Laopodis, N. T. (2010). Dynamic linkages between monetary policy and the stock market. *Review of Quantitative Finance and Accounting*, *35*(3), 271–293.
- Lavigne, R., Sarker, S., Vasishtha, G., & others. (2014). Spillover effects of quantitative easing on emerging-market economies. *Bank of Canada Review*, 2014(Autumn), 23–33.
- Li, Z., & Zhang, X. (2014). Evaluating the Effectiveness and Efficiency of the Fourtrillion Yuan Stimulus Package: Evidence from Stock Market Returns of Chinese Listed A Shares. *Global Economic Review*, 43(4), 381–407. https://doi.org/10.1080/1226508X.2014.982319
- Liang, Y. (2016). Inside Shadow Banking in China: Credit Driven Growth vs. Financial Stability. *Journal of Economic Issues*, 50(2), 461–470.
- Lim, E.-G., & Sriram, S. (2003). Factors underlying the definitions of broad money: An examination of recent US monetary statistics and practices of other countries (IMF Working Paper No. WP/03/62) (p. 36). Washington D.C., United States: International Monetary Fund. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=879137
- Martin, C., & Milas, C. (2012). Oxford Review of Economic Policy. *Quantitative Easing: A Sceptical Survey*, 28(4), 750–764. https://doi.org/10.1093/oxrep/grs029
- Matthews, K. B., Antonia. (2016, March 10). ECB pulls out all the stops, cuts rates and expands QE. Retrieved May 20, 2016, from http://www.cnbc.com/2016/03/10/will-super-mario-deliver-high-hopes-for-robust-ecb-easing.html
- Melitz, J. (2000). Some Cross-country Evidence about Fiscal Policy Behaviour and Consequences for EMU. Department of Economics, Fraser of Allander Institute. Retrieved from http://www.opengrey.eu/item/display/10068/578682
- Mishkin, F. S. (1994). Preventing Financial Crises: An International Perspective. *The Manchester School*, 62(S1), 1–40. https://doi.org/10.1111/j.1467-9957.1994.tb01469.x
- Mishkin, F. S. (1996). *The channels of monetary transmission: lessons for monetary policy*. National Bureau of Economic Research. Retrieved from http://www.nber.org/papers/w5464.pdf
- Mukherji, R. (2015). What Determines Stock Returns? A Comparative Study of the Effects of Fiscal, Monetary and Trade Variables. *IUP Journal of Applied Economics*, 14(1), 33–46.
- Naughton, B. (2009). Understanding the Chinese stimulus package. *China Leadership Monitor*, 28(2), 1–12.
- Ngai, P. (2006). China as a World Factory: New Practices and Struggles of Migrant Women Workers. Online: http://www. rosalux. de/cms/uploads/media/Ngai_China_as_a_World_factory_2005. pdf (Aufruf: 14.04. 2007). Retrieved from http://training.itcilo.org/actrav/courses/2006/A3-00813_web/resource/Ngai_China_as_a_World_factory_2005.pdf

- O'neill, J., & Goldman, S. (2001). Building better global economic BRICs. Retrieved from http://www.elcorreo.eu.org/IMG/pdf/Building_Better_Global_Economic_Brics.pdf
- Ozdagli, A. K., & Yu, Y. (2011). Monetary Policy Shocks and Stock Returns: Identification Through Impossible Trinity. In *Midwest Finance Association 2012 Annual Meetings Paper*. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1928614
- Rawdanowicz, \Lukasz, Bouis, R., Brezillon, J., Christensen, A. K., & Inaba, K.-I. (2014). Spillover Effects from Exiting Highly Expansionary Monetary Policies. Retrieved from http://www.oecd-ilibrary.org/economics/spillover-effects-from-exiting-highly-expansionary-monetary-policies_5jz417mb6dzp-en
- Rozeff, M. S. (1974). Money and stock prices: Market efficiency and the lag in effect of monetary policy. *Journal of Financial Economics*, 1(3), 245–302.
- Rueffer, R., & Stracca, L. (2006). What is Global Excess Liquidity, and Does it Matter? (SSRN Scholarly Paper No. ID 942737). Rochester, NY: Social Science Research Network. Retrieved from http://papers.ssrn.com/abstract=942737
- Semeniuk, D. (2012, May). European Central Bank's Communication and Monetary Policy within Economic and Monetary Union. University of Aarhus, Aarhus, Denmark. Retrieved from http://pure.au.dk/portal-asb-student/files/45295760/Dmitrij_Semeniuk_Bachelor_Thesis.pdf
- Shibamoto, M., & Tachibana, M. (2014). Individual Stock Returns and Monetary Policy: Evidence from Japanese Data. *Japanese Economic Review*, 65(3), 375–396. https://doi.org/10.1111/jere.12019
- Sims, C., & Zha, T. (2006a). Does monetary policy generate recessions? *Macroeconomic Dynamics*, 10(02), 231–272. https://doi.org/10.1017/S136510050605019X
- Sims, C., & Zha, T. (2006b). Were There Regime Switches in U.S. Monetary Policy?, 96(1), 54–81.
- Singh, S. P., & Talwar, P. P. (1982). Monetary and fiscal policies and stock prices. *Journal of Business Finance & Accounting*, 9(1), 75–91.
- Stiglitz, J. E., & Weiss, A. (1981). Credit Rationing in Markets with Imperfect Information. *American Economic Review*, 71(3), 393.
- Sun, M., & Cheng, C. (2013). A Financial Crisis Study: How Fiscal And Monetary Policy Affects The Stock Market Returns Considering The Specific Counties. Lund University, Lund, Sweden. Retrieved from http://www.lunduniversity.lu.se/lup/publication/3806824
- Tarhan, V. (1995). Does the Federal Reserve affect asset prices? *Journal of Economic Dynamics and Control*, 19(5), 1199–1222.
- Tavares, J., & Valkanov, R. (2001). *The neglected effect of fiscal policy on stock and bond returns* (FEUNL Working Paper Series No. wp413). Universidade Nova de Lisboa, Faculdade de Economia. Retrieved from https://ideas.repec.org/p/unl/unlfep/wp413.html
- Team, T. (2015, November 16). Quantitative Easing In Focus: The U.S. Experience. Retrieved May 20, 2016, from http://www.forbes.com/sites/greatspeculations/2015/11/16/quantitative-easing-in-focus-the-u-s-experience/
- The World Bank. (1999). *China Weathering the storm and learning the lessons : country economic memorandum* (No. 18768) (pp. 1–95). The World Bank. Retrieved from http://documents.worldbank.org/curated/en/1999/05/440985/china-weathering-storm-learning-lessons-country-economic-memorandum

- Thorbecke, W. (1997). On stock market returns and monetary policy. *The Journal of Finance*, 52(2), 635–654.
- Tobin, J. (1969). A General Equilibrium Approach To Monetary Theory. *Journal of Money, Credit and Banking*, 1(1), 15–29. https://doi.org/10.2307/1991374
- Ugai, H., & others. (2007). Effects of the quantitative easing policy: A survey of empirical analyses. *Monetary and Economic Studies-Bank of Japan*, 25(1), 1.
- Van Aarle, B., Garretsen, H., & Gobbin, N. (2003a). Monetary and fiscal policy transmission in the Euro-area: evidence from a structural VAR analysis. *Journal of Economics and Business*, 55(5), 609–638.
- Van Aarle, B., Garretsen, H., & Gobbin, N. (2003b). Monetary and fiscal policy transmission in the Euro-area: evidence from a structural VAR analysis. *Journal of Economics and Business*, 55(5), 609–638.
- Wyplosz, C. (1999). Economic policy coordination in EMU: Strategies and institutions. *ZEI Policy Paper B*, *11*. Retrieved from https://www.researchgate.net/profile/Charles_Wyplosz/publication/268258881_ Economic_Policy_Coordination_in_EMU_Strategies_and_Institutions/links/54b e86070cf28ce31232696e.pdf
- Xinhua, L. J. (2009, February 26). China faces fiscal test as stimulus spending rises, tax revenues fall. Retrieved from http://news.xinhuanet.com/english/2009-02/26/content_10903850.htm
- Yongding, Y. (2009). *China's Policy Responses to the Global Financial Crisis* (SSRN Scholarly Paper No. ID 1615956). Rochester, NY: Social Science Research Network. Retrieved from http://papers.ssrn.com/abstract=1615956
- Zahid, K. H. (1988). Government budget deficits and interest rates: the evidence since 1971, using alternative deficit measures. *Southern Economic Journal*, 725–731.
- Zhang, C., Zhang, D., Breece, J., & others. (2011). Financial crisis, monetary policy, and stock market volatility in china. *Annals of Economics and Finance*, 12(2), 371–388.

7 ANNEXES

7.1 DATA DEFINITIONS AND SOURCES

Variable ¹	Definition	Unit	Source / Formula
GDP_(countr	Gross Domestic Product,	National	OECD – Main Economic Indicators ,
y)	current prices	currency	China Bureau of Statistics
CPI_(country	Consumer Price Index (all	Index	OECD – Main Economic Indicators
)	items)	2010=100	
IR_(country)	Short term interest rate	%	OECD – Main Economic Indicators
	[Interbank rate (< 24 hrs)]		
GOV_(countr	Government final	National	OECD – Main Economic Indicators ,
y)	consumption expenditure	currency	China Bureau of Statistics
C_(country)*	Close of the stock index		Yahoo Finance
M2_(country	M2 monetary aggregate	National	FRED of Saint Louis
)		currency ²	(Federal Reserve)
GDP_(countr	Real Gross Domestic	%	$\frac{y_t}{CPL} - \frac{y_{t-1}}{CPL}$
y)_sag	Product growth rate		$\Delta y = \frac{\frac{y_t}{CPI_t} - \frac{y_{t-1}}{CPI_{t-1}}}{\frac{y_{t-1}}{CPI_{t-1}}}$
(o. ₁(=1
CPI_(country	Inflation	%	$\Delta cpi = \frac{cpi_t - cpi_{t-1}}{cpi_{t-1}}$
)_sag			
IR_(country)	Short term interest rate	%	$\Delta ir = ir_t - \frac{cpi_{t-1} - cpi_t}{cpi_{t-1}}$
sag			cpt{t-1}
GOV_(countr	Real government final	%	$\Delta g = \frac{\frac{g_t}{CPI_t} \frac{g_{t-1}}{CPI_{t-1}}}{\frac{g_{t-1}}{CPI_{t-1}}}$
y)_sag	consumption expenditure		$\Delta g = \frac{g_{t-1}}{CPI_{t-1}}$
	growth		
C_(country)_	Real stock exchange	%	$\frac{close_t}{CRL} - \frac{close_{t-1}}{CRL}$
sag	returns		$\Delta close = \frac{CPI_t}{close_t} \frac{CPI_{t-1}}{close_t}$
			$\frac{\overline{CRSS_{t-1}}}{CPI_{t-1}}$
M2_(country	M2 monetary aggregate	%	$\Delta close = \frac{\frac{close_t}{CPI_t} - \frac{close_{t-1}}{CPI_{t-1}}}{\frac{close_{t-1}}{CPI_{t-1}}}$ $\Delta M2 = \frac{\frac{m2_{t-1} - m2_t}{m2_{t-1}}/CPI_t}{m2_{t-1}}$
)_sag	growth rate		

^{*}c1-means the last close of last day of the quarter; c2-means the average close of the quarter

$$\Delta c = \frac{\frac{close_t}{CPI_t} - \frac{close_{t-1}}{CPI_{t-1}}}{\frac{close_{t-1}}{CPI_{t-1}}}$$

51

¹ "_sag" means <u>Seasonaly Adjusted in Growth rate.</u>

² Sterling millions for UK

7.2 SYNTHESIS OF UNIT ROOT AND SEASONALITY TESTS

Variable / test			Stati	onarity	tests	Trend tests			Correlogram	
		DF	PP	KPSS	decision	DF	PP	KPSS	decision	Seasonality
	China	S	S	S	S	D,D	D,D	D	D	NO
	EA	S	S	S	S	D,D	D,D	D	D	NO
C1	US	S	S	S	S	D,D	D,D	D	D	NO
	UK	S	S	S	S	D,D	D,D	D	D	NO
	Japan	S	S	S	S	D,D	D,D	D	D	NO
	China	S	S	S	S	D,D	D,D	D	D	NO
	EA	S	S	S	S	D,D	D,D	D	D	NO
C2	US	S	S	NS	S	D,D	D,D	D	D	NO
	UK	S	S	S	S	D,D	D,D	D	D	NO
	Japan	S	S	S	S	D,D	D,D	D	D	NO
	China	S	S	S	S	D,D	D,D	D	D	NO
	EA	S	S	S	S	D,D	D,D	D	D	NO
CPI	US	S	S	S	S	D,D	D,D	D	D	NO
	UK	S	S	NS	S	D,D	D,D	D	D	NO
	Japan	S	S	S	S	D,D	D,D	D	D	NO
	China	S	S	NS	S	D,D	D,D	S	D	NO
	EA	S	S	S	S	D,D	D,D	S	D	NO
GDP	US	S	S	S	S	D,D	D,D	S	D	NO
	UK	S	S	S	S	D,D	D,D	S	D	NO
	Japan	S	S	S	S	D,D	D,D	D	D	NO
	China	S	S	NS	S	D,S	D,S	S	S	NO
	EA	S	S	S	S	D,D	D,D	S	D	NO
Gov	US*	S	S	S	S	D,D	D,D	D	D	NO
	UK*	S	S	S	S	D,D	D,D	D	D	NO
	Japan	S	S	S	S	D,D	D,D	S	D	NO
	China*	S	S	S	S	D,S	D,S	S	S	NO
	EA*	S	S	S	S	D,D	D,D	D	D	NO
IR	US*	NS	S	S	S	D,D	D,D	D	D	NO
	UK*	S	S	S	S	D,D	D,D	D	D	NO
	Japan*	S	S	S	S	D,D	D,D	D	D	NO
	China	S	S	S	S	D,D	D,D	S	D	NO
M2	EA	NS	S	S	S	D,D	D,D	D	D	NO
	US	S	S	S	S	D,D	D,D	D	D	NO
	UK	S	S	NS	S	D,S	D,S	S	S	NO
	Japan	S	S	S	S	D,D	D,D	D	D	NO

Legend: S- Stationary; NS- Not stationary; D- Deterministic trend; S- Stockastic trend

7.3 STATIONARITY TESTS

Test

Null hypothesis

Stationarity tests

Dickey-Fuller (DF) Phillips-Perron (PP)

Kwiatkowski, Phillips, Schmidt e Shin (KPSS)

Trend tests

SERIES(-1)

@TREND

 H_0 : There is a unit root in the series H_0 : There is a unit root in the series H_0 : There is not a unit root in the series

 H_0 : Stockastic trend H_0 : Deterministic trend

Decision rule: p-value < significance level (0,05), the null hyphotesis is rejected

7.3.1 Close 1

China - DF

Null Hypothesis: C1_CHN_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Lag Length: 3 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller	-4.959383	0.0006	
Test critical values:	1% level	-4.081666	
	5% level	-3.469235	
	10% level	-3.161518	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Augmented Dickey-Fuller Test Equation Dependent Variable: D(CI_CHN_GNSA_SAF) Method: Least Squares Date: 12/24/16 Time: 22:29 Sample (adjusted): 199602 201502 Included observations: 77 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_CHN_GNSA_SAF(-1) D(C1_CHN_GNSA_SAF(-1)) D(C1_CHN_GNSA_SAF(-2)) D(C1_CHN_GNSA_SAF(-3)) C @TREND("1995Q2")	-0.855446 0.168299 0.137791 0.416297 0.045146 -0.000425	0.172490 0.165858 0.140345 0.107737 0.035577 0.000732	-4.959383 1.014715 0.981801 3.864000 1.268972 -0.580356	0.0000 0.3137 0.3295 0.0002 0.2086 0.5635
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.516040 0.481958 0.140785 1.407241 44.82544 15.14124 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	dent var ent var iterion rion in criter.	0.003222 0.195602 -1.008453 -0.825819 -0.935401 2.094473

China - KPSS

Null Hypothesis: C1_CHN_GNSA_SAF is stationary Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.				
Kwiatkowski-Phillips-Schmidt-Sh	0.050833					
Asymptotic critical values*:	1% level	0.216000				
	5% level	0.146000				
	10% level	0.119000				
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)						
Residual variance (no correction)	0.024609				
HAC corrected variance (Bartlett)	kernel)	0.034180				

KPSS Test Equation Dependent Variable: C1_CHN_GNSA_SAF Method: Least Squares Date: 12/24/16 Time: 22:32 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.034662 -0.000107	0.034975 0.000755	0.991048 -0.141565	0.3247 0.8878
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000254 -0.012401 0.158847 1.993345 35.10370 0.020041 0.887784	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.030387 0.157871 -0.817375 -0.758253 -0.793655 1.576334

China - PP

Null Hypothesis: C1_CHN_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-7.187823	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no	correction)		0.023514
HAC corrected variance			0.023314

Phillips-Perron Test Equation Dependent Variable: D(C1_CHN_GNSA_SAF) Method: Least Squares Date: 12/24/16. Time: 22-31 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_CHN_GNSA_SAF(-1)	-0.799260 0.035932	0.111306 0.035539	-7.180764 1.011032	0.0000
@TREND("1995Q2")	-0.000226	0.000757	-0.298165	0.7664
R-squared	0.401082	Mean depend	ient var	0.003883
Adjusted R-squared	0.385526	S.D. depende	ent var	0.199395
S.E. of regression	0.156302	Akaike info cr	iterion	-0.837270
Sum squared resid	1.881144	Schwarz crite	rion	-0.747944
Log likelihood	36.49078	Hannan-Quin	in criter.	-0.801456
F-statistic	25.78259	Durbin-Watso	on stat	1.956449
Prob(F-statistic)	0.000000			

EA - DF

Null Hypothesis: C1_EURO_GNSA_SAF has a unit root

Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Full	-7.416874	0.0000	
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(C1_EURO_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:13 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_EURO_GNSA_SAF(-1) C @TREND("1995Q2")	-0.833608 0.032745 -0.000523	0.112393 0.022288 0.000473	-7.416874 1.469199 -1.104796	0.0000 0.1459 0.2727
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.416712 0.401562 0.096692 0.719902 74.91158 27.50514 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.001053 0.124992 -1.797790 -1.708464 -1.761976 2.021111

EA - KPSS

Null Hypothesis: C1_EURO_GNSA_SAF is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.109072
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	shin (1992, Table 1)	
Residual variance (no correction)	0.009143
HAC corrected variance (Bartlett I	kernel)	0.013619

KPSS Test Equation
Dependent Variable: C1_EURO_GNSA_SAF Method: Least Squares

Date: 12/25/16 Time: 00:15 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.040075 -0.000638	0.021318 0.000460	1.879859 -1.386071	0.0638 0.1696
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.023742 0.011384 0.096820 0.740561 75.20522 1.921193 0.169625	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.014565 0.097376 -1.807536 -1.748414 -1.783816 1.666611

EA - PP

Null Hypothesis: C1_EURO_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
		Auj. I-olal	1 100.
Phillips-Perron test stat	istic	-7.518690	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) one	-sided p-values.		
Residual variance (no d	correction)		0.008999
HAC corrected variance	(Bartlett kernel)		0.010191

Phillips-Perron Test Equation Dependent Variable: D(C1_EURO_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:14 Sample (adjusted): 199503 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_EURO_GNSA_SAF(-1) C @TREND("1995Q2")	-0.833608 0.032745 -0.000523	0.112393 0.022288 0.000473	-7.416874 1.469199 -1.104796	0.0000 0.1459 0.2727
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.416712 0.401562 0.096692 0.719902 74.91158 27.50514 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.001053 0.124992 -1.797790 -1.708464 -1.761976 2.021111

JAPAN - DF

Null Hypothesis: C1_JP_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-7.133122	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(C1_JP_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:17 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_JP_GNSA_SAF(-1) C	-0.786689 -0.003271	0.110287 0.022735	-7.133122 -0.143856	0.000C 0.886C
@TREND("1995Q2")	0.000292	0.000490	0.595831	0.5530
R-squared	0.398020	Mean depend	lent var	0.002514
Adjusted R-squared	0.382384	S.D. depende	nt var	0.127958
S.E. of regression	0.100561	Akaike info cri	iterion	-1.719334
Sum squared resid	0.778657	Schwarz crite	rion	-1.630008
Log likelihood	71.77335	Hannan-Quin	n criter.	-1.683520
F-statistic	25.45563	Durbin-Watso	n stat	1.727657
Prob(F-statistic)	0.000000			

JAPAN - KPSS

Null Hypothesis: C1_JP_GNSA_SAF is stationary Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.066585
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction)	0.010281
HAC corrected variance (Bartlett		0.014037

KPSS Test Equation Dependent Variable: C1_JP_GNSA_SAF Method: Least Squares Date: 12/25/16 Time: 00:18 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.012100 0.000512	0.022606 0.000488	-0.535237 1.048941	0.5940 0.2974
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.013736 0.001252 0.102670 0.832746 70.45376 1.100278 0.297404	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.008372 0.102734 -1.690216 -1.631094 -1.666496 1.553673

JAPAN - PP

Null Hypothesis: C1_JP_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	itistic	-7.225044	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.009733
HAC corrected variance (Bartlett kernel)	0.010835

Phillips-Perron Test Equation Dependent Variable: D(C1_JP_GNSA_SAF) Dependent variable: U(CT_IP_GNSA_SAF)
Method: Least Squares
Date: 12/25/16 Time: 00:18
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_JP_GNSA_SAF(-1) C @TREND("1995Q2")	-0.786689 -0.003271 0.000292	0.110287 0.022735 0.000490	-7.133122 -0.143856 0.595831	0.0000 0.8860 0.5530
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.398020 0.382384 0.100561 0.778657 71.77335 25.45563 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.002514 0.127958 -1.719334 -1.630008 -1.683520 1.727657

UK - DF

Null Hypothesis: C1_UK_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level	-8.162681 -4.076860 -3.466966	0.0000
	10% level	-3.160198	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(C1_UK_GNSA_SAF) Method: Least Squares
Date: 12/25/16 Time: 00:20
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_UK_GNSA_SAF(-1) C @TREND("1995Q2")	-0.923568 0.015947 -0.000251	0.113145 0.016004 0.000342	-8.162681 0.996450 -0.734029	0.0000 0.3222 0.4652
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.463969 0.450047 0.070151 0.378927 100.5825 33.32426 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.001106 0.094595 -2.439562 -2.350236 -2.403749 2.022513

UK-KPSS

Null Hypothesis: C1_UK_GNSA_SAF is stationary Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.087408
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction)	0.004746
HAC corrected variance (Bartlett)	kernel)	0.005959

KPSS Test Equation Dependent Variable: C1_UK_GNSA_SAF Method: Least Squares Date: 12/25/16 Time: 00:21 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.020361 -0.000328	0.015360 0.000332	1.325610 -0.990605	0.1888 0.3249
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.012269 -0.000234 0.069760 0.384450 101.7568 0.981298 0.324903	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.007225 0.069752 -2.463131 -2.404009 -2.439410 1.838888

UK - PP

Null Hypothesis: C1_UK_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend
Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-8.213233	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.004737
HAC corrected variance (Bartlett kernel)	0.005276

Phillips-Perron Test Equation Dependent Variable: D(C1_UK_GNSA_SAF) Dependent Variable, D(C1_DK_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:20 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_UK_GNSA_SAF(-1) C @TREND("1995Q2")	-0.923568 0.015947 -0.000251	0.113145 0.016004 0.000342	-8.162681 0.996450 -0.734029	0.0000 0.3222 0.4652
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.463969 0.450047 0.070151 0.378927 100.5825 33.32426 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.001106 0.094595 -2.439562 -2.350236 -2.403749 2.022513

US-DF

Null Hypothesis: C1_US_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-6.977055	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(C1_US_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:23 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_US_GNSA_SAF(-1) C @TREND("1995Q2")	-0.773545 0.017287 -0.000144	0.110870 0.016869 0.000358	-6.977055 1.024803 -0.401688	0.0000 0.3087 0.6890
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.387371 0.371458 0.073734 0.418631 96.59658 24.34387 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	-0.000564 0.093004 -2.339915 -2.250589 -2.304101 2.005737

US - KPSS

Null Hypothesis: C1_US_GNSA_SAF is stationary Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.136061
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	thin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett	•	0.005461 0.008084

KPSS Test Equation Dependent Variable: C1_US_GNSA_SAF Method: Least Squares Date: 12/25/16 Time: 00:24

Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.024472 -0.000225	0.016475 0.000356	1.485405 -0.631934	0.1414 0.5293
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005030 -0.007565 0.074826 0.442312 96.07867 0.399340 0.529255	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.015484 0.074544 -2.322930 -2.263808 -2.299210 1.544939

US - PP

Null Hypothesis: C1_US_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-7.025749	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.005233
HAC corrected variance (Bartlett kernel)	0.005521

Phillips-Perron Test Equation Dependent Variable: D(C1_US_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:23 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C1_US_GNSA_SAF(-1) C	-0.773545 0.017287	0.110870 0.016869	-6.977055 1.024803	0.0000 0.3087
@TREND("1995Q2")	-0.000144	0.000358	-0.401688	0.6890
R-squared	0.387371	Mean depend	ient var	-0.000564
Adjusted R-squared	0.371458	S.D. depende	entvar	0.093004
S.E. of regression	0.073734	Akaike info cr	iterion	-2.339915
Sum squared resid	0.418631	Schwarz crite	rion	-2.250589
Log likelihood	96.59658	Hannan-Quin	n criter.	-2.304101
F-statistic	24.34387	Durbin-Watso	on stat	2.005737
Prob(F-statistic)	0.000000			

7.3.2 Close 2

China - DF

Null Hypothesis: C2_CHN_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.149382	0.0081
Test critical values: 1% level		-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(C2_CHN_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:28 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_CHN_GNSA_SAF(-1) C @TREND("1995Q2")	-0.405281 0.010852 8.94E-05	0.097673 0.024910 0.000529	-4.149382 0.435624 0.168831	0.0001 0.6643 0.8664
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.184623 0.163444 0.109055 0.915755 65.28625 8.717419 0.000387	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.004974 0.119233 -1.557156 -1.467830 -1.521343 1.828111

China - KPSS

Null Hypothesis: C2_CHN_GNSA_SAF is stationary Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl	hin test statistic	0.050954
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction)	0.016817
HAC corrected variance (Bartlett	kernel)	0.035046

KPSS Test Equation
Dependent Variable: C2_CHN_GNSA_SAF Method: Least Squares Date: 12/25/16 Time: 00:29 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.030433 -7.23E-05	0.028912 0.000624	1.052602 -0.115836	0.2957 0.9081
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000170 -0.012486 0.131311 1.362157 50.52387 0.013418 0.908076	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.027542 0.130498 -1.198120 -1.138998 -1.174400 0.82600

China - PP

Null Hypothesis: C2_CHN_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	itistic	-4.351109	0.0044
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided n-values		

Residual variance (no correction)	0.011447
HAC corrected variance (Bartlett kernel)	0.012791

Phillips-Perron Test Equation Dependent Variable: D(C2_CHN_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:29 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_CHN_GNSA_SAF(-1) C @TREND("1995Q2")	-0.405281 0.010852 8.94E-05	0.097673 0.024910 0.000529	-4.149382 0.435624 0.168831	0.0001 0.6643 0.8664
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.184623 0.163444 0.109055 0.915755 65.28625 8.717419 0.000387	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.004974 0.119233 -1.557156 -1.467830 -1.521343 1.828111

EA - DF

Null Hypothesis: C2_EURO_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-7.019886	0.0000
Test critical values: 1% level		-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(C2_EURO_GNSA_SAF)
Method: Least Squares
Date: 12/25/16 Time: 00:31
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_EURO_GNSA_SAF(-1) C @TREND("1995Q2")	-0.782537 0.026364 -0.000409	0.111474 0.020281 0.000432	-7.019886 1.299931 -0.947423	0.0000 0.1975 0.3464
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.390265 0.374428 0.088186 0.598814 82.27815 24.64223 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.000396 0.111497 -1.981954 -1.892628 -1.946140 2.055417

EA - KPSS

Null Hypothesis: C2_EURO_GNSA_SAF is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl	hin test statistic	0.113999
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	,	0.007763
HAC corrected variance (Bartlett	Kernei)	0.013889

KPSS Test Equation
Dependent Variable: C2_EURO_GNSA_SAF
Method: Least Squares
Date: 12/25/16 Time: 00:32
Sample: 1995Q2 2015Q2
Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.032950 -0.000513	0.019644 0.000424	1.677376 -1.209840	0.0974 0.2299
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.018191 0.005763 0.089217 0.628807 81.83035 1.463713 0.229948	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.012432 0.089475 -1.971120 -1.911998 -1.947399 1.561935

EA - PP

Null Hypothesis: C2_EURO_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test stat	istic	-7.208200	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) one	-sided p-values.		
Residual variance (no c	correction)		0.007485
HAC corrected variance	(Bartlett kernel)		0.008992

Phillips-Perron Test Equation Dependent Variable: D(C2_EURO_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:31 Sample (adjusted): 199503 201502 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_EURO_GNSA_SAF(-1) C @TREND("1995Q2")	-0.782537 0.026364 -0.000409	0.111474 0.020281 0.000432	-7.019886 1.299931 -0.947423	0.0000 0.1975 0.3464
R-squared Adjusted R-squared	0.390265 0.374428	Mean depend S.D. depende	ent var	0.000396 0.111497
S.E. of regression Sum squared resid	0.088186 0.598814	Akaike info cr Schwarz crite		-1.981954 -1.892628
Log likelihood F-statistic	82.27815 24.64223	Hannan-Quin		-1.946140 2.055417
Prob(F-statistic)	0.000000	Dui Diii Walot		2.000411

0.012134

JAPAN - DF

Null Hypothesis: C2_JP_GNSA_SAF has a unit root

Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level	-6.171606 -4.076860 -3.466966	0.0000
	10% level	-3.460900	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(C2_JP_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:33 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_JP_GNSA_SAF(-1) C @TREND("1995Q2")	-0.654610 -0.007712 0.000328	0.106068 0.018962 0.000409	-6.171606 -0.406742 0.801521	0.0000 0.6853 0.4253
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.331023 0.313647 0.083531 0.537268 86.61634 19.05058 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.002872 0.100827 -2.090409 -2.001083 -2.054595 1.852250

JAPAN - KPSS

Null Hypothesis: C2_JP_GNSA_SAF is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.061839
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	1	0.007713

KPSS Test Equation Dependent Variable: C2_JP_GNSA_SAF Method: Least Squares Date: 12/25/16 Time: 00:34

HAC corrected variance (Bartlett kernel)

Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.020035 0.000632	0.019580 0.000423	-1.023239 1.495667	0.3093 0.1387
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.027537 0.015227 0.088929 0.624754 82.09225 2.237021 0.138725	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.005248 0.089613 -1.977586 -1.918464 -1.953866 1.286137

JAPAN - PP

Null Hypothesis: C2_JP_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic		-6.230940	0.0000	
Test critical values:	1% level	-4.076860		
	5% level	-3.466966		
	10% level	-3.160198		
*MacKinnon (1996) one-sided p-values.				
Residual variance (no HAC corrected variance			0.006716 0.007082	

Phillips-Perron Test Equation Dependent Variable: D(C2_JP_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:34 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_JP_GNSA_SAF(-1)	-0.654610	0.106068	-6.171606	0.0000
C	-0.007712	0.018962	-0.406742	0.6853
@TREND("1995Q2")	0.000328	0.000409	0.801521	0.4253
R-squared	0.331023	Mean depende	ent var	0.002872
Adjusted R-squared	0.313647	S.D. depende		0.100827
S.E. of regression	0.083531	Akaike info cr		-2.090409
Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.537268 86.61634 19.05058 0.000000	Schwarz crite Hannan-Quin Durbin-Watso	n criter.	-2.001083 -2.054595 1.852250

UK - DF

Null Hypothesis: C2_UK_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

10% level

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.643027	0.0001
Test critical values:	1% level	-4.076860	
	5% level	-3 466966	

-3.160198

Augmented Dickey-Fuller Test Equation Dependent Variable: D(C2_UK_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:35 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_UK_GNSA_SAF(-1) C @TREND("1995Q2")	-0.580700 0.008059 -0.000119	0.102906 0.011507 0.000245	-5.643027 0.700311 -0.485649	0.0000 0.4858 0.6286
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.293029 0.274666 0.050196 0.194008 127.3601 15.95767 0.000002	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.000661 0.058938 -3.109003 -3.019677 -3.073190 2.001755

UK - KPSS

Null Hypothesis: C2_UK_GNSA_SAF is stationary Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sl	hin test statistic	0.103694
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction)	0.002942
HAC corrected variance (Bartlett	kernel)	0.005297

KPSS Test Equation Dependent Variable: C2_UK_GNSA_SAF Method: Least Squares Date: 12/25/16 Time: 00:36 Sample: 1995Q2 2015Q2

Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.018742 -0.000298	0.012094 0.000261	1.549701 -1.142909	0.1252 0.2565
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.016266 0.003813 0.054927 0.238340 121.1205 1.306240 0.256528	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.006809 0.055032 -2.941247 -2.882125 -2.917527 1.151434

UK - PP

Null Hypothesis: C2_UK_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-5.637685	0.0001
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.002425
HAC corrected variance (Bartlett kernel)	0.002414

Phillips-Perron Test Equation Dependent Variable: D(C2_UK_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:35 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_UK_GNSA_SAF(-1) C @TREND("1995Q2")	-0.580700 0.008059 -0.000119	0.102906 0.011507 0.000245	-5.643027 0.700311 -0.485649	0.0000 0.4858 0.6286
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.293029 0.274666 0.050196 0.194008 127.3601 15.95767 0.000002	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000661 0.058938 -3.109003 -3.019677 -3.073190 2.001755

^{*}MacKinnon (1996) one-sided p-values.

US- DF

Null Hypothesis: C2_US_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.220332	0.0003
Test critical values: 1% level	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(C2_US_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:38 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_US_GNSA_SAF(-1) C @TREND("1995Q2")	-0.517049 0.009685 -7.12E-05	0.099045 0.012584 0.000266	-5.220332 0.769641 -0.267769	0.0000 0.4439 0.7896
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.261709 0.242533 0.054669 0.230127 120.5310 13.64746 0.000008	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000957 0.062814 -2.938274 -2.848948 -2.902460 1.939806

US - KPSS

Null Hypothesis: C2_US_GNSA_SAF is stationary Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-Sh Asymptotic critical values*:	nin test statistic 1% level 5% level 10% level	0.153606 0.216000 0.146000 0.119000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction) HAC corrected variance (Bartlett I	•	0.003761 0.007742			

KPSS Test Equation Dependent Variable: C2_US_GNSA_SAF Method: Least Squares Date: 12/25/16 Time: 00:39 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.024630 -0.000244	0.013673 0.000295	1.801362 -0.825124	0.0755 0.4118
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008544 -0.004006 0.062100 0.304656 111.1784 0.680829 0.411786	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.014890 0.061976 -2.695762 -2.636640 -2.672042 1.023263

US - PP

Null Hypothesis: C2_US_GNSA_SAF has a unit root Exogenous: Constant, Linear Trend Bandwidth: 0 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-5.220332	0.0003
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		

0.002877 0.002877

Phillips-Perron Test Equation Dependent Variable: D(C2_US_GNSA_SAF) Method: Least Squares Date: 12/25/16 Time: 00:38 Sample (adjusted): 199503 201502 Included observations: 80 after adjustments

Residual variance (no correction)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C2_US_GNSA_SAF(-1) C @TREND("1995Q2")	-0.517049 0.009685 -7.12E-05	0.099045 0.012584 0.000266	-5.220332 0.769641 -0.267769	0.0000 0.4439 0.7896
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.261709 0.242533 0.054669 0.230127 120.5310 13.64746 0.000008	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion in criter.	-0.000957 0.062814 -2.938274 -2.848948 -2.902460 1.939806

CPI 7.3.3

China - DF

Null Hypothesis: CPI_CHINA_SARG has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.275773	0.0056
Test critical values: 1% level 5% level		-4.076860	
		-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CPI_CHINA_SARG) Method: Least Squares Date: 12/25/16 Time: 00:40

Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI_CHINA_SARG(-1) C @TREND("1995Q2")	-0.328866 0.000790 2.21E-05	0.076914 0.001340 2.71E-05	-4.275773 0.589103 0.813158	0.0001 0.5575 0.4186
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.196754 0.175890 0.005604 0.002418 302.7560 9.430495 0.000217	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000268 0.006173 -7.493900 -7.404574 -7.458086 2.247792

China - KPSS

Null Hypothesis: CPI_CHINA_SARG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.		
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.101703		
Asymptotic critical values*:	1% level	0.216000		
	5% level	0.146000		
	10% level	0.119000		
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)				
Residual variance (no correction HAC corrected variance (Bartlett	•	6.55E-05 0.000219		

KPSS Test Equation Dependent Variable: CPI_CHINA_SARG Method: Least Squares Date: 12/25/16 Time: 00:42 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.005766 4.27E-06	0.001805 3.90E-05	3.194745 0.109730	0.0020 0.9129
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000152 -0.012504 0.008197 0.005309 275.1970 0.012041 0.912902	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0.005937 0.008147 -6.745604 -6.686482 -6.721883 0.568212

China - PP

Null Hypothesis: CPI_CHINA_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test sta	atistic	-4.211796	0.0067	
Test critical values:	1% level	-4.076860		
	5% level	-3.466966		
	10% level	-3.160198		
*MacKinnon (1996) one-sided p-values.				
Residual variance (no	correction)		3.02E-05	
HAC corrected variance			2.80E-05	

Phillips-Perron Test Equation Dependent Variable: D(CPI_CHINA_SARG) Method: Least Squares Date: 12/25/16 Time: 00:41 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI_CHINA_SARG(-1) C @TREND("1995Q2")	-0.328866 0.000790 2.21E-05	0.076914 0.001340 2.71E-05	-4.275773 0.589103 0.813158	0.0001 0.5575 0.4186
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.196754 0.175890 0.005604 0.002418 302.7560 9.430495 0.000217	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion tion n criter.	-0.000269 0.006173 -7.493900 -7.404574 -7.458086 2.247792

EA - DF

Null Hypothesis: CPI_EA_SARG has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-5.637419 -4.076860 -3.466966 -3.160198	0.0001

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CPI_EA_SARG) Method: Least Squares Date: 12/25/16 Time: 00:42 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI_EA_SARG(-1) C @TREND("1995Q2")	-0.588042 0.003195 -1.22E-05	0.104311 0.000841 1.32E-05	-5.637419 3.798683 -0.922355	0.0000 0.0003 0.3592
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.292365 0.273984 0.002684 0.000555 361.6478 15.90654 0.000002	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	1.28E-06 0.003150 -8.966196 -8.876870 -8.930383 2.021710

EA - KPSS

Null Hypothesis: CPI_EA_SARG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	in test statistic	0.115649
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction) HAC corrected variance (Bartlett k		8.24E-06 1.80E-05

KPSS Test Equation Dependent Variable: CPI_EA_SARG Method: Least Squares Date: 12/25/16 Time: 00:44 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.005513 -2.27E-05	0.000640 1.38E-05	8.615642 -1.642895	0.0000 0.1044
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.033037 0.020797 0.002906 0.000667 359.1963 2.699106 0.104379	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.004605 0.002937 -8.819661 -8.760538 -8.795940 1.175045

EA - PP

Null Hypothesis: CPI_EA_SARG has a unit root Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-5.762337	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no	correction)		6.93E-06
HAC corrected variance	e (Bartlett kernel)		7.61E-06

Phillips-Perron Test Equation
Dependent Variable: D(CPI_EA_SARG) Method: Least Squares
Date: 12/25/16 Time: 00:43
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

ent Std. Erro	r t-Statistic	Prob.
42 0.104311 95 0.000841 05 1.32E-05	1 3.798683	
84 S.D. depen 84 Akaike info 55 Schwarz cr 78 Hannan-Qu	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	
7	55 Schwarz cr 78 Hannan-Qi 54 Durbin-Wa	55 Schwarz criterion 78 Hannan-Quinn criter.

JAPAN - DF

Null Hypothesis: CPI_JP_SARG has a unit root Exogenous: Constant, Linear Trend

Lag Lengin.	o (Automatic - based on SiC, maxiag=11)	

		t-Statistic	Prob.*
Augmented Dickey-Ful		-7.172819	0.0000
Test critical values:	1% level 5% level	-4.076860 -3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CPI_JP_SARG) Method: Least Squares Date: 12/25/16 Time: 00:46 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI_JP_SARG(-1) C @TREND("1995Q2")	-0.796716 -0.000264 1.36E-05	0.111074 0.000973 2.09E-05	-7.172819 -0.271563 0.647605	0.0000 0.7867 0.5192
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.400585 0.385016 0.004301 0.001424 323.9280 25.72930 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	9.47E-05 0.005484 -8.023200 -7.933874 -7.987387 2.015293

JAPAN - KPSS

Null Hypothesis: CPI_JP_SARG is stationary Exogenous: Constant, Linear Trend
Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.109804
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	thin (1992, Table 1)	
Residual variance (no correction)	1.86E-05
HAC corrected variance (Bartlett	•	2.95E-05

KPSS Test Equation Dependent Variable: CPI_JP_SARG Method: Least Squares Date: 12/25/16 Time: 00:48 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.000580 2.13E-05	0.000960 2.07E-05	-0.603685 1.028444	0.5478 0.3069
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.013212 0.000721 0.004362 0.001503 326.3021 1.057696 0.306880	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.000273 0.004363 -8.007460 -7.948338 -7.983739 1.581229

JAPAN - PP

Null Hypothesis: CPL_JP_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*		
Phillips-Perron test statistic		-7.300129	0.0000		
Test critical values:	1% level	-4.076860			
	5% level	-3.466966			
	10% level	-3.160198			
*MacKinnon (1996) one-sided p-values.					
Residual variance (no	correction)		1.78E-05		
HAC corrected variance	e (Bartlett kernel)		2.05E-05		

Phillips-Perron Test Equation Dependent Variable: D(CPI_JP_SARG) Method: Least Squares Date: 12/25/16 Time: 00:47 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI_JP_SARG(-1) C @TREND("1995Q2")	-0.796716 -0.000264 1.36E-05	0.111074 0.000973 2.09E-05	-7.172819 -0.271563 0.647605	0.0000 0.7867 0.5192
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.400585 0.385016 0.004301 0.001424 323.9280 25.72930 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	9.47E-05 0.005484 -8.023200 -7.933874 -7.987387 2.015293

1.20E-05

UK - DF

Null Hypothesis: CPI_UK_SARG has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

	t-Statistic	Prob.*
est statistic 1% level 5% level 10% level	-5.347962 -4.076860 -3.466966 -3.160198	0.0002

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CPI_UK_SARG) Method: Least Squares Date: 12/25/16 Time: 00:49 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI_UK_SARG(-1) C @TREND("1995Q2")	-0.537193 0.001959 1.72E-05	0.100448 0.000801 1.53E-05	-5.347962 2.445439 1.122205	0.0000 0.0168 0.2653
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.270865 0.251926 0.003106 0.000743 349.9702 14.30227 0.000005	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-7.62E-05 0.003591 -8.674255 -8.584929 -8.638442 1.954040

UK - KPSS

Null Hypothesis: CPI_UK_SARG is stationary

Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.163600
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	

KPSS Test Equation Dependent Variable: CPI_UK_SARG Method: Least Squares Date: 12/25/16 Time: 00:50

Residual variance (no correction)
HAC corrected variance (Bartlett kernel)

Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.003980 2.69E-05	0.000772 1.67E-05	5.158685 1.613596	0.0000 0.1106
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.031907 0.019652 0.003504 0.000970 344.0416 2.603693 0.110603	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.005055 0.003539 -8.445471 -8.386349 -8.421751 1.051173

UK - PP

Null Hypothesis: CPI_UK_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*		
Phillips-Perron test statistic		-5.375466	0.0001		
Test critical values:	1% level	-4.076860			
	5% level	-3.466966			
	10% level	-3.160198			
*MacKinnon (1996) one-sided p-values.					
Residual variance (no HAC corrected variance			9.28E-06 9.49E-06		

Phillips-Perron Test Equation
Dependent Variable: D(CPI_UK_SARG)
Method: Least Squares
Date: 12/25/16 Time: 00:50
Sample (adjusted): 199503 201502
Included observations: 80 after adjustments

.001959	0.000801	2.445439	0.0000 0.0168 0.2653
			-7.62E-05
.251926	S.D. dependen	tvar	0.003591
.000743	Schwarz criterio	on	-8.674255 -8.584929
4.30227			-8.638442 1.954040
	.251926 .003106 .000743 49.9702	.001959 0.000801 .72E-05 1.53E-05 .270865 Mean depende .251926 S.D. dependen .000743 Akaike info crite .000743 Schwarz criteri 49.9702 Hannan-Quinn 4.30227 Durbin-Watson	.001959 0.000801 2.445439 .72E-05 1.53E-05 1.122205 .270865 Mean dependent var .251926 S.D. dependent var .003106 Akaike info criterion .000743 Schwarz criterion 4.9020 Hannan-Quinn criter 4.30227 Durbin-Walson stat

US-DF

Null Hypothesis: CPI_US_SARG has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-6.819047	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CPI_US_SARG) Method: Least Squares
Date: 12/25/16 Time: 00:54
Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI_US_SARG(-1) C @TREND("1995Q2")	-0.755325 0.005337 -2.77E-05	0.110767 0.001371 2.43E-05	-6.819047 3.892716 -1.139027	0.0000 0.0002 0.2582
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.376588 0.360395 0.004933 0.001874 312.9578 23.25691 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-1.68E-06 0.006168 -7.748946 -7.659620 -7.713133 1.912465

US - KPSS

Null Hypothesis: CPI_US_SARG is stationary

Exogenous: Constant, Linear Trend Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-Sh		0.081050			
Asymptotic critical values*:	1% level	0.216000			
	5% level	0.146000			
	10% level	0.119000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction	•	2.46E-05			
HAC corrected variance (Bartlett I	kernel)	3.15E-05			

KPSS Test Equation
Dependent Variable: CPI_US_SARG Method: Least Squares Date: 12/25/16 Time: 00:53 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.007108 -3.76E-05	0.001106 2.39E-05	6.427849 -1.577183	0.0000 0.1187
R-squared Adjusted R-squared	0.030526 0.018254	Mean depend		0.005602 0.005069
S.E. of regression	0.005022	Akaike info cr		-7.725542
Sum squared resid Log likelihood	0.001993 314.8845	Schwarz crite Hannan-Quin		-7.666420 -7.701822
F-statistic	2.487505	Durbin-Watso		1.508534
Prob(F-statistic)	0.118750			

US - PP

Null Hypothesis: CPI_US_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*			
Phillips-Perron test statistic		-6.604556	0.0000			
Test critical values:	1% level	-4.076860				
	5% level	-3.466966				
	10% level	-3.160198				
*MacKinnon (1996) one-sided p-values.						
Residual variance (no	correction)		2.34E-05			
HAC corrected variance			1.70E-05			

Phillips-Perron Test Equation Phillips-Perron 1est Equation
Dependent Variable: D(CPL_US_SARG)
Method: Least Squares
Date: 12/25/16 Time: 00:55
Sample (adjusted): 199503 201502
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CPI_US_SARG(-1) C @TREND("1995Q2")	-0.755325 0.005337 -2.77E-05	0.110767 0.001371 2.43E-05	-6.819047 3.892716 -1.139027	0.0000 0.0002 0.2582
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.376588 0.360395 0.004933 0.001874 312.9578 23.25691 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-1.68E-06 0.006168 -7.748946 -7.659620 -7.713133 1.912465

7.3.4 GDP

China - DF

Null Hypothesis: GDP_CHINA_SARG has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.451034	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GDP_CHINA_SARG) Method: Least Squares Date: 12/25/16 Time: 00:57 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_CHINA_SARG(-1) C @TREND("1995Q2")	-0.656419 0.023712 -5.04E-05	0.101754 0.004358 4.42E-05	-6.451034 5.441313 -1.140443	0.000(0.000(0.257(
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.351967 0.335135 0.008853 0.006035 266.1730 20.91052 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion in criter.	-0.00048 0.01085 -6.57932 -6.48999 -6.54351; 2.00757

China - KPSS

Null Hypothesis: GDP_CHINA_SARG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Si	hin test statistic	0.240592
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	

KPSS Test Equation
Dependent Variable: GDP_CHINA_SARG
Method: Least Squares
Date: 12/25/16 Time: 00:58
Sample: 199502 201502
Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.038069 -0.000111	0.002159 4.66E-05	17.63594 -2.379060	0.000(0.019
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.066855 0.055043 0.009804 0.007593 260.7031 5.659925 0.019770	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.03363 0.01008 -6.38773 -6.32861 -6.36401 1.22798

China - PP

Null Hypothesis: GDP_CHINA_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-6.448001	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		

Residual variance (no correction)	7.54E-05
HAC corrected variance (Bartlett kernel)	7.51E-05

Phillips-Perron Test Equation
Dependent Variable: D(GDP_CHINA_SARG)
Method: Least Squares
Date: 12/25/16 Time: 00:57
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_CHINA_SARG(-1) C @TREND("1995Q2")	-0.656419 0.023712 -5.04E-05	0.101754 0.004358 4.42E-05	-6.451034 5.441313 -1.140443	0.000 0.000 0.257
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.351967 0.335135 0.008853 0.006035 266.1730 20.91052 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Wats	ent var iterion rion in criter.	-0.00048 0.01085 -6.57932 -6.48999 -6.54351 2.00757

EA - DF

Null Hypothesis: GDP_EU_SARG has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-4.398266 -4.076860 -3.466966 -3.160198	0.0038

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GDP_EU_SARG) Method: Least Squares Date: 12/25/16 Time: 01:03 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_EU_SARG(-1) C @TREND("1995Q2")	-0.403563 0.004630 -4.07E-05	0.091755 0.001587 2.63E-05	-4.398266 2.916974 -1.547782	0.000 0.004 0.125
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.201160 0.180411 0.004988 0.001916 312.0746 9.694899 0.000176	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion in criter.	-8.40E-0 0.00550 -7.72686 -7.63754 -7.69105 2.01181

EA - KPSS

Null Hypothesis: GDP_EU_SARG is stationary

Exogenous: Constant, Linear Trend
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.06053
Asymptotic critical values*:	1% level	0.21600
	5% level	0.14600
	10% level	0.11900
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction)	3.67E-0
HAC corrected variance (Bartlett	kernel)	9.53E-0

KPSS Test Equation Dependent Variable: GDP_EU_SARG Method: Least Squares Date: 12/25/16 Time: 01:05 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob
C @TREND("1995Q2")	0.011989 -0.000110	0.001350 2.91E-05	8.881205 -3.776131	0.000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.152898 0.142175 0.006131 0.002970 298.7224 14.25917 0.000307	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.00758 0.00662 -7.32648 -7.26738 -7.30278 0.80750

EA - PP

Null Hypothesis: GDP_EU_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 0 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-4.398266	0.0038
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no HAC corrected variance			2.39E-05 2.39E-05

Phillips-Perron Test Equation Dependent Variable: D(GDP_EU_SARG) Method: Least Squares Date: 12/25/16 Time: 01:04 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_EU_SARG(-1) C @TREND("1995Q2")	-0.403563 0.004630 -4.07E-05	0.091755 0.001587 2.63E-05	-4.398266 2.916974 -1.547782	0.0000 0.0046 0.1258
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.201160 0.180411 0.004988 0.001916 312.0746 9.694899 0.000176	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion tion n criter.	-8.40E-08 0.005508 -7.726866 -7.637540 -7.691053 2.011811

JAPAN - DF

Null Hypothesis: GDP_JP_SARG has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-7.345658	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GDP_JP_SARG) Method: Least Squares Date: 12/25/16 Time: 01:07 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_JP_SARG(-1) C @TREND("1995Q2")	-0.814346 -0.000344 6.80E-06	0.110861 0.002244 4.81E-05	-7.345658 -0.153426 0.141372	0.0000 0.8785 0.8879
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.412233 0.396966 0.009939 0.007606 256.9194 27.00210 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000175 0.012798 -6.347986 -6.258660 -6.312173 2.018392

JAPAN - KPSS

Null Hypothesis: GDP_JP_SARG is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

	LM-Stat.
test statistic	0.101783
1% level	0.216000
5% level	0.146000
10% level	0.119000
n (1992, Table 1)	
	9.92E-05
	5% level

KPSS Test Equation Dependent Variable: GDP_JP_SARG Method: Least Squares Date: 12/25/16 Time: 01:08 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.000333 -5.56E-06	0.002221 4.79E-05	0.150059 -0.116037	0.8811 0.9079
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000170 -0.012486 0.010088 0.008039 258.3902 0.013464 0.907918	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.000111 0.010025 -6.330622 -6.271499 -6.306901 1.609942

JAPAN - PP

Null Hypothesis: GDP_JP_SARG has a unit root Exogenous: Constant, Linear Trend
Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-7.351195	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no HAC corrected variance			9.51E-05 9.58E-05

Phillips-Perron Test Equation Dependent Variable: D(GDP_JP_SARG) Method: Least Squares Date: 12/25/16 Time: 01:08 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_JP_SARG(-1) C @TREND("1995Q2")	-0.814346 -0.000344 6.80E-06	0.110861 0.002244 4.81E-05	-7.345658 -0.153426 0.141372	0.0000 0.8785 0.8879
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.412233 0.396966 0.009939 0.007606	Mean depende S.D. depende Akaike info cri Schwarz crite	ent var iterion rion	-0.000175 0.012798 -6.347986 -6.258660
Log likelihood F-statistic Prob(F-statistic)	256.9194 27.00210 0.000000	Hannan-Quin Durbin-Watso		-6.312173 2.018392

UK - DF

Null Hypothesis: GDP_UK_SARG has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level	-7.287852 -4.076860	0.0000
	5% level 10% level	-3.466966 -3.160198	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GDP_UK_SARG) Method: Least Squares Date: 12/25/16 Time: 01:10 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_UK_SARG(-1) C @TREND("1995Q2")	-0.816384 0.012130 -7.75E-05	0.112020 0.002460 4.02E-05	-7.287852 4.930252 -1.928248	0.0000 0.0000 0.0575
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.408206 0.392834 0.008007 0.004937 274.2095 26.55640 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion nn criter.	-3.83E-05 0.010276 -6.780239 -6.690913 -6.744425 2.032298

UK - KPSS

Null Hypothesis: GDP_UK_SARG is stationary Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.057735
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett	•	6.31E-05 9.06E-05

KPSS Test Equation
Dependent Variable: GDP_UK_SARG Method: Least Squares Date: 12/25/16 Time: 01:12 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.014753 -9.28E-05	0.001772 3.82E-05	8.328133 -2.427824	0.0000 0.0175
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.069431 0.057652 0.008046 0.005114 276.7104 5.894329 0.017464	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watse	ent var iterion rion in criter.	0.011040 0.008288 -6.782973 -6.723851 -6.759252 1.631205

UK - PP

Null Hypothesis: GDP_UK_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-7.323102	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no HAC corrected variance			6.17E-05 6.45E-05

Phillips-Perron Test Equation Dependent Variable: D(GDP_UK_SARG)
Method: Least Squares
Date: 12/25/16 Time: 01:11
Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_UK_SARG(-1) C @TREND("1995Q2")	-0.816384 0.012130 -7.75E-05	0.112020 0.002460 4.02E-05	-7.287852 4.930252 -1.928248	0.0000 0.0000 0.0575
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.408206 0.392834 0.008007 0.004937 274.2095 26.55640 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-3.83E-05 0.010276 -6.780239 -6.690913 -6.744425 2.032298

US-DF

Null Hypothesis: GDP_US_SARG has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.716020	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GDP_US_SARG) Method: Least Squares Date: 12/25/16 Time: 01:13 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_US_SARG(-1) C @TREND("1995Q2")	-0.598962 0.008998 -6.17E-05	0.104786 0.002087 3.15E-05	-5.716020 4.311115 -1.956156	0.000 0.000 0.054
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.297925 0.279689 0.006103 0.002868 295.9294 16.33741 0.000001	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	8.85E-0 0.00719 -7.32323 -7.23390 -7.28742 2.11924

US - KPSS

Null Hypothesis: GDP_US_SARG is stationary

Exogenous: Constant, Linear Trend
Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.063924
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	thin (1992, Table 1)	
Residual variance (no correction)	4.27E-05
HAC corrected variance (Bartlett I	kernel)	0.000103

KPSS Test Equation Dependent Variable: GDP_US_SARG Method: Least Squares Date: 12/25/16 Time: 01:16 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.014654 -9.75E-05	0.001458 3.15E-05	10.05403 -3.097958	0.0000 0.0027
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.108325 0.097038 0.006620 0.003462 292.5138 9.597345 0.002698	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.010756 0.006966 -7.173181 -7.114059 -7.149461 1.180926

US - PP

Null Hypothesis: GDP_US_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-5.796905	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		

3.59E-05 3.82E-05

Phillips-Perron Test Equation Dependent Variable: D(GDP_US_SARG) Method: Least Squares

Residual variance (no correction) HAC corrected variance (Bartlett kernel)

Date: 12/25/16 Time: 01:14 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GDP_US_SARG(-1) C	-0.598962 0.008998	0.104786 0.002087	-5.716020 4.311115	0.0000
@TREND("1995Q2")	-6.17E-05	3.15E-05	-1.956156	0.0541
R-squared	0.297925	Mean depend	dent var	8.85E-05
Adjusted R-squared	0.279689	S.D. depende	ent var	0.007191
S.E. of regression	0.006103	Akaike info cr	iterion	-7.323234
Sum squared resid	0.002868	Schwarz crite	rion	-7.233908
Log likelihood	295.9294	Hannan-Quin	ın criter.	-7.287421
F-statistic	16.33741	Durbin-Watso	on stat	2.119244
Prob(F-statistic)	0.000001			

7.3.5 **GOV**

China - DF

Null Hypothesis: GOV_CHINA_SARG has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-9.206949	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GOV_CHINA_SARG) Method: Least Squares Date: 12/25/16 Time: 01:17 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_CHINA_SARG(-1) C @TREND("1995Q2")	-1.030824 0.199793 -0.001079	0.111962 0.024916 0.000297	-9.206949 8.018621 -3.637620	0.0000 0.0000 0.0005
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.524131 0.511771 0.056781 0.248255 117.4979 42.40465 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.000803 0.081263 -2.862448 -2.773122 -2.826634 2.017256

China - KPSS

Null Hypothesis: GOV_CHINA_SARG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.223163			
Asymptotic critical values*:	1% level	0.216000			
	5% level	0.146000			
	10% level	0.119000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction)	•	0.003197			
HAC corrected variance (Bartlett I	kernel)	0.004125			

KPSS Test Equation Dependent Variable: GOV_CHINA_SARG Method: Least Squares Date: 12/25/16 Time: 01:18 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.188830 -0.000953	0.012606 0.000272	14.97958 -3.503877	0.0000 0.0008
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.134504 0.123549 0.057252 0.258949 117.7618 12.27716 0.000758	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.150697 0.061155 -2.858315 -2.799193 -2.834595 2.015594

China - PP

Null Hypothesis: GOV_CHINA_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic Test critical values: 1% level		-9.235874 -4.076860	0.0000
	5% level 10% level	-3.466966 -3.160198	
*MacKinnon (1996) one-sided p-values.			
Residual variance (no HAC corrected variance			0.003103 0.004082

Phillips-Perron Test Equation Dependent Variable: D(GOV_CHINA_SARG) Method: Least Squares
Date: 12/25/16 Time: 01:18
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_CHINA_SARG(-1) C @TREND("1995Q2")	-1.030824 0.199793 -0.001079	0.111962 0.024916 0.000297	-9.206949 8.018621 -3.637620	0.0000 0.0000 0.0005
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.524131 0.511771 0.056781 0.248255 117.4979 42.40465 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.000803 0.081263 -2.862448 -2.773122 -2.826634 2.017256

EA - DF

Null Hypothesis: GOV_EA_SARG has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-7.567744 -4.076860 -3.466966 -3.160198	0.0000

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GOV_EA_SARG) Method: Least Squares
Date: 12/25/16 Time: 01:19
Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_EA_SARG(-1) C @TREND("1995Q2")	-0.852096 0.005480 -5.95E-05	0.112596 0.001623 3.19E-05	-7.567744 3.377150 -1.863276	0.0000 0.0012 0.0662
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.426542 0.411647 0.006379 0.003134 292.3884 28.63655 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000119 0.008317 -7.234710 -7.145384 -7.198897 2.053588

EA - KPSS

Null Hypothesis: GOV_EA_SARG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	hin test statistic	0.079740
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett)	3.96E-05

KPSS Test Equation
Dependent Variable: GOV_EA_SARG Method: Least Squares Date: 12/25/16 Time: 01:21 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.006598 -7.26E-05	0.001404 3.03E-05	4.699836 -2.395644	0.0000 0.0190
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.067727 0.055926 0.006376 0.003211 295.5550 5.739108 0.018957	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.003694 0.006562 -7.248271 -7.189148 -7.224550 1.701692

EA - PP

Null Hypothesis: GOV_EA_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-7.908189	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
***************************************	14-4		

*MacKinnon (1996) one-sided p-values.

Desidestruciones (se secretion)	2.005.05
Residual variance (no correction)	3.92E-05
HAC corrected variance (Bartlett kernel)	5.56E-05

Phillips-Perron Test Equation Dependent Variable: D(GOV_EA_SARG)
Method: Least Squares
Date: 12/25/16 Time: 01:20
Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_EA_SARG(-1) C @TREND("1995Q2")	-0.852096 0.005480 -5.95E-05	0.112596 0.001623 3.19E-05	-7.567744 3.377150 -1.863276	0.0000 0.0012 0.0662
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.426542 0.411647 0.006379 0.003134 292.3884 28.63655 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000119 0.008317 -7.234710 -7.145384 -7.198897 2.053588

JAPAN - DF

Null Hypothesis: GOV_JP_SARG has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-8.152868	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GOV_JP_SARG) Method: Least Squares
Date: 12/25/16 Time: 01:21
Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_JP_SARG(-1) C @TREND("1995Q2")	-0.924315 0.005971 -6.91E-05	0.113373 0.001996 4.04E-05	-8.152868 2.991534 -1.707412	0.0000 0.0037 0.0918
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.463541 0.449607 0.008110 0.005065 273.1855 33.26695 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.000108 0.010932 -6.754637 -6.665311 -6.718824 1.997327

JAPAN - KPSS

Null Hypothesis: GOV_JP_SARG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.			
Kwiatkowski-Phillips-Schmidt-Sh	0.061468				
Asymptotic critical values*: 1% level		0.216000			
	5% level	0.146000			
	10% level	0.119000			
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)					
Residual variance (no correction HAC corrected variance (Bartlett	,	6.34E-05 7.81E-05			

KPSS Test Equation Dependent Variable: GOV_JP_SARG Method: Least Squares
Date: 12/25/16 Time: 01:23
Sample: 1995Q2 2015Q2
Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.006823 -8.15E-05	0.001775 3.83E-05	3.843401 -2.127588	0.0002 0.0365
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.054194 0.042222 0.008063 0.005136 276.5380 4.526629 0.036490	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.003562 0.008239 -6.778717 -6.719595 -6.754996 1.838246

JAPAN - PP

Null Hypothesis: GOV_JP_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-8.181247	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on			
Residual variance (no HAC corrected variance			6.33E-05 6.75E-05

Phillips-Perron Test Equation Dependent Variable: D(GOV_JP_SARG) Method: Least Squares Date: 12/25/16 Time: 01:22 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_JP_SARG(-1) C @TREND("1995Q2")	-0.924315 0.005971 -6.91E-05	0.113373 0.001996 4.04E-05	-8.152868 2.991534 -1.707412	0.0000 0.0037 0.0918
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.463541 0.449607 0.008110 0.005065 273.1855 33.26695 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.000108 0.010932 -6.754637 -6.665311 -6.718824 1.997327

UK - DF

Null Hypothesis: GOV_UK_SARG_2 has a unit root Exogenous: Constant, Linear Trend Lag Length: 4 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-8.012504	0.0000
Test critical values: 1% level		-4.085092	
	5% level	-3.470851	
	10% level	-3.162458	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GOV_UK_SARG_2) Method: Least Squares Date: 12/25/16 Time: 22:52 Sample (adjusted): 199604 201502 Included observations: 75 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_UK_SARG_2(-1)	-4.802911	0.599427	-8.012504	0.0000
D(GOV_UK_SARG_2(-1))	2.699522	0.520983	5.181598	0.0000
D(GOV_UK_SARG_2(-2))	1.706495	0.405573	4.207614	0.0001
D(GOV_UK_SARG_2(-3))	0.989432	0.254921	3.881327	0.0002
D(GOV_UK_SARG_2(-4))	0.280828	0.116565	2.409203	0.0187
С	0.000944	0.001593	0.592879	0.5552
@TREND("1995Q2")	-1.45E-05	3.31E-05	-0.439081	0.6620
R-squared	0.891075	Mean depend	lent var	7.22E-05
Adjusted R-squared	0.881464	S.D. depende	nt var	0.017980
S.E. of regression	0.006190	Akaike info cr	iterion	-7.242918
Sum squared resid	0.002606	Schwarz crite	rion	-7.026619
Log likelihood	278.6094	Hannan-Quin	n criter.	-7.156552
F-statistic	92.71422	Durbin-Watso	n stat	2.052260
Prob(F-statistic)	0.000000			

UK - KPSS

Null Hypothesis: GOV_UK_SARG_2 is stationary Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.066599
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett		9.97E-05 1.37E-05

KPSS Test Equation
Dependent Variable: GOV_UK_SARG_2
Method: Least Squares
Date: 12/25/16 Time: 22:53
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.000367 1.12E-05	0.002283 4.90E-05	-0.160814 0.229092	0.8727 0.8194
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000672 -0.012139 0.010113 0.007977 255.0135 0.052483 0.819397	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	8.72E-05 0.010052 -6.325337 -6.265786 -6.301461 3.137830

UK - PP

Null Hypothesis: GOV_UK_SARG_2 has a unit root Exogenous: Constant, Linear Trend

zxogonous. Constant, zmour from	
Bandwidth: 7 (Newey-West automatic) using Bartlett kernel	

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-30.60093	0.0001
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no HAC corrected variance	•		6.56E-05 1.42E-05

Phillips-Perron Test Equation
Dependent Variable: D(GOV_UK_SARG_2)
Method: Least Squares
Date: 12/25/16 Time: 22:52
Sample (adjusted): 199504 201502
Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_UK_SARG_2(-1) C @TREND("1995Q2")	-1.584438 4.83E-05 3.73E-06	0.092847 0.001911 4.07E-05	-17.06503 0.025299 0.091547	0.0000 0.9799 0.9273
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.793037 0.787591 0.008255 0.005180 268.3869 145.6081 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.000237 0.017912 -6.718656 -6.628677 -6.682607 2.608958

US-DF

Null Hypothesis: GOV_US_SARG_2 has a unit root Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-13.14922	0.0001
Test critical values:	1% level	-4.080021	
	5% level	-3.468459	
	10% level	-3.161067	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(GOV_US_SARG_2) Method: Least Squares Date: 12/25/16 Time: 22:53

Sample (adjusted): 1996Q1 2015Q2 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_US_SARG_2(-1) D(GOV_US_SARG_2(-1)) C @TREND("1995Q2")	-2.437928 0.465513 0.000732 -1.52E-05	0.185405 0.101549 0.000758 1.61E-05	-13.14922 4.584105 0.965470 -0.945937	0.000 0.000 0.337! 0.347;
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.872497 0.867328 0.003189 0.000752 339.7298 168.7936 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	4.25E-0 0.00875 -8.60845 -8.48759 -8.56007 1.92912

US - KPSS

Null Hypothesis: GOV_US_SARG_2 is stationary Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-S	hin test statistic	0.052952
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett	*	2.26E-05 3.19E-06

KPSS Test Equation Dependent Variable: GOV_US_SARG_2 Method: Least Squares Date: 12/25/16 Time: 22:54 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.000315 -7.12E-06	0.001087 2.33E-05	0.289619 -0.305594	0.7729 0.7607
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001196 -0.011609 0.004815 0.001808 314.3845 0.093388 0.760728	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	2.62E-0! 0.004787 -7.809611 -7.750062 -7.785737 3.32200!

US - PP

Null Hypothesis: GOV_US_SARG_2 has a unit root Exogenous: Constant, Linear Trend Bandwidth: 0 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-19.64083	0.0001
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	
*MacKinnon (1996) on	e-sided p-values.		

1.25E-05 1.25E-05

Phillips-Perron Test Equation Dependent Variable: D(GOV_US_SARG_2) Method: Least Squares Date: 12/25/16 Time: 22:54 Sample (adjusted): 1995Q4 2015Q2 Included observations: 79 after adjustments

Residual variance (no correction) HAC corrected variance (Bartlett kernel)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GOV_US_SARG_2(-1) C @TREND("1995Q2")	-1.670598 0.000302 -6.69E-06	0.085057 0.000835 1.78E-05	-19.64083 0.362198 -0.376026	0.0000 0.7182 0.7079
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.835413 0.831082 0.003607 0.000989 333.8093 192.8811 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-8.79E-05 0.008775 -8.374918 -8.284939 -8.338870 2.583085

7.3.6 IR

China - DF

Null Hypothesis: IR_CHINA_SARG_2 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-8.838545	0.0000
Test critical values: 1% level	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IR_CHINA_SARG_2) Method: Least Squares Date: 12/25/16 Time: 01:32 Sample (adjusted): 1995Q4 2015Q2 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_CHINA_SARG_2(-1) C @TREND("1995Q2")	-1.012858 -0.051176 0.000883	0.114596 0.019948 0.000419	-8.838545 -2.565444 2.108554	0.0000 0.0123 0.0383
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.506882 0.493906 0.082544 0.517821 86.49300 39.06071 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.000157 0.116029 -2.113747 -2.023768 -2.077698 1.998054

China - KPSS

Null Hypothesis: IR_CHINA_SARG_2 is stationary Exogenous: Constant, Linear Trend

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.085861
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	,	0.006490
HAC corrected variance (Bartlett	kernel)	0.007015

KPSS Test Equation Dependent Variable: IR_CHINA_SARG_2 Method: Least Squares Date: 12/25/16 Time: 01:34 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.048686 0.000838	0.018416 0.000395	-2.643689 2.121673	0.0099 0.0370
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.054563 0.042442 0.081587 0.519204 87.98431 4.501496 0.037040	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.014743 0.083376 -2.149608 -2.090057 -2.125732 2.022582

China - PP

Null Hypothesis: IR_CHINA_SARG_2 has a unit root Exogenous: Constant, Linear Trend Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statisti	С	-8.849468	0.0000
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
1	0% level	-3.160627	

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)	0.006555
HAC corrected variance (Bartlett kernel)	0.007176

Phillips-Perron Test Equation
Dependent Variable: D(IR_CHINA_SARG_2)
Method: Least Squares
Date: 12/25/16 Time: 01:33
Sample (adjusted): 1995Q4 2015Q2
Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_CHINA_SARG_2(-1) C @TREND("1995Q2")	-1.012858 -0.051176 0.000883	0.114596 0.019948 0.000419	-8.838545 -2.565444 2.108554	0.0000 0.0123 0.0383
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.506882 0.493906 0.082544 0.517821 86.49300 39.06071 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.000157 0.116029 -2.113747 -2.023768 -2.077698 1.998054

EA - DF

Null Hypothesis: IR_EA_SARG_2 has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level	1% level	-4.546849 -4.078420	0.0024
	5% level 10% level	-3.467703 -3.160627	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IR_EA_SARG_2) Method: Least Squares Date: 12/25/16 Time: 21:50 Sample (adjusted): 1995Q4 2015Q2 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_EA_SARG_2(-1) C @TREND("1995Q2")	-0.427097 -0.003824 -6.46E-05	0.093932 0.014206 0.000302	-4.546849 -0.269201 -0.214222	0.0000 0.7885 0.8309
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.214085 0.193403 0.061108 0.283795 110.2474 10.35129 0.000106	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	6.49E-05 0.068040 -2.715124 -2.625145 -2.679076 1.969705

EA - KPSS

Null Hypothesis: IR_EA_SARG_2 is stationary Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.045192
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	,	0.005296
HAC corrected variance (Bartlett	kernel)	0.011933

KPSS Test Equation Dependent Variable: IR_EA_SARG_2 Method: Least Squares Date: 12/25/16 Time: 21:49 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.013476 -5.26E-05	0.016636 0.000357	-0.810032 -0.147401	0.4204 0.8832
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000278 -0.012538 0.073703 0.423705 96.11471 0.021727 0.883196	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-0.015606 0.073245 -2.352868 -2.293317 -2.328992 0.852250

EA - PP

Null Hypothesis: IR_EA_SARG_2 has a unit root Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-4.565871	0.0023
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	
*MacKinnon (1996) on	e-sided p-values.		

0.003592

0.003642

Phillips-Perron Test Equation Dependent Variable: D(IR_EA_SARG_2)
Method: Least Squares
Date: 12/25/16 Time: 21:51
Sample (adjusted): 1995Q4 2015Q2 Included observations: 79 after adjustments

Residual variance (no correction) HAC corrected variance (Bartlett kernel)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_EA_SARG_2(-1) C @TREND("1995Q2")	-0.427097 -0.003824 -6.46E-05	0.093932 0.014206 0.000302	-4.546849 -0.269201 -0.214222	0.0000 0.7885 0.8309
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.214085 0.193403 0.061108 0.283795 110.2474 10.35129 0.000106	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	6.49E-05 0.068040 -2.715124 -2.625145 -2.679076 1.969705

JAPAN - DF

Null Hypothesis: IR_JP_SARG_2 has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

	t-Statistic	Prob.*
er test statistic 1% level 5% level	-9.219390 -4.078420 -3.467703	0.0000
	1% level	er test statistic -9.219390 1% level -4.078420 5% level -3.467703

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IR_JP_SARG_2) Method: Least Squares Date: 12/25/16 Time: 21:52 Sample (adjusted): 1995Q4 2015Q2 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_JP_SARG_2(-1)	-0.804534	0.087265	-9.219390	0.0000
@TREND("1995Q2")	-0.003740 5.91E-05	0.006659 0.000141	-0.561588 0.420027	0.5760 0.6757
R-squared	0.533652	Mean depend	lent var	0.002689
Adjusted R-squared	0.521380	S.D. depende	ent var	0.040428
S.E. of regression	0.027969	Akaike info cr	iterion	-4.278202
Sum squared resid	0.059452	Schwarz crite	rion	-4.188223
Log likelihood	171.9890	Hannan-Quin	n criter.	-4.242154
F-statistic	43.48430	Durbin-Watso	on stat	1.94881
Prob(F-statistic)	0.000000			

JAPAN - KPSS

Null Hypothesis: IR_JP_SARG_2 is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.108371
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction	•	0.001284
HAC corrected variance (Bartlett	kernel)	0.001836

KPSS Test Equation Dependent Variable: IR_JP_SARG_2 Method: Least Squares Date: 12/25/16 Time: 22:00 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.017406 0.000309	0.008193 0.000176	-2.124631 1.758092	0.0368 0.0827
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.038116 0.025784 0.036296 0.102755 152.7822 3.090887 0.082655	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.004894 0.036773 -3.769554 -3.710004 -3.745679 1.245021

JAPAN - PP

Null Hypothesis: IR_JP_SARG_2 has a unit root Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-9.030704	0.0000
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	
*MacKinnon (1996) on	ie-sided p-values.		

0.000753 0.000906

Prob. 0.0000

Residual variance (no correction) HAC corrected variance (Bartlett kernel) Phillips-Perron Test Equation

Dependent Variable: D(IR_JP_SARG_2) Method: Least Squares Date: 12/25/16 Time: 21:59 Sample (adjusted): 1995Q4 2015Q2 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	
IR_JP_SARG_2(-1) C @TREND("1995Q2")	-0.804534 -0.003740 5.91E-05	0.087265 0.006659 0.000141	-9.219390 -0.561588 0.420027	
R-squared	0.533652	Mean depend	lent var	0.

@TREND("1995Q2")	5.91E-05	0.000141	0.420027	0.6757
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.533652 0.521380 0.027969 0.059452 171.9890 43.48430 0.000000	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinr Durbin-Watson	nt var erion ion n criter.	0.002689 0.040428 -4.278202 -4.188223 -4.242154 1.948811

UK - DF

Null Hypothesis: IR_UK_SARG_2 has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.770545	0.0012
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IR_UK_SARG_2) Method: Least Squares Date: 12/25/16 Time: 22:01 Sample (adjusted): 1995Q4 2015Q2 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_UK_SARG_2(-1) C @TREND("1995Q2")	-0.460771 -0.003910 -4.64E-05	0.096587 0.014371 0.000307	-4.770545 -0.272053 -0.151228	0.0000 0.7863 0.8802
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.230526 0.210276 0.062045 0.292572 109.0442 11.38436 0.000047	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion nn criter.	-0.000190 0.069819 -2.684664 -2.594685 -2.648616 1.844908

UK-KPSS

Null Hypothesis: IR_UK_SARG_2 is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		LM-Stat.		
Kwiatkowski-Phillips-Schmidt-Shin test statistic Asymptotic critical values*: 1% level 5% level 10% level				
*Kwiatkowski-Phillips-Schmidt-Sh	nin (1992, Table 1)			
Residual variance (no correction) HAC corrected variance (Bartlett k	ernel)	0.005161 0.010228		

KPSS Test Equation
Dependent Variable: IR_UK_SARG_2
Method: Least Squares
Date: 12/25/16 Time: 22:03
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.005823 -0.000155	0.016422 0.000352	-0.354552 -0.439150	0.7239 0.6618
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.002466 -0.010323 0.072756 0.412885 97.14943 0.192853 0.661767	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.012088 0.072383 -2.378736 -2.319185 -2.354860 0.920896

UK - PP

Null Hypothesis: IR_UK_SARG_2 has a unit root Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-4.806864	0.0010
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	
*MacKinnon (1996) one-sided p-values.			
Residual variance (no	correction)		0.003703
HAC corrected variance	e (Bartlett kernel)		0.003803

Phillips-Perron Test Equation Dependent Variable: D(IR_UK_SARG_2) Method: Least Squares Date: 12/25/16 Time: 22:02 Sample (adjusted): 199504 201502 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_UK_SARG_2(-1) C @TREND("1995Q2")	-0.460771 -0.003910 -4.64E-05	0.096587 0.014371 0.000307	-4.770545 -0.272053 -0.151228	0.0000 0.7863 0.8802
R-squared	0.230526	Mean depend		-0.000190
Adjusted R-squared	0.210276	S.D. depende		0.069819
S.E. of regression	0.062045	Akaike info cr	iterion	-2.684664
Sum squared resid	0.292572	Schwarz crite	rion	-2.594685
Log likelihood	109.0442	Hannan-Quin	ın criter.	-2.648616
F-statistic	11.38436	Durbin-Watso	on stat	1.844908
Prob(F-statistic)	0.000047			

US-DF

Null Hypothesis: IR_US_SARG_2 has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.283537	0.0766
Test critical values:	1% level	-4.080021	
	5% level	-3.468459	
	10% level	-3.161067	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IR_US_SARG_2) Method: Least Squares
Date: 12/25/16 Time: 22:04
Sample (adjusted): 1996Q1 2015Q2 Included observations: 78 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_US_SARG_2(-1) D(IR_US_SARG_2(-1)) C @TREND("1995Q2")	-0.365238 -0.251875 -0.004824 1.35E-05	0.111233 0.112485 0.017192 0.000363	-3.283537 -2.239189 -0.280588 0.037085	0.0016 0.0281 0.7798 0.9705
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.292056 0.263355 0.072192 0.385669 96.39270 10.17599 0.000011	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.000153 0.084113 -2.369044 -2.248187 -2.320662 2.072355

US - KPSS

Null Hypothesis: IR_US_SARG_2 is stationary Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shi	in test statistic	0.047015
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-Sh	nin (1992, Table 1)	
Residual variance (no correction)		0.006975
HAC corrected variance (Bartlett k	ernel)	0.021472

KPSS Test Equation
Dependent Variable: IR_US_SARG_2 Method: Least Squares Date: 12/25/16 Time: 22:05 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	-0.012811 1.25E-05	0.019091 0.000409	-0.671057 0.030445	0.5042 0.9758
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000012 -0.012808 0.084578 0.557968 85.10416 0.000927 0.975790	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.012306 0.084041 -2.077604 -2.018053 -2.053729 0.977048

US - PP

Null Hypothesis: IR_US_SARG_2 has a unit root

Exogenous: Constant, Linear Trend Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-5.210332	0.0003
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	

*MacKinnon (1996) one-sided p-values

Residual variance (no correction)	0.005215
HAC corrected variance (Bartlett kernel)	0.006209

Phillips-Perron Test Equation Dependent Variable: D(IR_US_SARG_2) Method: Least Squares
Date: 12/25/16 Time: 22:05
Sample (adjusted): 1995Q4 2015Q2
Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IR_US_SARG_2(-1) C @TREND("1995Q2")	-0.488705 -0.005718 3.57E-08	0.098587 0.017085 0.000363	-4.957095 -0.334690 9.83E-05	0.000(0.738(0.999(
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.244329 0.224442 0.073624 0.411954 95.52741 12.28640 0.000024	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.00040 0.08360 -2.34246 -2.25248 -2.30641 2.25624

7.3.7 M2

China - DF

Null Hypothesis: M2_CHINA_SARG has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.525423	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2_CHINA_SARG) Method: Least Squares Date: 12/25/16 Time: 01:30 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_CHINA_SARG(-1) C @TREND("1995Q2")	-0.717487 0.030757 -0.000131	0.109953 0.005690 7.13E-05	-6.525423 5.405318 -1.842037	0.0000 0.0000 0.0693
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.356233 0.339511 0.014225 0.015581 228.2332 21.30420 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watse	ent var iterion rion in criter.	-0.000358 0.017503 -5.630830 -5.541504 -5.595016 2.063744

China - KPSS

Null Hypothesis: M2_CHINA_SARG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.052046
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction) HAC corrected variance (Bartlett		0.000209 0.000349

KPSS Test Equation Dependent Variable: M2_CHINA_SARG Method: Least Squares Date: 12/25/16 Time: 01:31 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.042885 -0.000180	0.003222 6.95E-05	13.30927 -2.582550	0.0000 0.0117
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.077852 0.066179 0.014634 0.016919 228.2545 6.669567 0.011654	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.035700 0.015144 -5.586530 -5.527408 -5.562809 1.430727

China - PP

Null Hypothesis: M2_CHINA_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

	·	Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-6.625918	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no	correction)		0.000195
HAC corrected variance	e (Bartlett kernel)		0.000213

Phillips-Perron Test Equation
Dependent Variable: D(M2_CHINA_SARG)
Method: Least Squares
Date: 12/25/16 Time: 01:30
Sample (adjusted): 1995Q3 2015Q2
Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_CHINA_SARG(-1) C @TREND("1995Q2")	-0.717487 0.030757 -0.000131	0.109953 0.005690 7.13E-05	-6.525423 5.405318 -1.842037	0.0000 0.0000 0.0693
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.356233 0.339511 0.014225 0.015581 228.2332 21.30420 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000358 0.017503 -5.630830 -5.541504 -5.595016 2.063744

EA - DF

Null Hypothesis: M2_EA_SARG has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ller test statistic	-3.420175	0.0560
Test critical values:	1% level	-4.078420	
	5% level	-3.467703	
	10% level	-3.160627	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2_EA_SARG) Method: Least Squares Date: 12/25/16 Time: 01:35 Sample (adjusted): 1995Q4 2015Q2 Included observations: 79 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_EA_SARG(-1) D(M2_EA_SARG(-1)) C	-0.397746 -0.263753 0.004583	0.116294 0.112790 0.001971	-3.420175 -2.338440 2.324983	0.0010 0.0220 0.0228
@TREND("1995Q2")	-1.61E-05	3.16E-05	-0.510897	0.6109
R-squared	0.319934	Mean depend	lent var	7.56E-06
Adjusted R-squared	0.292732	S.D. depende	ent var	0.007506
S.E. of regression	0.006312	Akaike info cr	iterion	-7.243290
Sum squared resid	0.002988	Schwarz crite	rion	-7.123318
Log likelihood	290.1100	Hannan-Quin	n criter.	-7.195226
F-statistic	11.76116	Durbin-Watso	on stat	2.060142
Prob(F-statistic)	0.000002			

EA - KPSS

Null Hypothesis: M2_EA_SARG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.133451
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction HAC corrected variance (Bartlett	•	5.11E-05 0.000160

KPSS Test Equation
Dependent Variable: M2_EA_SARG Method: Least Squares Date: 12/25/16 Time: 01:37 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.010913 -3.26E-05	0.001594 3.44E-05	6.847576 -0.946325	0.0000 0.3469
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.011209 -0.001308 0.007238 0.004139 285.2754 0.895530 0.346869	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.009611 0.007234 -6.994455 -6.935333 -6.970734 1.071697

EA - PP

Null Hypothesis: M2_EA_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-5.601642	0.0001
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no	correction)		4.01E-05
HAC corrected variance	e (Bartlett kernel)		4.61E-05

Phillips-Perron Test Equation Dependent Variable: D(MZ_EA_SARG) Method: Least Squares Date: 12/25/16 Time: 01:36 Sample (adjusted): 199503 201502 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_EA_SARG(-1) C @TREND("1995Q2")	-0.543913 0.006318 -2.48E-05	0.100373 0.001827 3.14E-05	-5.418914 3.457411 -0.788224	0.0000 0.0009 0.4330
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.276353 0.257557 0.006456 0.003209 291.4353 14.70274 0.000004	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	8.75E-05 0.007492 -7.210883 -7.121557 -7.175069 2.222665

JAPAN - DF

Null Hypothesis: M2_JP_SARG has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-7.233959	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2_JP_SARG) Method: Least Squares Date: 12/25/16 Time: 01:38 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_JP_SARG(-1) C @TREND("1995Q2")	-0.802560 0.005709 -1.65E-05	0.110943 0.001461 2.59E-05	-7.233959 3.908364 -0.634500	0.0000 0.0002 0.5276
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.404801 0.389341 0.005323 0.002182 306.8648 26.18422 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion in criter.	-9.53E-08 0.006812 -7.596621 -7.507298 -7.560807 1.992380

JAPAN - KPSS

Null Hypothesis: M2_JP_SARG is stationary Exogenous: Constant, Linear Trend Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.083266
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction	•	2.84E-05
HAC corrected variance (Bartlett I	kernel)	3.73E-05

KPSS Test Equation Dependent Variable: M2_JP_SARG Method: Least Squares Date: 12/25/16 Time: 01:39 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.007462 -2.69E-05	0.001189 2.57E-05	6.277705 -1.047409	0.0000 0.2981
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.013697 0.001212 0.005399 0.002302 309.0302 1.097066 0.298105	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion nn criter.	0.006387 0.005402 -7.580993 -7.521871 -7.557272 1.592482

JAPAN - PP

Null Hypothesis: M2_JP_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic		-7.234747	0.0000	
Test critical values:	1% level	-4.076860		
	5% level	-3.466966		
	10% level	-3.160198		
*MacKinnon (1996) one-sided p-values.				
Residual variance (no	correction)		2.73E-05	
HAC corrected variance	e (Bartlett kernel)		2.73E-05	

Phillips-Perron Test Equation Dependent Variable: D(M2_JP_SARG)
Method: Least Squares Date: 12/25/16 Time: 01:39 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_JP_SARG(-1) C @TREND("1995Q2")	-0.802560 0.005709 -1.65E-05	0.110943 0.001461 2.59E-05	-7.233959 3.908364 -0.634500	0.0000 0.0002 0.5276
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.404801 0.389341 0.005323 0.002182 306.8648 26.18422 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-9.53E-05 0.006812 -7.596621 -7.507295 -7.560807 1.992380

UK - DF

Null Hypothesis: M2_UK_SARG has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-9.032531 -4.076860 -3.466966 -3.160198	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2_UK_SARG) Method: Least Squares Date: 12/25/16 Time: 01:41 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_UK_SARG(-1) C @TREND("1995Q2")	-1.024515 0.022403 -0.000249	0.113425 0.005222 0.000103	-9.032531 4.290417 -2.429061	0.000 0.000 0.017
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.514566 0.501957 0.020537 0.032475 198.8572 40.81041 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-5.13E-0 0.02910 -4.89642 -4.80710 -4.86061 1.99162

UK - KPSS

Null Hypothesis: M2_UK_SARG is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.187212
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	Shin (1992, Table 1)	
Residual variance (no correction)	0.000405
HAC corrected variance (Bartlett	kernel)	0.000572

KPSS Test Equation
Dependent Variable: M2_UK_SARG
Method: Least Squares Date: 12/25/16 Time: 01:42 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("1995Q2")	0.021030 -0.000228	0.004486 9.68E-05	4.688129 -2.354470	0.000(0.021(
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.065570 0.053742 0.020373 0.032790 201.4555 5.543528 0.021033	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.01191; 0.02094 -4.92482; -4.86570; -4.90110; 2.04032

UK - PP

Null Hypothesis: M2_UK_SARG has a unit root Exogenous: Constant, Linear Trend

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-9.183555	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		
Residual variance (no	correction)		0.000406
HAC corrected variance	e (Bartlett kernel)		0.000603

Phillips-Perron Test Equation Dependent Variable: D(M2_UK_SARG) Method: Least Squares Date: 12/25/16 Time: 01:41 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_UK_SARG(-1) C @TREND("1995Q2")	-1.024515 0.022403 -0.000249	0.113425 0.005222 0.000103	-9.032531 4.290417 -2.429061	0.0000 0.000° 0.0178
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.514566 0.501957 0.020537 0.032475 198.8572 40.81041 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-5.13E-0! 0.02910! -4.89642! -4.80710: -4.86061! 1.99162!

US- DF

Null Hypothesis: M2_US_SARG has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-7.212830	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2_US_SARG) Method: Least Squares Date: 12/25/16 Time: 01:43 Sample (adjusted): 1995Q3 2015Q2 Included observations: 80 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_US_SARG(-1) C @TREND("1995Q2")	-0.806048 0.006381 3.71E-05	0.111752 0.002494 5.01E-05	-7.212830 2.558563 0.740494	0.0000 0.0125 0.4613
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.403217 0.387716 0.010304 0.008176 254.0294 26.01253 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-8.62E-05 0.013169 -6.275734 -6.186408 -6.239921 1.946670

US - KPSS

Null Hypothesis: M2_US_SARG is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.06402
Asymptotic critical values*:	1% level	0.21600
	5% level	0.14600
	10% level	0.11900
*Kwiatkowski-Phillips-Schmidt-S	thin (1992, Table 1)	
Residual variance (no correction)	0.00010
HAC corrected variance (Bartlett	0.00012	

KPSS Test Equation Dependent Variable: M2_US_SARG Method: Least Squares Date: 12/25/16 Time: 01:45 Sample: 1995Q2 2015Q2 Included observations: 81

Variable	Coefficient	Std. Error	t-Statistic	Prob
C @TREND("1995Q2")	0.008217 4.08E-05	0.002287 4.94E-05	3.592242 0.826751	0.000 0.410
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008578 -0.003972 0.010389 0.008526 256.0087 0.683517 0.410869	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.00984 0.01036 -6.27182 -6.21269 -6.24810 1.60698

US - PP

Null Hypothesis: M2_US_SARG has a unit root Exogenous: Constant, Linear Trend Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	-7.094464	0.0000
Test critical values:	1% level	-4.076860	
	5% level	-3.466966	
	10% level	-3.160198	
*MacKinnon (1996) on	e-sided p-values.		

0.000102

8.40E-05

Phillips-Perron Test Equation
Dependent Variable: D(M2_US_SARG)
Method: Least Squares
Date: 12/25/16 Time: 01:44
Sample (adjusted): 199503 2015Q2
Included observations: 80 after adjustments

Residual variance (no correction) HAC corrected variance (Bartlett kernel)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2_US_SARG(-1) C @TREND("1995Q2")	-0.806048 0.006381 3.71E-05	0.111752 0.002494 5.01E-05	-7.212830 2.558563 0.740494	0.0000 0.0125 0.4613
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.403217 0.387716 0.010304 0.008176 254.0294 26.01253 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-8.62E-0! 0.01316! -6.27573- -6.18640! -6.23992 1.94667!

7.4 CORRELOGRAMS (SEASONALITY)

7.4.1 Close 1

China – 1st differences

Date: 12/25/16 Time: 01:46 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.200	0.200	3.3551	0.067
· b ·		2	0.080	0.042	3.8988	0.142
· 🗀		3	0.220	0.205	8.0754	0.044
<u> </u>	·	4	-0.276	-0.390	14.738	0.005
<u> </u>	' -	5	-0.239	-0.143	19.787	0.001
1 10 1	' -	6	0.065	0.159	20.161	0.003
' = '		7	-0.140	-0.008	21.941	0.003
= '	 	8		-0.255	25.596	0.001
· 🗀 ·		9	0.131	0.073	27.205	0.001
' = '	'['	10		-0.054	28.342	0.002
141	' '	11	-0.060	0.062	28.693	0.003
' 📮	' '	12	0.231	0.061	33.892	0.001
' 🛛 '	'🖣 '	13		-0.133	34.371	0.001
' ['	' '	14	-0.040		34.528	0.002
' P	' '	15	0.211	0.164	39.072	0.001
-		16	-0.198		43.144	0.000
' " '	' '	17	-0.165		46.012	0.000
1 1	'🖣 '	18	-0.008		46.019	0.000
<u> </u>	' '	19	-0.251	0.004	52.874	0.000
· -	'['	20	-0.179		56.408	0.000
' '	' □ '	21		-0.141	56.568	0.000
1 1 1	יוםי	22	-0.014	0.076	56.590	0.000
' 🗓 '	'['	23		-0.069	57.028	0.000
' I I '		24		-0.215	57.751	0.000
' ['	'['	25	-0.026		57.831	0.000
' -		26	-0.176		61.635	0.000
' '	' ' '	27	0.113	0.111	63.212	0.000
' '	' '	28	0.023	0.004	63.279	0.000
' [_'	' - '	29	-0.016		63.314	0.000
' 🖭	'['	30		-0.039	67.336	0.000
1 1 1	1 1	31		-0.002	67.348	0.000
1 1	' '	32	0.000	0.050	67.348	0.000
' <u> </u>	']'	33	0.122	0.012	69.432	0.000
' 🏴 '	' 🗓 '	34		-0.069	70.494	0.000
' [['	' <u>¶</u> '	35	-0.083		71.495	0.000
' 		36	0.131	0.120	74.057	0.000

Euro Area – 1st differences

Date: 12/25/16 Time: 01:50 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	0.184	0.184	2.8474	0.092
<u> </u> -		2	0.133	0.103	4.3580	0.113
<u> </u>		3	0.187	0.152	7.3624	0.061
101	· ·	4	-0.086	-0.163	8.0070	0.091
1 1	1 1 1	5	0.007	0.013	8.0115	0.156
1 🛅 1		6	0.137	0.143	9.6922	0.138
1 10 1	<u> </u> -	7	0.092	0.100	10.460	0.164
I		8	-0.123	-0.229	11.850	0.158
1 1 1		9	0.023	0.011	11.900	0.219
1 1 1		10	0.009	0.067	11.908	0.291
1 4 1	1 1	11	-0.081	-0.006	12.540	0.324
III		12	-0.105	-0.215	13.605	0.327
1 1		13	0.001	0.037	13.605	0.402
' □ '	' '	14		-0.025	15.290	0.359
1 1	י 🗐 י	15	-0.004	0.107	15.292	0.431
1 11 1	101	16		-0.074	15.481	0.490
I <mark> </mark>	' □ '	17	-0.143		17.618	0.413
101		18	-0.068		18.118	0.448
□ '	' '	19	-0.198		22.378	0.266
' □ '	'E '	20	-0.154		24.984	0.202
' ['	' '	21	-0.051	0.023	25.275	0.235
' ['	' '	22		-0.039	25.932	0.255
' I I'	' '	23	0.090	0.166	26.862	0.262
<u> </u>		24	0.103	0.101	28.116	0.255
I	' '	25	0.096	0.073	29.224	0.255
I I	'['	26	0.064	-0.030	29.724	0.279
1 11 1		27	0.033	0.002	29.861	0.320
I I	' □ '	28	-0.086	-0.146	30.804	0.326
' P '	' 	29	0.119	0.196	32.647	0.292
1 1 1	' '	30	0.030	-0.102	32.769	0.333
' P '		31	0.125	0.107	34.883	0.288
1 10 1	' ['	32		-0.072	35.747	0.297
' '	'P '	33	-0.108		37.387	0.275
1 1 1	' '	34		-0.007	37.397	0.316
'E '	' '	35	-0.082	0.023	38.385	0.319
1 11 1		36	0.038	-0.020	38.596	0.353

China – 2nd differences

Date: 12/25/16 Time: 01:46 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.414	-0.414	14.205	0.000
□ '		2	-0.190	-0.436	17.245	0.000
ı <u>— </u>		3	0.413	0.179	31.807	0.000
_ ·	' '	4		-0.135	40.222	0.000
<u>"</u>	🗖 '	5		-0.324	42.842	0.000
' 🔚	'🗐 '	6		-0.105	52.130	0.000
' ['	יוםי	7	-0.093	0.078	52.910	0.000
<u> </u>		8	-0.258		58.987	0.000
' 	'['	9		-0.036	71.081	0.000
' -	' '	10		-0.155	73.934	0.000
' - _ '	' <u>"</u> '	11	-0.160		76.361	0.000
<u> </u>	' <u> </u> '	12	0.373	0.068	89.783	0.000
- '	' 🗓 '				94.079	0.000
' 	<u>'</u> "'	14			95.913	0.000
		15	0.420	0.220	113.74	0.000
<u> </u>	' <u> </u> '	16	-0.263	0.044	120.82	0.000
' 	''	17	-0.103	0.026	121.92	0.000
	!¶ !	18		-0.103	128.55	0.000
.5 !	! !	19	-0.186	0.001	132.27	0.000
<u> </u>	'' !	20	-0.091	0.046	133.17	0.000
: P '		21		-0.164	136.23	0.000
	l L				136.24	0.000
: "	I P	23	-0.116	0.094 -0.093	137.80 140.12	0.000
; F;	'¶;	25	0.140	0.088	140.12	0.000
- 11:	l ' '';	26		-0.258	147.80	0.000
	77	27		-0.256	154.83	0.000
	l ; h ;	28	-0.025	0.071	154.91	0.000
	l inii	29		-0.052	157.58	0.000
:5	;;;	30		-0.052	163.29	0.000
	1 14 1	31	-0.108		164.86	0.000
i	171	32	-0.108		165.79	0.000
- Table	1 11	33	0.101	0.055	167.21	0.000
; 6 ;		34	0.076	0.039	168.03	0.000
		35			175.02	0.000
	13.1	36	0.173	0.079	179.47	0.000
	· F					

Euro Area – 2nd differences

Date: 12/25/16 Time: 01:51 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.465	-0.465	17.946	0.000
10 1		2 -0.068	-0.363	18.341	0.000
· 🗀	'('		-0.016	21.784	0.000
<u> </u>	"	4 -0.222		26.039	0.000
1 (1	<u> </u> '	5 -0.028		26.105	0.000
· 🗖 ·	"		-0.184	27.222	0.000
' 	' '	7 0.103	0.138	28.171	0.000
-	' '	8 -0.224		32.755	0.000
' [] '	" '		-0.165	33.582	0.000
1 11 1	'['		-0.063	33.902	0.000
1 4 1	' '	11 -0.051	0.125	34.151	0.000
' [] '	' □ '	12 -0.079		34.756	0.001
' P '	'['		-0.062	37.125	0.000
' - '	<u>"</u>	14 -0.166		39.866	0.000
1 1 1	' '	15 0.040	-0.008	40.024	0.000
' P '	' '	16 0.152	0.041	42.388	0.000
' - '	'['	17 -0.159	-0.084	45.007	0.000
' 🖭 '	' '	18 0.121	0.052	46.547	0.000
' 🗐 '	'' '	19 -0.103		47.677	0.000
' ['	'🗐 '	20 -0.039		47.840	0.000
''	<u> </u>		-0.054	48.553	0.001
' - '		22 -0.108		49.883	0.001
' [] '	'5 '		-0.134	50.952	0.001
1 1	'🖣 '		-0.102	50.962	0.001
1 1	']'		-0.002	50.972	0.002
1 1	'[['	26 -0.008		50.979	0.002
' <u></u>	<u> </u>	27 0.057	0.090	51.374	0.003
-		28 -0.193	-0.246	56.055	0.001
' P '	' '	29 0.180	0.056	60.239	0.001
' 📮 '	'□ '	30 -0.113	-0.143	61.925	0.001
יוםי	' '	31 0.088	0.032	62.960	0.001
<u> </u>	'] '	32 0.081	0.063	63.858	0.001
' = '	'['	33 -0.183	-0.038	68.547	0.000
' P '	'¶'	34 0.127	-0.067	70.852	0.000
' - '	'['	35 -0.128		73.233	0.000
1 p 1	' '	36 0.087	-0.069	74.372	0.000

Date: 12/25/16 Time: 02:18 Sample: 1995Q2 2015Q2 Included observations: 81

United States - 1st differences United States – 2nd differences

Date: 12/25/16 Time: 02:20 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
- b		1 0.230	0.230	4.4295	0.03
1 10 1		2 0.070	0.018	4.8459	0.089
· 🗖 ·		3 0.124	0.110	6.1738	0.100
' = '	🗖 '	4 -0.152		8.1799	0.085
· 🗀		5 0.190	0.301	11.389	0.044
· 🗓 ·	'['		-0.056	12.132	0.059
1 (1	' '	7 -0.049	-0.015	12.351	0.090
' " '		8 -0.101		13.294	0.102
' 🗓 '	' '	9 -0.080	0.140	13.890	0.126
' 	' in '	10 0.123	0.104	15.320	0.12
1 ()	'[['	11 -0.014	-0.094	15.340	0.167
' [] '	" '	12 -0.085		16.043	0.189
1 1	' '	13 -0.000	0.134	16.043	0.247
' = '	'['	14 -0.122		17.532	0.229
1 1		15 0.007	-0.017	17.538	0.288
1 10 1	'[['	16 0.044	-0.075	17.740	0.339
· 二 ·	[17 -0.158	-0.052	20.359	0.256
1 d 1		18 -0.077	-0.010	20.995	0.280
1 🗖 1	' '	19 -0.137	-0.130	23.026	0.236
— ·	<u> </u>	20 -0.193	-0.177	27.110	0.132
1 4 1		21 -0.099	-0.045	28.203	0.134
1 = 1	1 1	22 -0.131	0.007	30.156	0.115
1 1		23 -0.003	0.068	30.157	0.145
· 🗀 ·		24 0.151	0.179	32.842	0.107
ı 🗀 ı		25 0.134	0.091	35.012	0.088
· 🗀 ·		26 0.133	0.064	37.189	0.072
1 1		27 0.003	-0.064	37.190	0.092
1 d 1	' '	28 -0.069	-0.106	37.790	0.102
, b ,		29 0.094	0.087	38.926	0.103
1 j a 1	1 1	30 0.049	-0.002	39.246	0.120
· 🛅 ·		31 0.127	0.099	41.419	0.100
· 🗀 ·		32 0.137	0.086	43.998	0.077
· 🗖 ·	1001	33 -0.112	-0.111	45.762	0.069
(d)	<u> </u>	34 -0.062		46.310	0.078
1 1		35 -0.002	0.025	46.310	0.096
ı d ı	' <u> </u> '	36 -0.084	-0.128	47.361	0.097

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.401 2 -0.135 3 0.215 4 -0.400 5 0.283 6 0.028 8 -0.056 9 -0.117 10 0.229 11 -0.051 12 -0.094 15 0.064 16 0.157 17 -0.182 18 0.089 19 0.000 20 -0.095 21 0.006 22 -0.090	-0.401 -0.352 0.001 -0.449 -0.062 -0.088 0.113 -0.261 -0.202 0.062 -0.220 -0.032 -0.009 -0.030 -0.070 0.062 -0.049 0.083 -0.062 -0.109 -0.109	13.320 14.851 18.785 32.597 39.608 39.679 39.955 40.237 41.498 46.401 46.652 47.506 49.359 52.372 52.791 55.302 55.355 59.589 60.572 61.209 62.129	0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		18 0.089 19 0.000 20 -0.095 21 0.076 22 -0.090 23 -0.018 24 0.102 25 -0.006 26 0.078	0.049 0.083 -0.062 -0.109 -0.135 -0.221 -0.114 -0.078 0.046	59.589 59.589 60.572 61.209 62.129 62.168 63.381 63.385 64.129	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		30 -0.086 31 0.045 32 0.159 33 -0.191 34 -0.004 35 0.092	-0.016	64.309 66.837 69.076 70.037 70.313 73.788 78.882 78.885 80.128 82.332	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

United Kingdom — 1st differences Date: 12/25/16 Time: 02:21 Sample: 199502 201502 Included observations: 81

United Kingdom – 2nd differences

Date: 12/25/16 Time: 02:21 Sample: 1995Q2 2015Q2 Included observations: 80

	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
	- 1		1 0.085	0.085	0.6096	0.435
	, j a ,		2 0.108	0.101	1.6012	0.449
	· 🗈 ·	<u> </u> -	3 0.087	0.072	2.2608	0.520
	' [['	'E '	4 -0.084	-0.108	2.8698	0.580
	1 🗓 1	10	5 0.082	0.083	3.4634	0.629
			6 0.014	0.015		0.746
	1 10 1	1 г				
	-	🗖 '				
	' [] '	' -'				
1	1 j i 1	יוםי ן				
	'■ '	'['				
	' [<u>"</u> '				
	'■ '	' '				
	'□ '	'['				
	1 1	ינן י				
	Г	'['				
1	_	' '				
		1 1				
		. 7				
1	' [] '	'['				
	' ('	' '				
	1 j i 1	' '				
	' P '	' '				
1	' 	' '				
1	' 	' '				
	1 11 1					
	' [] '	q '				
	· 🏚 ·	1 1				
		' '				
	· 🗈 ·	'bi'				
	· 🛅 ·		32 0.106	0.041	35.665	0.300
35 -0.036 -0.001 37.520 0.354	' [] '	' '	33 -0.101	-0.144	37.105	0.285
	, j i ,	'(('	34 0.040	-0.035		0.319
1	- I (-	1 1	35 -0.036	-0.001	37.520	0.354
	, j j ,		36 0.050	0.003	37.887	0.383

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	-0.514	-0.514	21.926	0.000
1 11 1		2	0.027	-0.322	21.988	0.000
1 j a 1	1 0 1	3	0.085	-0.093	22.609	0.000
' - '	-	4	-0.187	-0.251	25.632	0.000
ı <u>I</u>	<u> </u>	5	0.121	-0.158	26.911	0.000
1 (1	<u> </u>	6	-0.060	-0.177	27.226	0.000
· 🖃	· 🗀	7	0.206	0.189	31.046	0.000
I	·	8	-0.371	-0.293	43.567	0.000
· 🗀	— -	9	0.203	-0.191	47.381	0.000
1 j a 1	 	10	0.091	0.037	48.160	0.000
' = '	b	11	-0.143	0.076	50.100	0.000
1 🗓 1	1 = 1	12	0.070	-0.137	50.579	0.000
1 (1	1 (1	13	-0.012	-0.036	50.593	0.000
1 E 1	' = '	14	-0.081	-0.115	51.251	0.000
1 1 1	141	15		-0.053	51.296	0.000
' 	 	16	0.173	0.027	54.370	0.000
ı <u> </u>	10 1	17	-0.182	-0.075	57.804	0.000
1 10 1	<u> </u>	18	0.064	0.028	58.238	0.000
1 1 1	1 1 1	19	0.008	0.011	58.245	0.000
1 [1	10 1	20	-0.058	-0.073	58.617	0.000
1 1 1	' " '	21		-0.099	58.660	0.000
1 (1	<u> </u>	22	-0.027	-0.187	58.743	0.000
1 11 1	<u>'</u> ■ '	23		-0.167	58.912	0.000
1 (1	' ('	24	-0.038	-0.038	59.081	0.000
1 1	1 1	25	0.114	-0.005	60.620	0.000
1 (1	1 1	26	-0.038	0.004	60.798	0.000
1 1 1	' 	27	0.024	0.173	60.868	0.000
' " '	' [] '	28	-0.112		62.451	0.000
1 j il 1	1 1	29		-0.008	63.158	0.000
1 (1	 	30	-0.035	-0.048	63.318	0.000
1 1 1	1 1	31		-0.003	63.344	0.001
' 	' 	32	0.111	0.151	65.028	0.000
' = '		33	-0.186	0.016	69.840	0.000
ı 🛅 ı	1 (1	34		-0.028	71.895	0.000
' 🖺 '	1 (1	35	-0.086		72.983	0.000
1 j a 1	1 (1)	36	0.078	-0.033	73.900	0.000

Japan – 1st differences

Date: 12/25/16 Time: 02:15
Sample: 1995Q2 2015Q2
Included observations: 81

Date: 12/25/16 Tim Sample: 1995Q2 20 Included observatio	15Q2
Autocorrelation	Partial

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.219	0.219	4.0461	0.044
1 1 1		2	0.012	-0.038	4.0585	0.131
ı 🛅 ı		3	0.113	0.125	5.1588	0.161
' []'	' '	4	-0.102	-0.166	6.0726	0.194
' ['		5	-0.067	0.002	6.4734	0.263
1 🗓 1		6	0.044	0.040	6.6458	0.355
1 1	' '	7	0.001	0.012	6.6459	0.467
'■ '	' = '	8	-0.143	-0.164	8.5284	0.384
1 1		9	0.004	0.062	8.5297	0.482
1 j i 1	' '	10	0.049	0.037	8.7582	0.555
' = '	' '	11		-0.103	10.060	0.525
' - '	-		-0.179	-0.198	13.198	0.355
' [' '	13	-0.038	0.037	13.341	0.422
' '	' '	14	0.073	0.150	13.874	0.459
' 📂		15	0.212	0.223	18.472	0.239
'] '	I	16		-0.208	18.533	0.294
' 🗓 '	' <u> </u> '	17	-0.080		19.203	0.317
<u>'</u>	' <u> </u> '	18	-0.141		21.319	0.264
<u> </u>	' <u>"</u> '		-0.218		26.456	0.118
<u> </u>	! 9 !	20	-0.127		28.231	0.104
' !	'¶'			-0.086	29.553	0.101
' " '		22		0.001	30.606	0.104
' [['	'!'	23	-0.045	0.025	30.844	0.127
' 🖭 '	' ['	24	0.105	0.035	32.136	0.124
<u> </u>		25	0.095	0.018	33.212	0.126
<u> </u>		26	-0.015	0.008	33.237	0.155
<u>'</u>	! !!	27			34.646	0.148
<u> </u>	<u>'¶</u> '	28		-0.050	34.784	0.176
' 📙 '	' '	29	0.069	0.017	35.407	0.191
' E !		30	0.113	0.015	37.077	0.175
! ₽ !	! ₽ !	31	0.174	0.105	41.166	0.105
:] !	! !	32		-0.002	41.558	0.120
!¶ !	<u>'</u> ¶			-0.054	42.344	0.128
! ! !	1 !!!		-0.011	0.033	42.362	0.154
<u> </u>			-0.013		42.388	0.182
'■ '	' □ '	36	-0.141	-0.127	45.372	0.136

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.327	-0.327	8.8769	0.003
= '	·	2	-0.214	-0.359	12.715	0.002
· 🗀 ·		3	0.188	-0.031	15.722	0.001
□ □ □	🗖 '	4	-0.160	-0.212	17.945	0.001
1 (1	<u> </u>	5	-0.045	-0.176	18.119	0.003
1 j a 1	'E '	6	0.084	-0.133	18.744	0.005
1 🗓 1		7	0.058	0.019	19.046	0.008
' 二 '	-	8	-0.167	-0.194	21.579	0.006
1 j i 1	' '	9		-0.133	21.760	0.010
' 		10	0.135	-0.004	23.464	0.009
1 (1		11	-0.047	0.055	23.677	0.014
' = '	<u>"</u> '	12		-0.176	25.518	0.013
1 1	🗏 '	13	0.006	-0.229	25.522	0.020
1 1	🖷 '	14		-0.227	25.526	0.030
' 	' 	15	0.219	0.206	30.374	0.011
' [יון י	16	-0.058	0.050	30.718	0.015
' ['	ינן י	17	-0.027	0.059	30.792	0.021
1 1		18	0.006	0.010	30.796	0.030
' = '	ינן י	19	-0.116	0.043	32.237	0.029
1 11 1	'('	20		-0.034	32.387	0.039
1 1	'['	21	0.007	-0.098	32.393	0.053
1 (1	' '	22	-0.035		32.531	0.069
' 🛛 '	' '	23	-0.063		32.984	0.081
' P '	'['	24		-0.067	34.345	0.079
ינןי	'['	25		-0.070	34.694	0.094
· • •	יום י	26	0.026	0.082	34.776	0.117
' = '	' '	27		-0.007	36.423	0.106
1 (1	'['	28	-0.036		36.583	0.128
יוםי	'¶'	29		-0.075	36.831	0.151
1 1	' - '	30		-0.148	36.871	0.181
' 📮 '	' '	31		-0.010	38.780	0.159
1 11 1	יון י	32	0.025	0.057	38.868	0.188
'■'	'['	33		-0.030	40.990	0.160
1 11 1	' '	34	0.027	0.040	41.096	0.188
י וון י	' -	35	0.090	0.150	42.282	0.185
-	' '	36	-0.216	-0.109	49.230	0.070

Japan − 2nd differences

7.4.2 Close 2

China — 1st differences

Date: 12/25/16 Time: 02:27

Sample: 1995Q2 2015Q2
Included observations: 81

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.546	0.546	25.025	0.000
· 🗀	'['	2 0.240	-0.082	29.946	0.000
1 11 1	'['	3 0.038	-0.086	30.067	0.000
= '		4 -0.255	-0.322	35.767	0.000
-		5 -0.281	0.022	42.767	0.000
' [] '		6 -0.091	0.195	43.506	0.000
' = '	= '	7 -0.123	-0.199	44.892	0.000
' !! '	 	8 -0.155	-0.205	47.115	0.000
1 1 1		9 0.017	0.192	47.144	0.000
' "	'🗐 '	10 -0.087	-0.141	47.857	0.000
' ['	' '	11 -0.025	0.090	47.918	0.000
' 	1 1	12 0.118	0.002	49.268	0.000
1 1 1	' '			49.393	0.000
1 1 1		14 0.022	0.053	49.441	0.000
יוםי			-0.020	49.902	0.000
' ('🗐 '	16 -0.072		50.441	0.000
<u> </u>	" '		-0.173	54.908	0.000
' q '	' '	18 -0.114	0.032	56.295	0.000
<u> </u>		19 -0.271		64.233	0.000
<u> </u>		20 -0.230		70.057	0.000
141	' '	21 -0.044		70.277	0.000
141	'[] '		-0.068	70.503	0.000
1 1 1	'['	23 0.011	-0.037	70.517	0.000
· pr	"	24 0.067	-0.163	71.052	0.000
' Q '	<u>"</u>	25 -0.071	-0.174	71.664	0.000
' 📮 '		26 -0.101	0.053	72.905	0.000
1 11 1			-0.024	73.147	0.000
1 1	' □ '		-0.118	73.187	0.000
' j '	'['	29 0.031	-0.051	73.312	0.000
' 	' '	30 0.163	0.057	76.826	0.000
· p ·	1 10 1	31 0.081	0.043	77.712	0.000
1 10 1	'🖣 '	32 0.048	-0.098	78.033	0.000
' P '	' '	33 0.144	0.039	80.937	0.000
1 1 1	'🖣 '	34 0.022		81.009	0.000
1 1	1 10 1	35 -0.005	0.066	81.012	0.000
' p '	' '	36 0.112	-0.004	82.871	0.000

China – 2nd differences
Date: 12/25/16 Time: 02:28
Sample: 199502 201502
Included observations: 80

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
_	· d ·	id	1	-0.133	-0.133	1.4790	0.224
	10 1	100	2	-0.117	-0.137	2.6205	0.270
	· 🗀 ·	(1)	3	0.114	0.080	3.7182	0.294
	<u> </u>	·	4	-0.275	-0.274	10.236	0.037
	<u> </u>		5	-0.223	-0.305	14.603	0.012
	· 🖿	(10)	6	0.238	0.096	19.637	0.003
	1 1		7	-0.000	0.033	19.637	0.006
	<u> </u>	·	8	-0.230	-0.298	24.469	0.002
	· 🚞		9	0.285	0.073	31.966	0.000
	· ·	' '	10		-0.159	34.599	0.000
	10 1	'('	11	-0.084		35.267	0.000
	· 🖃		12	0.249	0.063	41.265	0.000
	101	'4'	13		-0.073	41.738	0.000
	101	' '		-0.057	0.028	42.065	0.000
	' P	' P '	15	0.211	0.113	46.578	0.000
	1 1	1 1	16	-0.014	0.092	46.599	0.000
	<u> </u>	' '	17		-0.104	52.742	0.000
	' P	' '	18	0.225	0.078	58.094	0.000
	· ·	'[] '	19	-0.182		61.652	0.000
	' = '	'['	20		-0.045	64.286	0.000
	'_ P	' '	21	0.210	0.005	69.196	0.000
	' 🖳 '	' [] '	22	-0.102		70.369	0.000
	' [_'	'['	23	-0.046	0.010	70.608	0.000
	'_	' <u> </u> '	24	0.224	0.073	76.485	0.000
	' 🖳 '	'9 '		-0.095		77.557	0.000
	! □ _'	'1.'	26		-0.032	79.892	0.000
	<u> </u>	! !! !	27	0.266	0.076	88.632	0.000
	<u>'9</u>	111	28		-0.021	90.307	0.000
	!¶_!	1 11	29	-0.113		91.936	0.000
	: ₽:	!¶ !	30		-0.134	94.428	0.000
	<u>'4</u> !	1 11	31	-0.075	0.057	95.184	0.000
	.=	<u>'</u> ¶.'	32		-0.093	99.816	0.000
	: P	l	33	0.245	0.075	108.22	0.000
	:4 :			-0.081		109.15	0.000
	_	1 !!!		-0.131		111.65	0.000
_	· 🖭	'('	36	0.181	-0.037	116.53	0.000
-							

Euro Area - 1st differences

Date: 12/25/16 Time: 02:30 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- b		1	0.232	0.232	4.5405	0.033
		2	0.207	0.161	8.1705	0.017
		3	0.205	0.139	11.805	0.008
1 1	'🗐 '	4		-0.105	11.805	0.019
	'('	5		-0.016	11.858	0.037
	י 🗐 י	6	0.104	0.103	12.837	0.046
יוםי	יוםי ו	7	0.093	0.087	13.629	0.058
' - '	_ ·	8	-0.126		15.083	0.058
	' '	9	0.015	0.013	15.104	0.088
	' '	10	-0.007	0.040	15.109	0.128
' ['	' '	11	-0.079		15.706	0.152
' "	' - '		-0.099		16.654	0.163
' 🗓 '	'['		-0.052		16.923	0.203
' ['	' <u> </u> '		-0.033	0.086	17.030	0.255
' 🗓 '	<u>'</u> ''		-0.026	0.050	17.099	0.313
' <u>"</u>			-0.136	-0.248	19.011	0.268
<u>'9</u>	'¶ '		-0.117		20.457	0.252
<u>'</u>	1 11		-0.155	0.004	23.014	0.190
	1 11 1		-0.188		26.842	0.108
! ! !	! 9 !		-0.069		27.361	0.125
<u> </u>	I III	21	-0.060		27.763	0.147
!¶!	l ! L!		-0.121		29.420	0.133
<u> </u>	l : ₽ :	23	0.035	0.150	29.559	0.162
		24	0.149	0.136	32.177	0.123
1 1	'¶ '	25 26	-0.012		32.194	0.152 0.149
; ;	; ;	27	0.103	0.039	33.481	
	I . T	28	-0.029	0.121	33.584	0.178
; ; ;	' '	29	0.050	0.121	33.899 34.653	0.204
; [;		30		-0.055	35.581	0.210
; 6;	;%;	31	0.064	0.055	37.461	0.222
; ;	; ";		-0.015		37.492	0.197
; } ;	i i	33	-0.015		37.712	0.232
; ; ;			-0.040		37.785	0.202
		35	0.007	0.001	37.792	0.343
i ili		36	-0.012	0.064	37.815	0.386
111	1 P 1	1 00	3.012	3.004	31.013	3.300

United States – 1st differences

Date: 12/25/16 Time: 02:31 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.485	0.485	19.784	0.000
ı 	'd''	2 0.177	-0.077	22.444	0.000
ı <u>İ</u>		3 0.094	0.051	23.206	0.000
1 1 1		4 0.013	-0.057	23.220	0.000
ı <u>İ</u> n ı	<u> </u>	5 0.111	0.169	24.302	0.000
ı 		6 0.136	0.017	25.957	0.000
1 (1	' '	7 -0.019	-0.140	25.989	0.001
' = '	'E '	8 -0.149		28.021	0.000
1 (1	' -	9 -0.029		28.102	0.001
1) 1	1 1		-0.006	28.148	0.002
1 🗓 1		11 0.070	0.041	28.614	0.003
1 1	' '	12 -0.008		28.620	0.004
' ['		13 -0.099	0.009	29.596	0.005
	' '	14 -0.009		29.605	0.009
1 1	'['	15 -0.007		29.610	0.013
' [' = '	16 -0.081		30.293	0.017
' = '	'['		-0.032	31.847	0.016
'■ '		18 -0.156	0.003	34.432	0.011
-	'E '		-0.114	39.114	0.004
' = '	'🖣 '		-0.155	42.944	0.002
'■ '	'['	21 -0.155		45.623	0.001
' = '	' '	22 -0.177	0.011	49.193	0.001
1 1	' 	23 -0.011	0.182	49.207	0.001
' 		24 0.109	0.044	50.611	0.001
' 🖭	' '	25 0.179	0.112	54.448	0.001
' 🗗 '	ינן י	26 0.166	0.041	57.797	0.000
	' '	27 -0.010		57.809	0.001
	' '		-0.003	57.883	0.001
1 j i 1	' '	29 0.051	0.026	58.220	0.001
' j i '	' '	30 0.076	0.010	58.973	0.001
' P '	' '	31 0.139	0.145	61.589	0.001
' 	' '		-0.007	63.152	0.001
' " '	' = '	33 -0.087		64.219	0.001
' [' '	34 -0.069		64.894	0.001
1 4 1	' '		-0.131	65.153	0.001
1 (1	' '	36 -0.046	-0.016	65.474	0.002

Euro Area - 2nd differences

Date: 12/25/16 Time: 02:30 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.485	-0.485	19.496	0.000
1 1			-0.325	19.513	0.000
ı b ı	1 1	3 0.133	-0.049	21.013	0.000
1	1 1	4 -0.159	-0.147	23,190	0.000
1 1	_ ı	5 -0.020	-0.216	23.224	0.000
1 🗓 1	<u> </u>	6 0.049	-0.176	23.434	0.001
ı 🛅 ı		7 0.137	0.127	25.129	0.001
<u> </u>	id	8 -0.233	-0.121	30.069	0.000
ı b ı	'd '	9 0.106	-0.127	31.104	0.000
1 11 1	1 (1	10 0.031	-0.064	31.191	0.001
1 (1		11 -0.035	0.062	31.306	0.001
1 (1	101	12 -0.036	-0.078	31.434	0.002
1 1 1	<u> </u>	13 0.012	-0.160	31.449	0.003
1 1 1	'E '	14 0.011	-0.109	31.462	0.005
1 🗓 1		15 0.080	0.186	32.106	0.006
1 🛛 1	1 1	16 -0.088	-0.007	32.891	0.008
1 1 1		17 0.035	-0.090	33.015	0.011
1 1		18 -0.004	-0.041	33.017	0.017
1 [] 1	1 1	19 -0.098	-0.021	34.051	0.018
1 j i 1	'd' '	20 0.074	-0.076	34.655	0.022
1 🗓 1			-0.057	34.866	0.029
1 <u> </u>		22 -0.144	-0.223	37.204	0.022
1 1 1	— 1	23 0.025	-0.194	37.275	0.030
ı 🛅 ı		24 0.181	0.052	41.127	0.016
<u> </u>	'd '	25 -0.173	-0.066	44.699	0.009
ı 🗀 ı		26 0.164	0.082	47.969	0.005
¹ □ ¹	' □ '	27 -0.141	-0.147	50.426	0.004
1 11 1		28 0.032	-0.040	50.555	0.006
1 1 1		29 0.015	0.042	50.584	0.008
1 1	1 (1	30 -0.022	-0.062	50.647	0.011
ı b ı	1 1	31 0.110	-0.018	52.271	0.010
1 4 1		32 -0.074	0.114	53.010	0.011
1 (1	1 1	33 -0.026	0.005	53.106	0.015
1 1	1 1	34 -0.010	-0.024	53.120	0.019
1 11 1	'E '	35 0.034	-0.090	53.285	0.025
1 [] 1	' '	36 -0.073	-0.093	54.074	0.027

United States - 2nd differences

Date: 12/25/16 Time: 02:31 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
= -		1 -0.207	-0.207	3.5648	0.059
= -		2 -0.212		7.3541	0.025
1 1	10 1	3 0.005	-0.120	7.3560	0.061
-	ı	4 -0.176	-0.300	10.043	0.040
1 🗓 1	<u> </u>	5 0.071	-0.115	10.487	0.063
· 🗀 ·		6 0.163	0.029	12.855	0.045
1 1	1 1 1	7 -0.015	0.019	12.874	0.075
<u> </u>		8 -0.244	-0.269	18.300	0.019
1 11 1	'E '	9 0.042	-0.108	18.464	0.030
1 j 1 1	'E '	10 0.030	-0.104	18.551	0.046
' <u> </u>	1 1	11 0.120	0.062	19.923	0.046
1 1	'E '	12 0.005	-0.089	19.926	0.069
' = '	" '	13 -0.160		22.434	0.049
1 j i 1	' '	14 0.075	0.024	22.999	0.060
1 11 1	יום י	15 0.063	0.093	23.394	0.076
1 1	'['	16 -0.021		23.438	0.103
1 1	' '	17 -0.003		23.439	0.135
1 1 1	יון י	18 0.020	0.048	23.483	0.173
' [] '	יוםי	19 -0.069	0.072	24.001	0.196
1 1	'['	20 -0.010		24.012	0.242
1] 1	' '		-0.112	24.235	0.282
' - '		22 -0.159		27.108	0.207
ינוי	'['		-0.037	27.444	0.238
'] '	'🖣 '		-0.102	27.614	0.277
י 🏻 י	'[['		-0.048	28.267	0.296
'_P'	' P'	26 0.148	0.122	30.928	0.231
'	']'	27 -0.153	0.011	33.837	0.171
'[['	' ['	28 -0.074		34.536	0.184
!] !	! !		-0.009	35.029	0.204
! [!	<u>'</u> ¶ '	30 -0.064		35.567	0.223
! 🖪 !	<u> </u>	31 0.108	0.061	37.136	0.207
<u>'</u> -"!	! ₽ !	32 0.126	0.156	39.305	0.175
- !	<u> </u>	33 -0.210		45.460	0.073
! !	l ! P!	34 0.002	0.069	45.460	0.091
111	1 11:		-0.003	45.591	0.108
141	' '	36 -0.052	-0.017	45.989	0.123

United Kingdom - 1st differences

Date: 12/25/16 Time: 02:33 Sample: 1995Q2 2015Q2 Included observations: 81

Partial Correlation Autocorrelation AC PAC Q-Stat Prob 0.426 0.426 0.000 15.241 0.174 -0.009 0.026 -0.055 17.807 17.864 0.000 -0.014 -0.005 0.103 0.148 17.882 18.828 0.001 ь. 0.080 -0.017 -0.028 -0.105 19.402 0.004 1 🗉 19.473 8 -0.195 -0.183 9 0.014 0.250 22.959 22.978 0.003 10 -0.010 -0.100 11 0.005 -0.032 22.988 22.991 0.011 0.018 11 0.003 -0.032 12 -0.088 -0.127 13 -0.217 -0.071 14 -0.071 0.107 15 -0.055 -0.092 16 -0.110 -0.193 17 -0.132 0.057 18 -0.195 -0.122 19 -0.202 -0.082 20 -0.154 -0.141 21 -0.100 -0.024 22 -0.069 0.105 23 0.086 0.118 24 0.181 0.063 25 0.202 0.108 26 0.119 -0.094 27 -0.030 -0.062 28 -0.032 -0.047 29 0.013 -0.023 30 0.083 0.069 31 0.097 0.031 32 0.063 -0.009 33 -0.081 -0.161 34 0.029 0.085 36 0.035 -0.001 0.022 23.747 28.390 0.011 29.204 30.445 0.015 0.016 32.279 0.014 40.763 0.003 0.002 44 486 0.002 45.886 0.003 54.652 0.001 0.001 56.508 0.001 56.635 0.001 56.656 57.561 0.002 0.002 58.829 0.002 59.374 0.002 П 60.288 0.003 60.405 0.004 60.626 60.718 0.005 0.006

Japan - 1st differences

Date: 12/25/16 Time: 02:35 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.353	0.353	10.473	0.001
1 10 1	101	2 0.074	-0.058	10.936	0.004
1 1 1		3 0.034	0.031	11.034	0.012
1 d 1	10 1	4 -0.090	-0.124	11.734	0.019
1 1	<u> </u>	5 0.000	0.087	11.734	0.039
1 1		6 -0.001	-0.036	11.734	0.068
1 (1	1 (1	7 -0.027	-0.009	11.800	0.107
1 = 1	'E '	8 -0.130	-0.154	13.347	0.100
1 1 1		9 0.020	0.157	13.384	0.146
1 11 1		10 0.034	-0.040	13.493	0.197
' = '	' ⊑ '	11 -0.127	-0.142	15.036	0.181
<u> </u>	' ⊑ '	12 -0.178	-0.152	18.136	0.112
1 ()		13 -0.060	0.119	18.494	0.140
· 🗖 ·		14 0.121	0.155	19.957	0.132
· 🗩		15 0.221	0.130	24.929	0.051
1 1	_ ·		-0.234	24.983	0.070
' = '	'['	17 -0.125	-0.070	26.626	0.064
= '	□ □	18 -0.247		33.158	0.016
= '	' '	19 -0.194		37.258	0.007
' [] '	' '	20 -0.093		38.203	0.008
<u> </u>	' = '		-0.144	42.916	0.003
141	'	22 -0.055	0.099	43.259	0.004
1 1		23 -0.005	0.015	43.262	0.006
· 🗓 ·		24 0.088	0.030	44.166	0.007
' 		25 0.129	0.022	46.167	0.006
' 🗓 '	' '	26 -0.066	-0.109	46.694	0.008
' [] '	' '	27 -0.083	0.026	47.553	0.009
1 1		28 -0.004		47.555	0.012
' 		29 0.145	0.018	50.288	0.008
' 	1 1		-0.008	53.502	0.005
' 	' '	31 0.152	0.155	56.627	0.003
1 11 1	'['		-0.041	56.744	0.005
'□ '	'['		-0.058	58.140	0.004
1 ()	'['	34 -0.024		58.224	0.006
' ('		35 -0.045	0.013	58.526	0.008
· (·		36 -0.041	0.055	58.777	0.010

United Kingdom - 2nd differences

Date: 12/25/16 Time: 02:34 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.286	-0.286	6.7706	0.009
10 1	<u> </u>	2 -0.084	-0.180	7.3616	0.025
10 1	<u> </u>	3 -0.087	-0.187	7.9995	0.046
I I		4 -0.141	-0.288	9.7246	0.045
1 🛅 1	III	5 0.119	-0.095	10.972	0.052
1 j a 1	1 1	6 0.069	-0.011	11.390	0.077
1 10 1	1 11 1	7 0.057	0.055	11.678	0.112
I		8 -0.336	-0.367	21.972	0.005
· 🗀	1 (1	9 0.193	-0.014	25.422	0.003
1 (1			-0.050	25.447	0.005
1 🛅 1	1 1 1	11 0.083	0.021	26.101	0.006
1 j 1 1	1 (1	12 0.040	-0.044	26.254	0.010
<u> </u>	<u> </u>	13 -0.226	-0.190	31.243	0.003
1 🛅 1	1 1 1	14 0.112	0.025	32.498	0.003
1 11 1	1 j ij 1	15 0.043	0.089	32.683	0.005
1 (1	<u> </u>	16 -0.023	-0.163	32.736	0.008
1 j 1 1	1 1 1	17 0.043	0.020	32.926	0.012
1 🛛 1	1 1	18 -0.056	-0.014	33.256	0.016
1 (1	1 11 1	19 -0.033	0.027	33.375	0.022
1 1	□ □	20 -0.004	-0.085	33.377	0.031
1 1		21 -0.001	-0.218	33.377	0.042
10 1	<u> </u>	22 -0.091	-0.167	34.323	0.046
1 j 1 1	I	23 0.060	-0.077	34.735	0.055
1 10 1	' [] '		-0.110	35.268	0.065
1 🛅 1	1 j i 1	25 0.092	0.092	36.284	0.067
1 j 1 1	1 j i 1	26 0.057	0.077	36.674	0.080
1 二 1	1 11 1	27 -0.137	0.037	38.996	0.063
1 (1)	1 1	28 -0.036	0.008	39.156	0.078
1 1	1 🛛 1	29 0.002	-0.055	39.156	0.099
1 j 1 1	1 1	30 0.025	-0.012	39.237	0.120
1 🗓 1	1 11 1	31 0.054	0.052	39.631	0.138
1 11 1	· 🖭 ·	32 0.059	0.151	40.114	0.154
<u> </u>	' [] '	33 -0.224	-0.099	47.142	0.053
1 10 1	<u> </u>	34 0.096	0.032	48.456	0.051
1 j 1 1	1 1	35 0.027	-0.006	48.562	0.063
11(1	14	36 -0.047	-0.072	48.893	0.074

Japan – 2nd differences

Date: 12/25/16 Time: 02:35 Sample: 1995Q2 2015Q2 Included observations: 80

	Autocorrelation	Partial Correlation	A	C	PAC	Q-Stat	Prob
			1 -0	.252	-0.252	5.2700	0.022
	· = ·		2 -0	.183	-0.263	8.0946	0.017
	1 j 1 1	101	3 0	.053	-0.082	8.3333	0.040
	' = '	🔲 '					
	1 🗦 1	'E '					
	1 1 1	'E '					
	1 11 1	1 1 1					
	' = '	 					
1	<u> </u>	[9 0	.101	-0.059	15.155	0.087
	ı <u>İ</u>		10 0	.144	0.045		0.072
1	10	1 1					
1	1 🗐 1	I	12 -0	.143	-0.243	19.574	0.076
1	1 (1	I	13 -0	.041	-0.212	19.741	0.102
1	1 10 1	III	14 0	.070	-0.120	20.223	
1	ı —		15 0	.239	0.216	25.965	0.038
	1 1	1 1	16 -0	.012	0.054	25.979	0.054
	1 (1	<u> </u> -	17 -0	.036	0.123	26.115	0.072
	1 □ 1	[18 -0	.150	-0.076	28.499	0.055
1	1 (1	1 1 1	19 -0	.027	0.012	28.577	0.073
1	· 🗀 ·		20 0	.138	0.030	30.667	0.060
1 1 1 23 -0.059 -0.103 36.360 0.038	=	_ ·	21 -0	.204	-0.206	35.289	0.026
1	1 🗓 1	1 [1	22 0	.077	-0.055	35.963	0.031
	1 (1	III	23 -0	.059	-0.103	36.360	0.038
	1 j i 1	1 (1	24 0	.057	-0.050	36.741	0.046
	ı 		25 0	.197	0.048	41.355	0.021
	1 🗖 1	1 (1	26 -0	.104	-0.030	42.659	0.021
	10	1 (1	27 -0	.098	-0.031	43.852	0.021
	101	1 (1	28 -0	.056	-0.040	44.247	0.026
	ı j a ı	1 1	29 0	.109	-0.018	45.768	0.025
	1 1	<u> </u>	30 -0	.004	-0.161	45.770	0.033
33 -0.119 0.077 49.069 0.036 34 0.038 0.008 49.279 0.044 1 1 1 1 1 35 -0.014 -0.038 49.308 0.055	1 🛅 1	1 1 1	31 0	.100	0.019	47.099	0.032
34 0.038 0.008 49.279 0.044 35 -0.014 -0.038 49.308 0.055	1 1	1	32 0	.006	0.060	47.103	0.042
1 1 35 -0.014 -0.038 49.308 0.055	1 🗖 1	10	33 -0	.119	0.077	49.069	0.036
	1 11 1		34 0	.038	0.008	49.279	0.044
1 36 -0.039 0.068 49.536 0.066	1 1	1 1	35 -0	.014	-0.038	49.308	0.055
	1 (1		36 -0	.039	0.068	49.536	0.066

7.4.3 CPI

China - 1st differences

Date: 12/25/16 Time: 02:37 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
-		1 0.672		37.939	0.000
1		2 0.518		60.799	0.000
' 🔚	'['		2 -0.103	70.301	0.000
' P '	" '		4 -0.171	71.865	0.000
1 1	'[] '		1 -0.069	71.865	0.000
' = '	'['		-0.055	72.945	0.000
'■ '	' '	7 -0.149		74.958	0.000
' = '	' '		2 -0.023	77.679	0.000
' = '	' '	9 -0.148		79.717	0.000
' " '	' '	10 -0.10		80.689	0.000
' ['	' '	11 -0.05		80.937	0.000
יוןי		12 0.052		81.200	0.000
' P '	'	13 0.13		82.992	0.000
יוםי	" '		1 -0.187	83.646	0.000
' 		15 0.12		85.127	0.000
1 (1	= '	16 -0.010	-0.205	85.138	0.000
1 1		17 -0.002		85.138	0.000
' ['	'🗐 '		3 -0.149	86.392	0.000
· 二 ·	[19 -0.174	4 -0.036	89.658	0.000
<u> </u>	'[] '	20 -0.21		94.750	0.000
□ '		21 -0.193	0.114	98.942	0.000
' ⊑ '		22 -0.15	7 -0.016	101.75	0.000
□ '	'E '	23 -0.19	-0.148	106.17	0.000
= '	III	24 -0.197	7 -0.139	110.74	0.000
□		25 -0.136	0.068	112.98	0.000
1 □ 1			-0.045	114.84	0.000
10 1		27 -0.066	0.066	115.38	0.000
1 1	1 1	28 -0.007	7 -0.019	115.39	0.000
1 (1)	'E '	29 -0.046	-0.101	115.66	0.000
1 1		30 -0.00	1 -0.030	115.66	0.000
1 (1		31 -0.036	0.057	115.83	0.000
101	III	32 -0.063	-0.118	116.37	0.000
10 1		33 -0.07	0.079	117.09	0.000
1 (1		34 -0.028	-0.037	117.20	0.000
1 4 1		35 -0.133	-0.250	119.80	0.000
ı ⊑ ı		36 -0.140	0.035	122.75	0.000

Euro Area - 1st differences

Date: 12/25/16 Time: 02:38 Sample: 1995Q2 2015Q2 Included observations: 81

China – 2nd differences

Date: 12/25/16 Time: 02:38 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
	 	1 -0.273	-0.273	6.1950	0.013
1 b 1		2 0.084	0.011	6.7947	0.033
1 1		3 -0.003	0.024	6.7956	0.079
' = '	' '	4 -0.141	-0.148	8.5101	0.075
1 🗓 1	'['		-0.028	8.7430	0.120
' ['	'['		-0.087	9.6390	0.141
1 1	'['		-0.053	9.6396	0.210
10 1	'E '	8 -0.093	-0.133	10.436	0.236
1 1	'E '	9 -0.018	-0.086	10.467	0.314
1 11 1	1 1	10 0.040	-0.008	10.615	0.388
10 1	'['	11 -0.097	-0.113	11.503	0.402
1 1 1	'['		-0.075	11.641	0.475
ı <u>—</u>		13 0.248	0.259	17.646	0.171
' = '	'[] '	14 -0.181	-0.080	20.887	0.105
· -		15 0.331	0.247	31.937	0.007
<u> </u>	'['		-0.098	37.188	0.002
1 b 11		17 0.108	0.097	38.393	0.002
- I (-	'['	18 -0.040	-0.027	38.564	0.003
10		19 -0.063	0.028	38.996	0.004
1 (1	' '	20 -0.034		39.126	0.006
1 .	[21 -0.119	-0.032	40.710	0.006
ı <u> </u>		22 0.126	0.052	42.497	0.005
1 1		23 -0.023	0.098	42.558	0.008
1 <u> </u>	III	24 -0.119	-0.172	44.213	0.007
1 b 1		25 0.111	0.051	45.678	0.007
1 0 1	'['	26 -0.077	-0.101	46.401	0.008
1) 1	1 1	27 0.012	-0.007	46.420	0.011
ı 🛅 ı		28 0.155	-0.040	49.466	0.007
□ □	1 1	29 -0.163	-0.000	52.892	0.004
1 🛅 1	'E '		-0.094	55.365	0.003
1 (1		31 -0.043	0.133	55.609	0.004
1 1	' ['	32 0.009	-0.119	55.619	0.006
10 1	1 1	33 -0.107	-0.009	57.231	0.006
· 🗖 ·	<u> </u>	34 0.124	0.122	59.436	0.004
1 🛛 1		35 -0.069	-0.046	60.125	0.005
101		36 -0.065	-0.095	60.761	0.006
	· · · · · · · · · · · · · · · · · · ·				

Euro Area – 2nd differences

Date: 12/25/16 Time: 02:39 Sample: 1995Q2 2015Q2 Included observations: 80

:											
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
-		1 0.430	0.430	15.517	0.000			1 -0.340	-0.340	9.6109	0.002
· 🗀	<u> </u> -	2 0.263	0.096	21.408	0.000	' = '	_ I	2 -0.141	-0.291	11.291	0.004
· 🗀		3 0.254	0.137	26.979	0.000	· 🗀	<u> </u> -			16.869	0.001
101		4 -0.054	-0.277	27.232	0.000	<u> </u>	' □ '	4 -0.225	-0.144	21.220	0.000
10 1	1 1 1	5 -0.103	-0.053	28.166	0.000	' □ '	□ ·	5 -0.100	-0.202	22.092	0.001
- I (I	1 1 1 1	6 -0.034	0.053	28.271	0.000	1 j i 1	III			22.533	0.001
1 🛊 1	10	7 -0.049	0.067	28.485	0.000	· 🛅 ·	<u> </u>			23.447	
<u> </u>		8 -0.184	-0.229	31.589	0.000	<u> </u>	10 1	8 -0.184	-0.138	26.534	0.001
101	1 1	9 -0.098	-0.001	32.492	0.000	· 🏻 ·	י 🗓 י			26.935	0.001
1 [] 1	'('	10 -0.096	-0.027	33.371	0.000		' '	10 0.022	-0.145	26.979	0.003
' ['	1 1 1 1	11 -0.125	0.042			- I ()				27.130	0.004
' □ '	'E '	12 -0.099	-0.118	35.826	0.000	1 j i 1	1 1			27.255	0.007
' □ '	1 1	13 -0.121	-0.098	37.284	0.000	' " '	 '	13 -0.133	-0.243	28.974	0.007
1 1		14 0.007		37.288	0.001	' 	101			30.456	0.007
1 1	1 11	15 -0.004	0.016	37.290	0.001	1 1	1 1			30.458	0.010
1 1	' '	16 -0.002	-0.065	37.290	0.002	' = '	' '	16 -0.147	-0.172	32.670	0.008
' 	<u> </u> -	17 0.154	0.105	39.789	0.001	· 🗀 ·	[17 0.186	-0.064	36.281	0.004
' '	1 11	18 0.096	0.019	40.777	0.002	1 1	'['		-0.061		0.006
1 10 1	1 11		0.016	41.194		' [] '	1 1 1	19 -0.080	-0.023	37.003	0.008
' 	1 1 1	20 0.120	-0.010	42.794	0.002	· 🏻 ·	[-0.059	37.575	0.010
' 	1 1 1	21 0.100	0.030	43.915	0.002	1 1	' '			37.633	0.014
' 	' ='		0.137		0.003	1 1	'['	22 -0.007		37.639	0.020
' P '	1 1 1			46.415		1 j i 1	' in '			38.286	0.024
1 11 1	' '		-0.118	46.638		1 1 1				38.305	0.032
- I 🛛 I	' '		-0.049	46.888	0.005	1 1			0.009	38.339	0.043
' 📮 '	1 1 1	26 -0.098				1 1	1 1		0.006	38.340	0.056
' = '	'['	27 -0.152				' " '	101	27 -0.112		39.903	0.052
' 📮 '		28 -0.107			0.003	' ('	' □ '			40.069	0.065
1 1	'	29 -0.018				' 	1 1			42.268	0.053
1 🗓 1	' '	30 -0.079				' [] '	1 1	30 -0.102	-0.007	43.644	0.051
- I (I	'['	31 -0.028				- I 1	1 1			43.799	0.063
1 1	'['	32 -0.009				1 j i 1	י 🗓 י	32 0.065	-0.082	44.378	0.072
1 🗓 1	' '	33 -0.054			0.013	1 1	<u> </u> -	33 0.002	0.121	44.379	0.089
' " '	" '	34 -0.106		55.409		10 1		34 -0.062	0.009	44.927	0.100
' ['	' '	35 -0.082				1 j i 1		35 0.041	0.001	45.174	0.116
' '	1 1 1	36 -0.110	-0.061	58.183	0.011	1 1		36 -0.003	-0.052	45.175	0.140

United States - 1st differences

Date: 12/25/16 Time: 02:40 Sample: 1995Q2 2015Q2 Included observations: 81

Date: 12/25/16 Time: 02:40 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
-		1 0.268	0.268	6.0211	0.014
1 (1	1 🔲 1	2 -0.043	-0.123	6.1754	0.046
1 🗐 1	101	3 -0.097	-0.056	6.9867	0.072
□ '	III	4 -0.200	-0.177	10.480	0.033
1 10 1		5 0.093	0.209	11.243	0.047
· 🗀 ·		6 0.138	0.023	12.957	0.044
1 🛊 1	III	7 -0.050	-0.116	13.181	0.068
1 [] 1	[8 -0.068	-0.040	13.610	0.093
1 4 1		9 -0.101	-0.016	14.569	0.103
1 [] 1	[10 -0.081	-0.043	15.192	0.125
1 j i 1		11 0.070	0.036	15.664	0.154
1 11 1	1 1	12 0.040	-0.014	15.824	0.199
10 1	[13 -0.067	-0.078	16.268	0.235
1 10 1		14 0.080	0.148	16.915	0.261
1 (1	III	15 -0.040	-0.090	17.078	0.314
100	10 1	16 -0.120	-0.112	18.561	0.292
1 j a 1	I	17 0.095	0.134	19.501	0.301
1 j i 1		18 0.040	0.033	19.673	0.352
1 1 1	[19 0.016	-0.051	19.701	0.413
1 11 1	1 1	20 0.036	-0.014	19.843	0.468
1 🛊 1		21 -0.055	0.050	20.178	0.510
· 🛅 ·	<u> </u>	22 0.111	0.154	21.577	0.485
· 🛅 ·		23 0.108	-0.027	22.923	0.465
1 j a 1	<u> </u>	24 0.088	0.099	23.826	0.472
1 j i 1	1 1 1	25 0.071	0.019	24.430	0.495
1 □ 1	III	26 -0.133	-0.122	26.600	0.431
1 🛛 1		27 -0.076	0.071	27.316	0.447
1 j 1 1		28 0.050	0.027	27.632	0.484
1 j i 1		29 0.037	-0.028	27.808	0.528
1 (1	101	30 -0.047	-0.077	28.105	0.565
10 1	1 1	31 -0.078	-0.010	28.920	0.573
1 (1		32 -0.046	0.045	29.210	0.608
1 1	1 1	33 -0.006	-0.009	29.216	0.656
1 1	'E '	34 -0.002	-0.084	29.217	0.701
1 (1	1 1	35 -0.027	-0.004	29.320	0.738
ı ₫	' '	36 -0.107	-0.136	31.036	0.704

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.281	-0.281	6.5441	0.011
<u> </u>		2 -0.178	-0.278	9.1985	0.010
1 11 1	' '		-0.132	9.2723	0.026
<u> </u>	 		-0.426	15.678	0.003
' 	' '	5 0.171	-0.164	18.226	0.003
' 	' '		-0.023	20.488	0.002
' = '	'🖣 '		-0.105	21.691	0.003
1 1 1	'🖣 '		-0.109	21.710	0.005
' ['	' []'		-0.074	21.855	0.009
' ['	'📮 '		-0.141	22.629	0.012
' P '	' [] '		-0.073	24.146	0.012
ינןי	1 1		-0.006	24.420	0.018
<u> </u>	 '		-0.222	27.475	0.011
' P '		14 0.184		30.824	0.006
1 (1		15 -0.028	0.040	30.901	0.009
<u> </u>	 '		-0.205	35.225	0.004
' P '	' '		-0.084	38.739	0.002
		18 -0.020		38.783	0.003
' ['	'['		-0.041	38.865	0.005
' j i '	' '		-0.097	39.553	0.006
' - '	<u>"</u> '		-0.182	43.102	0.003
' 	1 1	22 0.113		44.539	0.003
1 1 1	' '	23 0.011	-0.125	44.554	0.005
1 1		24 0.002	-0.024	44.554	0.007
ı 	<u> </u> -	25 0.134	0.112	46.692	0.005
' = '	([])	26 -0.170	-0.073	50.220	0.003
10 1	[[]	27 -0.064	-0.036	50.733	0.004
1 🛅 1		28 0.093	0.030	51.835	0.004
1 10 1	10	29 0.050	0.065	52.155	0.005
1 (1	1 1	30 -0.039	-0.015	52.359	0.007
1 (1	101	31 -0.039	-0.071	52.561	0.009
1 1	1 1	32 -0.002	-0.010	52.561	0.012
1 1 1		33 0.020	0.054	52.617	0.016
1 j i 1	1 1	34 0.025	-0.023	52.709	0.021
1 j i 1	<u> </u>	35 0.033	0.097	52.865	0.027
1 1	<u> </u>	36 -0.024	0.046	52.948	0.034
	· · ·	·			

United States - 2nd differences

United Kingdom – 1st differences Date: 12/25/16 Time: 02:41 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	0.482	0.482	19.513	0.000
· 🗀	1 (1	2	0.216	-0.021	23.490	0.000
· 🗀		3	0.213	0.152	27.398	0.000
· 🗀 ·		4	0.139	-0.025	29.088	0.000
· 🗀		5	0.204	0.176	32.768	0.000
		6	0.407	0.307	47.623	0.000
· 🗀	1 (1	7	0.312	-0.009	56.493	0.000
1 1 1	_ ·	8	0.028	-0.240	56.567	0.000
1 1 1		9	0.039	0.036	56.707	0.000
· 🛅 ·	<u> </u>	10	0.102	0.083	57.699	0.000
· 🗀 ·	<u> </u>	11	0.187	0.156	61.055	0.000
· 🗀		12	0.200	-0.106	64.944	0.000
· 🛅 ·	101	13	0.131	-0.088	66.640	0.000
1 (1	'['	14	-0.055	-0.096	66.948	0.000
<u> </u>	'E '	15	-0.180	-0.103	70.234	0.000
— 1		16	-0.203	-0.217	74.509	0.000
1 (1		17	-0.030	0.078	74.601	0.000
1 j i 1	1 1	18	0.049	0.046	74.860	0.000
1) 1		19	0.014	0.076	74.881	0.000
1 [] 1	101	20	-0.072	-0.076	75.457	0.000
1 4 1		21	-0.096	0.093	76.491	0.000
1 [] 1		22	-0.071	0.104	77.066	0.000
1 (1	(23	-0.041	-0.037	77.263	0.000
1 1	<u> </u>	24	-0.019	-0.177	77.306	0.000
' [] '	'[] '		-0.109		78.734	0.000
<u> </u>	'['		-0.227		85.054	0.000
_ ·	' = '		-0.324		98.089	0.000
' - '		28	-0.156	0.058	101.16	0.000
' [] '	'['		-0.094		102.29	0.000
' = '	'['		-0.122		104.25	0.000
' = '	' '		-0.154		107.44	0.000
' = '	יוםי		-0.148	0.069	110.43	0.000
= '			-0.240		118.50	0.000
<u> </u>	'[] '		-0.237		126.52	0.000
' " '	' '		-0.112		128.37	0.000
' = '		36	-0.127	0.111	130.79	0.000

United Kingdom – 2nd differences

Date: 12/25/16 Time: 02:41 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
<u> </u>	-		-0.251	5.2326	0.022
<u> </u>			-0.335	10.540	0.005
' 	'🖣 '		-0.130	10.853	0.013
' 🖺 '			-0.273	12.062	0.017
' = '			-0.369	13.593	0.018
' 🔚	'['		-0.030	21.066	0.002
' 🖭		7 0.194	0.218	24.440	0.001
<u> </u>	'['		-0.062	32.121	0.000
' [' '		-0.108	32.460	0.000
1 1	' '		-0.143	32.461	0.000
1 j i 1	" "	11 0.061	0.097	32.814	0.001
י ון י	' '	12 0.070	0.077	33.292	0.001
' 🖭 '	יון י	13 0.124	0.074	34.798	0.001
' [' '	14 -0.056	0.093	35.114	0.001
' 📙 '	' 🗁 '	15 -0.100	0.199	36.116	0.002
' -	'🖣 '		-0.112	39.554	0.001
' 	'['		-0.059	40.953	0.001
' '	' '		-0.092	41.789	0.001
יוןי		19 0.048	0.050	42.036	0.002
' ['	'🖣 '		-0.131	42.479	0.002
1 ()	'🗐 '		-0.123	42.654	0.003
1 1	' '	22 -0.020	0.009	42.702	0.005
· 1 ·	' -'	23 0.033	0.169	42.823	0.007
יוןי	' '		-0.015	43.319	0.009
1 j 1	' '		-0.023	43.452	0.012
1 1	' '	26 -0.001	0.097	43.452	0.017
<u> </u>	'['	27 -0.244	-0.093	50.849	0.004
' 	'['		-0.040	52.194	0.004
1 10 1			-0.013	52.942	0.004
1 1 1		30 0.009	0.097	52.953	0.006
1 🛛 1	101	31 -0.064	-0.098	53.499	0.007
1 10 1	'['		-0.053	55.273	0.006
10 1		33 -0.098	0.027	56.620	0.006
1 二 1			-0.022	58.567	0.006
ı 🛅 ı	'E '	35 0.143	-0.136	61.532	0.004
1 1 1	"	36 0.019	-0.170	61.585	0.005

Japan - 1st differences

Date: 12/25/16 Time: 02:42 Sample: 1995Q2 2015Q2 Included observations: 81

Partial Correlation PAC Autocorrelation AC Q-Stat Prob 0.210 0.210 0.127 0.087 3.6914 5.0670 0.055 0.079 3 0.167 0.131 0.002 -0.068 7.4587 7.4590 0.059 0.114 5 -0.048 -0.068 6 0.090 0.103 7 -0.082 -0.104 8 -0.088 -0.059 7.6636 8.3850 0.176 0.211 0.253 0.286 8.9885 9.7089 9 0.076 0.099 10 -0.058 -0.057 10.250 10.572 0.392 11 -0.038 -0.006 12 -0.101 -0.146 13 -0.076 0.002 14 0.060 0.139 15 0.027 -0.017 16 -0.172 -0.201 17 -0.079 -0.053 18 -0.167 -0.119 19 -0.193 -0.080 20 -0.071 -0.035 21 -0.074 0.004 22 -0.064 0.044 23 0.096 0.064 24 0.180 0.136 25 -0.009 -0.075 26 -0.031 -0.120 27 0.032 0.044 28 0.007 -0.003 29 0.025 -0.012 30 0.068 0.028 31 0.030 0.039 32 -0.008 -0.014 33 -0.017 -0.091 34 0.019 0.010 35 0.022 0.056 36 0.025 0.020 10.713 0.468 11.705 12.270 0.470 0.506 12.628 12.701 0.556 ы 15.762 0.470 16.418 0.369 19.378 0.243 0.265 23.976 25.056 0.294 26.123 0.295 29.930 29.940 0.187 0.227 18 30.060 30.185 0.265 0.306 30.191 30.273 0.354 0.400 30.891 31.009 0.421 0.466 31.018 31.056 0.516 0.564

Japan - 2nd differences

Date: 12/25/16 Time: 02:43 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.438	-0.438	15.904	0.000
10 1	·	2	-0.083	-0.339	16.479	0.000
ı 🛅 ı	'd' '	3	0.130	-0.093	17.926	0.000
1 .	'E '	4	-0.097	-0.126	18.735	0.001
1 🗐 1	_ I	5	-0.095	-0.239	19.518	0.002
· 🗀	1 1	6	0.192	-0.013	22.800	0.001
1 0 1	'['	7	-0.105	-0.061	23.795	0.001
101	'E '	8	-0.076	-0.154	24.316	0.002
ı 🗀 ı		9	0.167	-0.001	26.879	0.001
' []'	'['	10	-0.102		27.851	0.002
1 🏮 1	<u> </u>	11	0.057	0.069	28.163	0.003
' ['['	12	-0.063		28.545	0.005
' [] '	q '	13		-0.200	29.191	0.006
' 		14		-0.008	31.069	0.005
יוםי	' '	15	0.074	0.133	31.628	0.007
<u> </u>	'['	16	-0.178		34.862	0.004
' P '		17	0.119	0.009	36.344	0.004
' ('	' '	18	-0.045		36.562	0.006
' []'	'['	19	-0.088		37.396	0.007
1 10 1	' '	20		-0.104	38.034	0.009
' '	' '	21	-0.010		38.045	0.013
' []'	' '	22	-0.092		38.997	0.014
1 🗓 1	<u>"</u>	23		-0.180	39.307	0.018
' 	ינן י	24	0.165	0.053	42.484	0.011
' []'	יוםי	25	-0.093	0.086	43.521	0.012
' [] '	'['	26		-0.065	43.999	0.015
1 11 1	'['	27		-0.028	44.185	0.020
	' '	28	-0.015		44.214	0.026
1 1	'['	29	-0.017		44.250	0.035
1 🗓 1	'['	30		-0.054	44.581	0.042
1 1		31	0.003	-0.006	44.583	0.054
1 1		32	-0.016	0.049	44.616	0.068
1 (1		33	-0.030		44.739	0.083
1 1 1	'['	34		-0.068	44.806	0.102
1 1	'('	35	-0.001	-0.031	44.806	0.124
1 🗦 1	<u> </u> -	36	0.029	0.106	44.935	0.146

7.4.4 **GDP**

China - 1st differences

31.107 31.175

0.025 0.020 31.270 0.693

0.610 0.653

Date: 12/25/16 Time: 02:45 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.368	0.368	11.364	0.001
ı İ		2	0.163	0.032	13.629	0.001
ı İ		3	0.130	0.070	15.091	0.002
1		4	0.274	0.233	21.629	0.000
· 🗀		5	0.261	0.104	27.654	0.000
· 🗀 ·		6	0.161	0.011	29.975	0.000
1 1 1	'[] '	7		-0.089	30.022	0.000
1 j j 1	1 1	8	0.050	-0.001	30.254	0.000
1 🗓 1	1 1	9	0.080	-0.007	30.858	0.000
ı <u>İ</u>		10	0.142	0.077	32.773	0.000
1 1	'[] '	11	0.001	-0.088	32.773	0.001
1 🗓 1		12	0.056	0.095	33.083	0.001
· 🗀 ·	' -	13	0.187	0.182	36.532	0.000
1 j i 1	" '	14		-0.165	36.642	0.001
1 1	' '		-0.020		36.683	0.001
1 5 1	' '	16	-0.093		37.576	0.002
1 🗓 1		17	0.078	0.111	38.212	0.002
' ['			-0.086	-0.238	38.998	0.003
' [] '	' '		-0.071	0.037	39.545	0.004
1 (1	יוםי		-0.041	0.095	39.732	0.005
' ['	'[] '		-0.069		40.266	0.007
1 4 1	'[] '		-0.108		41.604	0.007
1 (1	' '		-0.036	0.026	41.752	0.010
' " '	' '		-0.087	0.024	42.646	0.011
1 🛛 1	' '		-0.060		43.075	0.014
' = '	' □ '		-0.140		45.460	0.010
' " '	' '		-0.100	0.018	46.714	0.011
' = '			-0.143		49.295	0.008
' " '	' '		-0.089		50.308	0.008
' ['	'[] '		-0.073		51.015	0.010
<u> </u>	' □ '		-0.273		61.024	0.001
<u> </u>	'4 '		-0.262		70.411	0.000
' = '			-0.099	0.061	71.779	0.000
' = '	' □ '		-0.128		74.133	0.000
' = '	' '		-0.174	0.038	78.574	0.000
' 二 '	<u> </u>	36	-0.164	0.049	82.613	0.000

China - 2nd differences

Date: 12/25/16 Time: 02:45 Sample: 1995Q2 2015Q2 Included observations: 80

2 -0.060 -0.185 9.0 3 -0.187 -0.312 12 4 0.119 -0.107 13 5 0.064 0.003 13 6 0.039 0.048 13 6 0.039 0.049 15 1 1 1 1 1 1 8 -0.032 -0.069 15 1 1 1 1 1 1 0 0.169 0.083 17 1 1 1 1 1 1 0.142 -0.092 19 1 1 1 1 1 2 -0.070 -0.153 20 1 1 1 1 1 2 -0.070 -0.153 20	7518 0.003 1537 0.011 .018 0.007 .238 0.010 .601 0.018 .736 0.033 .007 0.036 .098 0.057 .113 0.088
3 -0.187 -0.312 12 1	.018 0.007 .238 0.010 .601 0.018 .736 0.033 .007 0.036 .098 0.057 .113 0.088
	.238 0.010 .601 0.018 .736 0.033 .007 0.036 .098 0.057 .113 0.088
	.601 0.018 .736 0.033 .007 0.036 .098 0.057 .113 0.088
	.736 0.033 .007 0.036 .098 0.057 .113 0.088
	.007 0.036 .098 0.057 .113 0.088
	.098 0.057 .113 0.088
9 -0.013 -0.093 15 1 0 1 0 0.169 0.083 17 1 1 1 -0.142 -0.092 19 1 1 2 -0.070 -0.153 20 1 1 1 3 0.189 0.178 23	.113 0.088
10 0.169 0.083 17 11 0.0169 0.083 17 11 0.0142 -0.092 19 12 -0.070 -0.153 20 13 0.189 0.178 23 13 0.189 0.178 23	
11 -0.142 -0.092 19 12 -0.070 -0.153 20 1	796 0.058
12 -0.070 -0.153 20 13 0.189 0.178 23	
13 0.189 0.178 23	.708 0.050
	.180 0.064
IN I I I I 14 -0.004 -0.040 -24	.660 0.034
	.477 0.040
	.602 0.042
	.400 0.012
	.034 0.001
	.811 0.000
	.067 0.001
	.071 0.001
יון יון 21 0.057 0.049 45	.434 0.002
'E' 'E' 22 -0.088 -0.061 46	.307 0.002
	.151 0.002
' [' □ ' □ ' 24 -0.027 0.145 47	.233 0.003
	.487 0.004
'□' '□' 26 -0.113 -0.097 49	.049 0.004
	.856 0.005
'L ' 28 -0.084 -0.027 50	.743 0.005
	.816 0.007
I	.998 0.003
□	.431 0.001
	.012 0.001
I	.079 0.001
I	.018 0.001
III III 35 -0.109 -0.098 65	.754 0.001
	.225 0.002

Euro Area - 1st differences

Date: 12/25/16 Time: 02:46 Sample: 1995Q2 2015Q2 Included observations: 81

China - 2nd differences

Q-Stat

3.7594

3.8720

4.9750

5.4586 7.4595

7.4764

7.6851 0.36

14.027

14.700 14.913

14.950 0.18

15.445 15.719

15.744 0.32

16.209 16.220

16.872 16.882

19.102

20.987 22.880

23.680

23.718 24.634

27.863

27.872 29.122

29.504

29.935 29.936

30.349

30.388

31.477

32.078

32.318 0.64

Prob

0.05

0.14

0.17

0.24

0.18

0.27

0.08

0.10 0.13

0.21 0.26

0.36 0.43

0.53 0.59

0.46 0.40

0.47 0.48

0.41 0.40

0.43

0.46

0.52

0.59

0.59

0.61

Date: 12/25/16 Time: 02:46 Sample: 1995Q2 2015Q2 Included observations: 80

	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC
	-		1 0.653	0.653	35.792	0.000	<u> </u>		1 -0.213	-0.213
	1	1 1				0.000	1 (1	'd' '	2 -0.037	-0.086
	' 🗀	'['	3 0.276	-0.052	59.409	0.000	1 .	II	3 -0.114	-0.148
	' 	1 1					1 11 1		4 0.075	0.012
	1 11 1	'🗐 '	5 0.036			0.000	ı <u>. </u>	id	5 -0.151	-0.161
	1 1	' '					1 1	1 1	6 0.014	-0.073
9 -0.013 0.217 63.800 0.000	' ['	' '					- h -	1 1	7 0.048	0.019
1	' " '	' '							8 -0.264	-0.326
1	- I I I						1 1	1 1	9 0.085	-0.052
1	' j '	' '					- - - - - - - - - - -	1 11		
1	' '	1 1					1 [1	l ₁ , , ,		
1	r	I F					- Ind -	I 17 1		
1	F						,] ,	1 7		
15 0.068 0.051		1 ' " '					1 1	۰, ۱۲		
1		1 7					ı İ n ı	l , Ta ,		
1		1 '4 '					, [,			
1	F	' '					1 m 1			
1	I	''					, h ,			
1	: ! ! !	1 7								
	: L :	1 1								
22 -0.129 -0.200							_			
	111	I L					· F	IF		
	: [:						7			
	: [:	1 3					Г	1 161		
	: # :	1 '9 '					1 1	1 5		
	111	1 : [] :								
1 1 29 -0.034	111	1 (1)					7			
	idi						i hi			
								1 1		
	1 1	1 7					. 4 .	1 ' " '		
	- 4						: " :			
34 -0.100 -0.012 81.668 0.000		1 1					: 1 :	1 '1'		
35 -0.150 -0.071 84.936 0.000	7						. 4 .	1 11		
	7	1 1					111			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I						: " :	1 :1:		
		· 7					: 1 :		36 -0.040	

United States - 1st differences

Date: 12/25/16 Time: 02:47 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.470	0.470	18.597	0.000
		2	0.406	0.237	32.632	0.000
· 🗀		3	0.285	0.038	39.653	0.000
1		4	0.258	0.067	45.464	0.000
· 🖆 ·	I I	5	0.118	-0.095	46.689	0.000
1 🛅 1	1 1	6	0.112	0.014	47.806	0.000
1 🗓 1	1 1	7	0.052	-0.020	48.055	0.000
1 1	101	8	-0.019	-0.086	48.090	0.000
1 <u>b</u> 11 1	<u> </u>	9	0.098	0.177	48.979	0.000
1 1	'E '	10	-0.020	-0.112	49.018	0.000
1 	·	11	-0.127	-0.188	50.562	0.000
1 🗐 1		12	-0.101	0.030	51.564	0.000
1 [] 1		13	-0.111	-0.047	52.791	0.000
1 (1	' <u> </u> '		-0.040	0.136	52.952	0.000
1 🛛 1		15	-0.049	0.008	53.197	0.000
1 1	' '	16	0.006	0.012	53.200	0.000
' = '	' '	17	-0.122		54.761	0.000
' [] '	' '	18	-0.105		55.934	0.000
1 1	' -'		-0.012	0.165	55.950	0.000
' " '	'['		-0.104		57.143	0.000
1 🛛 1		21	-0.050	0.049	57.429	0.000
' = '	' '		-0.124		59.168	0.000
· • • • • • • • • • • • • • • • • • • •	' ' '	23	0.035	0.099	59.313	0.000
' '		24	0.129	0.262	61.280	0.000
' 		25	0.188	0.020	65.517	0.000
י וַן י	'Q''	26		-0.065	66.270	0.000
ינןי	'['	27		-0.062	66.757	0.000
' 	1 1 1	28	0.162	0.043	70.073	0.000
' P '	' '	29	0.152	0.132	73.079	0.000
' 	'Q''	30		-0.067	74.944	0.000
י וקוי	1 1	31		-0.008	75.604	0.000
ינוי	' ['	32		-0.069	75.957	0.000
' j '	' □ '	33		-0.124	76.076	0.000
1 🗓 1	' ['	34	-0.056		76.526	0.000
' ['	1 1		-0.070	0.004	77.241	0.000
= '		36	-0.204	-0.017	83.473	0.000

United States - 2nd differences

Date: 12/25/16 Time: 02:48 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.425	-0.425	14.966	0.000
1 j a 1	III	2	0.049	-0.160	15.169	0.001
т ц т	III	3	-0.098	-0.178	15.992	0.001
· 🛅 ·	1 1	4	0.112	-0.004	17.067	0.002
' [] '	'['	5	-0.118	-0.100	18.287	0.003
1 11 1	'['	6		-0.067	18.433	0.005
		7		-0.004	18.447	0.010
' !	📮 '	8	-0.169	-0.237	21.049	0.007
· 🗩	' '	9	0.218	0.063	25.458	0.003
1 1	' i i	10	-0.009	0.111	25.466	0.005
' [] '	' '	11	-0.128		27.012	0.005
1 1 1	'('	12	0.031	-0.030	27.106	0.007
' (🖳 '	13	-0.077		27.679	0.010
1 10 1	1 1 1	14		-0.056	28.278	0.013
141	'['	15	-0.060		28.645	0.018
' 	ינן י	16	0.165	0.076	31.448	0.012
' = '	'	17	-0.119	0.076	32.931	0.012
14	📮 '	18	-0.079		33.591	0.014
ı 		19	0.168	0.028	36.612	0.009
' = '	' '	20	-0.131	-0.084	38.495	0.008
' 	' '	21	0.115	0.059	39.964	0.008
<u> </u>	' □ '	22		-0.146	45.597	0.002
1 10 1	📮 '	23	0.067	-0.263	46.106	0.003
1 10 1		24	0.046	0.009	46.355	0.004
ı 📺 ı	' <u> </u>	25	0.160	0.098	49.409	0.003
141	י וין י	26	-0.076	0.083	50.103	0.003
' = '	' '	27	-0.127		52.104	0.003
' 	'🗐 '	28		-0.129	53.185	0.003
1 11 1	ינן י	29	0.035	0.081	53.341	0.004
1 1	1 1	30	0.003	0.006	53.342	0.005
' (יון י	31	-0.027	0.068	53.437	0.007
1 1	ין י	32	-0.000	0.106	53.437	0.010
1 10 1		33	0.069	0.030	54.104	0.012
' ()	' '	34	-0.071	-0.038	54.831	0.013
' 		35	0.117	-0.000	56.817	0.011
· 🗖 '		36	-0.173	0.026	61.296	0.005

United Kingdom - 1st differences

Date: 12/25/16 Time: 02:49 Sample: 1995Q2 2015Q2 Included observations: 81

A	utocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	- =		1	0.241	0.241	4.8652	0.027
	· 🗀		2	0.192	0.143	8.0124	0.018
	1 10 1		3	0.096	0.024	8.8059	0.032
	1 10 1		4	0.080	0.031	9.3656	0.053
	' = '	_ ·	5	-0.153		11.448	0.043
	1 1	1 11 1	6	-0.015	0.044	11.467	0.075
	1 1 1	1 10 1	7	0.020	0.075	11.504	0.118
	1 1	1 1	8	-0.004		11.505	0.175
	1 1		9	-0.015		11.527	0.241
	' 	<u> </u>	10	0.177	0.159	14.497	0.152
	1 1 1	'Q'	11		-0.073	14.504	0.206
	1 11 1		12	0.045	0.025	14.698	0.258
	·] ·		13	0.031	0.008	14.793	0.320
	1 [1	' '		-0.038		14.938	0.382
	1 1	' '	15	-0.016	0.083	14.964	0.454
	' P '	"	16	0.088	0.101	15.765	0.469
	·] ·	'['	17		-0.025	15.875	0.533
	' 🛛 '	'¶'		-0.069		16.383	0.566
	' 🛛 '	'🖣 '		-0.089		17.244	0.573
	1 1	' '		-0.023		17.302	0.633
	' " '		21	-0.083	0.024	18.078	0.644
	' 🛮 '	'['		-0.089		18.986	0.646
	' [] '	' '	23	0.068	0.101	19.523	0.670
	141	'¶'		-0.055		19.885	0.703
	- 1] 1	']'	25	0.011	0.020	19.899	0.752
	' ['	'[['	26	-0.030		20.006	0.791
	1 11 1	' ['	27	0.058	0.036	20.421	0.813
	' L'	' <u>"</u> "	28	-0.001	0.051	20.421	0.849
	' 📴 '	'_ ! '	29	0.109	0.133	21.951	0.822
	' '	'[]'	30	-0.012		21.970	0.855
	· 🏻 ·	' '	31	0.074	0.066	22.697	0.860
	L		32	-0.006		22.702	0.887
	'_ ! '	' '	33		-0.007	23.349	0.893
	'- '	'🗓 '			-0.092	26.209	0.828
	' [] '	'['		-0.060		26.728	0.841
	1 [1	'	36	-0.043	0.057	27.007	0.861
_							

Japan – 1st differences

Date: 12/25/16 Time: 02:50 Sample: 1995Q2 2015Q2 Included observations: 81

United Kingdom – 2nd differences

Date: 12/25/16 Time: 02:49 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.470	-0.470	18.373	0.000
1 1 1	_ ·	2	0.032	-0.243	18.458	0.000
10 1	□ 1	3	-0.053	-0.203	18.695	0.000
· 🖭 ·		4	0.144	0.038	20.483	0.000
<u> </u>	I	5	-0.244	-0.211	25.677	0.000
1 10 1	 	6		-0.204	26.092	0.000
1 11 1	'['	7		-0.103	26.219	0.000
1 1	'[] '	8		-0.095	26.223	0.001
' = '	<u> </u> '	9	-0.136		27.923	0.001
· 🖻		10	0.240	0.006	33.299	0.000
' = '	' '	11	-0.136		35.055	0.000
' j '	'4 '	12		-0.073	35.144	0.000
1 11 1	' '	13	0.040	0.040	35.301	0.001
' [' '	14		-0.145	35.702	0.001
' [] '	' □ '	15	-0.051	-0.152	35.968	0.002
י 🖪 י	' '	16		-0.019	37.086	0.002
1 11 1		17	0.033	0.054	37.202	0.003
' 🗓 '	'] '	18	-0.057	0.057	37.543	0.004
' 🗓 '	'¶'			-0.061	37.940	0.006
' P '	'[]'	20	0.088		38.785	0.007
' 🗓 '	'_ '	21	-0.034	0.008	38.915	0.010
'	' □ '	22		-0.143	40.220	0.010
'_='	']'	23	0.184	0.040	44.100	0.005
'┖ '	'¶'	24	-0.129		46.049	0.004
']	']'	25	0.071	0.002	46.649	0.005
!¶.!	! !!	26	-0.086	-0.092	47.542	0.006
'_"'	'9 '	27		-0.107	48.682	0.006
' = _'	" '	28	-0.110		50.205	0.006
'_ ='	']''	29	0.155	0.028	53.289	0.004
' -	'¶'	30	-0.136		55.703	0.003
'_"'	']'	31		-0.004	57.273	0.003
' 🖳 '	'[['	32	-0.101		58.665	0.003
<u>'_</u> P'	' '	33	0.188	0.043	63.605	0.001
= '	' '	34	-0.194		68.954	0.000
' l l '	'¶'	35		-0.096	69.230	0.000
1 11 1	' '	36	0.027	0.012	69.342	0.001

Japan – 2nd differences

Date: 12/25/16 Time: 02:50 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.418	-0.418	14.507	0.000
1 1	_ ı	2 -0.001	-0.213	14.507	0.001
(d)	□	3 -0.063	-0.194	14.844	0.002
1 (1)	□ ·	4 -0.033	-0.196	14.937	0.005
- (-		5 -0.044	-0.232	15.108	0.010
· 🛅 ·		6 0.132	-0.047	16.653	0.011
' □ '	I	7 -0.135	-0.182	18.285	0.011
1 j i 1	' □ '	8 0.051	-0.155	18.521	0.018
1 10 1	[9 0.059	-0.039	18.839	0.027
- 1 1			-0.015	18.847	0.042
1 1		11 0.007	0.014	18.852	0.064
' - '	 		-0.257	22.089	0.037
' 	' ⊑ '	13 0.101	-0.153	23.086	0.041
' 	' '	14 0.184	0.159	26.452	0.023
'■ '	' '	15 -0.119	0.035	27.876	0.022
- ' '		16 0.015	0.018	27.898	0.033
' [] '	'['		-0.049	28.372	0.041
' ['		18 -0.041	-0.058	28.554	0.054
' P '	' '	19 0.175	0.145	31.832	0.033
' - '	'¶'	20 -0.141	-0.066	33.998	0.026
1 11 1	' '	21 0.043	0.039	34.200	0.034
' '	יוםי ו	22 0.020	0.069	34.246	0.046
' ['	'🗐 '		-0.101	34.905	0.053
' [] '	'['		-0.059	35.428	0.062
' '	'['		-0.066	35.472	0.080
' ['	']''	26 -0.046	0.047	35.732	0.097
' ['	'9 '		-0.095	35.794	0.120
! [] !	! <u>!</u> !		-0.142	36.089	0.140
'] '	']'		-0.011	36.089	0.171
111	!¶!		-0.050	36.107	0.205
! !	111	31 -0.024	0.024	36.184	0.239
: L :	1 14:		-0.061	36.186	0.279
:』:	! !! !	33 0.084	0.075	37.182	0.282
!¶ !	l	34 -0.082	0.086	38.150	0.286
14 1	1 14 1		-0.056	38.210	0.326
' 	' '	36 -0.113	-0.130	40.123	0.292

7.4.5 GOV

China – 1st differences

Date: 12/25/16 Time: 02:53 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· þ.		1	0.122	0.122	1.2454	0.264
· 🗀		2	0.226	0.215	5.6050	0.061
· 🔚		3	0.317	0.286	14.261	0.003
· 🗀		4	0.278	0.220	21.018	0.000
· 🗀	<u> </u> -	5	0.249	0.147	26.491	0.000
· 🗀	<u> </u>	6	0.277	0.140	33.361	0.000
· 🗀		7	0.225	0.063	37.971	0.000
1 🛅 1	'['	8		-0.112	38.975	0.000
ı <u> </u>		9	0.177	-0.056	41.903	0.000
1 🛅 1	101	10	0.124	-0.080	43.350	0.000
1 1	 	11	-0.014	-0.206	43.369	0.000
1 🗓 1	IE I	12	0.046	-0.131	43.571	0.000
1 🕽 1	101	13	0.035	-0.066	43.695	0.000
1 1	1 1	14	-0.009	-0.015	43.704	0.000
10	'['	15	-0.072		44.233	0.000
1 1		16	-0.024	0.029	44.291	0.000
1 (1		17	-0.045	0.081	44.502	0.000
· = ·	'['	18	-0.171	-0.068	47.625	0.000
1 1 1		19	0.014	0.113	47.647	0.000
<u> </u>		20	-0.180	-0.079	51.219	0.000
1 1	<u> </u> -	21	-0.007	0.131	51.224	0.000
10 1		22	-0.093	0.010	52.216	0.000
1 🛊 1		23	-0.058	0.045	52.603	0.000
<u> </u>	□ ·	24	-0.225	-0.200	58.585	0.000
1 1		25	-0.009	0.023	58.596	0.000
1 1		26	-0.017	0.023	58.633	0.000
1 🗐 1	1 1 1	27	-0.117	-0.021	60.336	0.000
101		28	-0.055	-0.027	60.713	0.000
1 1 1		29	0.017	0.092	60.751	0.000
1 1		30	-0.007	0.114	60.758	0.001
1 (1	1 1	31	-0.048	-0.008	61.070	0.001
1 (1	III	32	-0.063	-0.105	61.617	0.001
1 10 1		33	0.058	0.058	62.089	0.002
1 1 1		34	0.040	0.080	62.315	0.002
1 10 1		35	0.060	0.010	62.848	0.003
1 j i 1		36	0.035	-0.020	63.028	0.004

Euro Area – 1st differences

Date: 12/25/16 Time: 02:54 Sample: 1995Q2 2015Q2

Autocorrelation Partial Correlation AC PAC Q-Stat Prob 0.200 0.200 3.3562 0.220 0.253 8.7209 17.225 0.013 0.001 0.251 2 3 4 5 0.314 0.314 0.253 0.146 0.022 0.043 -0.110 -0.023 -0.152 0.116 0.118 -0.123 -0.113 -0.090 -0.061 19.096 19.256 0.001 1 0.002 19.305 0.004 20.520 0.005 21.921 22.685 0.005 0.007 10 0.076 0.118 11 -0.001 0.079 12 -0.016 0.005 13 0.051 0.010 14 0.013 -0.083 15 -0.036 -0.044 16 -0.034 -0.028 17 0.004 -0.006 18 -0.092 -0.051 19 0.015 0.118 20 -0.162 -0.188 21 -0.099 -0.099 23 -0.041 -0.004 24 0.101 0.086 25 -0.006 -0.050 26 -0.018 -0.153 27 0.049 0.108 28 0.082 0.099 29 0.119 0.094 30 -0.110 -0.169 31 0.089 0.029 32 -0.013 -0.078 33 -0.082 0.034 4 0.109 -0.211 35 -0.030 0.025 23.230 23.231 0.010 0.016 23.254 23.515 0.026 0.036 23.534 0.052 23.664 0.071 0.094 0.125 23,783 23.784 24.691 24.714 0.134 0.170 27.603 27.612 0.119 0.151 27.708 27.901 0.186 0.220 29.108 29.112 0.216 0.259 1 29.152 0.304 29.453 0.339 30.316 32.151 0.348 0.313 33.754 34.822 0.291 0.291 34.845 35.784 0.334 37.476 37.603 0.313 0.351 36 -0.041 0.075 37.850 0.385

China - 2nd differences

Date: 12/25/16 Time: 02:53 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.557	-0.557	25.725	0.000
1 1 1	I I	2 0.014	-0.429	25.741	0.000
1 10 1	I I		-0.278	26.170	0.000
1 ()			-0.179	26.182	0.000
1 ()	' □ '		-0.147	26.229	0.000
1 10 1	'['		-0.058	26.389	0.000
1 p 1	י 🗐 י	7 0.043		26.554	0.000
' q '	1 11 1	8 -0.111	0.042	27.678	0.001
י נון י	' '	9 0.063	0.037	28.046	0.001
1 j 1	' '	10 0.059		28.372	0.002
' 🖺 '		11 -0.115		29.627	0.002
' I I '	' '		-0.011	29.837	0.003
' '	'['		-0.043	29.858	0.005
'] '	'] '		-0.017	29.858	0.008
' ('	' '		-0.092	30.153	0.011
י וַן י	' □ '		-0.117	30.338	0.016
· 🏚 ·		17 0.062		30.738	0.021
' = '	' " '		-0.119	34.103	0.012
· 🗩		19 0.210		38.833	0.005
-	' □ '		-0.155	43.668	0.002
' 🖭 '	' ['		-0.031	46.166	0.001
' ['	'[] '	22 -0.065		46.647	0.002
'_ P '	'_ ! '	23 0.109		48.024	0.002
– '	' '		-0.092	53.442	0.001
' 🖭 '	'[] '		-0.067	55.395	0.000
'] '	' '		-0.015	55.650	0.001
! !!			-0.000	56.581	0.001
'['	' <u>"</u>	28 -0.016		56.615	0.001
! !!	!¶ !		-0.098	57.272	0.001
1] 1	<u>' </u>	30 -0.006	0.031	57.277	0.002
'] '	' <u> </u> '	31 -0.011	0.101	57.292	0.003
<u>'¶'</u>	! ! !	32 -0.069		57.939	0.003
' [] '	' ['		-0.079	58.576	0.004
! [!	! ! !		-0.021	58.676	0.005
'] '	']'	35 0.037		58.875	0.007
1 ()	' '	36 -0.016	-0.042	58.913	0.009

Euro Area - 2nd differences

Date: 12/25/16 Time: 02:55 Sample: 1995Q2 2015Q2 Included observations: 80

10 0.138 -0.150 37.9 11 -0.041 -0.071 38.0 12 -0.056 -0.079 38.3 13 -0.065 0.008 38.3 14 -0.071 38.0 15 -0.031 -0.049 38.8 16 -0.016 -0.049 38.8 17 -0.078 -0.044 39.5 18 -0.121 -0.176 41.1 19 0.174 0.115 44.3	t Prob
1	53 0.000
1 1 1 5 -0.024	9 0.000
2	16 0.000
1	35 0.000
10 0.138 -0.150 37.9 11 -0.041 -0.071 38.0 12 -0.056 -0.079 38.3 13 -0.065 0.008 38.3 14 -0.071 38.0 15 -0.031 -0.049 38.8 16 -0.016 -0.049 38.8 17 -0.078 -0.044 39.5 18 -0.121 -0.176 41.1 19 0.174 0.115 44.3	34 0.000
10 0.138 -0.150 37.9 11 -0.041 -0.071 38.0 12 -0.056 -0.079 38.3 13 -0.065 0.008 38.3 14 -0.071 38.0 15 -0.031 -0.049 38.8 16 -0.016 -0.049 38.8 17 -0.078 -0.044 39.5 18 -0.121 -0.176 41.1 19 0.174 0.115 44.3	0.000
10 0.138 -0.150 37.9 11 -0.041 -0.071 38.0 12 -0.056 -0.079 38.3 13 -0.065 0.008 38.3 14 -0.071 38.0 15 -0.031 -0.049 38.8 16 -0.016 -0.049 38.8 17 -0.078 -0.044 39.5 18 -0.121 -0.176 41.1 19 0.174 0.115 44.3	
10 0.138 -0.150 37.9 11 -0.041 -0.071 38.0 12 -0.056 -0.079 38.3 13 -0.065 0.008 38.3 14 -0.071 38.0 15 -0.031 -0.049 38.8 16 -0.016 -0.049 38.8 17 -0.078 -0.044 39.5 18 -0.121 -0.176 41.1 19 0.174 0.115 44.3	
38.01	
4	
4	
4	
4	
4	
5 1 1 17 0.078 -0.014 39.58 4 1 1 18 -0.121 -0.176 41.11 0 1 1 19 0.174 0.115 44.31 0 1 1 20 -0.205 -0.155 48.91	
4	
0 19 0.174 0.115 44.3 0 10 20 -0.205 -0.155 48.9	
9 🖂 1 20 -0.205 -0.155 48.98	
1 21 0.076 -0.164 49.63	
6 1 1 22 0.064 -0.072 50.01 6 1 1 23 -0.127 -0.129 51.91 6 1 1 24 0.161 0.027 55.01 7 1 1 25 -0.057 0.137 55.41	
23 -0.127 -0.129 51.99	
24 0.161 0.027 55.00	
1	
4 1 26 -0.061 -0.145 55.84	
27 0.021 -0.151 55.90	
28 0.006 -0.157 55.90	
29 0.152 0.133 58.8	
30 -0.258 -0.069 67.5	
31 0.194 0.037 72.63	
4 1 32 -0.030 -0.091 72.79	
33 -0.040 0.151 72.91 3	
35 0.040 -0.118 73.30	
5	35 0.000

United States - 1st differences

Date: 12/25/16 Time: 22:18 Sample: 1995Q2 2015Q2 Included observations: 80

Partial Correlation PAC Q-Stat 1 -0.666 -0.666 2 0.184 -0.465 0.000 36.799 39.652 0.150 0.046 41.565 0.000 4 -0.328 -0.177 5 0.333 0.005 6 -0.258 -0.124 50.831 60.520 66.413 0.000 - -6 7 7 0.142 -0.004 8 -0.012 -0.012 9 -0.063 0.046 10 0.075 -0.037 0.000 **b** : 68.213 68.228 68.590 69.110 0.000 -0.017 0.102 0.003 0.103 69.139 69.140 0.000 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 -0.106 -0.170 0.157 -0.075 70.250 72.686 ___ 0.000 0.000 -0.066 0.123 -0.074 -0.048 73.126 73.689 0.000 0.000 0.102 -0.167 -0.100 -0.144 74.772 75.839 0.000 0.000 -0.100 -0.144 0.085 -0.030 -0.021 0.047 -0.016 0.052 0.023 -0.056 -0.025 0.008 0.119 0.342 -0.209 -0.028 76.613 76.661 0.000 0.000 76.689 0.000 76.749 0.000 76.823 78.489 83.700 0.000 0.226 0.027 -0.180 0.048 89.917 93.949 0.000 0.021 -0.064 0.173 -0.025 94.003 97.867 0.000 -0.256 -0.014 0.242 -0.004 106.46 114.32 0.000 -0.176 -0.060 0.086 0.038 118.55 119.59 0.000 0.030 -0.052 -0.126 -0.024 119.72 122.03 0.000

United Kingdom - 1st differences

36 0.092 -0.022

123.29 0.000

Date: 12/25/16 Time: 22:17 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.579	-0.579	27.831	0.000
1 1		2	-0.010		27.839	0.000
ı —	1 (1)	3	0.288	-0.042	34.909	0.000
		4	-0.415	-0.381	49.764	0.000
ı —	<u> </u>	5	0.308	-0.182	58.061	0.000
1 1	1 (1	6	-0.005	-0.019	58.063	0.000
1 🔟 1		7	-0.093	0.227	58.839	0.000
1 j i 1		8	0.046	0.073	59.028	0.000
1 (1)		9	-0.059	0.034	59.349	0.000
1 1 1	(10	0.019	-0.032	59.383	0.000
1 j 1 1		11	0.050	0.021	59.616	0.000
1 (1	'['	12	-0.032	-0.063	59.715	0.000
1 j i 1		13	0.049	0.070	59.951	0.000
' □ '	'E '	14	-0.132	-0.126	61.675	0.000
· 10 ·	'['	15		-0.049	62.502	0.000
1) 1	'['	16	0.016	-0.050	62.526	0.000
1 🖟 1		17	-0.062	0.003	62.923	0.000
' 	' '	18	0.147	0.120	65.212	0.000
<u> </u>	' '	19	-0.213	-0.022	70.084	0.000
' 	' '	20	0.117	0.026	71.571	0.000
ינןי	יוםי ו	21	0.043	0.083	71.773	0.000
' = '	'['	22	-0.171	-0.097	75.092	0.000
' 🗖	'['	23		-0.064	80.793	0.000
' = '	'¶'	24		-0.062	83.038	0.000
'Д'	<u>"</u> '	25		-0.172	83.708	0.000
' 🗖	' '	26	0.244	0.037	90.917	0.000
<u> </u>	' '	27	-0.241	-0.010	98.121	0.000
' j i '	' '	28		-0.098	98.690	0.000
' 🖭 '	' '	29	0.142	0.031	101.28	0.000
<u> </u>	' '	30	-0.233	0.034	108.39	0.000
' 🗗 '	ינןי	31	0.174	0.047	112.43	0.000
' ('	' '	32	-0.055		112.84	0.000
' ['	'['	33			113.23	0.000
' 🛅 '	' '	34		-0.021	114.74	0.000
' [] '	'['	35		-0.062	116.11	0.000
1 j i 1		36	0.069	-0.047	116.82	0.000

United States - 2nd differences

Date: 12/25/16 Time: 22:19 Sample: 1995Q2 2015Q2 Included observations: 79

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.748	-0.748	45.900	0.00
· 🗀		2	0.253	-0.695	51.228	0.00
· 🗀 ·		3	0.145	-0.239	52.988	0.00
I	I	4	-0.348	-0.309	63.297	0.00
	'E '	5	0.376	-0.089	75.543	0.00
<u> </u>	' '	6	-0.294	-0.157	83.104	0.00
· 🗀 ·	'E '	7	0.160	-0.072	85.394	0.00
1 (1	'['	8	-0.025	-0.068	85.448	0.00
1 (1		9	-0.063	0.037	85.811	0.00
· b ·	[10	0.074	-0.076	86.314	0.00
1 (1	[11	-0.037	-0.026	86.444	0.00
1 11 1		12	0.039	0.166	86.588	0.00
' [] '	[13	-0.109	-0.038	87.736	0.00
· 🗀 ·	' = '	14	0.145	-0.166	89.805	0.00
1 ()	1 1 1	15	-0.064	0.058	90.209	0.00
1 ()		16	-0.058	0.108	90.548	0.00
· 🛅 ·		17	0.115	0.011	91.909	0.00
1 4 1	'E '	18	-0.114	-0.083	93.266	0.00
1 j i 1	'E '	19	0.076	-0.113	93.888	0.00
1 (1	'['	20	-0.020	-0.072	93.931	0.00
1 (1		21	-0.015	0.051	93.957	0.00
1 1 1		22	0.023	-0.000	94.019	0.00
1 ()		23	-0.057		94.390	0.00
· 🗀 ·	<u> </u>	24	0.146	0.166	96.874	0.00
<u> </u>		25	-0.237	-0.015	103.53	0.00
· 🗀		26	0.259	-0.025	111.64	0.00
· 🗖 '		27	-0.179	0.071	115.59	0.00
1 1 1		28	0.009	0.012	115.60	0.00
· 🗀 ·		29	0.176	-0.009	119.56	0.00
<u> </u>		30	-0.278	0.009	129.65	0.00
· 🗀	b	31	0.271	0.044	139.44	0.00
		32	-0.193	-0.034	144.49	0.00

United Kingdom - 2nd differences

Date: 12/25/16 Time: 22:17 Sample: 1995Q2 2015Q2 Included observations: 79

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
		-	1	-0.680	-0.680	37.911	0.0
	· 🗓 ·	1	2	0.096	-0.680	38.680	0.0
	· 🗀	III	3	0.304	-0.168	46.461	0.0
	I	🔲 '	4	-0.446	-0.335	63.423	0.0
			5	0.329	-0.295	72.776	0.0
	1 [] 1		6	-0.074	-0.238	73.256	0.0
	· [7	-0.065	0.104	73.636	0.0
	1 j i 1		8	0.064	0.087	74.008	0.0
	- I (9	-0.041	0.071	74.163	0.0
	1 1		10	0.001	-0.033	74.163	0.0
1	1) 1		11	0.041	0.028	74.319	0.0
	- ([12	-0.044	-0.078	74.501	0.0
1	1 b 1		13	0.069	0.123	74.967	0.0
	' □ '	1 1	14	-0.119	-0.008	76.354	0.0
	· 🛅 ·		15	0.089	-0.023	77.142	0.0
	1 1		16	0.003	-0.048	77.143	0.0
	1 4 1	' ['	17	-0.091	-0.088	77.997	0.0
	· 🗀 ·	1	18	0.178	0.059	81.330	0.0
1	□ '	1 1	19	-0.209	-0.008	85.992	0.0
	· 🛅 ·		20	0.116	-0.027	87.442	0.0
1	, j j ,		21	0.047	0.114	87.687	0.0
24 -0.114 0.045 98.616 0.000 99.484 0.000 100 100 100 100 100 100 100 100 1	□ '	1 1	22	-0.184	-0.002	91.482	0.0
	· 🗀		23	0.222	-0.039	97.105	0.0
26 0.239 0.054 106.40 0.1 27 -0.241 0.066 113.58 0.1 28 0.078 -0.085 114.35 0.1 29 0.129 -0.073 116.47 0.1 21 1 30 -0.229 -0.054 123.30 0.1 21 1 1 1 30 -0.229 -0.054 123.30 0.1 21 1 1 1 30 -0.229 -0.054 123.30 0.1 22 0.129 -0.003 128.10 0.1	1 .	1 1	24	-0.114	0.045	98.616	0.0
27 -0.241 0.066 113.58 0.1 28 0.078 -0.085 114.35 0.1 29 0.129 -0.073 116.47 0.1 1 1 1 30 -0.229 -0.054 123.30 0.1 30 -0.229 -0.054 123.30 0.1 31 0.190 -0.003 128.10 0.1	ı d	III	25	-0.086	-0.099	99.484	0.0
28 0.078 -0.085 114.35 0.1 29 0.129 -0.073 116.47 0.1 30 -0.229 -0.054 123.30 0.1 31 0.190 -0.003 128.10 0.1	, 	1 1	26	0.239	0.054	106.40	0.0
29 0.129 -0.073 116.47 0.1 30 -0.229 -0.054 123.30 0.1 31 0.190 -0.003 128.10 0.1	 -		27	-0.241	0.066	113.58	0.0
29 0.129 -0.073 116.47 0.1 30 -0.229 -0.054 123.30 0.1 31 0.190 -0.003 128.10 0.1	ı b ı	'd' '	28	0.078	-0.085	114.35	0.0
30 -0.229 -0.054 123.30 0.1 31 0.190 -0.003 128.10 0.1	ı <u>İ</u>		29				0.0
1 31 0.190 -0.003 128.10 0.1	- -		30	-0.229	-0.054		0.0
	ı 🗀		31				0.0
	10					128.90	0.0

Japan – 1st differences

Date: 12/25/16 Time: 02:59 Sample: 1995Q2 2015Q2 Included observations: 81

Japan – 2nd differences
Date: 12/25/16 Time: 03:00
Sample: 1995Q2 2015Q2
Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Pro	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
- b-	l ı bı	1 0 122	0.122	1.2526	0.26			1 -0.443	-0.443	16.314	0.000
Γ.	l i Fi		-0.005	1.2608	0.5	_ I	I I	2 -0.214	-0.511	20.176	0.000
, —	l , 🗀	3 0.282			0.04	· 🗀	1 1		0.007	32.106	0.000
1 1		4 -0.090			0.00	'	 	4 -0.257	-0.191	37.823	0.000
1 1		5 -0.019			0.1	' " '	_ ·	5 -0.104	-0.279	38.760	0.000
ı 🖿		6 0.230	0.159	13.602	0.03	' =			-0.020	48.058	
1 0 1		7 -0.070	-0.068	14.049	0.05	' = '	' '		0.088	49.335	0.000
· - ·	<u> </u>	8 -0.163	-0.173	16.508	0.03	- '	' '		-0.141	53.144	
· 🛅 ·		9 0.112	0.071	17.680	0.03	' P '	' - '		-0.157	57.013	
1 1 1	<u> </u> -	10 0.031	0.108	17.773	0.0			10 0.018		57.043	0.000
' ['	'd''	11 -0.104	-0.078	18.819	0.06	' 🖣 '	<u> </u>	11 -0.083		57.696	0.000
' [] '		12 -0.083	-0.226	19.489	0.07	' [9 '	12 -0.047		57.906	0.000
1 1 1		13 0.023	0.127	19.543	0.10	' P '	'['	13 0.138		59.769	
1 [] 1	1 1	14 -0.126	-0.016	21.125	0.09	' - '	'['	14 -0.169		62.606	0.000
1 1	1 1	15 0.007	0.004	21.129	0.13	' 🖺 '	'] '	15 0.068		63.071	0.000
1 🗓 1	'['	16 0.042	-0.099	21.312	0.16	' P '	' '		-0.080	64.444	0.000
' = '		17 -0.138			0.13	' - '	' '	17 -0.158		67.032	
1 (1	1 1 1	18 -0.026			0.17	' L'	' '		-0.049	67.037	0.000
1 10 1	' '		-0.016	23.851	0.20	'_	<u> </u>		0.004	68.456	0.000
' ['	'Q'	1	-0.066		0.23	'■ '			-0.210	70.949	
' D '	' 	21 0.068			0.25	' <u>L</u> '	" !		-0.178	71.100	
' 🖭 '	' '				0.2	' _ "	'		-0.013	73.232	
' '	'['		-0.036		0.25	'	<u>'_</u> " '		0.079	74.800	
' <u>L</u> '	' " L'		-0.117		0.30	' L '	' <u>-</u> '	24 -0.026		74.881	0.000
'_"'	<u>'</u>		0.130		0.29	'"	! ₽ !		0.137	79.883	0.000
<u>'5</u> '	"9		-0.166		0.2	!			0.035	84.881	0.000
! 4 !		27 -0.078			0.22	<u>' 'L'</u>	'. '.	27 -0.025		84.959	
`.J'	'ቢ'		-0.066		0.26	:_P:			-0.115	89.182	
<u>'</u> " '			0.106		0.2	. .		29 -0.133		91.459	0.000
: ዜ :	'\'.		-0.054		0.28	.' "'	'" '	30 -0.062		91.964	0.000
:₽:	'#'	31 0.109		35.560	0.20	:_ !_! !		31 0.216		98.200	0.000
:	l :"L:	32 -0.082			0.26	<u> </u>		32 -0.131		100.55	0.000
<u>'¶'</u>	l : <u>"</u> ."	33 -0.101			0.2	.' '	'5 '	33 -0.151		103.72	
: 	l : ₽:	34 0.189			0.13	: 	│ <u>'</u> ¶.'	34 0.245		112.29	
: ! !	l : ₽:	35 0.063		43.616	0.1	<u> </u>		35 -0.047		112.61	
' '	' " '	36 -0.006	-0.028	43.621	0.17	'□ '	1 ' 1 '	36 -0.119	-0.020	114.72	0.000

7.4.6 M2

China - 1st differences

Date: 12/25/16 Time: 03:02 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.327	0.327	8.9867	0.003
· 🗖	<u> </u>	2	0.246	0.155	14.122	0.001
1 j a 1		3	0.096	-0.026	14.911	0.002
1 🛛 1	10 1	4	-0.059	-0.134	15.210	0.004
1 (1		5	-0.021	0.022	15.249	0.009
ı <u> </u>	III	6	-0.169		17.817	0.007
10		7	-0.110	-0.017	18.907	0.008
· -	'E '	8	-0.185	-0.118	22.070	0.005
1 [] 1	1 1	9	-0.084	0.041	22.731	0.007
1 1	1 1	10	0.005	0.058	22.734	0.012
1 j a 1	יום י	11	0.086	0.104	23.441	0.015
· 1 ·	'4 '	12		-0.088	23.556	0.023
· 1 ·	' '	13		-0.013	23.634	0.035
' 🗖		14	0.237	0.244	29.274	0.010
ינןי	'['	15	0.059	-0.079	29.632	0.013
1 (1)	<u>"</u>	16	-0.030		29.722	0.019
1 1	' '	17	0.003	0.075	29.723	0.028
'■ '	'[] '	18		-0.070	31.818	0.023
-	-		-0.197		36.022	0.010
' " '	' '		-0.105	0.093	37.244	0.011
' = '	'[]'	21	-0.157		39.998	0.007
' [] '	' '	22	-0.071	0.004	40.579	0.009
' []'	' '	23	-0.085	-0.019	41.409	0.011
1 1	' '	24	0.002	0.002	41.410	0.015
' 🖭 '	' '	25	0.138	0.064	43.684	0.012
יוַפוי	' ['	26	0.066	0.031	44.216	0.014
' P '	'] '	27	0.155	0.059	47.208	0.009
' 🖭 '	'[['	28	0.133	-0.031	49.459	0.007
' 🗗 '	' '	29	0.149	0.130	52.318	0.005
י וַ יַ	'['	30	0.043	0.005	52.566	0.007
' P '	' '	31	0.112	0.042	54.239	0.006
<u> </u>		32	-0.003		54.240	0.008
!9 !	!!!		-0.127		56.507	0.007
! ! !	! !		-0.045	-0.023	56.802	0.008
' 🗓 '	'』''		-0.068	0.071	57.479	0.010
1 [] 1	' '	36	-0.082	-0.125	58.477	0.010

China - 2nd differences

Date: 12/25/16 Time: 03:03 Sample: 1995Q2 2015Q2 Included observations: 80

1 -0.441 -0.441 16.168 0.000	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
			1	-0.441	-0.441	16.168	0.000
	1 1	l ∈ .	2	0.040	-0.192	16.301	0.000
	1 1	101	3	0.023	-0.053	16.345	0.001
	1	□	4	-0.148	-0.195	18.236	0.001
	ı 🗀 ı	(5	0.133	-0.030	19.773	0.001
	ı ⊑ ı	' '	6	-0.147	-0.154	21.690	0.001
	1 b 1	101	7	0.079	-0.068	22.246	0.002
1	10 1	 	8	-0.105	-0.189	23.243	0.003
1	1 1	<u> </u>	9	-0.006	-0.185	23.246	0.006
1	1 1	□ '	10	0.017	-0.196	23.274	0.010
1	1 🛅 1		11	0.087	-0.015	23.993	0.013
	1 1	'['	12	-0.020	-0.059	24.030	0.020
1	' = '	_ ·					
1	' 	ı r					
	٦ -	יוםי					
1	' Q '	' = '					
	' P '	1 1					
	7	I F					
	'탁 '	' = '					
1	Г	l f					
1	7	1 1					
1	Г	1 1					
1	. 4	1 1					
	1	1 1					
	· F ·	1 '1 '					
1 1 28 -0.045 -0.122	7	1 1					
1		1 7					
	, n	1 7					
	Г	l f					
	7 7	1 1 1					
	Г	l f					
34 0.086 -0.072 53.985 0.016 1 1 1 1 35 -0.004 0.068 53.987 0.021		1 Г					
1 1 35 -0.004 0.068 53.987 0.021	٦.	ı r					
	Г	1 7					
141 141 36 -0.047 -0.028 54.316 0.026		I F					
	. 4 .	' ' '	30	-0.047	-0.028	04.310	0.026

Euro Area - 1st differences

Date: 12/25/16 Time: 03:04 Sample: 1995Q2 2015Q2 Included observations: 81

China - 2nd differences

Date: 12/25/16 Time: 03:05 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
- <u> </u>		1 0.465	0.465	18.144	0.000			1 -0.455	-0.455	17.171	0.000
1		2 0.421	0.261	33.216	0.000	1 1			-0.239	17.196	0.000
' 🔚	' '	3 0.364	0.134	44.644	0.000	1 j i 1	'['		-0.077	17.340	0.001
' 📁	' '		-0.022		0.000	' [] '	'🖣 '	4 -0.085		17.969	0.001
' 🗀	' '	5 0.227	0.028	54.625	0.000	1 1	'🗐 '		-0.140	17.981	0.003
' 🗖	' '	6 0.227	0.075		0.000	1 j 1	'[] '		-0.086		0.006
' 	' '	7 0.197	0.037			· • • • • • • • • • • • • • • • • • • •	' '		-0.031		0.012
' 	'['		-0.034		0.000	' = '	"		-0.186		0.013
· 🗖	' '	9 0.229	0.132	69.583	0.000	· 🔚			0.263		
1 (1)		10 -0.055		69.874	0.000	<u> </u>	' '		-0.024		0.000
' ('	'['	11 -0.028		69.950	0.000	' [] '	' '	11 0.089		39.219	0.000
' [] '	'['	12 -0.081			0.000	' '	' '	12 0.020		39.260	0.000
'■ '	'['	13 -0.153			0.000	' !	" '		-0.173		0.000
1 🛊 1	' iii	14 -0.061			0.000	· 🖻	יוםי ן		0.075	46.408	0.000
' = '	'['	15 -0.148	-0.114	75.495	0.000	' [] '	' '	15 -0.068	0.018	46.872	0.000
' = '	'['	16 -0.171				' ('	'['	16 -0.042		47.050	0.000
' = '	1 1	17 -0.161		81.231	0.000	1 j i 1	' '		0.020	47.250	0.000
= '	'['		-0.103		0.000	1 j i 1	' '		-0.035	47.591	0.000
·	'['	19 -0.310		96.076	0.000	' [] '	' '		0.061	48.307	0.000
	"	20 -0.323	-0.166	107.57	0.000	' = '	📮 '		-0.273		0.000
-	' -	21 -0.204	0.152		0.000	' 	'🗐 '			52.090	0.000
<u> </u>		22 -0.220	0.026	117.75	0.000	'□ '	'['	22 -0.114			0.000
1 = 1	1 1	23 -0.126	0.004	119.60	0.000	' 	'🗐 '		-0.130	55.342	
' ['	<u> </u>	24 -0.107	0.101	120.95	0.000	' ('			-0.006	55.437	0.000
1 [] 1		25 -0.096	-0.014	122.05	0.000	1 j 1	' '	25 0.029	0.028	55.537	0.000
' ['	'['	26 -0.109	-0.055	123.51	0.000	-	' '			55.603	0.001
' ■ '	'[['	27 -0.149		126.28	0.000	' = '	'🗐 '		-0.105	57.484	0.001
1 🛛 1		28 -0.070	0.066	126.90	0.000	· 🏻 ·	'[['		-0.074		0.001
1 ()		29 -0.064	0.045	127.42	0.000	' (' '		0.061	58.586	0.001
1 1	[30 0.006	-0.072	127.43	0.000	1 j i 1	'['	30 0.036	-0.067	58.757	0.001
1 j 1 1		31 0.038	0.048	127.63	0.000	· 🗓 ·		31 0.083	0.190	59.673	0.001
1 (1		32 -0.020	-0.180	127.68	0.000	1 1		32 -0.010	0.076	59.688	0.002
1 ()	'['	33 -0.061	-0.129	128.20	0.000	1 1	' '		-0.016	59.768	0.003
' [] '	'('	34 -0.090	-0.048	129.36	0.000	' = '	' '	34 -0.099		61.171	0.003
1 (1		35 -0.015	0.060	129.39	0.000	· 🗈 ·	'['	35 0.097	-0.072	62.537	0.003
- 4 -	<u> </u>	36 -0.038	0.037	129.61	0.000	<u>' </u>		36 -0.086	-0.021	63.639	0.003

United States – 1st differences

Date: 12/25/16 Time: 03:05 Sample: 1995Q2 2015Q2 Included observations: 81

United States -	2nd	differer	
United States –	zna	airrerer	ıces

United States
Date: 12/25/16 Time: 03:06
Sample: 1995Q2 2015Q2
Included observations: 80

Autocorrelation Partial Correlation AC PAC Q-Stat Prob	Included observation	ns: 81	Included observation	ıs: 80								
	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
			1 0.193	0.193	3.1461	0.076			1 -0.325	-0.325	8.7632	0.003
	10	III	2 -0.078	-0.120	3.6609	0.160	· -	_ ·	2 -0.170	-0.308	11.187	0.004
	10 1	1 ()	3 -0.078	-0.040	4.1900	0.242	1 1 1	III	3 0.035	-0.169	11.293	0.010
	ı ⊑ ı	' '	4 -0.139	-0.130	5.8669	0.209	· -	_ ·	4 -0.165	-0.340	13.641	0.009
	1 b 1		5 0.067	0.118	6.2636	0.281	· 🗀 ·	'[] '	5 0.179	-0.083	16.438	0.006
	1 1	III	6 -0.013	-0.087	6.2789	0.393	1 1	II	6 -0.001	-0.098	16.438	0.012
	101	1 1	7 -0.095	-0.074	7.0910	0.419	1 (1		7 -0.037	-0.063	16.563	0.020
	1 4 1	1 1	8 -0.114	-0.107	8.2825	0.406	10	□ □	8 -0.079	-0.200	17.135	0.029
			9 -0.009	0.048	8.2902	0.505	· þ ·	101	9 0.043	-0.088	17.303	0.044
	1 1 1	(10 0.022	-0.039	8.3363	0.596	14 1		10 -0.071	-0.261	17.771	0.059
	· 🗀 ·		11 0.173	0.172	11.215	0.425			11 0.281	0.173	25.257	0.008
	1 .	·	12 -0.129	-0.258	12.845	0.380	= '	 	12 -0.225	-0.202	30.146	0.003
	10 1	<u> </u>	13 -0.071	0.096	13.340	0.422	1 🗖 1	III	13 -0.109	-0.180	31.317	0.003
	· 🗀 ·		14 0.163	0.120	16.001	0.313	· 🗀		14 0.295	0.080	39.952	0.000
	10 1	I <u>I</u> I	15 -0.086	-0.150	16.756	0.334	— 1	1 1	15 -0.173	-0.006	42.974	0.000
	1 (1		16 -0.031	-0.057	16.853	0.395	1 j i 1		16 0.055	-0.062	43.288	0.000
1	10 1	1 1 1	17 -0.080	-0.023	17.525	0.419	1 4 1	"	17 -0.102	-0.180	44.372	0.000
	- 		18 0.036	0.131	17.660	0.478	· þ ·		18 0.042	-0.010	44.560	0.000
1	1 b 1		19 0.077	-0.038	18.305	0.502	· 🗀 ·		19 0.187	0.218	48.313	0.000
	= -	I	20 -0.176	-0.278	21.731	0.355	= '	III	20 -0.213	-0.155	53.276	0.000
1	10 1		21 -0.082	0.064	22.478	0.372	1 (1	"	21 -0.038	-0.183	53.434	0.000
	1 j i 1		22 0.065	0.123	22.960	0.404	· þ·	1 1	22 0.123	0.004	55.138	0.000
	1 1 1	1 1 1	23 0.009	-0.059	22.969	0.463	' ['['	23 -0.096	-0.044	56.192	0.000
	- I	1 1 1	24 0.096	-0.011	24.051	0.459	· 🛅 ·	1 1	24 0.101	0.007	57.389	0.000
	- 	101	25 0.033	-0.076	24.182	0.509	· þ ·	'['	25 0.088	-0.100	58.309	0.000
	· 🗖 ·		26 -0.166	0.039	27.565	0.380	' □ '		26 -0.098	0.192	59.486	0.000
	<u> </u>		27 -0.182	-0.252	31.667	0.245	1 □ 1	'E '	27 -0.150	-0.121	62.280	0.000
	1 1 1		28 0.017	0.029	31.704	0.287	· þ ·	'[] '	28 0.081	-0.105	63.102	0.000
1 1 31 -0.010 0.074 32.759 0.381 1 1 31 0.007 0.135 64.099 0.000 1 1 2 32 -0.038 0.190 32.953 0.420 1 1 32 -0.048 0.031 64.410 0.001 1 1 1 33 -0.006 0.045 32.958 0.469 1 1 1 33 0.104 0.026 65.932 0.001 1 1 34 -0.130 -0.049 35.370 0.403 1 1 1 34 -0.147 -0.006 68.995 0.000 1 1 1 35 -0.005 -0.054 35.373 0.451 1 1 1 35 0.086 0.042 70.068 0.000	· 🛅 ·		29 0.086	0.048	32.655	0.292	· þ ·	'[['	29 0.084	-0.050	64.010	0.000
1 1 32 -0.038 -0.190 32.953 0.420 1 1 32 -0.048 -0.031 64.410 0.001 1 1 33 -0.006 -0.045 32.958 0.469 1 1 1 33 0.104 -0.026 65.932 0.001 1 1 1 34 -0.130 -0.049 35.370 0.403 1 1 1 34 -0.147 -0.006 68.995 0.000 1 1 1 35 0.005 -0.054 35.373 0.451 1 1 1 35 0.086 0.042 70.688 0.000	- 	1 1 1	30 0.026	-0.011	32.746	0.334	141	'[[] '	30 -0.025	-0.121	64.094	0.000
	1 1		31 -0.010	0.074	32.759	0.381	1 1	<u> </u> -				
	1 (1	□ □	32 -0.038	-0.190	32.953	0.420	1 (1	'['				
35 -0.005 -0.054 35.373 0.451	1 1	'('	33 -0.006	-0.045	32.958	0.469	' j a '	' '				
	' □ '	(34 -0.130	-0.049	35.370	0.403	' □ '					
	1 1		35 -0.005	-0.054	35.373	0.451	· bi ·					
	1 ()	' ['	36 -0.029	-0.112	35.503	0.492	1 🜓	' '	36 -0.014	-0.074	70.099	0.001

United Kingdom – 1st differences

Date: 12/25/16 Time: 03:08 Sample: 1995Q2 2015Q2 Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 10 1		1	0.044	0.044	0.1625	0.687
· 🗀 ·	<u> </u>	2	0.139	0.137	1.7961	0.407
· 🗀		3	0.328	0.323	11.065	0.01
1 1	'('	4	0.006	-0.026	11.069	0.026
· 🖃		5	0.332	0.282	20.838	0.00
· 🗀	' '	6	0.207	0.125	24.679	0.000
1 (1	'E '	7	-0.029		24.754	0.00
· 🗀 ·	'E '	8	0.132	-0.090	26.356	0.00
1 10 1	'('	9	0.040	-0.045	26.507	0.002
· 🗈 ·		10	0.086	0.033	27.208	0.002
ı 🛅 i	1 11 1	11	0.143	0.041	29.158	0.003
1 1	1 1 1	12	0.004	0.017	29.160	0.004
1 🛅 1		13	0.095	0.082	30.058	0.008
1 1	1 (1)	14	-0.002	-0.062	30.058	0.00
1 1		15	0.006	-0.045	30.061	0.012
101	·	16	-0.082	-0.236	30.755	0.01
1 (1	1 1	17	-0.036	-0.058	30.894	0.02
1 🕻 1	'E '	18	-0.061	-0.096	31.297	0.027
1 (1	<u> </u>	19	-0.035	0.067	31.428	0.03
· -	101	20	-0.119	-0.067	32.994	0.03
· -	1 1	21	-0.121	0.001	34.623	0.03
10		22	-0.102	-0.046	35.815	0.03
101	1 1	23	-0.081	-0.002	36.568	0.03
1 (24	-0.064	-0.034	37.046	0.043
1 4 1		25	-0.107	-0.026	38.428	0.04
1 4 1	1 (1	26	-0.107	-0.011	39.834	0.04
· d ·		27	-0.133	-0.029	42.030	0.03
101	1 1	28	-0.091	-0.015	43.083	0.03
1 ()	1 10 1	29	-0.038	0.080	43.267	0.04
10 1	1 (1)	30	-0.130	-0.054	45.510	0.03
101	1 1 1	31	-0.079	0.031	46.353	0.03
101	1 1 1	32	-0.063	-0.030	46.900	0.04
1 🛭 1	1 10 1	33	-0.054	0.091	47.310	0.05
1 1	1 1 1	34	0.008	0.010	47.319	0.06
1 (1 11 1	35	-0.043	0.044	47.592	0.07
1) 1	1 10 1	36	0.034	0.069	47.768	0.09

Japan — 1st differences
Date: 12/25/16 Time: 03:09
Sample: 1995Q2 2015Q2
Included observations: 81

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.205	0.205	3.5436	0.060
1 🛅 1		2	0.086	0.046	4.1784	0.124
1 1 1	1 1	3	0.015	-0.011	4.1990	0.241
1 (1)		4	-0.038	-0.045	4.3252	0.364
101		5	-0.076	-0.063	4.8410	0.436
1 🕽 1	1	6	0.027	0.062	4.9051	0.556
1 1	1 1 1	7	-0.013	-0.021	4.9210	0.670
1 🛊 1	[8	-0.058	-0.062	5.2355	0.732
· 🗀 ·		9	0.187	0.219	8.4951	0.485
1 ()	'E '	10	-0.045	-0.132	8.6868	0.562
1 🗓 1		11	0.070	0.097	9.1642	0.607
' = '	 	12	-0.141	-0.200	11.110	0.520
1 j i 1	' '	13	0.047	0.147	11.331	0.583
· 🖭	' 	14	0.148	0.175	13.523	0.486
י נו י	'[] '	15		-0.087	13.753	0.544
' = '	' '	16	-0.127		15.429	0.493
' ['	' '	17	-0.096		16.402	0.496
' = '	'E '		-0.132		18.267	0.438
<u> </u>	' = '		-0.255		25.317	0.150
' = '	' '		-0.118		26.859	0.139
-	'['		-0.197		31.194	0.070
1 1	' '		-0.014	0.032	31.217	0.092
1] 1	'['	23		-0.027	31.306	0.115
' P '	' '	24	0.148	0.099	33.875	0.087
' " '	' " '	25	-0.084		34.713	0.094
' 🖺 '	'🖫 '	26	-0.139		37.080	0.074
1 🛛 1	' '	27	-0.059	0.031	37.519	0.086
' '	' '	28		-0.023	37.575	0.107
1 4 1	' '	29	-0.040		37.782	0.127
1 1	' '	30	0.010	0.102	37.795	0.155
' 🖭 '	' '	31	0.146	0.123	40.673	0.115
! [!	!]!	32	0.003	0.016	40.674	0.140
'] '	'¶'	33		-0.082	40.766	0.166
<u> </u>	! !!	34	-0.062		41.310	0.182
! [!	!!!	35	-0.035	0.012	41.490	0.209
1 1 1	' '	36	0.010	0.025	41.505	0.243

United Kingdom - 2nd differences

Date: 12/25/16 Time: 03:08 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.548	-0.548	24.941	0.000
1 ()		2	-0.049	-0.499	25.142	0.000
ı 	'E '	3	0.265	-0.093	31.119	0.000
·	I	4	-0.341	-0.365	41.148	0.000
· 🗀	 	5	0.238	-0.180	46.109	0.000
1 11 1		6	0.057	0.037	46.396	0.000
□ '		7	-0.206	0.028	50.200	0.000
· 🗀 ·		8	0.135	-0.012	51.868	0.000
10 1	'['	9	-0.084	-0.100	52.515	0.000
1 1	'[] '	10	0.006	-0.090	52.519	0.000
1 j a 1	'['	11		-0.064	53.414	0.000
1 5 1	'E '	12	-0.121	-0.121	54.817	0.000
1 j a 1		13	0.097	0.005	55.739	0.000
1 ()	'('	14	-0.058	-0.021	56.076	0.000
1 11 1	' i	15	0.054	0.157	56.366	0.000
1 [] 1	'['	16	-0.069	-0.031	56.847	0.000
1 11 1		17		-0.000	56.949	0.000
1 (1	' = '	18		-0.143	56.995	0.000
1 11 1		19	0.058	0.009	57.351	0.000
1 (1	'['	20	-0.042		57.541	0.000
1 1		21	0.004	0.026	57.543	0.000
1 (1		22	-0.014	-0.006	57.565	0.000
1 1		23	0.005	0.025	57.568	0.000
1) 1	'('	24		-0.018	57.617	0.000
1 1	'['	25	-0.016	-0.049	57.646	0.000
1 11 1	'('	26		-0.011	57.736	0.000
141	'('	27	-0.053		58.079	0.000
1 1	' '	28		-0.112	58.080	0.001
1 10 1		29	0.083	0.038	58.971	0.001
10 1	'['	30		-0.033	59.891	0.001
1 1 1		31	0.024	0.000	59.968	0.001
1 1	'🗐 '	32		-0.125	59.973	0.002
1 (1	'('	33		-0.045	60.122	0.003
1 11 1	'['	34		-0.071	60.715	0.003
14	'4 '	35	-0.069		61.410	0.004
· 🖆 ·	<u> </u>	36	0.105	0.109	63.040	0.004

Japan - 2nd differences

Date: 12/25/16 Time: 03:10 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.415	-0.415	14.269	0.000
1 (1)	I	2 -0.040	-0.256	14.404	0.001
1 1	<u> </u>	3 -0.002	-0.166	14.404	0.002
1 (1	' □ '	4 -0.029	-0.150	14.478	0.006
10 1		5 -0.077	-0.227	14.996	0.010
1 j a 1	I	6 0.096	-0.102	15.808	0.015
1 1 1	1 (1	7 0.011	-0.042	15.820	0.027
· ·	·	8 -0.178	-0.271	18.719	0.016
	<u> </u>	9 0.287	0.083	26.352	0.002
<u> </u>	' □ '		-0.152	31.013	0.001
1 🔳	<u> </u>	11 0.197	0.131	34.693	0.000
<u> </u>	_ ·	12 -0.245	-0.223	40.499	0.000
1 j 1	_ ·		-0.207	40.687	0.000
' 🗖 '	ינקי	14 0.150	0.071	42.919	0.000
1 1 1	יוםי	15 0.023	0.091	42.973	0.000
' = '	' '	16 -0.118	-0.040	44.396	0.000
' j i ']	17 0.045	0.025	44.605	0.000
1] 1	III	18 0.054	0.051	44.912	0.000
' = '	I I I	19 -0.156	0.047	47.543	0.000
' 🗖 '	' [] '		-0.086	49.253	0.000
' = '	' □ '		-0.142	51.940	0.000
יום י	'¶'		-0.063	52.685	0.000
1 [1	" '	23 -0.044		52.905	0.000
' 🗩	III	24 0.208	0.075	57.976	0.000
' 🛮 '	1 1 1	25 -0.097	0.018	59.109	0.000
' 🖣 '	' !		-0.092	60.237	0.000
' ['	'¶'		-0.058	60.271	0.000
<u> </u>	! ! !		-0.047	60.582	0.000
<u> </u>	<u>'9</u> '	29 -0.038		60.767	0.000
' (_'	' ! '	30 -0.057		61.186	0.001
:_P:			-0.012	65.733	0.000
!¶ !	! !! !	32 -0.101	0.075	67.134	0.000
<u> </u>	111		-0.010	67.591	0.000
! 9 !	!!!	34 -0.065		68.190	0.000
11:	! L .!	35 -0.014		68.218	0.001
1 1 1	' P '	36 0.019	0.146	68.270	0.001

7.4.7 IR

China - 1st differences

Date: 12/25/16 Time: 03:11 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 1 1		1	0.044	0.044	0.1588	0.690
· 🗀		2	0.196	0.194	3.3836	0.184
1 j 1	1 1 1	3	0.028	0.013	3.4519	0.327
101	101	4	-0.050	-0.093	3.6703	0.452
ı İ	<u> </u>	5	0.154	0.158	5.7383	0.333
1 🗓 1	1 10 1	6	0.049	0.070	5.9499	0.429
1 10 1	1 1	7	0.047		6.1443	0.523
□ □ □	□ 1	8	-0.156	-0.205	8.3675	0.398
1 1 1	1 10 1	9	0.010	0.046	8.3766	0.497
1 11 1	<u> </u> -	10	0.027	0.102	8.4475	0.585
· 🛅 ·	1 10 1	11	0.099	0.081	9.3870	0.586
1 10 1	1 (1	12	0.051	-0.033	9.6373	0.648
1 j a 1	I	13	0.105	0.132	10.716	0.635
1 🗓 1	<u> </u>	14	0.075	0.107	11.275	0.664
1 1	101	15		-0.083	11.302	0.731
1 🛛 1	□ '	16	-0.050		11.553	0.774
1 1	1 10 1	17	-0.001	0.041	11.554	0.826
1 1		18	0.007	0.089	11.559	0.869
- I (I	101	19	-0.031	-0.075	11.660	0.900
1 1	101	20	0.005	-0.067	11.663	0.927
1 1		21	-0.019	0.112	11.705	0.947
· = ·	101	22	-0.140	-0.086	13.935	0.904
- 	101	23	0.028	-0.064	14.026	0.926
1 🛛 1	1 🔲 1	24	-0.075	-0.117	14.682	0.930
1 🗖 1	1 (1	25	-0.088	-0.059	15.610	0.926
1 1		26	-0.015	0.027	15.637	0.945
1 1 1	1 10 1	27	0.023	0.097	15.701	0.958
1 1	1 (1	28	-0.013	-0.029	15.723	0.970
1 1	1 1	29	-0.006	0.021	15.728	0.978
1 1	1 1 1	30	-0.010	0.019	15.741	0.985
1 1		31	0.000	0.029	15.741	0.990
1 1	101	32	-0.001	-0.082	15.741	0.993
1 1		33	-0.007	-0.046	15.748	0.995
10 1	101	34	-0.082	-0.072	16.706	0.994
· 二 ·	1 🛮 1	35	-0.182	-0.106	21.542	0.964
1 1		36	-0.003	0.085	21.543	0.973

China - 2nd differences

Date: 12/25/16 Time: 03:11 Sample: 1995Q2 2015Q2 Included observations: 79

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	-0.580	-0.580	27.564	0.000
' 	📮 '	2		-0.254	29.884	0.000
' ('	' '	3	-0.046		30.065	0.000
' = '	_ ·	4	-0.148		31.934	0.000
' 🖃 '	<u>"</u>	5		-0.182	34.191	0.000
' ['	'¶'	6	-0.054		34.443	0.000
' 	<u> </u>	7	0.105	0.096	35.416	0.000
□ '	<u>"</u> '	8	-0.193		38.767	0.000
1 10 1	 	9		-0.191	39.321	0.000
' (' '	10	-0.028		39.393	0.000
1 10 1	'['	11	0.062	-0.028	39.757	0.000
1 ()		12	-0.053	-0.184	40.026	0.000
1 10 1	' '	13	0.044	-0.146	40.211	0.000
1 11 1		14	0.032	0.045	40.311	0.000
1 (1	' -	15	-0.030	0.147	40.401	0.000
1 (1	[16	-0.043	-0.094	40.588	0.001
1) 1	' '	17	0.021	-0.133	40.632	0.001
1 1 1		18	0.022	0.028	40.684	0.002
1 (1	1 1 1	19	-0.037	0.016	40.828	0.003
1 j 1	' '	20	0.032	-0.156	40.939	0.004
1 j i 1	1 1	21	0.050	0.045	41.220	0.005
' = '	1 1 1	22	-0.152	0.016	43.800	0.004
ı 🗀 ı	1 1	23	0.142	0.064	46.096	0.003
- I I	1 1	24	-0.047	0.002	46.348	0.004
- I (-	III	25	-0.045	-0.082	46.591	0.005
1 1 1	' □ '	26	0.024	-0.134	46.662	0.008
1 11 1	1 1	27	0.032	-0.008	46.792	0.010
1 ()		28	-0.022	-0.061	46.853	0.014
1 1		29	0.003	-0.061	46.854	0.019
1 1		30	-0.005	-0.064	46.857	0.026
1 1	1 1 1	31	0.006	0.045	46.861	0.034
1 1	1 1	32	0.003	0.003	46.862	0.044

Japan - 1st differences

Date: 12/25/16 Time: 22:25 Sample: 1995Q2 2015Q2 Included observations: 80

Japan - 2nd differences

Date: 12/25/16 Time: 22:25 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
-		1 0.202	0.202	3.4004	0.065			1 0.20	2 0.202	3.4004	0.065
· 🖆 ·		2 0.146	0.109	5.1908	0.075	· 🗀 ·	<u> </u> -	2 0.14	0.109	5.1908	0.075
1 1	1 1 1	3 0.007	-0.044	5.1952	0.158	1 1		3 0.00	7 -0.044	5.1952	0.158
1 🛛 1	'E '	4 -0.092	-0.107	5.9221	0.205	' [] '	'E '	4 -0.092	2 -0.107	5.9221	0.205
1 1		5 -0.011	0.032	5.9322	0.313	1 1		5 -0.01	0.032	5.9322	0.313
101	1 1 1	6 -0.080	-0.060	6.4996	0.370	10	(6 -0.08	-0.060	6.4996	0.370
' ['	' '	7 -0.076				' ('['			7.0154	
' ['	' '	8 -0.109	-0.082	8.0909	0.425	' " '	'[] '	8 -0.10	-0.082	8.0909	0.425
- 1 1		9 -0.021		8.1310	0.521	1 1	' '	9 -0.02		8.1310	0.521
' ['	' '	10 -0.038			0.603	' ('	' '	10 -0.03			0.603
1 1 1	' '	11 0.018	0.017		0.686	1 1 1	' '	11 0.01		8.3009	0.686
י 🗗 י	יון י	12 0.084	0.072	8.9852	0.704	יוםי	יום י	12 0.08		8.9852	0.704
' [] '	' '	13 0.077	0.047		0.729	1 10 1		13 0.07		9.5672	
' P '	' '	14 0.158	0.105		0.602	' P '	' '	14 0.15		12.048	0.602
' j i '	' '		-0.009	12.352		ינן י	' '		-0.009	12.352	
1 1	'['		-0.028	12.364		1 1	'['			12.364	
- ' '	' '	17 -0.018		12.399	0.775	' '	' '	17 -0.01			0.775
1 4 1	' '	18 -0.034			0.819	1 1 1	' '	18 -0.03			
1 4 1		19 -0.027		12.597		' ['		19 -0.02			
- '	l ¶'	20 -0.211		17.474		<u> </u>	" '			17.474	
' ['	" '	21 -0.019	0.081		0.679	' ['	<u> </u>	21 -0.01		17.516	0.679
' ['	' '	22 0.038	0.120	17.681		' ['	' '	22 0.03		17.681	0.725
' ['	' '		-0.002	17.845	0.766	' ['	' '		3 -0.002	17.845	0.766
' '	' '	24 0.075	0.004	18.506	0.778	' '	' '	24 0.07		18.506	0.778
' L !			-0.006	18.511	0.820	! L!			7 -0.006	18.511	0.820
' 🗗 '	ייני ו	26 0.088	0.071	19.459	0.816	' P '	'J''	26 0.08		19.459	0.816
! ! !	! ! ! !	27 -0.012		19.478	0.852	! !	1 19 1				0.852
! ! !	'\'		-0.042	19.487	0.882	: 1 :	'" '		-0.042	19.487	0.882
!] !	!!!	29 -0.001	0.035	19.488	0.908	! ! !		29 -0.00		19.488	0.908
	1 111	30 -0.036		19.660		: 1 :	!!!				
!] !	'.] '	31 0.007	0.020	19.667		<u> </u>			7 0.020	19.667	
<u>! </u>	'5'	32 -0.103		21.116		<u> </u>	1 191			21.116	
<u> </u>	'" '	33 -0.111		22.822		<u>!</u>	'4'			22.822	
!¶ !	1 !!!	34 -0.087	0.022		0.901	.9 :	!!!	34 -0.08		23.900	
: 4 :	' '	35 -0.059		24.409	0.910	: 4 :	'1'		9 -0.040		0.910
' '	' '	36 0.021	-0.008	24.475	0.927	' '	' '	36 0.02	-0.008	24.475	0.927

United states - 1st differences

Date: 12/25/16 Time: 22:33 Sample: 1995Q2 2015Q2 Included observations: 80

Partial Correlation Autocorrelation AC PAC Q-Stat Prob 0.511 0.511 21.686 0.000 0.447 0.252 38.506 0.000 0.403 0.149 0.114 -0.278 52.335 53.461 0.000 0.029 -0.132 -0.041 -0.043 -0.108 0.042 -0.180 -0.095 -0.140 0.017 0.000 0.000 0.000 0.000 0.000 53.536 53.686 54.741 57.701 59.523 āñā 9 -0.140 0.017 10 -0.158 -0.040 11 -0.296 -0.243 12 -0.337 -0.253 13 -0.442 -0.266 14 -0.435 -0.024 15 -0.345 0.121 16 -0.327 -0.008 17 -0.264 -0.172 61.865 70.198 0.000 81.163 0.000 100.25 119.10 0.000 0.000 0.000 0.000 131.08 142.02 Ь. 149.30 18 -0.064 0.045 19 -0.019 -0.031 149.73 149.77 0.000 20 21 22 0.004 -0.136 0.135 -0.008 0.075 -0.041 149.77 151.79 152.43 0.000 0.000 0.000 9 0.075 -0.041 0.053 -0.059 0.138 -0.063 0.148 -0.058 0.150 -0.045 0.195 -0.035 152.76 155.00 157.60 0.000 23 24 25 26 27 0.000 0.000 0.000 165.02 28 29 30 31 32 0.274 0.071 0.151 -0.177 174.50 177.45 0.000 0.151 -0.177 0.159 -0.116 0.091 -0.130 -0.056 -0.104 180.75 0.000 0.000 181.85 182.28 33 -0.025 -0.003 34 -0.099 -0.064 35 -0.065 0.060 182.37 183.78 0.000 184.40 0.000 36 -0.039 -0.064 184.62 0.000

United Kingdom - 1st differences

Date: 12/25/16 Time: 22:32 Sample: 1995Q2 2015Q2 Included observations: 80

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat
		1 0.540	0.540	24.206
· 🗀	' □ '	2 0.190	-0.144	27.226
1 (1	'['	3 -0.025	-0.093	27.279
1 二 1	'['	4 -0.128	-0.068	28.702
' = '	'['	5 -0.144	-0.034	30.515
' " '	'('	6 -0.108	-0.013	31.554
' = '	" '	7 -0.162	-0.157	33.902
= '	'[] '		-0.095	37.572
' [] '	' '	9 -0.080	0.108	38.163
1 j 1		10 0.056	0.065	38.458
יולי	'['		-0.091	38.782
-	'['	12 -0.020		38.821
1 j 1	' '	13 0.029		38.903
' ('	' '	14 -0.026		38.971
' [] '	'['	15 -0.070		39.460
' [] '	'['	16 -0.081		40.130
1 🛛 1	יוםי	17 -0.050		40.389
' = '	' '	18 -0.143		42.540
' = '	' '	19 -0.153		45.069
' = '	'[] '	20 -0.150		47.529
' ['	' ='	21 -0.061	0.116	47.938
' ('	' □ '		-0.146	48.199
' j '	' '		-0.024	48.309
' [] '		24 -0.077		49.012
' = '	יון י	25 -0.118	0.051	50.672
ינןי	' '	26 0.045		50.913
' 🖭 '	' '		-0.018	54.195
' P '	'['		-0.032	58.767
' 🏴 '	' '		-0.010	60.297
י ון י	' '	30 0.076	0.069	61.050
' j '	' '		-0.027	61.132
1] 1	'🖫 '		-0.109	61.189
1 1	' '	1	-0.017	61.222
' ['] '	34 -0.074		61.999
9 '	<u>'</u> ¶ '	1	-0.144	67.993
' [] '	1 1 1	36 -0.083	0.028	69.029

United states - 2nd differences

Date: 12/25/16 Time: 22:34 Sample: 1995Q2 2015Q2 Included observations: 79

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.434	-0.434	15.484	0.000
1 1		2 -0.021	-0.259	15.521	0.000
· 🗀		3 0.251	0.168	20.824	0.000
<u> </u>		4 -0.208	-0.017	24.529	0.000
1 1	' [] '	5 -0.014	-0.108	24.545	0.000
1 1	"	6 -0.004	-0.174	24.546	0.000
1 1	'['	7 0.005	-0.028	24.549	0.001
' [] '	' '	8 -0.114	-0.136	25.728	0.001
1 🏮 1	'['	9 0.059	-0.067	26.051	0.002
' 	' in '	10 0.122	0.117	27.427	0.002
' [] '	' <u> </u>	11 -0.099	0.075	28.342	0.003
1 🖟 1		12 0.064	0.020	28.730	0.004
' = '			-0.235	30.018	0.005
' [] '	I		-0.304	30.706	0.006
· 🖟 ·	' '	15 0.074	-0.133	31.255	0.008
' ['	ינן י	16 -0.043	0.034	31.440	0.012
' = '	" '		-0.183	33.512	0.010
' 	'['		-0.090	36.151	0.007
1 1 1		19 0.023	0.005	36.209	0.010
' []'	' '	20 -0.113	-0.126	37.592	0.010
' -	'['	21 0.195	-0.081	41.775	0.004
' ('	'['	22 -0.042	-0.062	41.975	0.006
' [] '	'['		-0.059	43.355	0.006
1 j i 1	'E '	24 0.077	-0.066	44.050	0.008
1 1	'E '	25 0.005	-0.081	44.053	0.011
- I (-		26 -0.025	-0.059	44.130	0.015
- I ('E '	27 -0.046	-0.155	44.387	0.019
· 🗀		28 0.210	0.088	49.903	0.007
' □ '		29 -0.132	-0.009	52.143	0.005
1 j a 1	1 1	30 0.075	-0.001	52.872	0.006
1 b 1		31 0.080	-0.039	53.720	0.007
	' '	32 -0.185	-0.133	58.395	0.003

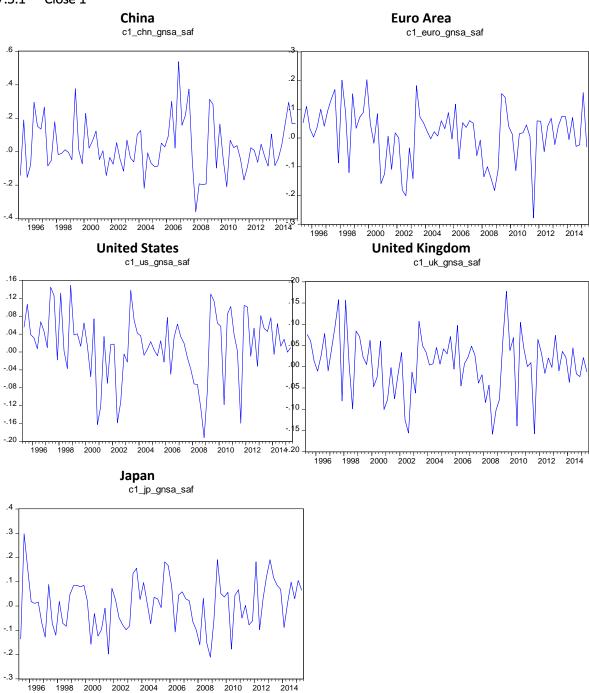
United Kingdom - 2nd differences

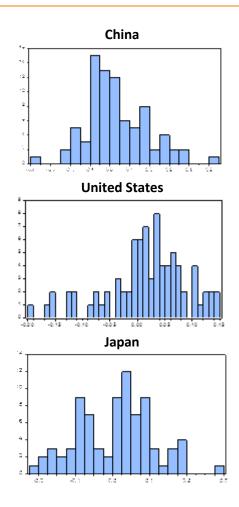
Date: 12/25/16 Time: 22:32 Sample: 1995Q2 2015Q2 Included observations: 79

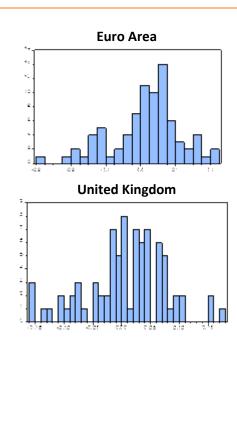
Autocorrelation	Partial Correlation	AC PAC Q-Stat
<u> </u>	<u>'</u>	1 -0.120 -0.120 1.1735
<u> </u>	!	2 -0.143 -0.160 2.8830
<u> </u>	<u> </u>	3 -0.123 -0.169 4.1601
<u> </u>		4 -0.094 -0.173 4.9207 5 -0.060 -0.170 5.2308
' Q '	<u> </u>	5 -0.060 -0.170 5.2308 6 0.097 -0.021 6.0512
; !	i . i	7 -0.017 -0.098 6.0769
		l
<u>'</u>		8 -0.174 -0.267 8.8038 9 -0.016 -0.182 8.8268
; h ;		10 0.145 -0.018 10.789
; F ;	i 1 i	11 0.091 -0.002 11.574
, , , ,	_ ;	12 -0.138 -0.240 13.397
, <u> </u>		13 0.117 0.014 14.728
iΓi		14 -0.012 0.000 14.743
1 1	i n i	15 -0.037 -0.050 14.876
۱ 🖟 ۱	. <u>.</u>	16 -0.048 -0.158 15.108
ı <u> </u>	1 1	17 0.132 0.080 16.920
1	1 1	18 -0.100 -0.013 17.960
1 1	1 1	19 -0.008 -0.024 17.966
1 🗖 1	<u> </u>	20 -0.091 -0.217 18.856
ı <u>b</u> ı	1 11 1	21 0.085 0.051 19.648
ı d	1 d 1	22 -0.073 -0.080 20.244
· 🗀	ı 🗀 ı	23 0.207 0.133 25.132
1 [] 1	<u> </u>	24 -0.075 -0.178 25.782
-	<u> </u>	25 -0.215 -0.217 31.274
1 j i 1	1 (1	26 0.054 -0.045 31.623
ı b ı	1 (1	27 0.089 -0.041 32.598
ı b ı	1 (1)	28 0.112 -0.057 34.175
' [' = '	29 -0.056 -0.127 34.572
' j i '		30 0.027 -0.013 34.670
' [י נון י	31 -0.052 0.060 35.037
1 j 1	1 (1)	32 0.035 -0.041 35.203

Euro Area – 1st differences

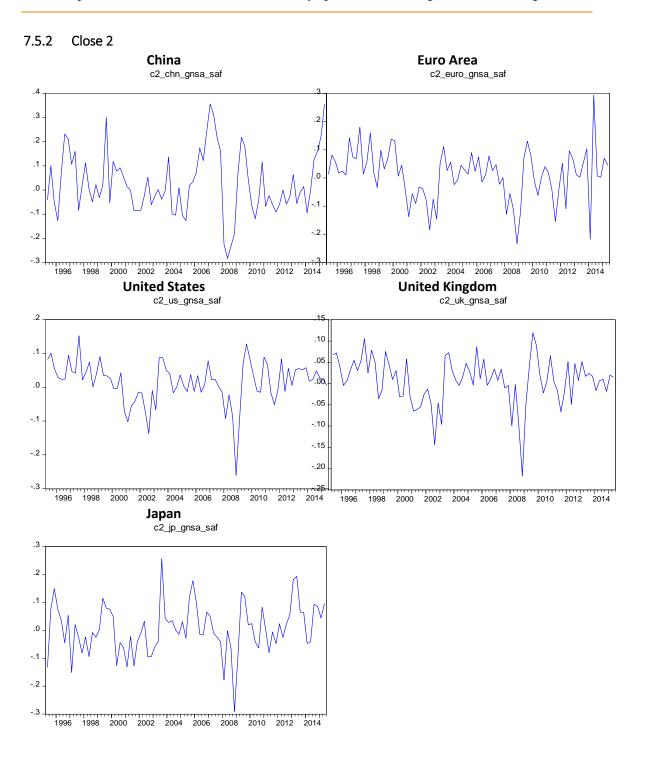
Date: 12/25/16 Time: 22:38 Sample: 1995Q2 2015Q2 Included observations: 80

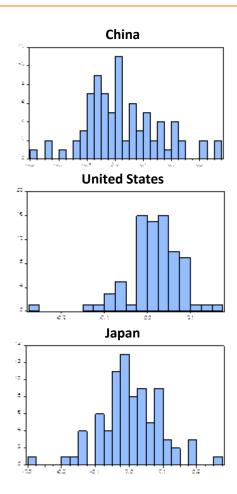

Euro Area - 2nd differences

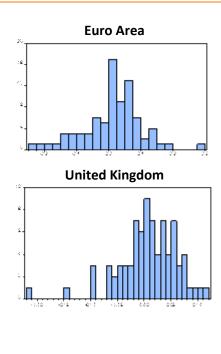

Date: 12/25/16 Time: 22:38 Sample: 1995Q2 2015Q2 Included observations: 79


Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.572	0.572	27 202	0.00	Autocorrelation	Faillai Colleialloli	٨٥	FAC	Q-Stat	FIUU
		2 0.309 -			0.00	d .	l d :	1 -0.192	-0.192	3.0281	0.082
ı j ı ı	<u> </u>	3 0.052 -	-0.170	35.465	0.00	1 1		2 -0.010	-0.049	3.0365	0.219
· ·	_ ·	4 -0.183 -	-0.212	38.352	0.00	1 1	1 1	3 -0.021	-0.034	3.0753	0.380
' = '	<u> </u> -	5 -0.135			0.00			4 -0.339		12.853	0.012
' - '	' '	6 -0.186 -		43.015	0.00			I	-0.026	14.182	0.014
= !	<u> </u>	7 -0.255 -		48.848	0.00	- I		6 0.027	0.021	14.247	0.027
■ :	<u>'</u> ¶.'	8 -0.269 -		55.439	0.00	1 n 1	l ₁ π [₁	7 -0.069		14.674	0.040
	l		0.078	59.852 60.745	0.00	, iii ,		8 -0.075		15.175	0.056
:¶:		10 -0.098		60.804	0.00	, iii	l ₁ .	9 -0.084		15.818	0.071
		12 -0.010 -				17 1		10 -0.003		15.819	0.105
		13 -0.052 -		61.079		i 🖃	"		0.056	18.848	0.064
ı 📶 ı		14 -0.076 -		61.659	0.00	Γ	inf		-0.090	18.870	0.092
1 1	1 1	15 -0.059 -	-0.006	62.011	0.00			13 -0.039		19.014	0.123
10 1		16 -0.049 -	-0.179	62.260	0.00			14 -0.041		19.177	0.158
' [] '	'E '	17 -0.066 -						15 0.011		19.189	0.205
1 🛛 1	']'		0.017	63.162	0.00	1 1			-0.023	19.408	0.248
! 9 !	<u> </u>	19 -0.091 -		64.050	0.00					19.430	
: ¶ :	l '¶ !	20 -0.080 -		64.758	0.00	i hii				19.514	
: ⊾:			0.008	64.798	0.00			19 -0.038		19.672	
: E:	; ; ;	22 0.115 23 0.142 -		68.602	0.00				-0.144	21.164	
; E ;						;¶;				21.167	
; 5 ;				74.458	0.00	i hi				21.876	0.467
, 6 ,	1 1	26 0.086 -		75.349	0.00					21.915	0.525
1 🛭 1	1 1	27 0.068	0.000	75.915	0.00	i hii				22.518	0.548
· 🗀 ·	<u> </u>	28 0.127	0.186	77.951	0.00				-0.076	22.533	0.605
ı 	1 1	29 0.118 -			0.00				-0.066	22.658	0.652
' '	' '	30 0.090 -		80.806	0.00		≟:		-0.210	23.236	0.672
']'	' '		0.001	80.843	0.00	, .			-0.022	23.927	0.685
! ! !			0.001	81.813		: [;			-0.022	24.005	0.000
<u>:</u> ₫ :				82.824		: 1.			-0.014	24.005	0.728
:		34 -0.150 - 35 -0.178 -			0.00	: " :	; 1 ;	I		24.290	
; [;4;	36 -0.202 -				: # :				26.071	
_	1 14 1	00 0.202	0.040	55.740	0.00	<u>"" '</u>	' 1 '	32 -0.110	-0.010	20.071	0.700

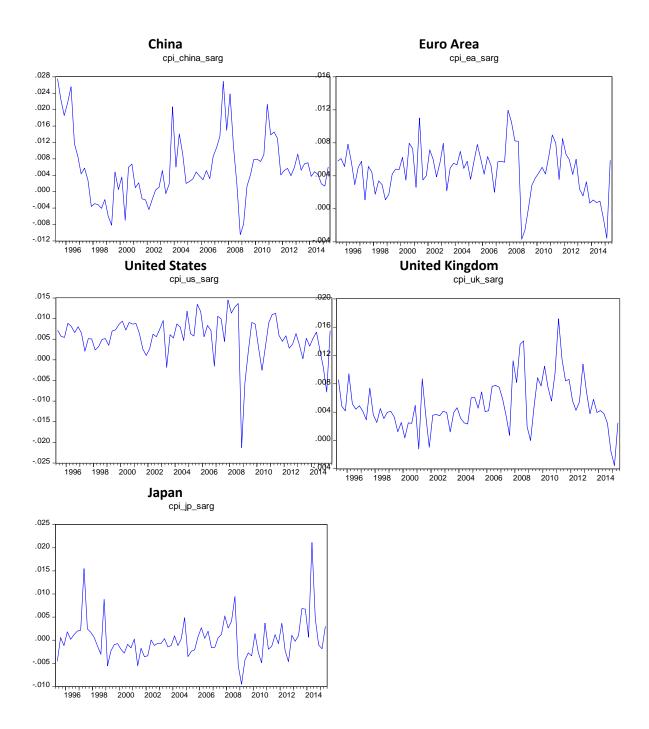
7.5 NORMAL AND HISTOGRAM GRAPH

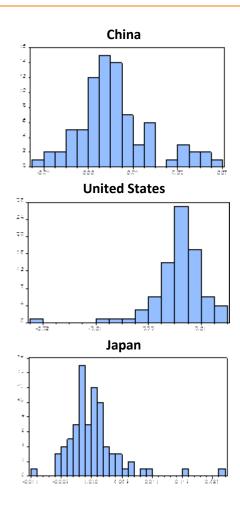

7.5.1 Close 1

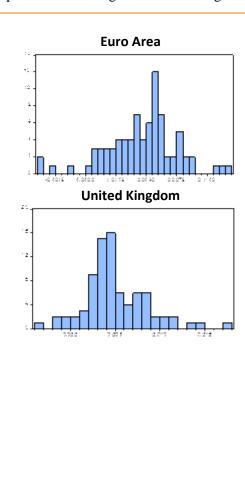




	C1_CHN_GNSA_	C1_EURO_GNSA_	C1_JP_GNSA_	C1_UK_GNSA_	C1_US_GNSA_
	SAF	SAF	SAF	SAF	SAF
Mean	0.030387	0.014565	0.008372	0.007225	0.015484
Median	0.007691	0.032386	0.021487	0.009926	0.023016
Maximum	0.538008	0.203318	0.297517	0.177875	0.149225
Minimum	-0.359854	-0.278680	-0.211074	-0.158686	-0.191761
Std. Dev.	0.157871	0.097376	0.102734	0.069752	0.074544
Skewness	0.605372	-0.563140	0.067238	-0.311424	-0.678053
Kurtosis	3.569296	3.239812	2.716799	3.271721	3.356809
Jarque-					
Bera	6.041248	4.475309	0.331718	1.558480	6.636393
Probability	0.048771	0.106708	0.847165	0.458755	0.036218
Sum	2.461366	1.179753	0.678133	0.585231	1.254199
Sum Sq.					
Dev.	1.993850	0.758571	0.844344	0.389226	0.444547
Observatio					
ns	81	81	81	81	81

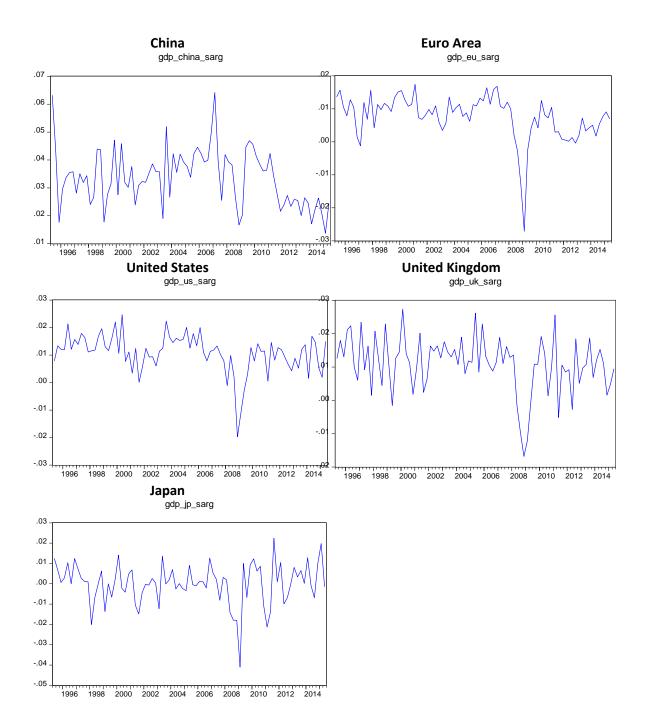


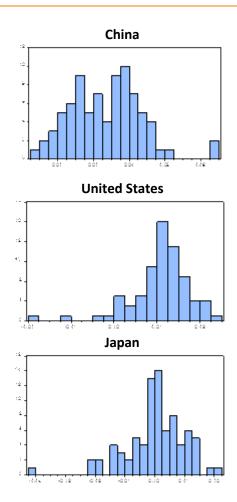


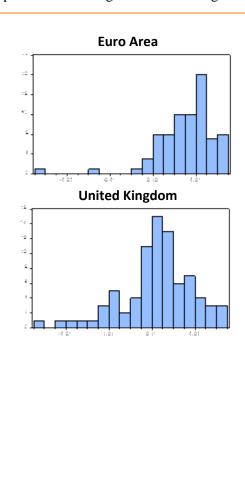


	C2 CHN GNSA	C2_EURO_GNSA_	C2 JP GNSA	C2 UK GNSA	C2 US GNSA
	SAF		SAF	SAF	SAF
Mean	0.027542	0.012432	0.005248	0.006809	0.014890
Median	0.004857	0.019519	-0.001812	0.009785	0.023249
Maximum	0.356176	0.294251	0.257010	0.119662	0.152258
Minimum	-0.283080	-0.233043	-0.290963	-0.217017	-0.260238
Std. Dev.	0.130498	0.089475	0.089613	0.055032	0.061976
Skewness	0.414983	-0.277820	-0.076163	-1.055981	-1.236823
Kurtosis	3.103059	4.018305	3.967271	5.589401	6.779088
Jarque-					
Bera	2.360698	4.541675	3.236004	37.68315	68.85145
Probability	0.307172	0.103226	0.198295	0.000000	0.000000
Sum	2.230863	1.007007	0.425078	0.551506	1.206105
Sum Sq.					
Dev.	1.362388	0.640458	0.642445	0.242281	0.307281
Observatio					
ns	81	81	81	81	81

7.5.3 CPI

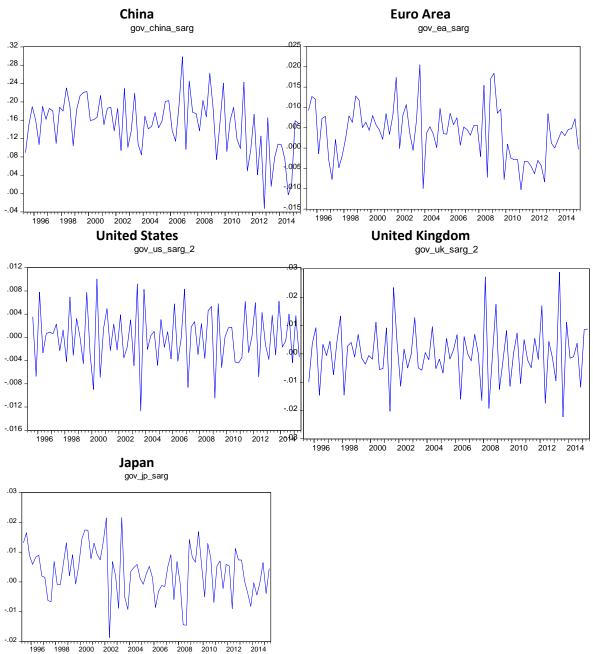


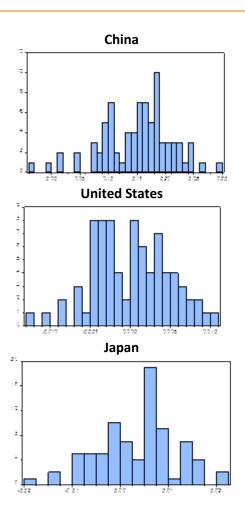


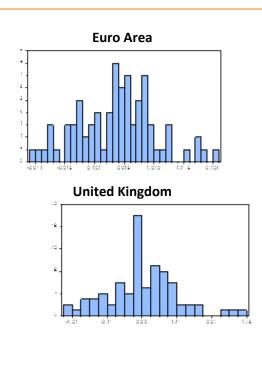


	CPI_CHINA_SARG	CPI_EA_SARG	CPI_JP_SARG	CPI_UK_SARG	CPI_US_SARG
Mean	0.005937	0.004605	0.000273	0.005055	0.005602
Median	0.004806	0.005028	-0.000654	0.004224	0.006115
Maximum	0.027565	0.011949	0.021134	0.017184	0.014536
Minimum	-0.010500	-0.003680	-0.009533	-0.003558	-0.021261
Std. Dev.	0.008147	0.002937	0.004363	0.003539	0.005069
Skewness	0.748857	-0.410749	1.905133	0.699795	-2.085775
Kurtosis	3.510234	3.804547	9.692217	4.304041	11.67190
Jarque-Bera	8.449269	4.462268	200.1506	12.35038	312.5372
Probability	0.014631	0.107407	0.000000	0.002080	0.000000
Sum	0.480917	0.373023	0.022109	0.409429	0.453770
Sum Sq. Dev.	0.005309	0.000690	0.001523	0.001002	0.002055
Observations	81	81	81	81	81

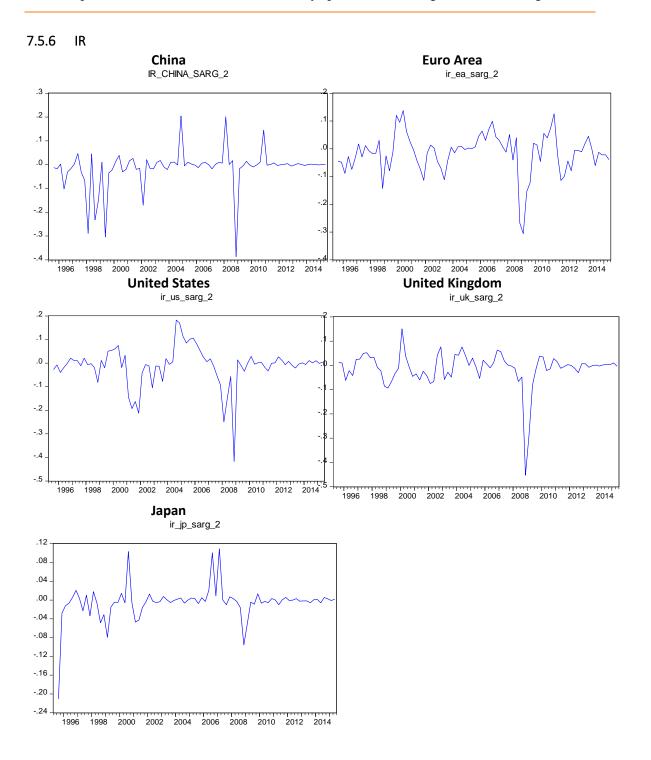
7.5.4 GDP

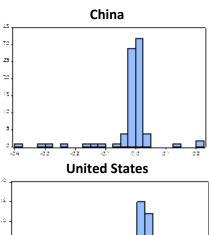


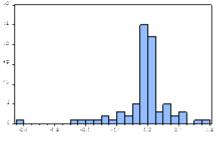


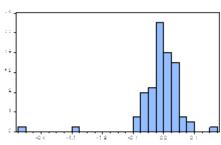


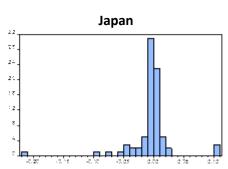
	GDP_CHINA_SARG	GDP_EU_SARG	GDP_JP_SARG	GDP_UK_SARG	GDP_US_SARG
Mean	0.033635	0.007588	0.000111	0.011040	0.010756
Median	0.034381	0.008795	0.000658	0.011382	0.011858
Maximum	0.064207	0.017367	0.022426	0.027392	0.024654
Minimum	0.013743	-0.027049	-0.040989	-0.016802	-0.019747
Std. Dev.	0.010085	0.006620	0.010025	0.008288	0.006966
Skewness	0.443687	-2.139520	-0.945898	-0.800267	-1.418495
Kurtosis	3.350697	11.36633	5.451122	4.281684	7.186780
Jarque-Bera	3.072667	298.0315	32.35576	14.18992	86.32455
Probability	0.215169	0.000000	0.000000	0.000829	0.000000
Sum	2.724441	0.614656	0.008974	0.894260	0.871205
Sum Sq. Dev.	0.008137	0.003506	0.008041	0.005496	0.003882
Observations	81	81	81	81	81

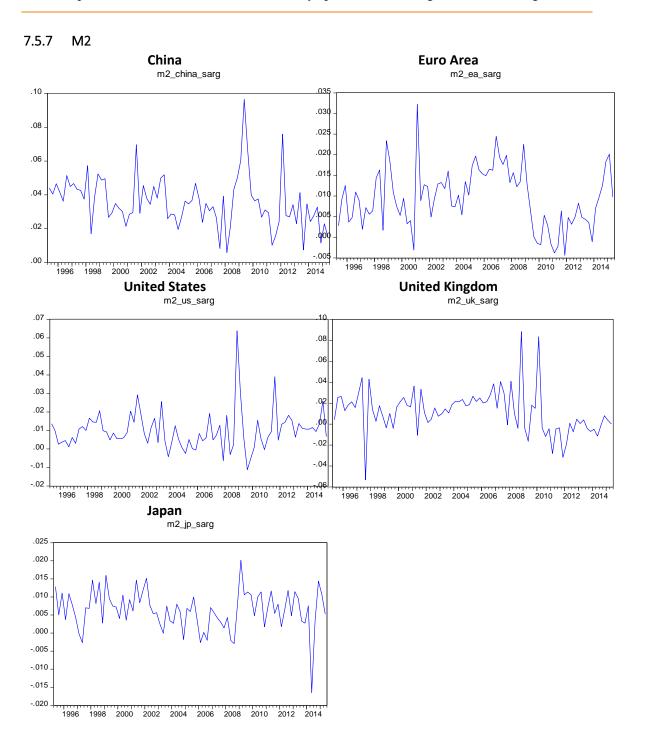


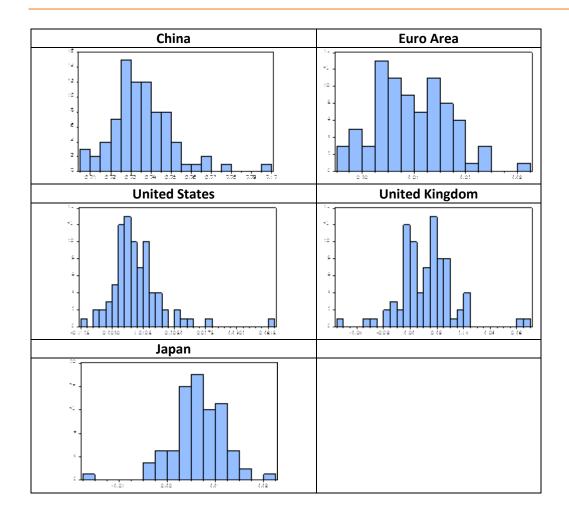





	GOV_CHINA_SAR	GOV_EA_SAR	GOV_JP_SAR	GOV_UK_SARG_	GOV_US_SARG_
	G	G	G	2	2
Mean	0.151467	0.003625	0.003443	8.72E-05	2.62E-05
Median	0.159990	0.003927	0.005186	-0.000576	0.000162
Maximum	0.298388	0.020493	0.021641	0.028856	0.010053
Minimum	-0.032647	-0.010234	-0.018728	-0.022256	-0.012682
Std. Dev.	0.061144	0.006573	0.008219	0.010052	0.004787
Skewness	-0.557898	0.129254	-0.194085	0.266445	-0.086965
Kurtosis	3.556584	2.947604	2.965266	3.571709	2.641639
Jarque-Bera	5.182616	0.231907	0.506275	2.036079	0.528913
Probability	0.074922	0.890517	0.776361	0.361303	0.767623
Sum	12.11737	0.289976	0.275407	0.006976	0.002099
Sum Sq.					
Dev.	0.295352	0.003413	0.005337	0.007982	0.001810
Observation					
S	80	80	80	80	80







	IR_CHINA_SARG_2	IR_EA_SARG_2	IR_JP_SARG_2	IR_UK_SARG_2	IR_US_SARG_2
Mean	-0.014743	-0.015606	-0.004894	-0.012088	-0.012306
Median	-0.000407	-0.009075	-0.002173	-0.002666	-0.002090
Maximum	0.204653	0.137913	0.109016	0.150690	0.182448
Minimum	-0.386789	-0.306229	-0.210606	-0.452707	-0.417084
Std. Dev.	0.083376	0.073245	0.036773	0.072383	0.084041
Skewness	-1.931414	-1.142719	-1.596528	-3.382376	-1.742307
Kurtosis	10.67328	6.372365	16.36398	20.86141	9.628801
Jarque-Bera	246.0023	55.32024	629.3055	1215.973	186.9451
Probability	0.000000	0.000000	0.000000	0.000000	0.000000
Sum	-1.179451	-1.248488	-0.391515	-0.967012	-0.984494
Sum Sq. Dev.	0.549168	0.423823	0.106827	0.413906	0.557974
Observations	80	80	80	80	80

	M2_CHINA_SARG	M2_EA_SARG	M2_JP_SARG	M2_UK_SARG	M2_US_SARG
Mean	0.035700	0.009611	0.006387	0.011912	0.009849
Median	0.034633	0.009372	0.006820	0.012944	0.008591
Maximum	0.096570	0.032242	0.020162	0.088478	0.063813
Minimum	0.005844	-0.004375	-0.016516	-0.053237	-0.011241
Std. Dev.	0.015144	0.007234	0.005402	0.020944	0.010368
Skewness	0.957889	0.322348	-0.757385	0.586250	2.026985
Kurtosis	5.556337	3.061176	5.864590	6.137752	11.15332
Jarque-Bera	34.44208	1.415395	35.43885	37.86833	279.8256
Probability	0.000000	0.492778	0.000000	0.000000	0.000000
Sum	2.891740	0.778511	0.517360	0.964841	0.797807
Sum Sq. Dev.	0.018347	0.004186	0.002334	0.035091	0.008600
Observations	81	81	81	81	81

7.6 ROUTINE

The routine to estimate the model, is represented as follows:

```
@e7=c(1)*@u7
@e8=c(2)*@u8
@e3=c(3)*@e7+c(4)*@e8+c(5)*@u3
@e2=c(6)*@e7+c(7)*@e8+c(8)*@e3+c(9)*@u2
@e4=c(10)*@e3+c(11)*@e2+c(12)*@u4
@e5=c(13)*@e3+c(14)*@e2+c(15)*@e4+c(16)*@u5
@e6=c(17)*@e7+c(18)*@e8+c(19)*@e4+c(20)*@e5+c(21)*@u6+c(22)*@e1
@e1=c(23)*@e7+c(24)*@e8+c(25)*@e3+c(26)*@e2+c(27)*@e4+c(28)*@e5+c(29)*@e6+c(3
0)*@u1
where
@e1 represents C CHINA SAG residuals
@e2 represents DT_CHINA_SAG residuals
@e3 represents GDP_CHINA_SAG residuals
@e4 represents GOV_CHINA_SAG residuals
@e5 represents M2_CHINA_SAG residuals
@e6 represents IR_CHINA_SAG residuals
@e7 represents GOV_EURO_SAG residuals
@e8 represents M2_EURO_SAG residuals
```

This routine represents the equation number3.

7.7 OPTIMAL LAG LENGTH

model		criteria									
	lag	LogL	LR	FPE CI	AIC	SC	HQ				
	0	1483.572	NA	6.61e-28	-39.88033	-39.63124*	· ·				
	1	1584.126	176.6483	2.49e-28	-40.86827	-38.62647	-39.97399*				
	2	1652.318	105.0524	2.35e-28*	-40.98156	-36.74706	-39.29237				
9	3	1717.844	86.77814*	2.63e-28	-41.02281	-34.79561	-38.53871				
	4	1789.025	78.87649	2.98e-28	-41.21690	-32.99699	-37.93788				
	5	1855.056	58.89207	5.05e-28	-41.27178	-31.05917	-37.19784				
	6	1954.423	67.14011	5.44e-28	-42.22765*	-30.02234	-37.35880				
	0	1371.904	NA	1.35e-26	-36.86228	-36.61319*	-36.76292*				
	1	1464.197	162.1356	6.36e-27	-37.62695	-35.38515	-36.73267				
	2	1533.999	107.5329	5.75e-27	-37.78376	-33.54926	-36.09457				
10	3	1599.986	87.38864	6.36e-27	-37.83747	-31.61027	-35.35336				
10	4	1680.026	88.69216	5.67e-27	-38.27097	-30.05106	-34.99194				
	5	1775.047	84.74906*	4.39e-27	-39.10939	-28.89678	-35.03545				
	6	1881.956	72.23568	3.86e-27*	-40.26909*	-28.06377	-35.40024				
	0	1488.249	NA	5.83e-28	-40.00673	-39.75764*	-39.90736*				
	1	1573.702	150.1204	3.30e-28	-40.58654	-38.34475	-39.69226				
	2	1633.969	92.84427	3.86e-28	-40.48566	-36.25116	-38.79647				
11	3	1708.622	98.86491	3.38e-28	-40.77358	-34.54638	-38.28947				
	4	1795.555	96.33050*	2.50e-28*	-41.39338	-33.17347	-38.11435				
	5	1854.196	52.30194	5.17e-28	-41.24855	-31.03594	-37.17462				
	6	1940.059	58.01532	8.02e-28	-41.83944*	-29.63412	-36.97058				
	0	1487.711	NA	5.91e-28	-39.99218	-39.74309*	-39.89282*				

	1	1567.027	139.3395	3.95e-28	-40.40613	-38.16434	-39.51186
	2	1625.202	89.62084	4.89e-28	-40.24870	-36.01420	-38.55951
	3	1692.416	89.01384	5.23e-28	-40.33558	-34.10838	-37.85147
12	4	1785.982	103.6813*	3.23e-28*	-41.13466	-32.91475	-37.85564
	5	1862.776	68.49118	4.10e-28	-41.48042	-31.26781	-37.40648
	6	1935.873	49.38992	8.98e-28	-41.72629*	-29.52097	-36.85744
	0	1497.301	NA	4.56e-28	-40.25137	-40.00228*	-40.15201
	1	1613.667	204.4276	1.12e-28	-41.66668	-39.42489	-40.77240*
	2	1680.737	103.3243*	1.09e-28*	-41.74966	-37.51516	-40.06046
21	3	1735.556	72.59736	1.63e-28	-41.50151	-35.27430	-39.01740
	4	1808.847	81.21420	1.74e-28	-41.75261	-33.53270	-38.47359
	5	1882.760	65.92231	2.39e-28	-42.02053	-31.80791	-37.94659
	6	1969.800	58.81127	3.59e-28	-42.64325*	-30.43793	-37.77440
	0	1385.001	NA	9.49e-27	-37.21625	-36.96717*	-37.11689
	1		196.6694	2.62e-27	-38.51221	-36.27041	-37.61793*
22	2	1557.503	93.28190	3.05e-27	-38.41900	-34.18450	-36.72981
	3	1622.189	85.66512	3.49e-27	-38.43754	-32.21034	-35.95343
	4	1705.566	92.39065	2.84e-27	-38.96124	-30.74133	-35.68222
	5	1799.855	84.09607*	2.25e-27	-39.77988	-29.56726	-35.70594
	6	1915.647	78.23757	1.55e-27*	-41.17965*	-28.97433	-36.31080
	0	1503.072	NA	3.90e-28	-40.40736	-40.15828*	-40.30800
	1	1605.669	180.2365	1.39e-28*	-41.45050	-39.20871	-40.55623*
	2	1663.891	89.69461	1.72e-28	-41.29436	-37.05987	-39.60517
23	3	1729.877	87.38611	1.90e-28	-41.34802	-35.12082	-38.86392
	4	1816.874	96.40251*	1.40e-28	-41.96958	-33.74967	-38.69055
	5	1887.599	63.07842	2.10e-28	-42.15131	-31.93870	-38.07738
	6	1993.817	71.76935	1.88e-28	-43.29236*	-31.08704	-38.42351
	0	1502.603	NA	3.95e-28	-40.39467	-40.14558*	-40.29530
	1	1599.699	170.5743	1.63e-28	-41.28916	-39.04737	-40.39488*
24	<u>. </u>	1650.470	78.21470	2.47e-28	-40.93162	-36.69712	-39.24242
	3	1718.941	90.67858	2.55e-28	-41.05247	-34.82527	-38.56836
	4	1813.043	104.2745*	1.56e-28	-41.86602	-33.64611	-38.58700
	5	1901.246	78.66806	1.45e-28*	-42.52017	-32.30756	-38.44624
	6	1982.503	54.90282	2.55e-28	-42.98656*	-30.78124	-38.11771
	_						

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

7.8 MODEL VALIDATION TESTS

7.8.1 Stability

7.8.1 Stability										
9	10	11	12	21	22	23	24			
0.851595	0.987681	0.984353	0.992314	0.964763	0.992372	0.998756	0.675329			
0.851595	0.987681	0.984353	0.955479	0.964763	0.992372	0.998756	0.675329			
0.842909	0.957786	0.896354	0.945987	0.959682	0.940794	0.890730	0.467129			
0.842909	0.957786	0.896354	0.945987	0.959682	0.940794	0.890730	0.445705			
0.776590	0.947494	0.893803	0.938977	0.950840	0.914057	0.888981	0.297628			
0.776590	0.947494	0.893803	0.938977	0.950840	0.914057	0.888981	0.220335			
0.772919	0.943112	0.867060	0.938628	0.938166	0.908341	0.835574	0.204399			
0.772919	0.943112	0.867060	0.938628	0.938166	0.908341	0.835574	0.038257			
0.745846	0.938932	0.866037	0.934864	0.938075	0.907640	0.827063				
0.745846	0.938932	0.866037	0.934864	0.938075	0.907640	0.827063				
0.736160	0.931944	0.843599	0.931995	0.930857	0.899902	0.825551				
0.736160	0.931944	0.843599	0.931995	0.930857	0.899902	0.825551				
0.731067	0.922899	0.812950	0.929938	0.927660	0.897641	0.806136				
0.731067	0.922899	0.812950	0.929938	0.927660	0.897641	0.806136				
0.677291	0.917679	0.786614	0.929823	0.912737	0.879022	0.797750				
0.677291	0.917679	0.786614	0.929823	0.912737	0.879022	0.797750				
0.657441	0.906463	0.766410	0.928780	0.909213	0.877266	0.780540				
0.657441	0.906463	0.766410	0.928780	0.909213	0.877266	0.780540				
0.635474	0.903243	0.760339	0.913545	0.903223	0.864048	0.766578				
0.635474	0.903243	0.760339	0.913545	0.903223	0.864048	0.766578				
0.532048	0.888755	0.736531	0.895822	0.897633	0.861556	0.763137				
0.392980	0.888755	0.736531	0.895822	0.897633	0.861556	0.763137				
0.392980	0.887080	0.709772	0.880142	0.893900	0.844130	0.716748				
0.131668	0.887080	0.709772	0.880142	0.893900	0.844130	0.716748				
0.851595	0.886716	0.682318	0.875105	0.881853	0.814181	0.631523				
0.851595	0.886716	0.682318	0.875105	0.881853	0.814181	0.631523				
0.842909	0.882129	0.656789	0.866621	0.880698	0.811470	0.585503				
0.842909	0.882129	0.601662	0.866621	0.880698	0.774725	0.538519				
0.776590	0.879900	0.601662	0.855672	0.872087	0.774725	0.338604				
0.776590	0.879900	0.225954	0.855672	0.872087	0.751283	0.308312				
	0.878679	0.139615	0.838431	0.870339	0.751283	0.308312				
0.772919	0.878679	0.139615	0.838431	0.870339	0.734228	0.113932				
0.745846	0.875994		0.832554	0.850764	0.734228					
0.745846	0.875994		0.832554	0.850764	0.672515					
0.736160	0.853664		0.817612	0.841205	0.672515					
0.736160	0.853664		0.817612	0.835645	0.447072					
0.731067	0.844244		0.797761	0.835645	0.447072					
0.731067	0.844244		0.797761	0.831678	0.411871					
0.677291	0.838573		0.726777	0.831678	0.411871					
0.677291	0.838573		0.726777	0.774558	0.232479					
0.657441	0.734494		0.625279	0.774558						
0.657441	0.734494		0.603994	0.722266						
0.635474	0.675051		0.603994	0.722266						
0.635474	0.675051		0.510030	0.610466						
0.532048	0.577486		0.510030	0.598963						
0.392980	0.577486		0.378619	0.491727						

0.392980	0.565294	0.125923	0.491727		
0.131668	0.066767	0.052703	0.044830		

7.8.2 Autocorrelation

VAR Residual Serial Correlation LM Tests

Null Hypothesis: no serial correlation at lag order h

Lags /	9	10	11	12	21	22	23	24			
model		LM- Stat (Prob)									
1	0.2279	0.0649	0.7081	0.1371	0.1616	0.2019	0.2666	0.0698			
2	0.7968	0.6041	0.7829	0.7542	0.7543	0.1191	0.1791	0.1315			
3	0.5616	0.1092	0.1289	0.6922	0.4914	0.0685	0.0104	0.0521			
4	0.1794	0.1528	0.0754	0.0813	0.5125	0.3857	0.0304	0.2430			
5	0.1208	0.3594	0.2318	0.0589	0.6466	0.7535	0.3617	0.0395			
6	0.6387	0.2352	0.3081	0.2445	0.9661	0.0627	0.0148	0.2018			
7	0.6186	0.1817	0.6034	0.8698	0.9269	0.4165	0.2853	0.9280			

7.8.3 Heteroscedasticity

Null Hypothesis: no heteroscedasticity at lag order h

Test t		9	10	11	12	21	22	23	24
No	Chi-sq	1749.770	1	2304.552	-	-	-	2283.536	558.2242
cross	df	1728	-	2304	-	-	-	2304	576
terms	Prob.	0.3519	-	0.4928	-	-	-	0.6151	0.6948
Cross	Chi-sq	-	-	-	-	-	-	-	1635.544
terms	df	-	-	-	-	-	-	-	1584
	Prob.	-	-	-	-	-	-	-	0.1794

7.8.4 Normality

Null Hypothesis: residuals are multivariate normal

Orthogona method/		9	10	11	12	21	22	23	24
	Jarqu	51.590	53.038	104.25	34.779	9.2074	54.199	67.635	207.30
Cholesky	es-	01	96	67	55	52	74	29	64
(Lutkepohl	Bera								
)	Df	16	16	16	16	16	16	16	16
	Joint	0.0000	0.0000	0.0000	0.0043	0.9046	0.0000	0.0000	0.0000
	p-								
	value								
Residual	Jarqu	46.580	25.414	54.297	22.620	16.106	37.745	50.742	69.022
Correlati	es-	28	99	02	93	32	26	35	12
on	Bera								
(Doornik-	Df	16	16	16	16	16	16	16	16
Hansen)	Joint	0.0001	0.0628	0.0000	0.1242	0.4456	0.0016	0.0000	0.0000
	p-								
	value								
	Jarqu	1546.8	793.36	732.51	566.41	579.57	885.73	611.95	798.96
Residual	es-	38	33	59	90	51	41	81	80
Covarian	Bera								

ce	Df	450	450	450	450	450	450	450	450
(Urzua)	Joint	0.0000	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000
	p-								
	value								
	Jarqu	52.601	170.02	75.633	170.59	173.50	127.73	83.437	65.339
Structura	es-	13	08	58	66	38	67	47	75
1	Bera								
Factoriza	Df	16	16	16	16	16	16	16	16
tion	Joint	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	p-								
	value								

^{*=}is considered have normal distribution in some joint p-values

8 Group Unit Root test for Residuals

 H_0 : There is a unit root in the series

Model #	Method	Statistic	Prob.**	Cross-sections	Obs	
	Null: Unit root (assumes common unit root process)					
	Levin, Lin & Chu t*	-24.3586	0.0000	8	606	
	Breitung t-stat	-12.1798	0.0000	8	598	
9	Null: Unit root (assumes individual unit root process)					
	Im, Pesaran and Shin W-stat	-22.2242	0.0000	8	606	
	ADF - Fisher Chi-square	264.300	0.0000	8	606	
	PP - Fisher Chi-square	258.692	0.0000	8	608	
	Null: Unit root (assumes com	mon unit ro	ot process	5)		
	Levin, Lin & Chu t*	-25.8294	0.0000	8	584	
	Breitung t-stat	-16.5937	0.0000	8	576	
10	Null: Unit root (assumes individual unit root process)					
	Im, Pesaran and Shin W-stat	-22.5123	0.0000	8	584	
	ADF - Fisher Chi-square	261.119	0.0000	8	584	
	PP - Fisher Chi-square	248.611	0.0000	8	584	
	Null: Unit root (assumes common unit root process)					
	Levin, Lin & Chu t*	-26.2409	0.0000	8	600	
	Breitung t-stat	-13.4126	0.0000	8	592	
11	Null: Unit root (assumes individual unit root process)					
	Im, Pesaran and Shin W-stat	-24.1692	0.0000	8	600	
	ADF - Fisher Chi-square	273.801	0.0000	8	600	
	PP - Fisher Chi-square	260.692	0.0000	8	600	
	Null: Unit root (assumes com	mon unit ro	ot process	5)		
	Levin, Lin & Chu t*	-28.1686	0.0000	8	584	
	Breitung t-stat	-17.5611	0.0000	8	576	

12	Null: Unit root (assumes indiv	ridual unit r	oot proces	ss)		
	Im, Pesaran and Shin W-stat	-23.7869	0.0000	8	584	
	ADF - Fisher Chi-square	272.902	0.0000	8	584	
	PP - Fisher Chi-square	263.244	0.0000	8	584	
	Null: Unit root (assumes common unit root process)					
	Levin, Lin & Chu t*	-25.2559	0.0000	8	584	
	Breitung t-stat	-13.2914	0.0000	8	576	
21						
	Null: Unit root (assumes common unit root process)					
	Im, Pesaran and Shin W-stat	-22.1714	0.0000	8	584	
	ADF - Fisher Chi-square	271.078	0.0000	8	584	
	PP - Fisher Chi-square	265.237	0.0000	8	584	
	Null: Unit root (assumes com	mon unit ro	ot process	5)		
	Levin, Lin & Chu t*	-26.8203	0.0000	8	588	
	Breitung t-stat	-12.8506	0.0000	8	580	
22	Null: Unit root (assumes common unit root process)					
	Im, Pesaran and Shin W-stat	-24.6343	0.0000	8	588	
	ADF - Fisher Chi-square	260.615	0.0000	8	588	
	PP - Fisher Chi-square	233.888	0.0000	8	592	
	Null: Unit root (assumes com	mon unit ro	ot process	5)		
	Levin, Lin & Chu t*	-26.3617	0.0000	8	599	
	Breitung t-stat	-11.0535	0.0000	8	591	
23						
	Null: Unit root (assumes common unit root process)					
	Im, Pesaran and Shin W-stat	-23.5359	0.0000	8	599	
	ADF - Fisher Chi-square	267.980	0.0000	8	599	
	PP - Fisher Chi-square	264.331	0.0000	8	600	
	Null: Unit root (assumes common unit root process)					
	Levin, Lin & Chu t*	-30.4229	0.0000	8	624	
	Breitung t-stat	-15.4419	0.0000	8	616	
24	Null: Unit root (assumes common unit root process)					
	Im, Pesaran and Shin W-stat	-27.1058	0.0000	8	624	
	ADF - Fisher Chi-square	245.714	0.0000	8	624	
	PP - Fisher Chi-square	244.269	0.0000	8	624	

^{**} Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

9 APPENDIX

9.1 l	LIST OF FIGURES	
Figure 2	2-1 The Role of China in the World	15
Figure 2	2-2 Total bank credit worldwide (USD trn)	16
Figure 2	2-3 GDP and Exports of China (growth rates)	17
Figure 2	2-4 Portfolio Investment Liabilities in China (growth rates)	17
Figure 2	2-5 Government expenditures and gross debt in China	18
Figure 2	2-6 Main interest rates (%)	23
	2-7 Total assets of Central Banks	
Figure 2	2-8 Synthesis of literature review	34
9.2 Lis	ST OF TABLES	
Table 2	-1 The phases of central government stimulus spending	19
Table 2	-2 Sectoral composition of stimulus investment	19
Table 2	-3 Total assets of Chinese banking sector (% of GDP)	21
Table 2	-5 Money aggregates for China, average	22
Table 2	-6 Monetary spillovers over China	36
Table 4	-1 Contemporaneous relationships	43

10 APPENDIX A: HISTORY OF QUANTITATIVE EASING PROGRAMS

Recent history of the programs

Inst.	Program	Description
	Q1 -28 Nov	Fed purchase \$100 billion in debt and \$500 billion in mortgage
	2008	backed securities
	Q1	purchase \$300 billion in long term Treasuries and \$750 billion
	expanded	in MBS
	-18 Mar	
	2009	
	Q2 -11 Mar	dwindle long-term interest rates, with a new round of Treasury
	2010	securities purchases for \$600 billion
	Operation	purchase \$400 billion in Treasuries
	TWIST - 21	
	Sep 2011	
	Operation	continue to purchase long term securities and sell short
FED	TWIST	term securities; at the pace of about \$45 billion per month
	extended -	
	20 Feb 2012	
	QE3 - 13	purchase \$40 billion of MBS per month
	Sep 2012	
	QE3	purchase \$45 billion of long term Treasuries per month without
	expanded -	sterilization
	12 Dec	
	2012	
	Taper- Dec	indicated a taper, where the \$85 billion spent per month would
	2013	be reduced by \$10 billion going forward
	End QE3 -	End of the QE3 program
	October	
	2014	
	28 Mar and	Long term refinancing operations announced and expanded
	15 Oct 2008	

	7 May 2009	purchase €60 billion in Euro-denominated covered bonds; 12
		month LTRO announced
	10 May	interventions in the Euro Area private and public debt securities
	2010	markets, purchases sterilized
	6 Oct 2011	purchase €40 billion in Euro-denominated covered bonds
	8 Dec 2011	LTRO expanded, 36 month LTRO announced
]	6 Sep 2012	Countries that apply to the ESM will potentially have their debt
ECB		purchased in unlimited amounts on the secondary market by the
		ECB.
	QE1 - 22	Buy 60 billion euros in government treasury bonds
	Jan 2015	
	2 Sep 2015	raised the purchase limit of a single country's debt stock from
		25 to 33 per cent, €1.1trilion bond-buying program
	22 Jan 2016	extended its monthly asset purchases to 60 billion euros
	10 Mar	extended its monthly asset purchases to 80 billion euros,
	2016	including corporate bonds
	QE1 -	£75 billion of asset purchases; increased the program to
	01/2009	£125bn, £175bn and then £200bn Maintenance from February
		2010 onwards.
	QE1 - 19	purchase up to £50 billion of high quality private sector assets
	Jan 2009	financed by Treasury issuance
	QE1 - 5	purchase £75 billion in assets financed by reserve issuance
	Mar 2009	
	QE1 - 7	purchase up to £125 billion in assets
-	May 2009	
OE	QE1 - 6	purchase up to £175 billion in assets
	Aug 2009	
	QE1	purchase £200 billion in assets
	expanded	
	QE2	purchase up to £275 billion in assets financed by reserve
	6 Oct 2011	issuance
	QE2 - 9 Feb	purchase up to £325 billion in assets
	2012	

	QE2 - 5	purchase up to £375 billion in assets
	July 2012	
	QE3	£50 bn purchases was announced on 9th February 2012
	(02/2012 -	
	?)	
	quantitative	increased the commercial bank current account balance from ¥5
	easing	trillion to ¥35 trillion
	policy	
	(QEP) -	
	03/2001-	
	03/2006	
	Beginning	outright purchases, from 1 to 2 trillion JPY each
	of	
	"Abenomics	
	" - 2008 and	
	2009	
	1 Dec 2009	offer 10 trillion JPY in 3 month loans
	17 Mar and	expands the size of the fixed rate operations to 20 trillion JPY
	21 May	and offers 3 trillion JPY in 1-year loans to private institutions
	2010	
	30 Aug	adds 10 trillion JPY in 6 month loans to the fixed rate
	2010	operations
OJ	GSFF -	Growth- Supporting Funding Facility introduced, capped the
	04/2010	quantity of loans at ¥3 trillion and fixed
	5 Oct 2010	will purchase 5 trillion JPY in assets
	14 Mar	will purchase additional 5 trillion JPY in assets
	2011	
	14 Jun 2011	0.5 trillion JPY in loans available to private financial
		institutions
	4 Aug 2011	purchase additional 5 trillion JPY in assets, 6 month loans
		through the FROs expanded by 5 trillion JPY
	27 Oct 2011	purchase additional 5 trillion JPY in assets
	14 Feb 2012	purchase additional 10 trillion JPY in assets
	•	

2012 27 Apr purchase additional 10 trillion JPY in assets 2012 12 Jul 2012 purchase additional 5 trillion JPY in assets 19 Sep 2012 purchase 5 trillion JPY in JGB and 5 trillion JPY in Treasury bills 30 Oct 2012 purchase 5 trillion JPY in JGB and 5 trillion JPY in Treasury
2012 12 Jul 2012 purchase additional 5 trillion JPY in assets 19 Sep 2012 purchase 5 trillion JPY in JGB and 5 trillion JPY in Treasury bills
12 Jul 2012 purchase additional 5 trillion JPY in assets 19 Sep 2012 purchase 5 trillion JPY in JGB and 5 trillion JPY in Treasury bills
19 Sep 2012 purchase 5 trillion JPY in JGB and 5 trillion JPY in Treasury bills
bills
20 Oct 2012 purchase 5 trillion IDV in IGP and 5 trillion IDV in Traccury
30 Oct 2012 purchase 3 tillion if 1 in 10th and 3 tillion if 1 in 11easury
bills and other (preservation of this policy)
20 Dec purchase 5 trillion JPY in JGB and 5 trillion JPY in Treasury
bills (preservation of this policy)
Extension Extension of the GSFF to include an additional ¥500 billion
of GSFF - credit line for investments in equity and asset-based lending.
The loans had a 2-year maturity but could be rolled over only
once.
10/2011- increase the commercial bank current account balance from \(\frac{\pma}{2}\)
04/2013 trillion (US\$504 billion) to a total of ¥50 trillion (US\$630
billion); expanded its asset purchase program by ¥5 trillion
(\$66bn) to a total of ¥55 trillion
04/2013 expansion of the asset purchase program by 60 to 70 trillion
expansion of the bond buying program, to buy 80 trillion Yen
of bonds a year.

NOTES: MBS: mortgage-backed securities; GSE: government-sponsored enterprise

Sources: (Ugai & others, 2007; Martin & Milas, 2012; Kapetanios, Mumtaz, Stevens, & Theodoridis, 2012; Fawley & Neely, 2013; Cavallo, 2015; ECB, 2015; Jones, 2015; Euronews, 2015; Team, 2015; Matthews, 2016)

11 APPENDIX B: TABLE OF ABBREVIATIONS

Abbreviation	Meaning
US(A)	United States of (America)
EA	Euro Area
UK	United Kingdom
JP	Japan
(S)VAR	(Stuctural) Vector Autoregressive
QE	Quantitative Easing
Q1	1 st quarter
BOJ	Bank of Japan
ECB	European Central Bank
FED	Federal Reserve System
RMB	Renminbi (official currency of Republic of China)
MBS	mortgage-backed securities
GSE	government-sponsored enterprise