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1. Introduction

Swarm robotics is a branch of collective robotics fo-
cused on the study of relatively large groups of robots
with limited sensing and communication capabilities.
One of the main benefits of such systems is their poten-
tial for parallelism. To achieve parallelism in real-world
scenarios, it is important to be able to split the swarm
into appropriately sized groups for different concurrent
tasks.

Imagine a swarm of robots that must be deployed to
monitor the spread of an environmental hazard. Differ-
ent hazard areas of various sizes will need correspond-
ingly sized groups of robots, and the hazard sites may
be spread far apart. As in any such real-world scenario,
it is likely that there will not be enough robots to allo-
cate the ideal number to each hazard site. In this pa-
per, we propose a distributed mechanism to solve this
type of group formation problem, whereby large num-
bers of robots must be divided into multiple groups in
parallel. When the number of available robots is suf-
ficient, our system is capable of forming groups of dif-
ferent, pre-defined sizes. When the available robots are
less than the sum of the desired sizes, our system dis-
tributes robots fairly across groups, ensuring that each
group grows at the same rate.

Existing approaches to parallel group formation in
multi-robot systems have limitations that render them
inappropriate for this type of scenario. Decentralised
task allocation and task partitioning approaches scale
well, but they only work when the tasks are located
close to each other and the density of robots is suffi-
ciently high 7). Centralised approaches, on the other
hand, can efficiently divide a population of robots into
specific group sizes matching different tasks, but do not

scale to large swarms of robots due to high communi-
cation overheads 4). The only decentralised approaches
that have tackled the formation of specific group sizes in
swarms of robots have restricted themselves to forming
or counting a single group of robots at a time 3), 11).

Our work is inspired by the aggregation behaviour of
cockroaches under shelters. The dynamics of this be-
haviour are well understood, and predict different ag-
gregated group sizes in an environment with different
sized shelters. Amé et al.1) modelled cockroaches as
simple agents that walk randomly in an environment,
and have a certain probability of stopping that increases
with the presence of a shelter and with proximity to
other stopped cockroaches. This model is a good fit
for the parallel group size selection problem in robotics,
as there is no communication required between agents.
Our approach does not, therefore, suffer from the scal-
ability limits of centralised approaches. We use ‘active
shelters’, that can affect the probability of robots stop-
ping underneath them within a certain communication
range. By varying the stopping probabilities associated
with different shelters, we reproduce the effect of differ-
ent shelter sizes and create robotic groups of different
required sizes.

2. Related Work

In swarm robotics, existing approaches to the prob-
lem of splitting up a swarm of robots into groups re-
volve around distributed forms of task allocation 7) —
scalable, decentralised approaches with low or no com-
munication overheads. In these approaches, individ-
ual robots have a mechanism for testing the task and
allocating themselves to different tasks or sub-tasks.
Testing by robots can, for example, take the form of
determining whether an object is moving in a group
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transport scenario 13), or testing the time taken to per-
form a task or sub-task 15). The performance (and/or
convergence time) of these methods typically depends
on the number of interactions among robots per time
unit, which, in turn, depends on the density of robots
in the environment. An ideal density range exists, in
which these methods perform best. Below a certain den-
sity threshold, the robots interact too rarely for these
methods to be practically appliable. Above a certain
threshold, the robots spend significant time avoiding
each other rather than performing their assigned tasks.
In real-world scenarios, the available robots are often
scarce, tasks may be located far apart from one an-
other, and explicit group sizes may need to be allocated
based on some external (human) assessment of the prob-
lem. Under these circumstances, task-allocation-based
approaches may not be feasible.

Explicit group size formation has been demonstrated
as feasible in the swarm robotics context, but only
for a single group at a time. Melhuish et al. 11) con-
trolled group sizes in a swarm of abstract agents using
a firefly-like synchronisation mechanism. However, only
one group was formed at a time and the physics of the
agents was not taken into account. Brambilla et al. 3)

used physically embodied robots, but their system could
only passively count the number of robots in a single ex-
isting group (rather than generating a group of a priori
determined target size). Hsieh et al. 9) have studied an
abstraction of the problem we study, whereby robots
must distribute across multiple sites in predefined ra-
tios. Hsieh et al.’s work is based on statistical models
of the house hunting behaviour of the ant Temnothorax
albipennis.

In multi-robot systems formed by a low number of in-
dividuals, market-based approaches provide a good so-
lution to the problem of parallel group formation of ex-
plicit group sizes 4). Market-based approaches, however,
have intrinsic scalability problems that render them less
applicable to swarm robotics systems. In market-based
approaches, all robots participate in an auction, and
market forces determine the most appropriate alloca-
tion of robots to groups corresponding to particular
tasks. However, the fact that every robot must par-
ticipate in the auction process means that bandwidth
and computation requirements increase quickly with the
number of robots.

Our approach is inspired by the aggregation be-
haviour of cockroaches 18). Cockroach behaviour is ac-

curately mimicked by Jeanson’s et al. model 10) in which
cockroaches stochastically switch from stopping to per-
forming a random walk and back. The probability of
stopping rather than random walking increases with the
number of other nearby stopped cockroaches. A pos-
itive feedback mechanism then results in aggregation
into groups. When multiple shelters of different sizes
are available in the environment, cockroaches may form
groups of different sizes that correspond to the sizes of
shelter available 1).

Previous robotics studies have shown how cockroach
behaviour can be faithfully mimicked by a group of
robots. Existing robotic implementations share key fea-
tures of the cockroach model. In particular, the equilib-
rium distribution of agents depends passively on the ini-
tial configuration of the environment and on the static
mapping of environmental conditions to stop/go prob-
abilities 6). None of the existing studies, however, have
used the model to generate a priori desired group sizes,
or explored how many such groups could be formed in
parallel.

3. Methodology

Our approach is inspired by the aggregation be-
haviour of cockroaches under shelters. This behaviour
has been modelled using decentralised agent-based
models, whereby each cockroach agent is attracted to
the shelters and to other cockroaches 1), 10). In these
models, cockroaches wander randomly in the environ-
ment, and decide probabilistically when to stop under
a given shelter, and when to leave a shelter based on
the stopping probability parameters of the model. Amé
et al.’s cockroach model 1) predicts different aggregated
group sizes in an environment with different sized shel-
ters.

We mimic some of the basic dynamics of these cock-
roach models to achieve parallel group formation. In
our system, mobile ground-based robots play the role
of cockroaches, and simple ceiling-based devices play
the role of shelters. Instead of using shelters of differ-
ent sizes, however, we make our shelters active, in the
sense that they can calculate the robots’ stop/go prob-
abilities and communicate them to the mobile robots.
In practise, each active shelter continuously transmits
stop/go probabilities to mobile robots in a limited ra-
dius. We refer to this local communication radius as
the communication range of an active shelter.

Analogously to cockroaches, robots wander randomly
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in the environment. Occasionally, a robot encounters a
shelter and decides probabilistically whether to stop un-
derneath it or not. The decision is based on the stop/go
probabilities transmitted by that particular shelter. If
a robot decides to stop, it becomes part of the group
associated with that shelter. Robots under a shelter
may also probabilistically decide to leave the shelter
(thereby leaving the associated group). By assigning
different probabilities to different shelters, we can form
groups of different a priori determined sizes in parallel.

Our system has a stochastic nature. The two main
sources of randomness are robot motion, and the prob-
abilistic decisions on joining/leaving a group. Robot
motion influences the discovery of shelters by robots, as
well as the formation and disbandment of the groups.
The probabilistic group joining/leaving mechanism im-
pacts the stability of the groups over time. To say mean-
ingfully that we have formed groups of a particular size,
therefore, the system must settle at some point into
a state in which the size of individual groups can be
recognised as stable. We refer to this property as con-
vergence. We give a formal definition of convergence in
Sec. 5.2.1.

For our system to display parallelism, the group for-
mation mechanism must ensure that all shelters receive
a fair share of robots. We refer to this property as fair
spreading. In our approach, fair spreading occurs when
the rate of growth of all group sizes is proportional to
the desired sizes. In a system that displays fair spread-
ing, convergence time does not depend on the number
of groups to form. In addition, with fair spreading, a
system offers equal treatment for all shelters when the
number of robots available for group formation is lower
than the number of robots desired in total.

We introduced and analysed a first implementation
of this system in a previous work12). The results indi-
cate that the join and leave probabilities impact differ-
ently the dynamics of the system. The join probability
mainly accounts for the rate of addition of robots into
groups. The leaving probability accounts for the rate of
robot loss of a group, and has dramatic effects on the
dynamics of the system. Experimental results showed
that setting the leave probability to a high value greatly
improves spreading at the expense of group stability,
thus making convergence detection by the active shel-
ters difficult or impossible. A low value for the leave
probability, on the other hand, results in high stability
and unfair or non-existent spreading. Our system, pre-

(a) (b)

Fig. 1 The robot platforms we simulated for the
experiments in this study. (a) The foot-bot; (b)
the eye-bot.

sented in Sec. 5, offers a solution to this trade-off, so
as to ensure both easy convergence detection and fair
spreading.

4. Hardware

We first discuss the minimum capabilities necessary
for a hardware platform to use active shelters as a means
of group formation. We then describe the actual devices
employed in this work.
4.1 Minimum Generic Requirements

An active shelter is capable of monitoring the num-
ber of grouped robots over time, with coarse periodic-
ity. In addition, it must be capable of broadcasting the
join/leave probabilities to the robots in range. Finally,
active shelters must be able to broadcast a 1-bit signal
to nearby shelters.

A mobile robot must be capable of navigating the
environment avoiding other robots. To coordinate the
motion of robots joining/leaving a group as described in
Sec. 5.2.1, each robot must convey 2-bit state informa-
tion (joined-group/leaving-group/free) to nearby robots
and shelters. A robot must detect the state of nearby
robots and receive the join/leave probabilities from the
closest shelter. Finally, a robot must be able to perceive
nearby robots.
4.2 Devices Used in This Study

In our experiments, we employed the foot-bot 2) as
mobile robot (Fig. 1 (a)). The foot-bot navigates the
environment through a set of wheels and tracks called
treels. It can convey its state (joined-group/leaving-
group/free) through a coloured LED ring that sur-
rounds its body, and detect other robots’ state and rel-
ative location through an omnidirectional camera.

To realise active shelters we used the eye-bot robot
(Fig. 1 (b)). The eye-bot 16) is a quad-rotor robot able
to attach to the ceiling. To detect mobile robots, the
eye-bot is equipped with a pan-and-tilt camera.
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Fig. 2 A schematic representation of the math-
ematical model described in Sec. 5.1 with three
active shelters.

Eye-bot–to–foot-bot and eye-bot–to–eye-bot commu-
nication occurs through the range-and-bearing commu-
nication system 17) present on all robots. This device
allows the eye-bot to broadcast a message containing a
8-byte payload. The message can be received by nearby
eye-bots and by foot-bots on the floor in a limited range.

The robots, as well as the range-and-bearing com-
munication system, were developed in the Swarmanoid
project 5).

5. Active Shelters

In this section, we present our system to achieve group
formation control through active shelters. We analyse
its properties and identify its limitations. In Sec. 5.1, we
present a mathematical model that captures the most
important aspects of the system. In Sec. 5.2, we present
the complete implementation of the system and analyse
it through targeted physics-based simulations.
5.1 Mathematical Model

The model. In Fig. 2, we illustrate the abstraction
of the system upon which we base our mathematical
model. The shelters are distributed in a rectangular
area. The communication range of the shelters is dis-
played as a circular grey area. We assume that the
communication ranges of a shelter do not overlap with
those of the other shelters.

For the purposes of this model, we neglect the ac-
tual motion of the robots across the environment. We
assume that the robots perform a suitable diffusion al-
gorithm 8), so as to uniformly distribute in the environ-
ment. Thus, the probability c for a robot to be located
within the communication range of a shelter is given by

c =
Area(shelter)

Area(group formation area)
.

A robot joins the group of shelter i with probability
ji. This probability is set by the active shelter depend-
ing on the desired group size. The probability pi for a
robot to discover that shelter and join its group is given
by pi = cji. The probabilities pi are assumed constant

throughout the duration of a run.
A robot that is part of group i has a probability to

leave it, denoted by li. As discussed in Sec. 3, setting li

to a fixed value causes a trade-off between fair spreading
with difficult convergence on one side, and stable con-
vergence with unfair spreading on the other 12). Thus,
to reconcile convergence and spreading, the leave prob-
ability li must vary between a value that promotes fair
spreading (hereinafter denoted by lhi), and a value that
ensures convergence (hereinafter denoted by llow). At
the beginning of our experiments, each shelter i is con-
figured with a probability li = lhi = 10−2. We thus
ensure a good spread of robots early on in the group
formation process. Over a period of time, each shel-
ter exponentially decreases the value of its li, until it
reaches llow = 10−5, thus allowing the system to grad-
ually settle into a stable state. More specifically, the
values of the li’s are set as follows:

li(t) = (lhi − llow)e−γt + llow, ( 1 )

in which γ is the decay constant. We define γ as a func-
tion of a parameter δ that represents the number of time
steps required by the exponential to drop by 90%:

γ =
ln 10

δ
⇒ e−γδ = 0.1.

We denote the fraction of robots engaged in group
i > 0 at time t as xi(t), and the free robots (i.e., not
part of any group) as x0(t). If we consider the proba-
bilities pi and li as rates of group joining and leaving,
respectively, and we denote with n the number of shel-
ters in the group formation area, we obtain the following
model:

x0(t + 1) = x0(t) −

(
n∑

i=1

pi

)
x0(t) +

n∑
i=1

li(t)xi(t)

xi(t + 1) = xi(t) + pix0(t) − li(t)xi(t)

(with i ∈ [1, n])

Model behaviour. To study the behaviour of the
model with respect to convergence and spreading, we
set up a three-phase experiment. Initially, two shelters
form groups of different sizes for a certain period T1. At
time t = T1, a third shelter is activated and it starts re-
cruiting robots. Subsequently, at time t = T2, shelter 2
is disabled, thus freeing all the robots within its group.
The simulation ends at time t = T3.

The length of these three phases is not fixed, but de-
pends on the dynamics of the system. To study con-
vergence at each phase, we record the times T1, T2,
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and T3 at which the system reaches convergence in
each phase. Convergence is reached when all fractions
(grouped and free robots) change by a sufficiently lit-
tle quantity. More precisely, we declare convergence at
time t∗ if ∀k ∈ [0, n] |xk(t∗) − xk(t∗ − 1)| < 10−6.

Whenever a new shelter is activated or deactivated
spreading is important to ensure fair resource distribu-
tion. The newly activated or de-activated shelter thus

Fig. 3 Length of phase 2 in the simulations of
the mathematical model for different values of
the decay period δ.

sends a signal to nearby shelters to notify them of the
change to the system. The shelters react by forwarding
this signal to their neighbours and resetting their leave
probability value back to lhi.

To study spreading, we ran simulations with two dif-
ferent settings for the values of the join probabilities:
P1 = {0.75, 0.5, 0.25} and P2 = {0.25, 0.5, 0.75}. With
P1, shelters 1 and 2 initially must recruit most of the
robots. Shelter 3 is the least demanding, so, upon its
activation at time T1, the system must redistribute only
a few robots to shelter 3. Conversely, with P2, shelter 3
is the most demanding. Its activation at t = T1 forces
the system to redistribute most of the robots.

We ran several experiments with different values for
parameter δ. Our experiments revealed that the most
problematic event in our setting is the addition of shel-
ter 3 at the beginning of phase 2. As reported in Fig. 3,
the length of this phase decreases with the increase of
the decay period in the range [101, 103]. For δ = 104,
the length of phase 2 slightly increases with respect to
δ = 103.

A sample of the dynamics of the system for different
values of δ is reported in Fig. 4. In these experiments,

(a) P1 = {0.75, 0.5, 0.25}; δshort = 102 (b) P1 = {0.75, 0.5, 0.25}; δlong = 103

(c) P2 = {0.25, 0.5, 0.75}; δshort = 102 (d) P2 = {0.25, 0.5, 0.75}; δlong = 103

Fig. 4 Results with the mathematical model presented in Sec. 5.1. The experiments are composed of
three phases. In phase 1, two shelters are active. In phase 2 (starting at time T1), a third shelter is
activated. In phase 3 (starting at time T3), shelter 2 is deactivated. The experiment ends at time T3.
The length of each phase depends on the dynamics of the system. P1 and P2 account for the desired
group size of each shelter. Parameter δ corresponds to the decay period for the probability to leave
a shelter.
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we tested δ = δshort = 102 and δ = δlong = 103 time
steps. As the plots show, the length of the decay pe-
riod of the leave probability has a strong impact on the
behaviour of the system and the values of T1, T2 and
T3. If the decay period is short (δ = δshort), the value
of the leaving probability drops quickly and the system
behaviour results in unfair spreading and very long con-
vergence times. A long decay period (δ = δlong), on the
other hand, has a positive effect on both properties, be-
cause the robots have sufficient time to spread across
the shelters.
5.2 Physically Simulated Robot
5.2.1 Implementation

We performed experiments in detailed physics-based
simulations using the ARGoS robot simulator 14) to vali-
date the predictions of the model in a physically realistic
robotic system. A prominent aspect that affects the sys-
tem performance is interference among mobile robots.
In our system, interference occurs mainly under the ac-
tive shelters. The mobile robots must organise in tight
aggregates under the shelters, while permitting the flow
of leaving and joining robots.

In our physics-based simulations, we assume that the
robots are randomly distributed in a group formation
area in which shelters are distributed. At any moment,
a robot performing random walk across the environment
can either be under a specific shelter or in a shelter-free
area. The robot behaviour is described by the simple
state machine reported in Fig. 5. The meaning of the
states are as follows:

• state free: A robot does not belong to any group.
The robot performs random walk with obstacle
avoidance. This state is conveyed with LEDs lit
up in green.

• state in group: A robot is part of a group. This
state is conveyed with LEDs lit up in red.

• state leaving: A robot is leaving a group to which
it previously belonged. This state is conveyed with
LEDs lit up in blue.

Join probability. When a robot in state free enters
the communication range of shelter i, it transitions to
state in group with probability ji. This probability
is related to the target group size qi associated to the
shelter. We aim to find a simple relationship between
ji and qi. The communication range of a shelter is lim-
ited in size and, thus, can house a maximum number
of robots, which we denote with f . We assume that all
the shelters have identical communication ranges, so f

Fig. 5 State transition logic for robots at each
time step. InRange() and JustInRange() are func-
tions returning true when the robot is within the
communication range of a shelter, and has just
entered it, respectively. Rand() is a function re-
turning a random number in U(0, 1). ji is the
join probability for shelter i, li is the leave prob-
ability. State transition conditions are repre-
sented be the symbol C and a subscript. For ex-
ample, Cin group→in group represents the condi-
tions under which an aggregated robot will stay
aggregated in its group in a single time step.

is a constant across the shelters known a priori. In ad-
dition, we assume that the target group sizes qi cannot
exceed f . Each shelter constantly monitors the number
of robots currently engaged in its group. If the group
size exceeds the target size, the shelter must stop re-
cruiting robots. From these considerations, we derive
the following simple definition for ji:

ji =

qi/f if current size of group i < qi,

0 otherwise.

Leave probability. A robot in state in group beneath
shelter i transitions to state free with probability li.
The probability li decays exponentially following (1).

Robots joining and leaving a group. Physical inter-
ference among grouped robots may have severe effects
on the system, especially when the density of robots
under a shelter becomes high. Upon deciding to leave,
a robot located in the centre of a group needs a clean
path out of it. However, if the area beneath a shelter is
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crowded, the formation of the exit path is likely to push
some robots located at the border of the group out of
the communication area, thus losing contact with the
shelter. Thus, interference reduces stability, especially
in large groups.

To solve these issues, we consider each robot to be
immersed in two virtual potential fields 19). The first
field attracts robots that decide to be part of a group
towards the centre of such group, or repels those who
decide to leave the group. The second field allows a
robot that decides to leave the group to push its way
out without disrupting the integrity of the group.

Convergence Detection. It is important for a shelter
to be able to detect convergence. However, due to the
probabilistic nature of our system, the group size dis-
plays continuous fluctuations. Thus, the notion of con-
vergence to a target group size must be linked to these
fluctuations. Intuitively, a shelter can declare conver-
gence when the magnitude of the fluctuations remains
for a certain period of time within a specific range.

In practise, each shelter monitors the fluctuations of
the number of its aggregated robots over a period of
time TC . If the magnitude of the fluctuations stays
within some tolerance boundaries for the entire period,
the shelter considers the system to have converged. The
tolerance boundary B is defined as a function of the
leave probability llow, the length of the monitoring pe-
riod TC and the size of the aggregate gi at the beginning
of the monitoring period:

B =
√

TCgillow(1 − llow)

B is derived by considering the changing number of ag-
gregated robots under a shelter as a time series pro-
duced by a binomial distribution in which p = llow. B

is calculated as the standard deviation of such a time
series over the monitoring period TC .
5.2.2 Experimental Evaluation

Experimental setup. We ran experiments with a 3-
phase setup analogous to what we presented for the
mathematical model. The values of T1 = 50 s, T2 =
250 s, and T3 = 500 s were chosen to give the system
sufficient time to reach convergence at each stage.

We distributed 30 robots in the group formation area.
In the first phase, the target sizes of shelter 1 and 2 are
always set so that their sum is less than 30. This first
phase therefore allows us to test whether the system is
capable of converging to the correct group sizes in the
simple case where there are enough robots to satisfy all

target sizes. The second phase, in which also shelter 3
is activated, tests the spreading property of the system
in response to the activation of new shelters. In partic-
ular, we set shelter 3’s target size to make the sum of
the target sizes greater than the total number of robots
in the group formation area. The third and final phase
tests the spreading property of the system, this time
in response to the release of robots by shelter 2. The
convergence property of the system is tested in all three
phases of the experiments.

For the experiments in this section, we tested two tar-
get size configurations: [15, 10, 20] and [12, 12, 12]. In
the first configuration, shelter 3’s target size is greater
than those of shelter 1 and shelter 2, thus requiring
the system to redistribute robots. This corresponds to
setting P2 of the experiments with the mathematical
model. The second configuration was chosen to specif-
ically assess the spreading property. For the decay pe-
riod, we selected the value δ = δlong = 103.

Results. The results are reported in Fig. 6. The plots
show that convergence is reached in both experimental
settings, regardless of desired group sizes. The detec-
tion of convergence in phase 2, which is the most crit-
ical phase in the experiment, is achieved by all robots
within slightly less than 10 simulated minutes from the
beginning of the phase.

Regarding spreading, the bottom plots of Figs. 6 (a)–
(b) show the average fulfilling percentage of the groups.
In both experimental settings, regardless of the desired
group size, these percentages stabilise on the same value
in all phases.

6. Scalability Assessment

One of our key motivations to create a new group for-
mation mechanism is to achieve scalability (see Sec. 2).
This motivation is the driving force behind our choice
of a decentralised cockroach-inspired model. In this
section, we test the scalability properties of our ap-
proach. We conduct experiments with hundreds of mo-
bile robots that must be divided in dozens of groups.
Parallel group formation with these numbers would be
difficult to achieve with existing group formation ap-
proaches.
6.1 Experimental Setup

The shelters are distributed in a N × N grid. We
set the desired group size to 25 for all the shelters.
The experimental setup is shown in Fig. 7. Fig. 7 (a)
is a snapshot of the simulated group formation area.
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(a) Target sizes: [15, 10, 20] (b) Target sizes: [12, 12, 12]

Fig. 6 Results with physically simulated robots following the behavior explained in Sec. 5.2.1. The
experiments are composed of three phases. In phase 1, two shelters are active. In phase 2 (starting
at time T1), a third shelter is activated. In phase 3 (starting at time T2), shelter 2 is deactivated. The
experiment ends at time T3. The top plots shows a representative experimental sample in the pool of
the 100 repetitions we ran. The middle plot reports the average system behavior. The bottom plot
shows the ratio between the current and the desired group size.

Fig. 7 Snapshot from scalability experiments
with physically simulated robots. Left: Simu-
lation snapshot. Right: Abstracted representa-
tion of this simulation snapshot—the grey in-
tensity level of each square is proportional to
the recruited group size of the correspondingly
positioned shelter (i.e., to the number of robots
recruited by that shelter).

Fig. 7 (b) is an abstract representation of the same
group formation area in which the grey intensity of each
square is proportional to the number of grouped robots.
This representation allows for visual analysis of the sizes
of the groups and their spatial distribution in the group
formation area over time.

In all the experiments, we set the number of available
mobile robots to 20N2. In this way, if fair spreading oc-

curs, at convergence, a group of 20 robots should have
been formed under each shelter.
6.2 Convergence

In this section, we present a set of experiments de-
signed to test the convergence property of the system.
We ran experiments with 16 and 25 shelters (320 and
500 mobile robots, respectively). The duration of each
experiment was set to 750 s.

The results are reported in Fig. 8. The top plots
shows the dynamics of a sample run taken at random
from the 80 experiment repetitions. We also display
three snapshots at 250 s, 500 s and 750 s. After an ini-
tial period of instability, in which the group sizes grow
with large fluctuations, the system converges in both
experimental settings. The length of the decay period
δ in these experiments was set to 350 s, which explains
the duration of the fluctuating phase, about 400 s. At
convergence, for both experimental settings, the distri-
bution of the group sizes is centred around the target
value of 20. In particular, the median of the group size
distribution is 21. With 16 shelters, the first quartile of
group size is 14 and the third quartile is 23, while with
25 shelters the interquartile extrema are 15 and 25.
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(a) 16 shelters, 320 mobile robots. (b) 25 shelters, 500 mobile robots.

Fig. 8 Scalability experiments testing the convergence and spreading properties of the system. Re-
sults are shown for two sets of experiments with 16 shelters (a) and 25 shelters (b). 80 experimental
runs per set of experiments. The top plots show the behaviour of the system in a single sample
experiment that we have selected. The grids of squares represent snapshots of the state of the system
at given moments in time during this sample experiment. The grey intensity of each individual square
corresponds to the number of mobile robots recruited at that time by a single shelter. The min-max
lines show the size of the largest recruited group of mobile robots and the size of the smallest recruited
group of foot-bots at any given moment. The 1Q and 3Q lines show the inter-quartile range of the
distribution of recruited group sizes among the shelters. The 1Q is the first quartile and shows the
minimum recruited group size once we discard the lowest 25% of groups. The 3Q line is the third
quartile, and shows the maximum recruited group size once we discard the highest 25% of the data.
The bottom plot shows the same data averaged over all 80 runs.

The average behaviour of the system over 80 runs,
showed by the bottom plots of Fig. 8, confirms these
observations. The median of the formed groups grows
to 22, and the extrema of the interquartile range of the
final sizes we observed are 15 and 25.

The plots also show that the time to reach conver-
gence is very similar with 16 and 25 shelters. The con-
vergence time of the system appears to be practically
independent of the number of robots, thus confirming
that the proposed group formation mechanism displays
the spreading property. This result is expected because
our system is completely parallel and based on local
interactions among mobile robots and shelters.
6.3 Spreading

To test spreading, we devised a two-phase experimen-
tal setting. In the first phase, the system is given 750 s
to reach convergence. At the beginning of the second
phase, we activate or deactivate a shelter. These events
force the system to redistribute the mobile robots and
reach a new convergence state, thus providing a good
test of how capable the system is of spreading robots
between shelters. The length of the second phase is set
to 750 s.

As we explained in Sec. 5, upon activation and deac-
tivation, a shelter broadcasts a signal to its neighbours.
The neighbours of a shelter are those shelters in direct
line of sight. The signal forces the recipients to reset
the leaving probability to lhi and to restart the decay
process.

An important aspect in our system is the transmis-
sion range of the reset signal. In Sec. 6.3.1, we analyse
the results we obtained in experiments in which the re-
set signal is broadcast globally throughout the system.
In Sec. 6.3.2, we discuss the results we obtained when
the transmission range of the signal is limited.
6.3.1 Global Reset Signal

In this section, we analyse the results we obtained
with a global broadcast of the reset signal across the
shelters. In these experiments we use 9 shelters and
180 robots.

To study whether the starting point of the
(de)activation event affects the system behaviour, we
explore the cases in which the event occurs at the cor-
ner and at the centre of the shelter grid.

The results are reported in Fig. 9. In all the experi-
mental settings, at the end of phase 1 the system reaches
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(a) Corner robot activates at time 750 s (b) Centre robot activates at time 750 s

(c) Centre robot deactivates at time 750 s (d) Corner robot deactivates at time 750 s

Fig. 9 Set of experiments testing the spreading property of the system. All experiments run with 9
shelters and 180 mobile robots in a recruitment area consisting of a 3x3 shelter formation. Results are
shown for four sets of experiments (a,b,c,d). Each experimental run lasts for 1,500 s. 20 experimental
runs were conducted for each set of experiments. Top plots in each set represent selected sample runs,
while bottom plots represent data averaged over all 20 runs. For a more detailed explanation of the
plots see previous caption from Fig. 8.

convergence to a state in which the group size distribu-
tion is tightly packed around the target value 20. The
event causes the shelters to release the grouped robots.
The subsequent dynamics, in the average plots, shows
that, regardless of the location of the event and its type
(activation/deactivation), the system is able to reach
a new convergence state. The final distribution of the
group sizes is tightly packed around 20 robots.

The snapshots in Fig. 9 of the sample experiments
show that the initial location of the event does not af-
fect the final distribution of the robots. The grey levels
in the snapshot do not display any visible bias towards
a specific region of the group formation area, thus indi-

cating that spreading is fair.
6.3.2 Local Reset Signal

Although a global reset signal allows for fair spreading
after the activation and deactivation of shelters, its ap-
plication to real scenarios is problematic. In fact, if the
frequency of these events is too high, the system may
have insufficient time to reach convergence, resulting
in constantly fluctuating group sizes. To prevent con-
stant fluctuations, the convergence results of Sec. 6.2
suggest that the time between activation/deactivation
events must be greater than the decay period δ. As the
size of the scenario grows, and with it the number of
group formation requests per time unit, the frequency
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(a) 16 shelters, 320 mobile robots. (b) 25 shelters, 500 mobile robots.

Fig. 10 Set of experiments on local perturbation. In these experiments, the propagation of the reset
signal is limited to the direct neighbours. Results are shown for two sets of experiments (a,b). 20
experimental runs were conducted for each set of experiments. Each experimental run lasts 1,500 s.
Top plots in each set represent selected sample runs, while bottom plots represent data averaged over
all 20 runs. For a more detailed explanation of the plots see previous caption from Fig. 8.

of the events is likely to exceed δ−1, thus causing con-
stant fluctuations. A possible solution to this problem
is to limit the range of transmission of the reset signal.

In this series of experiments, we test the impact on
the spreading ability of the system when the reset signal
is not globally broadcast. We use 16 and 25 shelters (to
which correspond 320 and 500 mobile robots, respec-
tively) and deactivate only one corner shelter.

Short range. Fig. 10 shows the results of experi-
ments in which the reset signal was transmitted only
to the closest neighbours of a perturbed shelter (i.e.,
the shelters in the Moore neighbourhood). The final
state reached by the system presents two regions, one
affected by the perturbation and one not affected by
it. In the region affected by the perturbation, the final
group sizes are visibly lower than in the other region.
Thus, spreading is not fair. This phenomenon can be
explained by observing that, upon leaving a group, the
direction chosen by a robot is random and uniformly
distributed. Thus, part of the robots leaked from the
perturbed region to the unperturbed one.

Medium range. Fig. 11 shows the results of exper-
iments in which the reset signal was transmitted in a
medium range. The reset signal reaches the neighbours
of the neighbours of the originally perturbed shelter.
Analogously to the previous case, the final state of the
system is characterised by two regions, one affected by
perturbation and one not affected. Since a larger part

of the system takes part into the redistribution process,
the distribution of the final group size is more even than
the non-propagated signal case, but still spreading is not
very fair.
6.3.3 Discussion

The communication range of the reset signal char-
acterises the ability of the system to redistribute the
robots. Our experiments show that, when the frequency
of the perturbations exceeds δ−1, limiting the range of
the reset signal is not enough, by itself, to ensure fair
redistribution. This problem is due to the fact that the
robots that leave the perturbed shelters tend to leave
the group in all the directions. As a consequence, only
a part of the leaving robots are directed towards other
perturbed shelters. The other robots join already sta-
ble groups. In this way, two regions are formed in the
system—one region with a surplus of robots, and a re-
gion with a deficit of robots. A possible solution for this
problem, currently under study, is to prevent the robots
from navigating towards the unperturbed regions of the
system.

7. Conclusions

In this paper, we presented a novel, distributed ap-
proach to the formation of multiple groups of mobile
robots. The main feature of our algorithm is the abil-
ity to fairly distribute robots across group of differ-
ent target sizes even in presence of scarce resources.
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(a) (b)

Fig. 11 Set of experiments on local perturbation. In these experiments, the propagation of the reset
signal is limited to the second-level neighbours (i.e., the direct neighbours of the direct neighbours
of the signal originator). Results are shown for two sets of experiments (a,b). 20 experimental runs
were conducted for each set of experiments. Each experimental run lasts 1,500 s. Top plots in each set
represent selected sample runs, while bottom plots represent data averaged over all 20 runs. For a
more detailed explanation of the plots see previous caption from Fig. 8.

The method takes inspiration from the behaviour of
cockroach aggregation under shelters. In our system,
shelters are simple, active devices able to monitor the
number of aggregated robots, and calculate and locally
broadcast probabilities for the robots to join and leave
the aggregate.

We showed that the stability of the groups is mainly
dependent on the leaving probability, and presented a
system in which shelters vary this probability over time
to control group size. We demonstrated that, to achieve
group size convergence and fair robot spreading, it is
sufficient to let the leaving probability decay gradually
from a high value to a low value.

We assessed the performance of our system in a large,
challenging scenario in which hundreds of robots must
be aggregated into dozens of groups. Our results sug-
gest that, due to its parallelism, the convergence time
of the system is basically independent of the size of the
scenario. Regarding spreading, the system is able to dis-
tribute the robots evenly among the shelters. In pres-
ence of perturbations, such as activation/deactivation
of a shelter, spreading is fair if the time between two
of these events is longer than the decay period of the
leaving probabilities.

We are currently studying methods to modify our sys-
tem to enhance spreading with a high frequency of per-
turbations. A possible way to improve our system is
to keep the propagation of the perturbations local, and

prevent the robots that are temporarily freed from leak-
ing to the non-perturbed region.

Acknowledgments

The research presented in this paper was supported
by the ERC Advance Grant “E-SWARM: Engineering
Swarm Intelligence Systems” (grant 246939). Rehan
O’Grady, Mauro Birattari, and Marco Dorigo acknowl-
edge support from the Belgian F.R.S.-FNRS, of which
they are a Postdoctoral Researcher, a Research Assis-
tant and a Research Director, respectively.

(Received December 24, 2012)

References
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Libre de Bruxelles, Belgium. The focus of his research is computer

simulation and swarm robotics.

Rehan O’GRADY

He is a post-doctoral researcher at the

IRIDIA-CoDE laboratory of the Université Li-
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