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Resumo 
 

 

A modelização do risco de crédito de empréstimos a empresas sem emissões cotadas 

em mercados financeiros é limitada, apesar do peso elevado deste segmento nas 

carteiras de crédito dos bancos. O objectivo deste estudo é contribuir para este ramo 

de literatura ao aplicar técnicas de medição dos dois principais parâmetros de risco de 

crédito a uma amostra aleatória extraída da base de dados de um banco europeu. A 

dissertação é composta por dois capítulos, o primeiro trata a modelização da 

probabilidade de incumprimento (PD), e o segundo a modelização da perda em caso 

de incumprimento (LGD). O primeiro capítulo começa por apresentar e comparar 

alternativas para a medição do credit score dos clientes, incluindo modelo de 

equações sectoriais múltiplas e outro com amostra ponderada. Em seguida é abordada 

a problemática de agrupar scores individuais em classes de risco com PDs associadas. 

Para tal, duas alternativas são propostas, a primeira usa técnicas de clustering, 

enquanto que a segunda baseia-se no mapeamento entre as classificações internas e 

uma escala de referência externa. No final do primeiro capítulo, e usando as 

estimativas de PD anteriormente calculadas, determinam-se os requisitos de capital 

regulamentar à luz do novo acordo de capital de Basileia, em contraste com os 

requisitos previstos no acordo actual. No segundo capítulo comparam-se duas 

alternativas para a modelização do LGD. Os modelos são estimados sob uma amostra 

aleatória de 7 anos, considerando-se como variáveis explicativas características dos 

empréstimos, garantias e clientes. Ambas as alternativas têm em consideração o facto 

da variável dependente ser uma fracção e de ter uma distribuição não normal. A 

primeira alternativa é baseada na transformação Beta da variável dependente, 

enquanto que a segunda é baseada em Generalized Linear Models.  

 

Palavras-Chave: Risco de Crédito, Probabilidade de Incumprimento, Perda em Caso 

de Incumprimento, Basileia II 

Classificação JEL: C13, G21 
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Abstract 
 

 

Corporate credit risk modeling for privately-held firms is limited, although these firms 

represent a large fraction of the corporate sector worldwide. This study is an empirical 

application of credit scoring and rating techniques to a unique dataset on private firms 

bank loans of a European bank. It is divided in two chapters. The first chapter is 

concerned with modeling the probability of default. Several alternative scoring 

methodologies are presented, validated and compared. These methodologies include a 

multiple industry model, and a weighted sample model. Furthermore, two distinct 

strategies for grouping the individual scores into rating classes with PDs are 

developed, the first uses cluster algorithms and the second maps internal ratings to an 

external rating scale. Finally, the regulatory capital requirements under the New Basel 

Capital Accord are calculated for a simulated portfolio, and compared to the capital 

requirements under the current regulation. On the second chapter, we model long-term 

Loss-Given-Default on loan, guarantee and customer characteristics using a random, 

7-year sample. Two alternative modeling strategies are tested, taking in consideration 

the highly non-normal shape of the recovery rate distribution, and a fractional 

dependent variable. The first strategy is based on Beta transformation of the 

dependent variable, while the second is based on Generalizes Linear Models. The 

methodology can be used for long-term LGD prediction of a corporate bank loan 

portfolio and to comply with the New Basel Capital Accord Advanced Internal 

Ratings Based approach requirements. 

 

 

KEYWORDS: Credit Risk, Probability of Default, Loss-Given-Default, Basel II 

JEL CLASSIFICATION: C13, G21 
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Quantitative Rating System And Probability Of 

Default Estimation 
 



 

1 

1 Introduction 
 

 

The credit risk modeling literature has grown extensively since the seminal work by 

Altman (1968) and Merton (1974). Several factors contribute for an increased interest 

of market practitioners for a correct assessment of the credit risk of their portfolios: 

the European monetary union and the liberalization of the European capital markets 

combined with the adoption of a common currency, increased liquidity, and 

competition in the corporate bond market. Credit risk has thus become a key 

determinant of different prices in the European government bond markets. At a 

worldwide level, historically low nominal interest rates have made the investors seek 

the high yield bond market, forcing them to accept more credit risk. Furthermore, the 

announced revision of the Basel capital accord will set a new framework for banks to 

calculate regulatory capital1. As it is already the case for market risks, banks will be 

allowed to use internal credit risk models to determine their capital requirements. 

Finally, the surge in the credit derivatives market has also increased the demand for 

more sophisticated models. 

There are three main approaches to credit risk modeling. For firms with traded 

equity and/or debt, Structural models or Reduced-Form models can be used. 

Structural Models are based on the work of Black and Scholes (1973) and Merton 

(1974). Under this approach, a credit facility is regarded as a contingent claim on the 

value of the firm’s assets, and is valued according to option pricing theory. A 

diffusion process is assumed for the market value of the firm’s assets and default is set 

to occur whenever the estimated value of the firm hits a pre-specified default barrier. 

Black and Cox (1976) and Longstaff and Schwartz (1993) have extended this 

framework relaxing assumptions on default barriers and interest rates. 

For the second and more recent approach, the Reduced-Form or Intensity 

models, there is no attempt to model the market value of the firm. Time of default is 

                                                 
1 For more information see Basel Committee on Banking Supervision (2003). 
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modeled directly as the time of the first jump of a Poisson process with random 

intensity. These models were first developed by Jarrow and Turnbull (1995) and 

Duffie and Singleton (1997). 

A third approach, for privately held firms with no market data available, 

accounting-based credit scoring models are the most common alternative. Since most 

of the credit portfolios of commercial banks consist of loans to borrowers that have no 

traded securities, these will be the type of models considered in this research2. 

Although credit scoring has well known disadvantages, it remains as the most 

effective and widely used methodology for the evaluation of privately-held firms’ risk 

profiles3. 

The corporate credit scoring literature as grown extensively since Beaver 

(1966) and Altman (1968), who proposed the use of Linear Discriminant Analysis 

(LDA) to predict firm bankruptcy. On the last decades, discrete dependent variable 

econometric models, namely logit or probit models, have been the most popular tools 

for credit scoring. As Barniv and McDonald (1999) report, 178 articles in accounting 

and finance journals between 1989 and 1996 used the logit model. Ohlson (1980) and 

Platt and Platt (1990) present some early interesting studies using the logit model. 

More recently, Laitinen (1999) used automatic selection procedures to select the set of 

variables to be used in logistic and linear models which then are thoroughly tested 

out-of-sample.  

The most popular commercial application using logistic approach for default 

estimation is the Moody’s KMV RiskCalc Suite of models developed for several 

countries4. Murphy et al. (2002) presents the RiskCalc model for Portuguese private 

firms. In recent years, alternative approaches using non-parametric methods have 

been developed. These include classification trees, neural networks, fuzzy algorithms 

and k-nearest neighbor. Although some studies report better results for the non-

parametric methods, such as in Galindo and Tamayo (2000) and Caiazza (2004), we 

will only consider logit/probit models since the estimated parameters are more 
                                                 
2 According to the Portuguese securities market commission (CMVM), at 31 December 2004 only 82 
firms had listed equity or debt (CMVM 2005). 
3 See, for example, Allen (2002). 
4 See Dwyer et al. (2004). 



 

3 

intuitive, easily interpretable and the risk of over-fitting to the sample is lower. 

Altman, Marco and Varetto (1994) and Yang et al. (1999) present some evidence, 

using several types of neural network models, that these do not yield superior results 

than the classical models. Another potential relevant extension to traditional credit 

modeling is the inference on the often neglected rejected data. Boyes et al. (1989) and 

Jacobson and Roszbach (2003) have used bivariate probit models with sequential 

events to model a lender’ decision problem. In the first equation, the decision to grant 

the loan or not is modeled and, in the second equation, conditional on the loan having 

been provided, the borrowers’ ability to pay it off or not. This is an attempt to 

overcome a potential bias that affects most credit scoring models: by considering only 

the behavior of accepted loans, and ignoring the rejected applications, a sample 

selection bias may occur. Kraft et al. (2004) derive lower and upper bounds for 

criteria used to evaluate rating systems assuming that the bank storages only data of 

the accepted credit applicants. Despite the findings in these studies, the empirical 

evidence on the potential benefits of considering rejected data is not clear, as shown in 

Crook and Banasik (2004). 

The first main objective of this research is to develop an empirical application 

of credit risk modeling for privately-held corporate firms. This is achieved through a 

simple but powerful quantitative model built on real data randomly drawn from the 

database of one of the major Portuguese commercial banks. The output of this model 

will then be used to classify firms into rating classes, and to assign a probability of 

default for each one of these classes. Although a purely quantitative rating system is 

not fully compliant with the New Basel Capital Accord (NBCA), the methodology 

applied could be regarded as a building block for a fully compliant system5. 

The remainder of this paper is organized as follows. Section 2 describes the 

data and explains how it is extracted from the bank’s database. Section 3 presents the 

                                                 
5 For example, compliant rating systems must have two distinct dimensions, one that reflects the risk of 
borrower default and another reflecting the risk specific to each transaction (Basel Committee on 
Banking Supervision 2003, par. 358). The system developed in this study only addresses the first 
dimension. Another important drawback of the system presented is the absence of human judgment. 
Results from the credit scoring models should be complemented with human oversight in order to 
account for the array of relevant variables that are not quantifiable or not included in the model (Basel 
Committee on Banking Supervision 2003, par. 379). 
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variables considered and their bivariate relationship with the default event. These 

variables consist of financial ratios that measure Profitability, Liquidity, Leverage, 

Activity, Debt Coverage and Productivity of the firm. Factors that exhibit a weak or 

unintuitive relationship with the default frequency will be eliminated and factors with 

higher predictive power for the whole sample will be selected. Section 4 combines the 

most powerful factors selected on the previous stage in a multivariate model that 

provides a score for each firm. Two alternatives to a simple regression will be tested. 

First, a multiple equation model is presented that allows for alternative specifications 

across industries. Second, a weighted model is developed that balances the proportion 

of default to non-default observations on the dataset, which could be helpful to 

improve the discriminatory power of the scoring model, and to better aggregate 

individual firms into rating classes. Results for both alternatives are compared and 

thoroughly validated. All considered models are screened for statistical significance, 

economic intuition, and efficiency (defined as a parsimonious specification with high 

discriminatory power). In Section 5 several applications of the scoring model are 

discussed. First, two alternative rating systems are developed, using the credit scores 

estimates from the previous section. One alternative consists on grouping individual 

scores into clusters, while the other consists on indirectly deriving rating classes 

through a mapping procedure between the resulting default frequencies and an 

external benchmark. Next, the capital requirements for an average portfolio under 

both the NBCA and the current capital accord are derived and compared. Section 6 

concludes. 
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2 Data Description 
 

 

A random sample of 11,000 annual, end-of-year corporate financial statements is 

extracted from the financial institution’s database. These yearly statements belong to 

4,567 unique firms, from 1996 to 2000, of which 475 have had at least one defaulted 

loan in a given year. The default definition considered is compliant with the NBCA 

proposed definition, it classifies a loan as default if the client misses a principal and/or 

interest payment for more than 90 days.  

Furthermore, a random sample of 301 observations for the year 2003 is 

extracted in order to perform out-of-sample testing. About half of the firms in this 

testing sample are included in the main sample, while the other half corresponds to 

new firms. In addition, the out-of-sample data contains 13 defaults, which results in a 

similar default ratio to that of the main sample (about 5%). Finally, the industry 

distribution is similar to the one in the main sample. 

Firms belonging to the financial or real-estate industries are excluded, due to 

the specificity of their financial statements. Furthermore, firms owned by public 

institutions are also excluded, due to their non-profit nature. 

The only criteria employed when selecting the main dataset is to obtain the 

best possible approximation to the industry distribution of the Portuguese economy. 

The objective is to produce a sample that could be, as best as possible, representative 

of the whole economy, and not of the bank’s portfolio. If this is indeed the case, then 

the results of this study can be related to a typical, average credit institution operating 

in Portugal. 

Figure 1 shows the industry distribution for both the Portuguese economy and 

for our dataset6. The distributions are similar, although the model and test samples 

have higher concentration on industry D – Manufacturing, and lower on H – Hotels & 

Restaurants and MNO – Education, Health & Other Social Services Activities. 

                                                 
6 Source: INE 2003. 
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Figure 1 – Economy-Wide vs. Study Samples Industry Distribution 
This figure displays the industry distribution for the firms in our model and test sample and for the 
Portuguese economy in 2003 (INE 2003). The industry types considered are: A – Agriculture, Hunting 
& Forestry; B – Fishing; C – Mining & Quarrying; D – Manufacturing; E – Electricity, Gas & Water 
Supply; F – Construction; G – Wholesale & Sale Trade; H – Hotels & Restaurants; I – Transport, 
Storage & Communications; K – Real Estate, Renting & Business Activities; MNO – Education/ 
Health & Social Work/ Other Personal Services Activities. 
 

Figures 2, 3 and 4 display the industry, size (measured by annual turnover) and 

yearly distributions respectively, for both the default and non-default groups of 

observations of the model dataset.  
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Figure 2 – Sample Industry Distribution 
This figure shows the model sample industry distributions for the firms that defaulted and for the firms 
that have not defaulted. The industry types considered are: A – Agriculture, Hunting & Forestry; B – 
Fishing; C – Mining & Quarrying; D – Manufacturing; E – Electricity, Gas & Water Supply; F – 
Construction; G – Wholesale & Sale Trade; H – Hotels & Restaurants; I – Transport, Storage & 
Communications; K – Real Estate, Renting & Business Activities; MNO – Education/ Health & Social 
Work/ Other Personal Services Activities. 
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Figure 3 – Accounting Statement Yearly Distribution 
The figure above displays the yearly distribution of the financial statements in the dataset for the 
default, non-default and total observations.  
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Figure 4 – Size (Turnover) Distribution, Millions of EUR 
The figure shows the size distribution of the default and non-default observations. Size is measured by 
the firms’ Turnover, defined as the sum of total sales plus services rendered.  
 

Analysis of industry distribution (Figure 2) suggests high concentration on 

industries G – Trade and D – Manufacturing, both accounting for about 75% of the 

whole sample. The industry distributions for both default and non-default 

observations are very similar.  

Figure 3 shows that observations are uniformly distributed per year, for the 

last three periods, with about 3,000 observations per year. For the non-default group 

of observations, the number of yearly observations rises steadily until the third period, 

and then remains constant until the last period. For the default group, the number of 

yearly observations has a great increase in the second period and clearly decreases in 

the last. 

Figure 4 shows size distribution and indicates that most of the observations 

belong to the Small and Medium size Enterprises - SME segment, with annual 

turnover up to 50 million EUR (according to the NBCA SME classification). The 

SME segment accounts for about 95% of the whole sample. The distributions of both 

non-default and default observations are very similar. 
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3 Financial Ratios and Bivariate Analysis 
 

 

A preliminary step before estimating the scoring model is to conduct a bivariate 

analysis for each potential explanatory variable, in order to select the most intuitive 

and powerful ones. In this study, the scoring model considers exclusively financial 

ratios as explanatory variables. A list of twenty-three ratios representing six different 

dimensions – Profitability, Liquidity, Leverage, Debt Coverage, Activity and 

Productivity – is considered. The bivariate analysis relates each of the twenty-three 

ratios and a default indicator, in order to assess the discriminatory power of each 

variable. Appendix 1 provides the list of the variables and how they are constructed. 

Figures 5 – 10 provide a graphical description, for some selected variables, of the 

relationship between each variable individually and the default frequency. The data is 

ordered in ascending order by the value of each ratio and, for each decile, the default 

frequency is calculated (number of defaults divided by the total number of 

observations in each decile). 
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Figure 5 – Average Default Frequency by Liquidity / Current Liabilities Ratio Decile 

The figure shows the relationship between the Liquidity / Current Liabilities Ratio and the historical 
default frequency. Loans are ranked in ascending order, in terms of the value of the ratio. For each 
decile the average default frequency is calculated. 
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Figure 6 – Average Default Frequency by Current Ratio Decile 

The figure shows the relationship between the Current Ratio and the historical default frequency. Loans 
are ranked in ascending order, in terms of the value of the ratio. For each decile the average default 
frequency is calculated. 
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Figure 7 – Average Default Frequency by Liquidity / Assets Ratio Decile 

The figure shows the relationship between the Liquidity / Assets Ratio and the historical default 
frequency. Loans are ranked in ascending order, in terms of the value of the ratio. For each decile the 
average default frequency is calculated. 
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Figure 8 – Average Default Frequency by Debt Service Coverage Ratio Decile 

The figure shows the relationship between the Debt Service Coverage Ratio and the historical default 
frequency. Loans are ranked in ascending order, in terms of the value of the ratio. For each decile the 
average default frequency is calculated. 
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Figure 9 – Average Default Frequency by Interest Costs / Sales Ratio Decile 

The figure shows the relationship between the Interest Costs / Sales Ratio and the historical default 
frequency. Loans are ranked in ascending order, in terms of the value of the ratio. For each decile the 
average default frequency is calculated. 
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Figure 10 – Average Default Frequency by Productivity Ratio Decile 

The figure shows the relationship between the Productivity Ratio and the historical default frequency. 
Loans are ranked in ascending order, in terms of the value of the ratio. For each decile the average 
default frequency is calculated. 
 

In order to have a quantitative assessment of the discriminating power of each 

variable, the Accuracy Ratio is used7. The computed values of the Accuracy Ratios 

are reported in Appendix 1. 

The selected variables for the multivariate analysis comply with the following 

criteria: 

- They must have discriminating power, with an Accuracy Ratio higher than 

5%; 

- The relationship with the default frequency should be clear and economically 

intuitive. For example, ratio Current Earnings and Depreciation / Turnover 

should have a negative relationship with the default frequency, since firms 

with a high percentage of EBITDA over Turnover should default less 

frequently; analyzing Figure 11, there seems to be no clear relationship for this 

dataset;  

- The number of observations lost due to lack of information on any of the 

components of a given ratio must be insignificant. Not all firms have the same 

                                                 
7 The Accuracy Ratio can be used as a measure of the discriminating power of a variable, comparing 
the ability of the variable to correctly classify the default and non-default observations against that of a 
random variable, unrelated to the default process. Section 4.1.1 provides a more detailed description. 
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degree of accuracy on their accounting reports, for example, ratios Bank Debt / 

Accounts Payable and P&L / L-T Liabilities have a significant amount of 

missing data for the components Debt to Credit Institutions and Long-Term 

Liabilities respectively. 
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Figure 11 – Average Default Frequency by Current Earnings and Depreciation / Turnover Ratio 

Decile 
The figure shows the relationship between the Current Earnings and Depreciation / Turnover Ratio and 
the historical default frequency. Loans are ranked in ascending order, in terms of the value of the ratio. 
For each decile the average default frequency is calculated. 
 

At this point, nine variables are eliminated and are not considered on the 

multivariate analysis. All the remaining variables are standardized in order to avoid 

scaling issues8. 

 

                                                 
8 Standardization consists on subtracting the value of the variable by its average on the sample and 
dividing the result by its sample standard deviation. 
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4 Scoring Model and Validation 
 

 

The dependent variable Yit is the binary discrete variable that indicates whether firm i 

has defaulted (one) or not (zero) in year t. The general representation of the model is:  

 

 ( )1, ,k
it k it itY f X eβ −= +  (1) 

 

where 1
k
itX −  represents the values of the k explanatory variables of firm i, one year 

before the evaluation of the dependent variable. The functional form selected for this 

study is the Logit model9. Alternative specifications can be considered, such as Probit, 

Linear Probability Model, or even Genetic Algorithms, although there is no evidence 

in the literature that any alternative specification can consistently outperform the 

Logit specification in credit default prediction (Altman, Marco and Varetto, 1994 and 

Yang et al., 1999). 

Using both forward and backward procedures, the selected model is the one 

that complies with the validation criteria and has the higher discriminating power, 

measured by the Accuracy Ratio. 

 

4.1 Model Validation 

 

The variables selected on Section 3 are pooled together in order to obtain a model that 

is at the same time: 

- Parsimonious but powerful: high discriminating power with few parameters to 

estimate;  

- Statistically significant: all variables individually and the model as a whole 

must be significant, with low correlation between the variables; 
                                                 
9 Refer to Appendix 3 for a description of the Logit model. 
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- Intuitive: the sign of the estimated parameters should make economic sense 

and the selected variables should represent the various relevant risk factors. 

 

4.1.1 Efficiency 

 

A model with high discriminatory power is a model that can clearly distinguish the 

default and non-default populations. In other words, it is a model that makes 

consistently “good” predictions relative to few “bad” predictions. For a given cut-off 

value10, there are two types of “good” and “bad” predictions: 

 

Estimated 
 

Non-Default Default 

Non-Default True 
False Alarm  

(Type II Error) 

O
bs

er
ve

d 

Default 
Miss (Type I 

Error) 
Hit 

 

• The “good” predictions occur if, for a given cut-off point, the model 

predicts a default and the firm does actually default (Hit), or, if the model 

predicts a non-default and the firm does not default in the subsequent 

period (True).  

• The “bad” prediction occurs if, for a given cut-off point, the model 

predicts a default and the firm does not actually defaults (False-Alarm or 

Type II Error), or if the model predicts a non-default and the firm actually 

defaults (Miss or Type I Error).  

• The Hit Ratio (HR) corresponds to the percentage of defaults from the 

total default population that are correctly predicted by the model, for a 

given cut-off point.  

                                                 
10 The cut-off point is the value from which the observations are classified as “good” or “bad”. For 
example, given a cut-off point of 50%, all observations with an estimated score between 0% and 50% 
will be classified as “good”, and those between 50% and 100% will be considered “bad”. 
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• The False Alarm Ratio (FAR) is the percentage of False Alarms or 

incorrect default predictions from the total non-defaulting population, for a 

given cut-off point. 

Several alternatives could have been considered in order to analyze the 

discriminating power of the estimated models. In this study, both ROC/CAP analysis 

and Kolmogorov-Smirnov (KS) analysis are performed. 

Receiver Operating Characteristics (ROC) and Cumulative Accuracy Profiles 

(CAP) curves are two closely related graphical representations of the discriminatory 

power of a scoring system. Using the notation from Sobehart and Keenan (2001), the 

ROC curve is a plot of the HR against the FAR, while the CAP curve is a plot of the 

HR against the percentage of the sample.  

For the ROC curve, a perfect model would pass through the point (0,1) since it 

always makes “good” predictions, and never “bad” predictions (it has FAR = 0% and 

a HR = 100% for all possible cut-off points). A “naïve” model is not able to 

distinguish defaulting from non-defaulting firms, thus will do as many “good” as 

“bad” predictions, though for each cut-off point, the HR will be equal to the FAR. A 

better model would have a steeper curve, closer to the perfect model, thus a global 

measure of the discriminant power of the model would be the area under the ROC 

curve. This can be calculated as11: 

 
1

0

( ) ( ),AUROC HR FAR d FAR= ∫  (2) 

 

For the CAP or Lorenz curve, a perfect model would attribute the lowest 

scores to all the defaulting firms, so if x% of the total population are defaults, then the 

CAP curve of a perfect model would pass through the point (x,1). A random model 

would make as many “good” as “bad” predictions, so for the y% lowest scored firms 

it would have a HR of y%. Then, a global measure of the discriminant power of the 

model, the Accuracy Ratio (AR), compares the area between the CAP curve of the 

                                                 
11 Refer to Appendix 2 for a technical description of the AUROC calculation. 
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model being tested and the CAP of the random model, against the area between the 

CAP curve of the perfect model and the CAP curve of the random model. 

It can be shown that there is a linear relationship between the global measures 

resulting from the ROC and CAP curves12: 

 ( )2 0.5 ,AR AUROC= −  (3) 

 

The KS methodology considers the distance between the distributions of 1 – 

HR (or Type I Errors) and 1 – FAR (or True predictions) 13. The higher the distance 

between the two distributions, the better the discriminating power of the model. The 

KS statistic corresponds to the maximum difference for any cut-off point between the 

1 – FAR and 1 – HR distributions. 

 

4.1.2 Statistical Significance 

 

All estimated regressions are subject to a variety of statistical tests, in order to ensure 

the quality of the results at several levels: 

i. Residual Analysis is performed with the purpose of testing the distributional 

assumption of the errors of the regression. Although the logistic regression 

assumes that the errors follow a binomial distribution, for large samples (such 

as the one in this study), it approximates the normal distribution. The 

standardized residuals from the logistic regressions should then follow a 

standard normal distribution14. At this stage, severe outliers are identified and 

eliminated. These outliers are observations for which the model fits poorly 

                                                 
12 See, for example, Engelmann, Hayden and Tasche (2003). 
13 The Kolmogorov-Smirnov statistic is a non-parametric statistic used to test whether the density 
function of a variable is the same for two different groups (Conover, 1999). 
14 The standardized residuals correspond to the residuals adjusted by their standard errors. This 
adjustment is made in logistic regression because the error variance is a function of the conditional 
mean of the dependent variable. 
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(has an absolute studentized residual15 greater than 2), and that can have a very 

large influence on the estimates of the model (a large DBeta16). 

ii. The significance of each estimated coefficient is tested using the Wald test. 

This test compares the maximum likelihood value of the estimated coefficient 

to the estimate of its standard error. This test statistic follows a standard 

normal distribution under the hypothesis that the estimated coefficient is null. 

For the three models, all of the estimated coefficients are significant at a 90% 

significance level. 

iii. In order to test the overall significance of each estimated model, the Hosmer-

Lemeshow (H-L) test is used. This goodness-of-fit test compares the predicted 

outcomes of the logistic regression with the observed data by grouping 

observations into risk deciles. 

iv. After selecting the best linear model, the assumption of linearity between each 

variable and the logit of the dependent variable is checked. This is performed 

in four stages: 

1- The Box-Tidwell test (Box-Tidwell, 1962) is performed on all 

continuous variables, in order to confirm the linearity assumption; 

2- For all variables that failed the linearity test in the previous step, a plot 

of the relationship between the covariate and the logit is presented, providing 

evidence on the type of non-linear relationship; 

3- For all continuous variables with significant non-linear relationships 

with the logit, the fractional polynomial methodology is implemented 

(Royston and Altman, 1994) in order to adequately capture the true 

relationship between the variables; 

4- Check whether the selected transformation makes economic sense. 

v. The last assumption to be checked is the independence between the 

explanatory variables. If multicolinearity is present, the estimated coefficients 

                                                 
15 The studentized residual corresponds to the square root of the change in the -2 Log Likelihood of the 
model attributable to deleting the case from the analysis. It follows an asymptotical normal distribution 
and extreme values indicate a poor fit. 
16 DBeta is an indicator of the standardized change in the regression estimates obtained by deleting an 
individual observation. 
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will be unbiased but their estimated standard errors will tend to be large. In 

order to test for the presence of high multicolinearity, a linear regression 

model using the same dependent and independent variables is estimated, and 

the tolerance statistic is calculated for each independent variable17. If any of 

the tolerance statistics are below 0.20 then it is assumed that we are in the 

presence of high multicolinearity, and the estimated regression is discarded. 

 

4.1.3 Economic Intuition 

 

All estimated coefficients follow economic intuition in the sense that the sign of the 

coefficients indicates the expected relationship between the selected variable and the 

default frequency. For example, if for a given model the estimated coefficient for 

variable Productivity Ratio is +0.123, this means that the higher the Personnel Costs 

relative to the Turnover, the higher the estimated credit score of the firm. In other 

words, firms with lower labor productivity have higher credit risk. For the non-linear 

relationships it is best to observe graphically the estimated relationship between the 

independent variable and the logit of the dependent. As for the linear case, this 

relationship should be monotonic, either always positive or negative. The difference is 

that the intensity of this relationship is not constant, it depends on the level of the 

independent variable. 

During the model estimation two hypotheses are tested: 

1. Whether a system of unrelated equations, by industry group yields better 

results than a single-equation model for all industries; 

2. Whether a model where the observations are weighted in order to increase the 

proportion of defaults to non-defaults in the estimation sample, performs better 

than a model with unweighted observations. 

 

                                                 
17 The tolerance statistic corresponds to the variance in each independent variable that is not explained 
by all of the other independent variables. 
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4.2 Model A – Multiple Industry Equations Model 

 

In order to test the hypothesis that a system of unrelated equations by industry group 

yields better results than a single-equation model for all industries, the dataset is 

broken into two sub-samples: the first one for Manufacturing & Primary Activity 

firms, with 5,046 observations of which 227 are defaults; and the second for Trade & 

Services firms, with 5,954 observations and 248 defaults. If the nature of these 

economic activities has a significant and consistent impact on the structure of the 

accounting reports, then it is likely that a model accommodating different variables 

for the different industry sectors performs better than a model which forces the same 

variables and parameters to all firms across industries18. The model is: 

 ( )
( )
ˆexpˆ ,

ˆ1 exp
i

i
i

Y
µ
µ

=
+

 (4) 

 

for the two-equation model, 

 
ˆ'     if  belongs to industry a

ˆ ,
ˆ'     if  belongs to industry b

a a
i

i b b
i

X i

X i

β
µ

β

⎧⎪= ⎨
⎪⎩

 (5) 

 

for the single-equation model, 

 ˆˆ '     ,i iX iµ β= ∀  (6) 

 

For the final model, the selected variables and estimated coefficients are 

presented in the table below19: 

 

                                                 
18 Model performance is measured by the ability to discriminate between default and non-default 
populations, which can be summarized by the Accuracy Ratio. 
19 Refer to Appendix 4 for full estimation results. 
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Industry a Industry b 

Variable β̂  
Wald Test 
P-Value Variable β̂  

Wald Test 
P-Value 

Liquidity / CurLiabilities -0.381 0.003 Current Ratio -0.212 0.005 
Debt Service Coverage -0.225 0.021 Liquidity / Assets -0.160 0.063 
Interest Costs / Sales_1 2.011 0.002 Debt Service Coverage -0.184 0.041 
Interest Costs / Sales_2 -0.009 0.000 Interest Costs / Sales_1 1.792 0.000 
Productivity Ratio 0.200 0.028 Interest Costs / Sales_2 -0.009 0.038 
Constant -3.259 0.000 Constant -3.426 0.000 

Number of Observations 5,044 Number of Observations 5,951 
-2 LogLikelihood 1,682 -2 LogLikelihood 1,913 
H-L Test P-Value 0.415 H-L Test P-Value 0.615 

Table 1 – Estimated Model Variables and Parameters, Model (A) 
The table above presents the estimation results for the two industry equation model. Industry a 
represents Manufacturing & Primary Activity firms, and Industry b Trade & Services firms. The sign 
of the estimated parameters for both regressions is in accordance with economic intuition. The 
significance of each parameter is demonstrated by the low p-values for the Wald test, while the overall 
significance of each regression is verified by the high p-values for the Hosmer-Lemeshow test. 
 

The Hosmer-Lemeshow test is a measure of the overall significance of the 

logistic regression. Through the analysis of Figure 12 we can conclude that the 

estimated logistic regressions significantly fit the observed data. 
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Figure 12 – Model A: Hosmer-Lemeshow Test 
This figure presents the comparison between the observed and expected number of default and non-
default observations for each of the 10 groups comprised in the Hosmer-Lemeshow test. The number of 
the default observations is represented on the left y axis, while the number of non-default observations 
is represented on the right y axis. 
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4.3 Model B – Standard Model 

 

In order to test our two hypotheses both the Two-Equation Model and the Weighted 

Sample Model will be evaluated against the standard setting of a single equation 

across all industries, using an unweighted sample. Table 2 summarizes the final 

results under this standard setting and Figure 13 provides a graphical description of 

the overall significance of the estimated model. 

 

Variable β̂  
Wald Test 
P-Value 

Current Ratio -0.171 0.001 
Liquidity / Assets -0.211 0.002 
Debt Service Coverage -0.231 0.001 
Interest Costs / Sales_1 1.843 0.007 
Interest Costs / Sales_2 -0.009 0.000 
Productivity Ratio 0.124 0.003 
Constant -3.250 0.000 

Number of Observations 10,995 
-2 LogLikelihood 3,600 
H-L Test P-Value 0.973 

Table 2 – Estimated Model Variables and Parameters, Model (B) 
This table displays the estimation results for the single-equation model. The sign of the estimated 
parameters agrees with economic intuition. The significance of each parameter is demonstrated by the 
low p-values for the Wald test, while the overall significance of the regression is verified by the high p-
values for the Hosmer-Lemeshow test. 
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Figure 13 – Model B: Hosmer-Lemeshow Test 
This figure presents the comparison between the observed and expected number of default and non-
default observations for each of the 10 groups comprised in the Hosmer-Lemeshow test. The number of 
the default observations is represented on the left y axis, while the number of non-default observations 
is represented on the right y axis. 
 

4.4 Model C – Weighted Sample Model 

 

The proportion of the number of defaults (450) to the total number of observations in 

the sample (11,000) is artificially high. The real average annual default frequency of 

the bank’s portfolio and the Portuguese economy is significantly lower than the 4.32% 

suggested by our sample for the corporate sector. However, in order to be able to 

correctly identify the risk profiles of “good” and “bad” firms, a significant number of 

observations for each population is required. For example, keeping the total number 

of observations constant, if the correct default rate is about 1%, extracting a random 

sample in accordance to this ratio would result in a proportion of 110 default 

observations to 11,000 observations.  

A consequence of having an artificially high proportion of default 

observations is that the estimated scores cannot be directly interpreted as real 

probabilities of default. Therefore, these results have to be calibrated in order to 

obtain default probabilities estimates. 

A further way to increase the proportion of the number of default observations 

is to attribute different weights to the default and non-default observations. The 
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weightening of observations could potentially have two types of positive impact in the 

analysis: 

1. As mentioned above, a more balanced sample, with closer proportion of 

default to non-default observations, could help the Logit regression to better 

discriminate between both populations; 

2. The higher proportion of default observations results in higher estimated 

scores. As a consequence, the scores in the weighed model are more evenly 

spread throughout the ]0,1[ interval (see Figure 14). If, in turn, these scores are 

used to group the observations into classes, then it could be easier to identify 

coherent classes with the weighed model scores. Thus, even if weightening the 

observations does not yield a superior model in terms of discriminating power, 

it might still be helpful later in the analysis, when building the rating classes. 
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Figure 14 – Weighted vs. Unweighted Score 
The figure presents the estimated scores for each observation in the development sample using both 
weighted and unweighted models. 
 

The weighted model estimated considers a proportion of one default 

observation for two non-default observations. The weighed sample consists of 1,420 

observations, of which 470 are defaults and the remaining 950 are non-default 
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observations20. The optimized model selects the same variables as the unweighted 

model though with different estimated coefficients. 

 

Variable β̂  
Wald Test 
P-Value 

Current Ratio -0.197 0.003 
Liquidity / Assets -0.223 0.006 
Debt Service Coverage -0.203 0.013 
Interest Costs / Sales_1 1.879 0.050 
Interest Costs / Sales_2 -0.009 0.000 
Productivity Ratio 0.123 0.023 
Constant -0.841 0.000 

Number of Observations 1,420 
-2 LogLikelihood 1,608 
H-L Test P-Value 0.465 

Table 3 – Estimated Model Variables and Parameters, Model (C) 
This table shows the estimation results for the weighted sample model. The selected variables are the 
same as for the unweighted model (B). All estimated parameters are significant at a 5% level and the 
suggested relationship with the dependent variable concurs with economic intuition. The high p-values 
for the Hosmer-Lemeshow test attest the overall significance of the regression. 
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Figure 15 – Model C: Hosmer-Lemeshow Test 
This figure presents the comparison between the observed and expected number of default and non-
default observations for each of the 10 groups comprised in the Hosmer-Lemeshow test. The number of 
the default observations is represented on the left y axis, while the number of non-default observations 
is represented on the right y axis. 
 

                                                 
20 Other proportions yield very similar results (namely the one default for one non-default and one 
default for three non-defaults proportions). 
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The following section analyses the estimation results in more detail and 

compares the different approaches in terms of efficiency. 

 

4.5 Analysis of the Results 

 

In Appendix 4, the final results of the estimations are presented for all three models: 

the two-equation model (Model A), the unweighted single-equation model (Model B) 

and the weighted single-equation model (Model C). The first step to obtain each 

model is to find the best linear combination through backward and forward selection 

procedures. The estimation equation that complies with both economic intuition and 

positive statistical diagnosis (described in steps i. to iii. of section 4.1.2), and had the 

higher discriminating power is considered the optimal linear model. 

The second step is to check for non-linear relationships between the 

independent variables and the logit of the dependent. Results indicate that for all four 

selected linear regressions, there is a clear non-linear relationship between variable 

Interest Costs / Sales and the logit of the dependent variable. In order to account for 

this fact, the procedure described in step iv. of section 4.1.2 is implemented. The 

resulting non-linear relationship for the four regressions is illustrated in Figure 16. In 

order to depict graphically the relationship between the covariate and the binary 

dependent variable, a Locally Weighted Scatterplot Smoothing, or Lowess (Cleveland 

1979), was created. In addition, the quality of the fit of this relationship for the three 

estimated models can be accessed by comparing the multivariate adjustment for each 

model with the lowess curve. For all three models, the quality of the adjustment is 

high but deteriorates for very high values of the explanatory variable. 
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Figure 16  – Smoothed Lowess and Fractional Polynomial Adjustment for the Interest Costs / 
Sales Ratio 

The figure compares the plot of the bivariate smoothed Lowess logit of the variable Interest Costs / 
Sales with the multivariate fractional polynomial adjustment for models A – Multiple Industry 
Equations Model, B – Standard Model and C – Weighted Sample Model.  
 

After the optimal non-linear regressions are selected, a final test for 

multicolinearity is implemented. Only the Trade & Services regression of the Two-

Equation Model presented signs of severe multicolinearity. Since there is no practical 

method to correct this problem, the model is discarded and the second best model 

suggested by the fractional polynomial procedure is selected. This alternative 

specification does not suffer from multicolinearity, as it can be observed in the results 

presented in Appendix 421. In short, the modeling procedure consisted on selecting the 

best discriminating regression from a pool of possible solutions that simultaneously 

complied with economic and statistical criteria. 

In terms of efficiency, all three models have a small number of selected 

variables: model A has five variables for each equation, while models B and C have 

six variables each. Analyzing Figures 17 and 18, we can conclude that all three 

models have significant discriminating power and have similar performances. Results 

                                                 
21 In order to ensure stability of the final results, the whole modeling procedure is repeated with several 
random sub-samples of the main dataset. Across all sub-samples the variables selected for each model 
are the same, the values of the estimated coefficients are stable, and the estimated AR’s are similar. 



 

28 

for Altman’s Z’-Score Model for Private Firms (Altman, 2000) are also reported as a 

benchmark (Model D). Figure 17 displays the Receiver Operating Characteristics 

(ROC) curves. The ROC curve provides for each possible cut-off value the proportion 

of observations incorrectly classified as default by the model against the proportion 

correctly classified as default. The three suggested models have similar ROC curves, 

clearly above the Random Model and Z’-Score Model curves. 
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Figure 17 – Receiver Operating Characteristics Curves 
The figure above displays the Receiver Operating Characteristics curves for the three estimated models 
(A – Multiple Industry Equations Model, B – Standard Model and C – Weighted Sample Model) and 
for the Z’-Score Model for Private Firms (Altman, 2000). The ROC curve provides for each possible 
cut-off value the proportion of observations incorrectly classified as default by the model, the False 
Alarm Ratio (FAR), against the proportion correctly classified as default, the Hit Ratio (HR). 
 

Figure 18 displays the Cumulative Accuracy Profiles (CAP) curves. The CAP curve 

provides, for a given proportion of observations with the highest estimated scores, the 

proportion of correctly classified default observations. As with the ROC analysis, the 

curves for the three selected models are similar and clearly above the Random Model 

and Z’-Score Model curves. 
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Figure 18 – Cumulative Accuracy Profiles Curves 
This figure displays the Cumulative Accuracy Profiles curves for the three estimated models (A – 
Multiple Industry Equations Model, B – Standard Model and C – Weighted Sample Model) and for the 
Z’-Score model (Model D). The CAP curve provides, for a given proportion of observations with the 
highest estimated scores, the proportion of correctly classified default observations (the Hit Ratio, HR).  
 

Figures 23-28 in Appendix 5 provide both the Kolmogorov-Smirnov (KS) 

analysis and Error Type curves. The KS analysis consists on evaluating for each 

possible cut-off point the distance between the Type I Error curve and the True 

Prediction curve. The higher the distance between the curves, the better the 

discriminating power of the model. The Error Type curves display for each cut-off 

point the percentages of Type I (incorrectly classifying an observation as non-default) 

and Type II (incorrectly classifying an observation as default) errors for each model. 
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Table 4 summarizes the results for both ROC/CAP analysis and KS analysis, 

under both the estimation and testing samples. All three measures of discriminating 

power, under both samples, indicate similar and positive values for the three models 

estimated, clearly above the Z’-Score model. 

 

Main Sample Out-of-Sample 
Model 

AUROC σAUROC AR KS AUROC σAUROC AR 
A 71.88% 1.15% 43.75% 32.15% 73.04% 7.53% 46.07% 
B 71.88% 1.15% 43.77% 32.97% 75.29% 6.55% 50.59% 
C 71.87% 1.15% 43.74% 32.94% 74.15% 6.88% 48.29% 
D 62.53% 1.25% 25.07% 19.77% 61.11% 6.87% 22.22% 

Table 4 – AUROC, AR and KS Statistics 
This table reports the Area Under the ROC curves, Accuracy Ratios and Kolmogorov-Smirnov 
statistics estimated for the three suggested models (A – Multiple Industry Equations Model, B – 
Standard Model and C – Weighted Sample Model) and for the Z’-Score model (Model D), under both 
the estimation and testing samples.  
 

A more rigorous comparison of the discriminating power of the models can be 

obtained through a statistical test presented in DeLong et al. (1988) for the difference 

between the estimated AUROC’s of the different models22. Table 5 presents the 

results of applying this test to the differences between all models for both samples. 

  

Main Sample Out-of-Sample 
Test 

θi - θj σ (θi - θj) P-Value θi - θj σ (θi - θj) P-Value 
A - B -0.0089% 0.2225% 96.83% -2.2571% 2.8844% 43.39% 
A - C 0.0053% 0.2372% 98.23% -1.1086% 2.7449% 68.63% 
A - D 9.3425% 1.7807% 0.00% 11.9256% 7.7745% 12.50% 
B - C 0.0141% 0.0476% 76.68% 1.1485% 0.5115% 2.47% 
B - D 9.3514% 1.7788% 0.00% 14.1827% 6.7577% 3.58% 
C - D 9.3372% 1.7751% 0.00% 13.0342% 7.0051% 6.28% 

Table 5 – Testing the Differences between AUROC’s 
The table above provides the results of a statistical test for comparing the estimated AUROC curves 
between the different models. Model A is the Multiple Industry Equations model, Model B the 
Standard Model, Model C the Weighted Sample and Model D the Z’-Score model.  
 

The results indicate that for both samples, Models A, B and C have similar 

discriminating power, and all three perform significantly better that the Z’-Score 

model. 

                                                 
22 For a description of the test consult Appendix 2. 
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 Regarding our first hypothesis that a setting with multiple equations could 

yield better results, both in-sample and out-of-sample results suggest there is no 

improvement from the standard approach. The estimated Accuracy Ratio for the two-

equation model is 43.75%, which is slightly worse than the Accuracy Ratio of the 

single-equation model, 43.77%. The out-of-sample results confirm this tendency, the 

AR of the two-equation model is 46.07%, against 50.59% of the single-equation 

model, according to the test results presented in Table 5 none of these differences is 

statistically significant. Since the two-equation model involves more parameters to 

estimate and is not able to better discriminate to a significant extent the default and 

non-default populations of the dataset, the single-equation specification is considered 

superior in terms of scoring methodology for this dataset. Regarding the hypothesis 

that balancing the default and non-default populations could help the logistic 

regression to better discriminate them, again both in-sample and out-of-sample results 

do not provide positive evidence. The estimated Accuracy Ratio for the weighed 

model is 43.74%, marginally worse than the 43.77% of the unweighted model. Again, 

the out-of-sample results confirm that the weighted model does not have a higher 

discriminating power (AR of 48.29%) than the unweighted model (AR of 50.59%). 

As reference, the private-firm model developed by Moody’s to the Portuguese 

market has an in-sample AR of 61.1% (unfortunately no out-of-sample AR is 

reported)23. The selected variables are: Equity / Total Accounts Payable, Bank Debt / 

Total Liabilities, Net P&L / Assets, (Ordinary P&L+ Depreciation)/ Interest and 

similar Expenses, (Ordinary P&L + Depreciation + Provisions) / Total Liabilities, 

Current Assets / Accounts Payable (due within 1 year) and Interest and similar 

Expenses / Turnover. The sample data comprised financial statements of 18,137 

unique firms, of which 416 had defaulted (using the “90 days past due” definition), 

with a time span from 1993 to 2000. Hayden (2003) reports an in-sample AR of 

50.3% and an out-of-sample AR of 48.8% for a logistic regression model applied to 

the Austrian market, with the “90 days past due” default definition. The variables 

selected are Equity / Assets, Bank Debt / Assets, Current Liabilities / Assets, Accounts 

                                                 
23 See Murphy et al. (2002) 
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Payable / Mat. Costs, Ordinary Business Income / Assets and Legal Form. The 

sample data included 16,797 observations, of which 1,604 were defaults, for a time 

period ranging from 1992 to 1999. Due to differences in the dataset, such as different 

levels of data quality or the ratio of default to non-default observations, the reported 

AR’s for both studies presented above cannot be directly comparable to the AR’s 

reported in our study. Despite this fact, they can still be regarded as references that 

attest the quality of the model presented in terms of discriminatory power. 

 The following chapter discusses possible applications of the scoring model 

presented. We start by discussing the creation of a quantitative rating system, 

followed by the estimation of probabilities of default and rating transition matrixes. 

Finally the capital requirements for a simulated portfolio are calculated under both the 

NBCA and current regulations. 
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5 Applications 
 

 

5.1 Quantitative Rating System and Probability of Default 

Estimation 

 

The scoring output provides a quantitative assessment of the credit quality of each 

firm. Rating classes can be built through a partition of the scoring scale into k groups. 

A default frequency can, in turn, be estimated for each partition, dividing the number 

of default observations by the total number of observations for each rating class. 

Furthermore, these default frequencies can be leveled in order to allow for the global 

default rate of the dataset to be similar to the projected default rate of the universe. 

These adjusted default frequencies represent the Probability of Default (PD) estimates 

of the quantitative rating system for each rating class. In light of the NBCA, these can 

be interpreted as an approximation to the long-run averages of one-year realized 

default rates for the firms in each rating class24. 

The quantitative rating system presented in this section is not directly 

comparable to the traditional rating approaches adopted by the rating agencies. The 

two main differences between the systems are the scope of the analysis and the 

volatility of the rating classes. Regarding the scope of the analysis, the system 

developed in this study is concerned with only one risk dimension, the probability of 

default. Ratings issued by the agencies address not just obligor risk but the facility 

risk as well. The other major difference is related to the time horizon, the quantitative 

system has a specific one-year time horizon, with high volatility subject to economic 

cycle fluctuations. The agencies approach is to produce through-the-cycle ratings, 

with unspecific, long-term time horizon. Cantor and Packer (1994) provide a 

description of the rating methodologies for the major rating agencies, while Crouhy et 

                                                 
24 Basel Committee on Banking Supervision (2003), par. 409. 
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al. (2001) present the major differences between the internal rating system of a bank 

and the rating systems of two major credit rating agencies. 

Regarding the quantitative rating system, two alternative methodologies are 

employed in order to obtain the optimal boundaries for each rating class. The goal is 

for the rating system to be simultaneously stable and discriminatory. A stable rating 

system is one with infrequent transitions, particularly with few ample transitions25. A 

discriminatory rating system is a granular system with representative and clear distinct 

classes, in terms of the frequency of default that should increase monotonically from 

high to low rating classes. 

The first methodology employed consists in obtaining coherent rating classes 

through the use of cluster analysis on the scoring estimates. The second methodology 

is devised as an optimization problem that attempts to map the historical default 

frequencies of rating agency whole letter obligor ratings. 

 

5.1.1 Cluster Methodology 

 

Clustering can be described as a grouping procedure that searches for a “natural” 

structure within a dataset. It has been used thoroughly in a wide range of disciplines 

as a tool to develop classification schemes. The observations in the sample are 

reduced to k groups in a way that within each group, these observations are as close as 

possible to each other than to observations in any other group.  

K-Means algorithm is implemented due to the large number of observations26. 

In order to determine the optimal number of clusters, the Calinski and Harabasz 

(1974) method is used. This index has been repeatedly reported in the literature as one 

of the best selecting procedures (Milligan and Cooper, 1985). The index is calculated 

as: 

                                                 
25 An ample transition is a rating upgrade/downgrade involving several rating notches. For example, if 
a firm has a downgrade from Aaa to Caa in just one period. 
26 Refer to Appendix 6 for a description of the algorithm used. 
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where BSS is the Between Sum-of-Squares; WSS the Within Sum-of-Squares; k the 

number of clusters; n the number of observations; Yij estimated score for observation j 

in cluster i. 

The optimal k is the one that maximizes the value of CH(k), since it will be at 

this point that the relative variance between groups respective to the variance within 

the groups will be higher. 

The cluster analysis is performed on the scoring estimates of the three models 

estimated previously. Table 6 reports the CH(k) index for k = 2 up to k = 20. 

 

k Model A Model B Model C 
2 25,092 25,644 28,240 
3 30,940 32,046 36,176 
4 35,105 36,854 44,639 
5 39,411 42,252 50,774 
6 43,727 45,889 58,179 
7 48,015 51,642 65,751 
8 54,666 49,930 72,980 
9 55,321 56,529 77,201 

10 61,447 62,321 86,546 
11 55,297 57,629 93,152 
12 62,620 63,913 95,021 
13 69,788 71,726 104,821 
14 65,603 78,093 110,153 
15 73,152 73,530 116,503 
16 78,473 75,129 126,060 
17 74,141 84,335 129,162 
18 79,710 82,801 138,090 
19 75,293 78,527 138,461 
20 79,154 87,544 134,544 

Table 6 – Calinski-Harabasz CH(k) index for k = 2 up to k = 20 
The table above reports the Calinski and Harabasz (1974) index for the three alternative specifications 
using 2 to 20 clusters. The optimal number of clusters is the one that maximizes the index, where the 
relative variance between groups respective to the variance within the groups will be higher. Model A 
is the Multiple Industry Equations model, B is the Standard Model, and C the Weighted Sample Model. 
 

For Model A, the optimal number of clusters is 18, for Model B is 20, and for 

Model C is 19. In order to directly compare the resulting rating systems, classes are 
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aggregated into k = 727. This class aggregation is performed taking in consideration 

both stability and discriminatory criteria. Figures 19 and 20 present the distribution of 

the default frequency and of the number of observations by rating class, for each 

model. 
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Figure 19 – Default Frequency by Rating Class (Cluster Method) 
This figure provides the default frequency for each rating class determined by the cluster methodology. 
The default frequency corresponds to the proportion of default observations to the total number of 
observations in each rating class, adjusted by a calibration factor. Model A is the Multiple Industry 
Equations model, B is the Standard Model, and C the Weighted Sample Model. 
 

Results in Figure 19 are similar across all three models, the default frequency rises 

from lower to higher risk ratings (only exception being the inflection point for Model 

A between classes Aa and A), although this rise is only moderate. The defaulted 

frequencies reported are calibrated frequencies that, as mentioned before, can be 

interpreted as the actual PD estimates for each rating class. Since the dataset is biased 

towards the default observations, the resulting default frequencies are leveled so that 

the overall default ratio would equal 1.5%28. 

 

                                                 
27 K = 7 is the minimum number of classes recommended in the NBCA (Basel Committee on Banking 
Supervision 2003, par. 366) and it is also the number of whole letter rating classes of the major rating 
agencies. 
28 The calibration value should be similar to the best estimate of the annual default ratio of the universe. 
For this study, it is estimated that this value should be equal to 1.5% for the non-financial private 
Portuguese firms.  
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Figure 20 – Number of Observations Distribution by Rating Class (Cluster Method) 
The figure above displays the distribution of the number of observations by rating class, with the rating 
classes determined by the cluster methodology. Model A is the Multiple Industry Equations model, B is 
the Standard Model, and C the Weighted Sample Model.  
 

Regarding the distribution of observations (Figure 20), it is interesting to 

observe that the three models that have so far presented very similar results actually 

produce clearly distinct rating classes. Model A suggests a more uniformly distributed 

system, with only the lowest rating class having fewer observations. Model B presents 

a distribution more concentrated on the higher rating classes, while Model C presents 

a more orthodox distribution, with higher concentration on the middle ratings and 

lower weight on the extremes. 

With the assumptions made, for the cluster methodology, Model B is the one 

that presents the less attractive rating system: it is not able to better discriminate 

between rating classes in terms of default frequency to a significant extent, and it 

assigns very high ratings too often. Models A and C rating systems have a similar 

discriminating power, although the rating distribution suggested by Model C is the 

one closer to what should be expected from a balanced portfolio. Thus, the empirical 

evidence seems to corroborate the hypothesis advanced in section 4.4, the weighting 

of the sample for the scoring model is helpful in order to identify coherent classes 

through a cluster methodology. 
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5.1.2 Historical / Mapping Methodology 

 

The second methodology tested consists on defining the class boundaries in such a 

way that the resulting default frequencies for each class (after calibration) would 

approximate as best as possible a chosen benchmark. For this study, the benchmark is 

Moody’s historical one-year default frequencies for corporate whole rating grades. 

Table 7 provides descriptive statistics for the Moody’s ratings29. 

 

Rating Min 1st 
Quartile Median Mean StDev 3rd 

Quartile Max 

Aaa 0 0 0 0 0 0 0 
Aa 0 0 0 0.06 0.18 0 0.83 
A 0 0 0 0.09 0.27 0 1.7 

Baa 0 0 0 0.27 0.48 0.37 1.97 
Ba 0 0 0.64 1.09 1.67 1.29 11.11 
B 0 0.38 2.34 3.71 4.3 5.43 20.78 

Caa-C 0 0 7.93 13.74 17.18 20.82 100 
Investment-Grade 0 0 0 0.15 0.28 0.21 1.55 
Speculative-Grade 0 0.59 1.75 2.7 3.04 3.52 15.39 

All Corporate 0 0.18 0.67 1.1 1.38 1.32 8.4 
Table 7 – Annual Global Issuer-Weighted Default Rate Descriptive Statistics, 1920-2003 

 

It is relevant to point out that this is not an attempt to create an alternative to 

Moody’s ratings. The objective is to obtain a rating system whose default frequencies 

share some properties with an external reference. A downside of this mapping 

methodology is that implicitly we assume that our benchmark has the desired 

properties, and that the underlying structure of our population is similar to the one 

used to produce the benchmark statistics. The methodology is set up as an 

optimization problem that can be formalized as follows: 
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29 Source: Hamilton, 2004. 



 

39 

where b
iy  is the default frequency of the benchmark for class i, yi is the default 

frequency of the model for class i, di is the number of default observations in class i 

and xi is the number of observations in class i.  

Figures 21 and 22 present the results of applying this methodology to the 

scoring models estimated previously. 
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Figure 21 – Default Frequency by Rating Class (Historical Method) 
This figure provides the default frequency for each rating class determined by the historical 
methodology. The default frequency corresponds to the proportion of default observations to the total 
number of observations in each rating class, adjusted by a calibration factor. Model A is the Multiple 
Industry Equations model, B is the Standard Model, and C the Weighted Sample Model. The average 
default rate for Moody’s whole letter ratings in the period 1920-2003 is also presented. 
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Figure 22 – Number of Observations Distribution by Rating Class (Historical Method) 
The figure above displays the distribution of the number of observations by rating class, with the rating 
classes determined by the historical methodology. Model A is the Multiple Industry Equations model, 
B is the Standard Model, and C the Weighted Sample Model. 
 

Figure 21 shows the default frequency by rating class for each model and 

selected benchmark. The default frequency presented are calibrated frequencies, the 

calibration is similar to the one described in the previous section. All three models can 

moderately approximate the benchmark, although only results for Model A provide a 

good fit for the default frequency in the lowest rating class. Even so, the results for the 

three models are clearly positive in terms of discriminatory power. When comparing 

the default frequencies between the two methodologies, it is clear that the historical 

methodology yields much steeper rating scales, starting at lower default rates for the 

higher rated classes, and ending at clearly higher default rates for the lower rated 

classes than the cluster methodology30. Consequently, the resulting distributions of 

observations for the rating systems based on the historical methodology (Figure 22, 

above) are less granular, with higher concentrations in the middle / lower classes. For 

all three models, only the very best firms belong to one of the two higher rating 

classes, and the worst class is reserved for the very worst performing firms. 

                                                 
30 The default rates for the higher rating class, resulting from the historical methodology, are 0% 
because historically there are no observed one-year defaults for the benchmark, in the period 
considered. 
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Comparing the distributions of observations by rating class based on the three scoring 

models, there are no clear differences between them. 

 

5.1.3 Rating Matrixes and Stability 

 

Once the optimal boundaries for each rating class are determined, a rating 

classification can be attributed for each observation of the dataset. Tracking the 

evolution of the yearly observations of each firm enables the construction of one-year 

transition matrixes. If, for example, a firm is classified as Baa in the fist period 

considered, in the next period it could either have an upgrade (to Aaa, Aa or A), a 

downgrade to (Ba, B, Caa), remain at Baa, default, or have no information in the 

dataset (Without Rating – WR). 

The analysis of the transition matrix is helpful in order to study the stability of 

the rating system. The fewer transitions, i.e., low percentages in the off-diagonal 

elements of the matrix, the more stable is the rating system. Furthermore, transitions 

involving jumps of several notches (for example, a transition from Aaa to Caa) are 

undesirable. Thus, a stable rating system is one whose rating transitions are 

concentrated in the vicinity of the main diagonal elements of the matrix.  

Another relevant aspect of the transition matrix is the transition from each 

rating class to default. In terms of discriminatory power, a better rating system is one 

where the transitions to default rise at an exponential rate, from the higher rating to 

the lower rating classes. 

Tables 8 – 10 present the transition matrices for the three models considered, 

with the class boundaries determined by the cluster methodology, while Tables 11 – 

13 present the matrices based on the historical methodology: 
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 Aaa Aa A Baa Ba B Caa D WR 
Aaa 41.15% 20.37% 4.71% 1.22% 1.06% 0.65% 0.00% 0.81% 30.03%
Aa 19.13% 29.82% 15.93% 6.11% 3.49% 1.16% 0.07% 2.98% 21.31%
A 7.15% 23.74% 25.84% 12.88% 8.25% 2.78% 0.08% 3.20% 16.08%

Baa 2.31% 14.08% 19.47% 19.25% 17.60% 6.93% 0.33% 5.39% 14.63%
Ba 1.21% 4.93% 10.85% 16.70% 29.69% 15.20% 0.43% 5.92% 15.06%
B 0.37% 1.76% 2.61% 4.27% 18.30% 42.96% 2.40% 11.85% 15.47%

Caa 0.00% 0.95% 0.95% 0.00% 3.81% 34.29% 9.52% 25.71% 24.76%
Table 8 – Model A 1 Year Transition Matrix (Cluster Method) 

 

 Aaa Aa A Baa Ba B Caa D WR 
Aaa 42.43% 23.57% 1.72% 0.36% 0.27% 0.00% 0.09% 0.63% 30.92%
Aa 13.42% 46.57% 14.09% 3.32% 0.38% 0.21% 0.04% 3.20% 18.76%
A 1.58% 26.52% 32.79% 14.78% 2.19% 0.43% 0.43% 4.81% 16.48%

Baa 0.46% 8.27% 24.22% 33.40% 8.27% 2.99% 1.04% 7.55% 13.80%
Ba 0.14% 2.32% 9.71% 29.28% 21.16% 8.12% 3.77% 10.72% 14.78%
B 0.00% 1.89% 2.95% 14.74% 21.47% 21.05% 7.58% 13.05% 17.26%

Caa 0.00% 1.54% 0.00% 7.34% 11.97% 16.22% 18.15% 21.62% 23.17%
Table 9 – Model B 1 Year Transition Matrix (Cluster Method) 

 

 Aaa Aa A Baa Ba B Caa D WR 
Aaa 26.67% 28.80% 7.20% 0.80% 0.00% 0.27% 0.00% 0.53% 35.73%
Aa 7.10% 41.27% 19.01% 3.85% 0.74% 0.44% 0.07% 1.63% 25.89%
A 1.15% 18.70% 40.28% 15.40% 3.72% 0.68% 0.10% 3.20% 16.76%

Baa 0.25% 3.84% 23.96% 32.14% 13.96% 2.89% 0.50% 5.41% 17.04%
Ba 0.07% 1.25% 9.42% 24.50% 29.29% 13.10% 1.62% 7.28% 13.47%
B 0.09% 0.35% 2.26% 9.03% 23.00% 32.38% 6.34% 11.37% 15.19%

Caa 0.00% 0.00% 1.15% 0.29% 5.48% 26.51% 23.34% 19.88% 23.34%
Table 10 – Model C 1 Year Transition Matrix (Cluster Method) 

 

 Aaa Aa A Baa Ba B Caa D WR 
Aaa 13.33% 26.67% 16.67% 6.67% 0.00% 0.00% 0.00% 0.00% 36.67%
Aa 1.44% 14.83% 25.84% 15.31% 0.48% 0.96% 0.00% 0.00% 41.15%
A 0.40% 5.23% 34.97% 26.83% 3.52% 0.60% 0.00% 1.01% 27.44%

Baa 0.04% 0.80% 13.43% 45.59% 16.65% 1.69% 0.00% 2.96% 18.84%
Ba 0.04% 0.16% 1.65% 21.18% 44.64% 11.38% 0.04% 5.69% 15.22%
B 0.00% 0.10% 0.26% 3.64% 22.44% 44.83% 0.26% 12.47% 16.00%

Caa 0.00% 0.00% 0.00% 0.00% 0.00% 22.22% 0.00% 55.56% 22.22%
Table 11 – Model A 1 Year Transition Matrix (Historical Method) 
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 Aaa Aa A Baa Ba B Caa D WR 
Aaa 18.97% 36.21% 12.07% 0.00% 0.00% 0.00% 0.00% 0.00% 32.76%
Aa 2.85% 32.43% 24.32% 6.16% 1.05% 0.30% 0.00% 0.75% 32.13%
A 0.07% 12.79% 35.91% 16.80% 6.75% 0.98% 0.00% 2.46% 24.24%

Baa 0.00% 3.44% 22.66% 31.96% 21.35% 2.00% 0.00% 2.96% 15.63%
Ba 0.00% 0.42% 5.65% 17.58% 43.55% 11.80% 0.04% 5.31% 15.64%
B 0.00% 0.05% 0.76% 2.48% 20.88% 47.44% 0.43% 12.18% 15.77%

Caa 0.00% 0.00% 0.00% 0.00% 5.00% 25.00% 0.00% 30.00% 40.00%
Table 12 – Model B 1 Year Transition Matrix (Historical Method) 

 

 Aaa Aa A Baa Ba B Caa D WR 
Aaa 18.92% 29.73% 16.22% 0.00% 0.00% 0.00% 0.00% 0.00% 35.14%
Aa 2.24% 21.41% 35.14% 3.83% 0.96% 0.32% 0.00% 0.00% 36.10%
A 0.22% 5.17% 46.79% 14.62% 5.29% 0.84% 0.00% 2.08% 24.97%

Baa 0.00% 1.13% 24.27% 33.36% 20.49% 2.06% 0.00% 3.18% 15.52%
Ba 0.00% 0.21% 5.42% 18.13% 43.13% 11.77% 0.04% 5.33% 15.96%
B 0.00% 0.05% 0.81% 2.49% 20.90% 47.51% 0.34% 12.13% 15.77%

Caa 0.00% 0.00% 0.00% 0.00% 0.00% 22.22% 0.00% 38.89% 38.89%
Table 13 – Model C 1 Year Transition Matrix (Historical Method) 

 

Results based on the historical methodology are more stable and display 

higher discriminatory power than the results based on the cluster methodology. In 

terms of stability, the historical based results have less high level transitions. For 

example, none of the three matrixes based on this methodology have transitions from 

the high classes Aa, A, Baa to lowest class Caa, while all of the three matrices based 

on the cluster methodology have such transitions.  

In terms of discriminatory power, the matrixes based on the historical 

methodology also present better results, since the transitions to default start at lower 

percentages for the higher classes and increase continuously to considerable higher 

percentages than the transitions based on the cluster methodology. 

Regarding the results for each model, within each methodology, none of them 

produces a clearly better rating matrix. 
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5.2 Regulatory Capital Requirements 

 

Under the New Basel Capital Accord (NBCA), financial institutions will be able to 

use their internal risk assessments in order to determine the regulatory capital 

requirements31. In the first pillar of the Accord – Minimum Capital Requirements – 

two broad methodologies for calculating capital requirements for credit risk are 

proposed. The first, the Standardized Approach, is similar to the current capital 

accord, where the regulatory capital requirements are independent of the internal 

assessment of the risk components of the financial institutions. Conversely, in the 

second methodology – the Internal Ratings-Based Approach – banks complying with 

certain minimum requirements can rely on internal estimates of risk components in 

order to determine the capital requirements for a given exposure. Under this 

methodology, two approaches are available: a Foundation and an Advanced approach. 

For the Foundation Approach, credit institutions will be able to use their own 

estimates of the PD but rely on supervisory estimates for the other risk components. 

For the Advanced Approach, banks will be able to use internal estimates for all risk 

components, namely the PD, Loss-Given-Defaults (LGD), Exposure-At-Default 

(EAD) and Maturity (M). These risk components are transformed into Risk Weighted 

Assets (RWA) through the use of risk weight functions32. 

Up to this point we have devised six alternative methodologies for determining 

one of the risk components, the PD. Assuming fixed estimates for the other risk 

components we are able to estimate capital requirements under the IRB Foundation 

approach, and compare them to the capital requirements under the current accord. The 

parameters assumed are LGD = 45%, M = 3 years, EAD for SME = 0.3 Million Eur 

and EAD for large firms = 1.5 Million Eur. The PD used for firm i corresponds to the 

maximum PD estimated for the rating class where i belongs. For the calculations 

under the current capital accord, it is considered that all exposures have the standard 

risk weight of 100%. Table 14 provides results for all six models. 

                                                 
31 Basel Committee on Banking Supervision (2003). 
32 Appendix 7 provides a description of the formulas used to compute the RWA for corporate 
exposures. 
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Capital Requirements, EUR Rating 

Methodology Model Average 
RWA % Bal II IRB Fnd Bal I / Bal II Std 

Difference, 
EUR 

A 90.95% 272,396,629.19 299,496,000.00 27,099,370.81
B 91.45% 273,885,689.68 299,496,000.00 25,610,310.32Historical 
C 91.59% 274,315,296.00 299,496,000.00 25,180,704.00
A 96.24% 288,220,548.59 299,496,000.00 11,275,451.41
B 91.11% 272,881,107.86 299,496,000.00 26,614,892.14Cluster 
C 91.79% 274,906,654.20 299,496,000.00 24,589,345.80

Table 14 – Average RWA and Total Capital Requirements 
The table above provides the average risk weighted assets for a standard portfolio using the rating 
classifications obtained through the three scoring model specifications and for each rating 
methodology. In addition, capital requirements under the current capital accord and the NBCA (IRB-
Foundation) are also calculated and compared. Model A is the Multiple Industry Equations model, B is 
the Standard Model, and C the Weighted Sample Model. 
 

Results are similar for all models, the capital requirements under the IRB 

Foundation approach are lower than those that would be required under the current 

capital accord. For the Historical rating methodology, the two-equation scoring 

specification (Model A) is the one that provides the highest capital difference, but for 

the Cluster rating methodology it is the one that provides the lowest.  

Figures 29 – 34 in Appendix 8 provide the distribution if the relative RWA for 

each rating class of all six methodologies, weighted by the number of observations 

attributed to each class by each rating methodology. The results based on the 

Historical Methodology are more concentrated on the middle classes, and typically 

only the two lowest rating classes have a risk weight above the standard Basel I 

weight. Results under the Cluster Methodology are more evenly spread out through 

the different classes, with the three up to five lowest rating classes having a risk 

weight above Basel I requirements. 
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6 Conclusion 
 

The first and main result from this research is that it is possible to build a relatively 

simple but powerful and intuitive rating system for privately-held corporate firms, 

with few data requirements. In order to set up a similar system, it is only necessary to 

retrieve for a given time frame (at very least 4 years, better would be a full economic 

cycle) yearly default data and the accounting reports used to concede these loans. This 

purely quantitative system is enough to provide a scoring rule that, for this dataset, is 

able to discriminate to a very satisfactory extent the defaulting and non-defaulting 

populations, both in and out-of-sample. It is also capable of classifying the various 

firms into meaningful and coherent rating classes. Meaningful in the sense that firms 

belonging to a certain rating class have distinct probabilities of default from firms 

belonging to other classes, and to lower ratings correspond significantly higher 

probabilities of default. Coherent in the sense that rating transitions are stable: if a 

firm has a given rating for a given year, the probability that in the following period it 

would be either upgraded or downgraded several notches is very small. Furthermore, 

the probabilities of default associated to each rating class are calibrated to the 

estimated real average default frequency of the portfolio, and can therefore be used to 

access the potential impact of introducing the IRB – Foundation approach of the 

NBCA, for a given portfolio.  

In terms of the scoring methodology, two alternatives to the classical 

regression are presented. The first alternative is a two-equation specification that 

allows for industry differentiation. The second is a weighted model that balances the 

proportion of defaulting and non-defaulting observations. In terms of the 

discriminating power of the scoring model, both in-sample and out-of-sample results 

indicate that neither of the two alternative specifications provide significant 

improvement to the classical regression. However, both alternatives have proven 

useful later when building the rating classes. The weighted model provides the best 

results when using a cluster methodology to group individual observations into rating 

classes, while the two-equation specification provides the most discriminating system 
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when rating classes are built through a mapping methodology. Comparing the two 

rating methodologies, the mapping methodology yields more discriminating systems 

but, on the other hand, the cluster methodology provides more granular rating 

distributions. Regarding the rating matrixes, the mapping methodology provides more 

discriminatory power with considerably less ample rating transitions.  

There are, however, important extensions to the basic setup that should be 

considered. The first one derives from the fact that the scoring model only considers a 

subset of all the variables that can potentially help to discriminate the defaulting and 

non-defaulting populations. A more complete setup would then consider alternative 

explanatory variables (such as the reputation of management, the quality of the 

accounting reports or the relationship of the client to the bank), but more importantly, 

it should incorporate the subjective opinion or expertise of the credit analyst. A 

desirable feature of a rating system is giving the possibility for the credit analyst to 

override the rating decision provided by the mechanical score. This is particularly 

relevant in the corporate segment, since a wide array of idiosyncrasies (such as 

creative accounting) could distort the results of the quantitative assessment.  

Another potentially useful extension would be to develop a system that 

provides ratings based not just on the most current available information, but also on 

the information available on the previous periods. This would result in a more stable 

system: for a firm to have a very good / bad classification, it would have to present 

very good / bad indicators for several periods. There is however, a trade-off between 

stability and discriminatory power: for example, if a firm has in the past produced 

consistently good indicators, but in the present is rapidly becoming on the verge of 

bankruptcy, such a system may not downgrade the rating classification of such a firm 

fast enough. 

One final point worth mentioning is that the system developed only provides 

borrower ratings. In order to use such a system to concede loans, the variables specific 

to each loan (such as collateral) should be taken in consideration together with the 

borrower rating. In other words, the final rating assigned to a certain loan is a function 

of the borrower rating and the Loss-Given-Default (LGD). 
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Appendix 1 – Description of Financial Ratios and 

Accuracy Ratios 
 

 

Type Name Definition Expected 
Effect on PD AR

Net P&L / Assets [Net Profit & Loss] / [Total Assets] - 15.60%

Current Earnings / Assets [Current Earnings] / [Total Assets] - 16.60%

Current Earnings and 
Depreciation / Turnover [Current Earnings + Depreciation] / [Turnover] - -1.00%

P&L / Assets [Net Profit & Loss + Depreciation + Provisions] / [Total Assets] - 5.80%

Gross Earnings / Production [EBT + Depreciation + Provisions] / [Production] - -3.20%

EBITDA / Production [EBITDA] / [Production] - -15.80%

Liquidity / Current Liabilities [Bank Deposits & Cash + Marketable Securities] / [Short-Term 
Liabilities] - 10.60%

Current Ratio [Current Assets] / [Short-Term Liabilities] - 9.20%

Liquidity / Assets [Bank Deposits & Cash + Marketable Securities] / [Total 
Assets] - 12.00%

Equity / Assets [Equity] / [Total Assets] - 3.80%

Equity / Accounts Payable [Equity] / [Accounts Payable] - 4.40%

Bank Debt / Accounts Payable [Bank Debt] / [Accounts Payable] + 1.80%

Accounts Payable / Assets [Accounts Payable] / [Total Assets] + 5.20%

Liabilities /  Assets [Total Liabilities] / [Total Assets] + 3.80%

Net Current Accounts Payable / 
Assets

[Short-Term Accounts Payable - Bank Deposits & Cash] / 
[Total Assets] + -0.40%

Gross Earnings / Liabilities [Current Earnings + Depreciation + Provisions] / [Total 
Liabilities] - 9.80%

Debt Service Coverage [Current Earnings + Depreciation] / [Interest & Similar Costs] - 25.20%

P&L / L-T Liabilities [Net Profit & Loss + Depreciation + Provisions] / [Long-Term 
Liabilities] - 0.00%

Operating Earnings / Debt 
Service [Operating Earnings] / [Interest & Similar Costs] - 16.60%

Interest Costs / Sales [Interest & Similar Costs] / [Turnover] + 40.20%

Inventories / Turnover [Inventories] / [Turnover] + 12.00%

Turnover / Assets [Turnover] / [Total Assets] - 20.40%

Productivity Productivity Ratio [Personnel Costs] / [Turnover] + 15.80%
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Appendix 2 – Estimating and Comparing the Area 

Under the ROC curves 
 

 

The estimated ROC curve and, consequently, the AUROC are outcomes of random 

variables, since we only have one sample of the scoring of the borrowers and their 

realized defaults. Following DeLong et al. (1988), the area under the population ROC 

curve can be defined as the probability that, when the estimated scoring is observed 

for a randomly selected borrower from the default population and a randomly selected 

borrower from the non-default population, the resulting scores will be in the correct 

order (the scoring of the default observation is higher than the scoring of the non-

default observation). For a given sample, the AUROC can be estimated either through 

parametric or nonparametric methods. A parametric approach would involve 

distributional assumptions on the observed variable, although these distributions 

cannot be uniquely determined from the ROC curve (see, for example, the binormal 

model used in Metz 1978). The nonparametric approach used in this study relates the 

estimation of the AUROC to the Mann-Whitney (1947) U-statistic33. Let di (i = 1,…, 

m) be the estimated scores for the default observations and rj (j = 1,…, n) be the 

estimated scores for the non-default observations. An unbiased estimator of the 

probability of correctly classifying two randomly chosen subjects from the default and 

non-default populations is given by the average over a kernel ψ: 

n ( )
1 1

1 ,
n m

i j
j i

AUROC d r
mn

ψ
= =

= ∑∑  

where, 

( ) 1
2

1
,     

0

d r
d r d r

d r
ψ

>⎧
⎪= =⎨
⎪ <⎩

 

                                                 
33 Bamber (1975) originally developed this relationship. For more details see, for example, Braga 
(2000).  
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The variance of this estimator can be computed through the use of placement values. 

Let V(di) be the placement of the estimated score di in the distribution of r scores (i.e., 

the fraction of r scores that it exceeds). In addition, let V(rj) be the placement of the 

estimated score rj in the distribution of d scores: 

( )
( )

( )
( )

1 1

, ,
       and       

n m

i j i j
j i

i j

d r d r
V d V r

n m

ψ ψ
= == =
∑ ∑

 

The variance of the estimator for large samples can then be computed as the sum of 

the scaled variances for the placement values of d and r: 

n( )
( ) ( )

( )

( ) ( )

( )

2 2
2 2

1 1 1 1
2 2var

1 1

m m n n

j j i i
j j i i

m V r V r n V d V d
AUROC

m m n n
= = = =

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= +
− −

∑ ∑ ∑ ∑
 

If we wish to build a test to compare the AUROC estimates for two alternative 

models, A and B based on the same dataset it is also relevant to compute the 

covariance of the estimates: 
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The test statistic for testing n n
0 : A BH AUROC AUROC=  is given by: 

n n( )
n n( )

2

var

A B

A B

AUROC AUROC
T

AUROC AUROC

−
=

−
 

where, 

n n( ) n( ) n( ) nn( )var var var 2cov ,A B A B A BAUROC AUROC AUROC AUROC AUROC AUROC− = + −
 

The test statistic T is asymptotically χ2-distributed with one degree of freedom. 
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Appendix 3 – Binomial Logistic Regression 

Estimation and Diagnostics34 
 

 

a) Binomial Logistic Regression 

 

Binomial (or binary) logistic regression is a type of regression useful to model 

relationships where the dependent variable is dichotomous (only assumes two values) 

and the independent variables are of any type. Logistic regression estimates the 

probability of a certain event occurring, since it applies maximum likelihood 

estimation after transforming the dependent variable into a logit variable (the natural 

log of the odds of the dependent occurring or not). Unlike OLS regression, it 

estimates changes in the log odds of the dependent variable, not changes in the 

dependent itself.  

Let yi be a binary discrete variable that indicates whether firm i has defaulted or not in 

a given period of time, and let k
ix represent the values of the k explanatory variables for 

the firm i. The conditional probability that firm i defaults is given 

by ( ) ( )1| k k
i i iP y x xπ= = , while the conditional probability that the firm does not 

default is given by ( ) ( )0 | 1k k
i i iP y x xπ= = − . Thus, the odds that this firm defaults is 

simply: ( ) ( )1k k
i i iodds x xπ π= − . The estimated regression relates a combination of 

the independent variables to the natural log of the odds of the dependent outcome 

occurring: 

( ) ( )
( ) 0 1 1, ln

1 k k

x
g x x x

x
π

β β β β
π

⎡ ⎤
= = + + +⎢ ⎥−⎣ ⎦

…  

or, 

                                                 
34 This Appendix is based on Menard (2002) and Hosmer and Lemeshow (2000). 
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( ) ( )
( )

0 1 1

0 1 1

exp
1 exp

k k

k k

x x
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=
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Assumptions 

 

i. Each yi follows a Bernoulli distribution with parameter ( )k
ixπ . Which is 

equivalent to saying that each yi follows a Binomial distribution with 1 

trial and parameter ( )k
ixπ ; 

ii. The error terms are independent; 

iii. No relevant variables are omitted, no irrelevant variables are included, and 

the functional form is correct; 

iv. There is a linear relationship between the logit of the independent variables 

and the dependent; 

v. There is no significant correlation between the independent variables (no 

multicolinearity). 

 

Estimation 

 

Estimation of the binomial logistic regression is made through the maximum 

likelihood methodology. The expression of the likelihood function of a single 

observation is given by: 

( ) ( ) 1
1 ii yy

i i il x xπ π
−

= −⎡ ⎤⎣ ⎦  

Since independence between the observations is assumed, the likelihood function will 

be the product of all individual likelihoods: 

( ) ( ) ( ) 1

1

1 ii
n yy

i i
i

l x xβ π π
−

=

= −⎡ ⎤⎣ ⎦∏  

The log-likelihood function to be maximized will be: 
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The ML estimators correspond to the values of β that maximize the previous 

expression. 

 

b) Residual Analysis 

 

For the logistic regression, the residuals in terms of probabilities are given by the 

difference between the observed and predicted probabilities that default occurs: 

( ) l ( ) ( ) l ( )1 1i i i i ie P y P y x xπ π= = − = = −  

Since these errors are not independent of the conditional mean of y, it is useful to 

adjust them by their standard errors, obtaining the Pearson or Standardized residuals: 

( ) l ( )
l ( ) l ( )1

i i
i

i i

x x
r

x x

π π

π π

−
=
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These standardized residuals follow an asymptotically standard normal distribution. 

Cases that have a very high absolute value are cases for which the model fits poorly 

and should be inspected. 

In order to detect cases that may have a large influence on the estimated parameters of 

the regression, both the Studentized residuals and the Dbeta statistic are used. The 

studentized residual corresponds to the square root of the change in the -2 Log-

Likelihood of the model attributable to deleting the case from the analysis: 
2

2

1
i i

i i
i

r hs d
h

= −
−

 

The dbeta is an indicator of the standardized change in the regression estimates 

obtained by deleting an individual observation: 

( )

2

21
i i

i
i

r hdbeta
h

=
−

 

In the previous two expressions, hi corresponds to the leverage statistic and di to the 

deviance residual. The leverage statistic is derived from the regression that expresses 

the predicted value of the dependent variable for case i as a function of the observed 

values of the dependent for all cases (for more information see Hosmer and 
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Lemeshow (2000), 168-171). The deviance residual corresponds to the contribution of 

each case to the -2 Log-Likelihood function (the deviance of the regression). 

 

c) Testing Coefficient Significance: the Wald Chi-Square Test 

 

For the purpose of testing the statistical significance of the individual coefficients, the 

Wald Chi-Square test is implemented. Under the hypothesis that βi = 0, the test 

statistic bellow follows a chi-square distribution with one degree of freedom: 

l

m l( )
2

2
i

i

i

W
SE

β

β
=  

 

d) Testing Regression Significance: the Hosmer & Lemeshow Test 

 

In order to evaluate how effectively the estimated model describes the dependent 

variable the Hosmer & Lemeshow goodness-of-fit test is applied. The test consists in 

dividing the ranked predicted probabilities into deciles (g=10 groups) and then 

computing a Pearson chi-square statistic that compares the predicted to the observed 

frequencies in a 2x10 contingency table. Let 0
io  be the observed count of non-defaults 

for group i and 0
ip  be the predicted count. Similarly, let 1

io  be the observed count of 

defaults for group i and 1
ip  be the predicted count. Then the HL test statistic following 

a chi-square distribution with g-2 degrees of freedom is: 

( ) ( )2 20 0 1 1

0 1
1

g
i i i i

i i i

o p o p
HL

p p=

⎡ ⎤− −
⎢ ⎥= +
⎢ ⎥
⎣ ⎦

∑  

Lower values of HL, and non-significance indicate a good fit to the data and, 

therefore, good overall model fit. 
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e) Testing for Non-Linear Relationships: the Box-Tidwell Test 

 

If the assumption of linearity in the logit is violated, then logistic regression will 

underestimate the degree of relationship of the independents to the dependent and will 

lack power, thus generating Type II errors (assuming no relationship when there 

actually is). A simple method to investigate significant non-linear relationships is the 

Box-Tidwell (1962) Transformation Test. It consists on adding to the logistic model 

interaction terms corresponding to the cross-product of each independent variable 

with its natural logarithm (x)ln(x). If any of these terms are significant, then there is 

evidence of nonlinearity in the logit. This procedure does not provide the type of 

nonlinearity, thus if present further investigation is necessary. 

 

f) Fitting Non-Linear Logistic Regressions: the Fractional Polynomial 

Methodology 

 

Whenever evidence of significant non-linear relationship between a given 

independent variable and the logit of the dependent is detected, the Fractional 

Polynomial methodology (Royston and Altman, 1994) is implemented, in order to 

detect the best non-linear functional form that describes the relationship. Instead of 

trying to directly estimate a general model, where the power parameters of the non-

linear relationship is estimated simultaneously with the coefficients of the 

independents, this methodology searches for the best functional form from a given set 

of possible solutions. 

As presented before, our logistic regression expression is given by: 

( ) ( )
( ) 0 1 1, ln

1 k k

x
g x x x

x
π

β β β β
π

⎡ ⎤
= = + + +⎢ ⎥−⎣ ⎦

…  

For this study, only one of the independent variables had a potentially non-linear 

relationship with the logit, let this variable be represented by xk. In order to 

accommodate the non-linear relationship, the logistic regression expression could be 

generalized to: 
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( ) ( )0 1 1 1 1 1
1

,
J

k k j k j k
j

g x x x H xβ β β β β− − + −
=

= + + + +∑…  

where, for j = 1,…,J: 

( ) ( ) ( )
1

1 1

    if  
ln     if  

jp
k j j

j k
j k k j j

x p p
H x

H x x p p
−

− −

⎧ ≠⎪= ⎨
=⎪⎩

 

Under this setting, p represents the power and j the number of polynomial functions. 

For example, a quadratic relationship would have J=2, p1=1 and p2=2: 

( ) 2
0 1 1 1 1 1, k k k k k kg x x x x xβ β β β β β− − += + + + + +…  

In practice, as suggested by Royston and Altman (1994), it is sufficient to restrict J to 

2 and p to the set { }2, 1, 0.5,0,0.5,1, 2,3Ω = − − − , where p=0 denotes the natural log of 

the variable. The methodology is implemented through the following steps: 

i. Estimate the linear model; 

ii. Estimate the general model with J=1 and p∈Ω , and select the best J=1 

model (the one with lower deviance); 

iii. Estimate the general model with J=2 and p∈Ω , and select the best J=2 

model; 

iv. Compare the linear model with the best J=1 and the best J=2 models. This 

comparison is made through a likelihood ratio test, asymptotically chi-

square distributed. The degrees of freedom in the test increases by 2 for 

each additional term in the fractional polynomial, one degree for the 

power, and another for the extra coefficient. The selected model is the one 

that represents a significant better fit than that of next lower degree, but 

not a significant worse fit than that of next higher degree; 

v. Graphically examine the fit estimated by the model selected in the 

previous stage, in order to validate the economic intuition of the non-linear 

relationship suggested by the model. This is achieved by comparing the 

lowess35 function of the relationship between the dependent and the 

                                                 
35 The Lowess is the Locally Weighted Scatterplot Smoothing (Cleveland 1979) between two variables. 
Since the dependent is a binary variable, it is convenient to use this smoothed function to be able to 
graphically access the relationship in question. 
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independent variable in question, and the multivariable adjusted function 

that results from the model selected in the previous stage. 

 

g) Testing for Multicolinearity: the Tolerance Statistic 

 

As for linear regression, high colinearity between the independent variables in a 

logistic regression results in loss of efficiency, with unreasonably high estimated 

coefficients and large associated standard errors. Detection of multicolinearity can be 

made through the use of the Tolerance statistic, defined as the variance of each 

independent variable that is not explained by all of the other independent variables. 

For the independent variable Xi, the tolerance statistic equals 21
iXR− , where 2

iXR  is the 

R2 of a linear regression using variable Xi as the dependent variable and all the 

remaining independents as predictors. 

If the value of the statistic for a given independent is close to 0, it indicates that the 

information the variable provides can be expressed as a linear combination of the 

other independent variables. As a rule of thumb, only tolerance values lower than 0.2 

are cause for concern. 

 

 



 

63 

Appendix 4 – Estimation Results 
 

Linear Regressions General Results 

Hosmer & Lemeshow Regression Nº 
Obs 

Obs 
Y=0 

Obs 
Y=1 Deviance χ2 df P-Value AUROC

A - 2 Eq. Model / Sectors 1 & 2 5,044 4,819 225 1,696 8.74 8 36.51%
A - 2 Eq. Model / Sector 3 5,951 5,706 245 1,928 6.79 8 55.89%

71.30%

B - Standard Model 10,995 10,525 470 3,626 7.07 8 52.94% 71.28%
C - Weighted Model 1,420 950 470 1,623 11.73 8 16.38% 71.44%

 

Linear Regressions Estimated Coefficients 

A - 2 Eq. Model / Sectors 1 & 2 A - 2 Eq. Model / Sector 3 B - Unweighted Model C - Weighted Model Variable β^ σ^ Wald P-Value β^ σ^ Wald P-Value β^ σ^ Wald P-Value β^ σ^ Wald P-Value 
R7 -0.39246 0.12878 9.29 0.2307% - - - - - - - - - - - - 
R8 - - - - -0.19705 0.07590 6.74 0.9427% -0.16455 0.05230 9.90 0.1653% -0.18762 0.06564 8.17 0.4258% 
R9 - - - - -0.18184 0.08514 4.56 3.2691% -0.22849 0.06887 11.01 0.0907% -0.23442 0.08127 8.32 0.3923% 
R17 -0.28779 0.09241 9.70 0.1843% -0.24115 0.08659 7.76 0.5356% -0.28909 0.06361 20.66 0.0005% -0.26327 0.07845 11.26 0.0791% 
R20 0.46940 0.06164 58.00 0.0000% 0.45161 0.05664 63.57 0.0000% 0.44002 0.04283 105.55 0.0000% 0.50697 0.06564 59.66 0.0000% 
R23 0.23328 0.06380 13.37 0.0255% - - - - 0.15280 0.04436 11.86 0.0572% 0.15948 0.06234 6.54 1.0520% 
K -3.35998 0.08676 1,499.67 0.0000% -3.33521 0.07658 1,896.73 0.0000% -3.33613 0.05688 3,440.16 0.0000% -0.94820 0.06586 207.30 0.0000% 

 

Box-Tidwell Final Backward Stepwise Regression Coefficients 

A - 2 Eq. Model / Sectors 1 & 2 A - 2 Eq. Model / Sector 3 B - Unweighted Model C - Weighted Model Variable β^ σ^ Wald P-Value β^ σ^ Wald P-Value β^ σ^ Wald P-Value β^ σ^ Wald P-Value 
R7 -0.38011 0.12830 8.78 0.3049% - - - - - - - - - - - - 
R8 - - - - -0.21276 0.07622 7.79 0.5247% -0.17143 0.05241 10.70 0.1073% -0.19597 0.06552 8.95 0.2782% 
R9 - - - - -0.15921 0.08632 3.40 6.5114% -0.21020 0.06940 9.17 0.2454% -0.22388 0.08196 7.46 0.6301% 
R17 -0.22552 0.09719 5.38 2.0317% -0.18249 0.09026 4.09 4.3184% -0.23063 0.06677 11.93 0.0552% -0.20282 0.08150 6.19 1.2824% 
R20 1.68533 0.36083 21.82 0.0003% 1.58508 0.31588 25.18 0.0001% 1.57265 0.23829 43.56 0.0000% 1.57769 0.29246 29.10 0.0000% 
R23 0.19889 0.06597 9.09 0.2570% - - - - 0.12254 0.04590 7.13 0.7586% 0.12243 0.06302 3.77 5.2037% 
BT20* -0.66208 0.19297 11.77 0.0601% -0.63780 0.17459 13.34 0.0259% -0.62538 0.12917 23.44 0.0001% -0.62506 0.16384 14.55 0.0136% 
K -2.96198 0.13987 448.47 0.0000% -2.91367 0.13336 477.33 0.0000% -2.93971 0.09630 931.87 0.0000% -0.53335 0.12495 18.22 0.0020% 

R7 = Liquidity / Current Liabilities; R8 = Current Ratio; R9 = Liquidity / Assets; R17 = Debt Service Coverage; R20 = Interest Costs / Sales; BT20 = R20*LN(R20); R23 = Productivity Ratio; 
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Fractional Polynomial Model Comparisons (Best J=1,2,3 Models) 

A - 2 Eq. Model / Sectors 1 & 2 A - 2 Eq. Model / Sector 3 B - Unweighted Model C - Weighted Model R20 d
f Deviance Gain P-Value Powers Deviance Gain P-Value Powers Deviance Gain P-Value Powers Deviance Gain P-Value Powers 

Not in model 0 1750.177 - - - 1986.467 - - - 3724.482 - - - 1687.181 - - - 
Linear 1 1696.043 0.000 0.000 1 1927.857 0.000 0.000 1 3626.025 0.000 0.000 1 1623.173 0 0.000 1 
J = 1 2 1684.842 11.201 0.001 0 1915.064 12.793 0.000 0 3603.782 22.243 0.000 0 1610.633 12.54 0.000 0 
J = 2 4 1682.437 13.605 0.301 .5 3 1913.080 14.778 0.371 1 1 3599.921 26.105 0.145 .5 3 1608.129 15.044 0.286 .5 3 
J = 3 6 1681.540 14.503 0.639 -1 2 2 1911.768 16.089 0.519 2 3 3 3599.042 26.983 0.644 -1 1 2 1607.349 15.824 0.677 -1 1 2 

 

Reported Deviances for Fractional Polynomial Search 

Deviance Model # Power 1 Power 2 Model A1 Model A2 Model B Model C 
1 -2 - 1750.175 1986.353 3724.480 1687.179
2 -1 - 1699.910 1937.404 3636.893 1633.960
3 -0.5 - 1689.693 1922.565 3614.541 1618.907
4 0 - 1684.842 1915.064 3603.782 1610.633
5 0.5 - 1687.719 1918.091 3609.449 1613.104
6 1 - 1696.043 1927.857 3626.025 1623.173
7 2 - 1715.213 1949.074 3662.488 1646.956
8 3 - 1728.820 1962.952 3686.848 1663.446
9 -2 -2 1750.175 1986.353 3724.480 1687.179

10 -1 -2 1699.911 1937.404 3724.480 1687.179
11 -0.5 -2 1689.694 1922.565 3614.542 1618.908
12 0 -2 1684.842 1915.066 3603.784 1610.634
13 0.5 -2 1687.718 1918.071 3609.449 1613.103
14 1 -2 1696.040 1927.808 3626.023 1623.170
15 2 -2 1715.210 1948.992 3662.485 1646.953
16 3 -2 1728.817 1962.857 3686.846 1663.444
17 -1 -1 1750.175 1935.171 3724.480 1687.179
18 -0.5 -1 1689.685 1922.555 3614.528 1618.898
19 0 -1 1684.842 1915.064 3603.782 1610.633
20 0.5 -1 1685.583 1916.271 3605.742 1611.041
21 1 -1 1687.582 1919.556 3610.443 1613.928
22 2 -1 1692.009 1925.960 3620.050 1620.917
23 3 -1 1695.230 1930.067 3626.581 1626.092
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Reported Deviances for Fractional Polynomial Search (Cont.) 

Deviance Model # Power 1 Power 2 Model A1 Model A2 Model B Model C 
24 -0.5 -0.5 1688.517 1920.858 3612.048 1617.124
25 0 -0.5 1684.839 1915.060 3603.776 1610.627
26 0.5 -0.5 1685.272 1915.696 3604.853 1610.790
27 1 -0.5 1686.189 1917.169 3606.940 1612.193
28 2 -0.5 1687.903 1919.588 3610.549 1615.131
29 3 -0.5 1688.928 1920.884 3612.589 1617.001
30 0 0 1684.776 1914.838 3603.591 1610.240
31 0.5 0 1684.827 1914.977 3603.738 1610.376
32 1 0 1684.838 1915.058 3603.778 1610.541
33 2 0 1684.661 1914.992 3603.492 1610.619
34 3 0 1684.353 1914.867 3603.072 1610.458
35 0.5 0.5 1684.297 1914.262 3602.552 1609.827
36 1 0.5 1683.755 1913.681 3601.482 1609.245
37 2 0.5 1682.890 1913.159 3600.148 1608.379
38 3 0.5 1682.437 1913.385 3599.921 1608.129
39 1 1 1683.014 1913.080 3600.178 1608.436
40 2 1 1682.485 1913.609 3600.057 1608.280
41 3 1 1682.816 1915.364 3601.938 1609.432
42 2 2 1684.157 1917.984 3605.421 1611.925
43 3 2 1687.085 1923.590 3613.244 1617.255
44 3 3 1692.467 1932.259 3626.168 1626.117

 

Non-Linear Regressions General Results 

Hosmer & Lemeshow Regression Nº 
Obs 

Obs 
Y=0 

Obs 
Y=1 Deviance χ2 df P-Value AUROC 

A - 2 Eq. Model / Sectors 1 & 2 5,044 4,819 225 1,682 8.20 8 41.46%
A - 2 Eq. Model / Sector 3 5,951 5,706 245 1,913 6.29 8 61.49%

71.88%

B - Standard Model 10,995 10,525 470 3,600 2.23 8 97.32% 71.88%
C - Weighted Model 1,420 950 470 1,608 7.68 8 46.53% 71.87%

 

 



 

66 

 

Non-Linear Regressions Estimated Coefficients 

A - 2 Eq. Model / Sectors 1 & 2 A - 2 Eq. Model / Sector 3 B - Unweighted Model C - Weighted Model Variable β^ σ^ Wald P-Value β^ σ^ Wald P-Value β^ σ^ Wald P-Value β^ σ^ Wald P-Value 
R7 -0.38053 0.12831 8.80 0.3020% - - - - - - - - - - - - 
R8 - - - - -0.21229 0.07617 7.77 0.5321% -0.17136 0.05241 10.69 0.1078% -0.19728 0.06560 9.04 0.2637% 
R9 - - - - -0.16045 0.08631 3.46 6.3017% -0.21111 0.06940 9.25 0.2353% -0.22341 0.08196 7.43 0.6414% 
R17 -0.22465 0.09710 5.35 2.0686% -0.18418 0.09013 4.18 4.1003% -0.23136 0.06668 12.04 0.0521% -0.20304 0.08142 6.22 1.2638% 
R23 0.20007 0.06590 9.22 0.2398% - - - - 0.12378 0.04587 7.28 0.6964% 0.12343 0.06299 3.84 5.0039% 
R20_1 2.01146 0.31598 40.52 0.0000% 1.79215 0.27152 43.56 0.0000% 1.84306 0.21015 76.92 0.0000% 1.87907 0.26051 52.03 0.0000% 
R20_2 -0.00933 0.00424 4.83 2.7966% -0.00873 0.00421 4.30 3.8206% -0.00876 0.00297 8.72 0.3145% -0.00907 0.00400 5.13 2.3451% 
K -3.25891 0.08887 1,344.58 0.0000% -3.42640 0.08329 1,692.28 0.0000% -3.24970 0.05921 3,012.06 0.0000% -0.84100 0.07034 142.94 0.0000% 

R7 = Liquidity / Current Liabilities; R8 = Current Ratio; R9 = Liquidity / Assets; R17 = Debt Service Coverage; R20 = Interest Costs / Sales; R23 = Productivity Ratio; 
 

Multicolinearity Test 

Unweighted Reg. Weighted Reg. Sectors 1&2 Reg. Sector 3 Reg. Sector 3 Reg. 
Variable Tolerance Variable Tolerance Variable Tolerance Variable Tolerance Variable Tolerance 
R8 0.989 R8 0.988 R7 0.989 R8 0.9880 R8 0.9878
R9 0.964 R9 0.963 R17 0.763 R9 0.9700 R9 0.9685
R17 0.762 R17 0.722 R23 0.868 R17 0.8130 R17 0.8128
R23 0.854 R23 0.853 R20_1 0.379 R20_1 0.4200 R20_1 0.0646
R20_1 0.375 R20_1 0.336 R20_2 0.477 R20_2 0.4890 R20_2 0.0685
R20_2 0.477 R20_2 0.440 - - - - - - 

Model # 38 Model # 38 Model # 38 Model # 38 Model # 39 
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Appendix 5 – Kolmogorov-Smirnov and Error Type 

Analysis 
 

This section provides both the Kolmogorov-Smirnov (KS) analysis and Error Type 

curves for models A – Multiple Industry Equations, Model B – Single Equation, 

Unweighted Sample and C – Weighted Sample. The KS analysis consists on 

evaluating for each possible cut-off point the distance between the Type I Error curve 

and the True Prediction curve. The higher the distance between the curves, the better 

the discriminating power of the model. The Error Type curves display for each cut-off 

point the percentages of Type I (incorrectly classifying an observation as non-default) 

and Type II (incorrectly classifying an observation as default) errors for each model. 
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Figure 23 – Model A: Kolmogorov-Smirnov Analysis 
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Figure 24 – Model A: Types I & II Errors 
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Figure 25 – Model B: Kolmogorov-Smirnov Analysis 
 



 

69 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35%

Score, %

Er
ro

r, 
%

1-HR (Type I) FAR (Type II)
 

Figure 26 – Model B: Types I & II Errors 
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Figure 27 – Model C: Kolmogorov-Smirnov Analysis 
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Figure 28 – Model C: Types I & II Errors 
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Appendix 6 – K-Means Clustering 
 

 

K-Means Clustering36 is an optimization technique that produces a single cluster 

solution that optimizes a given criteria or objective function. In the case of the 

methodology applied in this study, the criteria chosen is the Euclidean Distance 

between each case, ci and the closest cluster centre Ck: 

( ) ( )2,i k i kd c C c C= −  

Cluster membership is determined through an iterative procedure involving two steps: 

i. The first step consists on selecting the initial cluster centers. Two conditions 

are checked for all cases: first, if the distance between a given case ci and its 

closest cluster mean Ck is greater than the distance between the two closest 

means, Cn and Cm, then that case will replace either Cn or Cm, whichever is 

closer to it. If case ci does not replace any cluster mean, a second condition is 

applied: if ci is further from the second closest cluster’s centre than the closest 

centre if from any other cluster’s centre, then that case will replace the closest 

cluster centre. The initial k cluster centers are set after both conditions are 

checked for all cases; 

ii. The second step consists of assigning each case to the nearest cluster, where 

the distance is the Euclidean Distance between each case and the cluster 

centers determined in the previous step. The final cluster means are then 

computed as the average values of the cases assigned to each cluster. The 

algorithm stops when the maximum change of cluster centers in two 

successive iterations is smaller than the minimum distance between initial 

cluster centers times a convergence criterion. 

 

 

                                                 
36 For more information see, for example, Hartigan (1975). 
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Appendix 7 – IRB RWA and Capital Requirements 

for Corporate Exposures 
 

 

The formulas for calculating the RWA for corporate exposures under the IRB 

approach are: 

*12,5*RWA k EAD=  

where k is the Capital Requirement, computed as:  

( ) ( ) ( ) ( )
( )

1
1 1 2,5 *

* * 0,999 *
1 1 1,5*1

PD M b PDRk LGD
R b PDR

−
−⎡ ⎤Φ + −

= Φ + Φ⎢ ⎥− −−⎣ ⎦
 

b(PD) is the Maturity Adjustment: 

( )( )2
0,08451 0,05898*logb PD= −  

and R is the Default Correlation: 

( )
( )

( )
( )

1 exp 50* 1 exp 50*
0,12* 0,24* 1

1 exp 50 1 exp 50
PD PD

R
⎡ ⎤− − − −

= + −⎢ ⎥− − − −⎣ ⎦
 

PD and LGD are measured as decimals37, Exposure-At-Default (EAD) is measured as 

currency, Maturity (M) is measured in years, and Φ denotes the cumulative 

distribution function for a standard normal random variable. 

 

The Default Correlation (R) formula has a firm-size adjustment of 

50,04*1
4

S⎡ − ⎤⎛ ⎞− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 for SME borrowers, where S is the total annual sales in Millions 

of Eur, and 5 ≤ S ≤ 50. SME borrowers are defined as “Corporate exposures where the 

reported sales for the consolidated group of which the firm is a part is less than 50 

Millions of Eur” (Basel Committee on Banking Supervision 2003, par. 242). It is 

possible for loans to small business to be treated as retail exposures, provided that the 

                                                 
37 The PD for corporate exposures has a minimum of 0.03%. 
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borrower, on a consolidated basis, has a total exposure to the bank of less than one 

Million Eur, and the bank has consistently treated these exposures as retail. For the 

purpose of this study it is assumed that all exposures are treated as corporate 

exposures. 

 

Thus, ignoring both Market and Operational risks, we have: 

Regulatory CapitalCapital Ratio
Total RWA

=  

If the minimum value for the capital ratio (8%) is assumed, then: 

Regulatory Capital = 8% * Total RWA. 
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Appendix 8 - IRB Capital Requirements Figures 
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Figure 29 – Model A - IRB Capital Requirements (Cluster Method) 
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Figure 30 – Model B - IRB Capital Requirements (Cluster Method) 
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Figure 31 – Model C - IRB Capital Requirements (Cluster Method) 
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Figure 32 – Model A - IRB Capital Requirements (Historical Method) 
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Figure 33 – Model B - IRB Capital Requirements (Historical Method) 
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Figure 34 – Model C - IRB Capital Requirements (Historical Method) 
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1 Introduction 
 

 

The ongoing revision of the regulatory capital requirement framework has motivated 

an increased interest on the measurement and modeling of key credit risk inputs38. In 

particular, for corporate bank loan portfolios, under the proposed Advanced Internal 

Ratings Based approach (AIRB) banks will be required to provide, among others, 

internal estimates of the Loss-Given-Default (LGD) for each exposure on the 

portfolio. Due to lack of publicly available data, most of the literature is concerned 

with the analysis of credit risk on corporate bonds. The scarce research using private 

bank data is usually limited to the estimation of individual probabilities of default. 

LGD modeling on bank loan portfolios for privately held corporate customers is rare 

due to high data requirements. It involves a wealth of knowledge on long recovery 

processes motivated by a default event, which is by itself a rare event. 

Although most of the available research focuses on the estimation of the 

Probability of Default (PD), LGD has a potentially higher impact on the proposed 

regulatory capital requirements. For example, under the proposed regulation two loans 

with the same Expected Loss (EL), but with the first having a PD double than the 

second, but an LGD half of the other, then the Risk-Weighted-Asset (RWA) for the 

first loan will clearly be lower than that of the second loan. For example, using the 

formula for corporate exposures with M=3, if Loan 1 has PD=2.00% and LGD=20%, 

then EL=0.4% and the Risk Weighted Assets (RWA) will be 58.67%. If Loan 2 has 

PD=1.00% and LGD=40%, then EL will be the same 0.4% but the RWA=92.11%. 

Thus, this paper aims to build on the limited literature on the empirical estimation of a 

crucial risk factor, for the corporate market segment of a bank credit portfolio. 

Schuermann (2004) and Altman et al. (2005) provide good surveys on LGD 

modeling literature. The main issues analyzed are LGD measurement and its role on 

the proposed capital accord, identifying the key LGD drivers, analyzing the 

                                                 
38 See Basel Committee on Banking Supervision (2001). 
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relationship between PD and LGD, and LGD modeling methodologies. Earlier 

literature was restricted to the measurement of historical LGD for a given bank loan 

portfolio. Asarnow and Edwards (1995), Hurt and Felsovalyi (1998) survey the 

historical recovery experience from Citibank’s loan portfolios, using databases of over 

20 years of data for the US and Latin America, respectively. Franks et al. (2004) and 

Araten et al. (2004) survey the historical recovery rates experience for corporate bank 

loans on the European and US markets, respectively. Franks et al. (2004) use data 

from 10 banks in three different countries: France, Germany and the UK. They 

conclude that the main LGD drivers are the country jurisdiction, collateral, bank 

recovery procedures, and the loan structure of the firm. Araten et al. (2004) use 18 

years of LGD data from a major US bank and demonstrate the importance of the 

economic cycle for LGD measurement, especially for unsecured loans. 

Regarding LGD modeling, several alternatives have recently been proposed. 

Glößner et al. (2006) suggest an LGD score model were the score is a function of 

empirical derived haircuts for collateralized exposures, and a loss rate for 

uncollateralized exposures. This LGD score is then calibrated to reflect the banks’ 

internal loss history. Grunert and Weber (2005) develop an LGD model considering 

borrower, loan specific and macroeconomic factors as regressors, using data from a 

large German bank. They apply logistic regression, coding the dependent variable as a 

dummy variable that assumes 1 if the observed recovery rate is higher than a given 

percentile.  

More sophisticated approaches directly model the LGD variable, which is 

commonly regarded has a non-normal distributed continuous variable, bounded on the 

[0,1] interval. Gupton and Stein (2005) and Gupton (2005) or Singh (2003) propose a 

Beta transformation of LGD data, in order to be able to apply standard regression 

techniques. Dermine and Carvalho (2006) suggest the application of Generalized 

Linear Models (GLM) methodology to LGD data extracted from the database of a 

major European bank, following Papke and Wooldrigdge (1996) that first suggested 

an application of the GLM methodology to fractional response variables. 

The first main contribution of this study is to apply the Kaplan-Meier survival 

analysis to the historical recovery rate sample, in order to overcome the common 
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problem of insufficient recovery history. The other main contribution is to estimate 

and compare for the first time LGD models using both the Beta transformation and 

the GLM methodologies, applied to a dataset comprising 7 years of recovery 

experience from the corporate loan portfolio of a European bank. Considering loan, 

guarantee and customer characteristics, the models can be used to predict long-term 

LGDs for corporate bank loans.  

This paper is structured as follows. Section 2 describes the randomly selected 

dataset, extracted from the banks’ internal database. The derivation of the LGD 

variable is presented in Section 3, based on the historical recovery experience of the 

bank. Section 4 presents the variables considered as regressors, as well as their one-to-

one relationship with the historical recovery rates. Section 5 develops the LGD 

models and compares them using both GLM and Beta transformation methodologies. 

Section 6 concludes. 
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2 Sample Description 
 

 

The dataset contains 1,200 observations of defaulted loans randomly selected from the 

default pool database of a European bank. A loan is considered in default if a given 

interest or principal installment is overdue by more than 90 days. The sample ranges 

from January 1999 to December 2005 and considers only loans from corporate 

customers. Table 15 presents the distribution by original loan maturity, about 60% are 

medium-term loans with maturities ranging from 2 to 5 years, 30% are short-term 

loans (maturity lower than 1 year), while only about 10% are long-term loans: 

 

Maturity, Yrs Number of Obs. % 
1 358 29.83% 
2 304 25.30% 
3 190 15.82% 
4 97 8.12% 
5 122 10.15% 
6 20 1.69% 
7 28 2.37% 
8 17 1.44% 
9 4 0.34% 

10 38 3.13% 
More 22 1.86% 
Total 1200 100.00% 

Table 15 – Sample Distribution by Original Loan Maturity 
This table presents the distribution of the 1.200 default observations on the sample by original loan 
maturity. 
 

Figure 35 displays the sample distribution by the year of the loan and the year of 

default. Although seven years are considered most of the loans are from the 2001-

2004 period, while most of the defaults occur in the 2003-2005 period: 
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Figure 35 – Sample Distribution by Year of Loan and Year of Default 
This figure displays the distribution of observations by the year each loan started and by the year each 
default occurred. Seven years of data are represented in the sample, ranging from January 1999 to 
December 2005. 
 

Figure 36 presents the sample distribution by the loan size, there is a concentration of 

small loans (up to 30 thousand Eur) and on large loans (above 150 thousand Eur): 
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Figure 36 – Sample Distribution by Original Loan Size, thousand EUR 

The figure shows the distribution of the defaulted loans considered by original size in thousand of 
Euros.  
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3 LGD Definition 
 

 

LGD is defined as the complement of the Recovery Rate (RR), which in turn can be 

defined as the ratio between the present value of the sum of recoveries associated with 

a given loan, net of costs supported by the bank and the total outstanding amount at 

the time of default (EAD)39: 

 ( )
1 ,

PV R C
LGD

EAD
−

= −  (9) 

 

where, 

R represents cash recoveries received by the bank; both recoveries before and after 

legal contention were considered; if a given defaulted loan is restructured and 

replaced by a new loan, the former is considered fully recovered if all the overdue 

installments at the time of default are paid, and the new loan has not defaulted. C 

represents costs supported by the bank; these include specific costs such as legal 

expenses, collateral liquidation and/or insolvency expenses; furthermore, generic 

costs that affect indirectly all recovery processes are also considered; these generic 

costs represent mainly costs associated with internal recovery departments; total costs 

are estimated to represent 2.45% of the total recovered amount; EAD is the total 

amount outstanding at the time of default; only principal installments are considered, 

interest due not paid at the time of default is not included. 

 

The annual discount rate chosen to compute the net present value of the 

recoveries is 15%. This rate represents the opportunity cost to the bank of holding 

capital against defaulted assets. Thus, the discount rate equals the average Return On 

Equity (ROE) of the bank on the whole sample period. The use of a high discount rate 

is consistent with the prudent view suggested by the new Basel capital accord 

                                                 
39 For the remainder of this study we will work with the Recovery Rate since the interpretation of the 
results is more intuitive, although they can all be reinterpreted in terms of LGD. 



 

 84

regarding the risk parameters estimations. Other common alternatives for the discount 

rate are a risk free rate or the interest rate of the loan. Maclachlan (2004) provides a 

survey of several alternatives. Following a proposal by the Financial Services 

Authority, FSA (2003), it is suggested that the appropriate discount rate should 

correspond to the rate the bank would apply to an asset of similar risk. Since this rate 

is unknown for the dataset used in this study, the opportunity cost approach is used. 

Figure 37 shows the distribution of the recovery rates. These recovery rates 

follow a bimodal distribution, with high concentration of observations at the extreme 

0% and 100% rates. This result has been reported frequently in the literature40.  

 

0%

5%
10%

15%

20%

25%
30%

35%

40%

00
-0

5

05
-1

0

10
-1

5

15
-2

0

20
-2

5

25
-3

0

30
-3

5

35
-4

0

40
-4

5

45
-5

0

50
-5

5

55
-6

0

60
-6

5

65
-7

0

70
-7

5

75
-8

0

80
-8

5

85
-9

0

90
-9

5

95
-1

00
RR, %

R
el

at
iv

e 
Fr

eq
ue

nc
y

 
Figure 37 – Empirical Recovery Rate Distribution 

The figure presents the historical recovery rate distribution. The bimodal distribution has high 
concentration on the extreme 0% and 100% recovery rates. 
 

In order to study the evolution of the historical recovery rates with time, the Kaplan-

Meier (1958) survival analysis is applied to monthly recovery data. This analysis 

allows to determine how much of the defaulted amount in a given year is recovered x 

months after the default, taking in account the fact that not all possible recovery 

periods are observed (see Appendix 1 for more details). Figure 38 and Figure 39 

present the Kaplan-Meier analysis for each year and for the average curve for all 

periods: 
                                                 
40 See, for example, Asarnow and Edwards (1995), Hurt and Felsovalyi (1998), Schuermann (2004) 
and Dermine and Carvalho (2005). 
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Figure 38 – Cumulative Recovery Rate Growth by Year 

The figure shows the cumulative recovery rate for each annual vintage, x months after the default date. 
Results are obtained using the Kaplan-Meier survival analysis. 
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Figure 39 – Average Cumulative Recovery Rate Growth 

This figure presents the average of the annual vintages for the cumulative recovery rates, x months 
after the default date.   

 

The cumulative average recovery rate curve grows at a diminishing rate through time. 

Most of the recoveries occur during the first months after the default, and the recovery 

rate stabilizes after 48 months at 67%. 

Given that the main goal of the LGD model is to provide long-term estimates, 

and that not all default observations have had at least 48 months to be recovered, it is 
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useful to use the average recovery curve in order to project all of the censored 

recovery observations until the 48 month after default period. This allows to consider 

more observations for the long-term recovery model (only 220 observations have had 

48 month recovery period), insuring that all default observations have the same period 

of recovery.  

As a result we will have the estimated cumulative recovery rate for 1,200 

defaulted loans, 48 months after the default. Table 16 presents the summary statistics 

for the Recovery Rate variable. Applying the 15% discount rate, the average recovery 

rate is 48.59%. Franks et al. (2004) report, for the same discount rate, average 

recovery rates of 64.6%, 36.2% and 51.1% for the UK, France and German samples 

respectively, although the loans considered have different recovery periods and no 

survival analysis is applied. Dermine and Carvalho (2006) report an undiscounted 

average recovery rate of 71% for the subset of loans with 48 month recovery period.    

 

Summary Statistics 
Mean 48.59% 
Median 50.70% 
StDev 42.66% 
Min 0.00% 
Max 100.00% 

Table 16 – Cumulative Recovery Rate Summary Statistics 
This table presents summary statistics for the cumulative recovery rates, 48 months after the default, 
using a 15% discount rate. The statistics presented are the Mean, Median, Standard Deviation, 
Minimum and Maximum. 
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4 Recovery Drivers 
 

 

The main objective of this study is to develop an econometric model that is useful to 

predict the LGD associated with bank loans granted to private corporate customers. 

Given this objective, it is only relevant to consider as potential explanatory variables 

those that are known ex-ante to the default event. Thus variables such as the year of 

default or control dummy’s for organizational changes in internal recovery 

departments can useful to explain historical LGDs but cannot be used in a predictive 

model. 

Table 17 below lists the 10 variables that are considered in this study, they 

represent three relevant dimensions: guarantee, loan and customer characteristics41: 

 

Section Type Variable 

4.1 Guarantee 
Characteristics 

Guarantee Type: Financial, 
Mortgage, Personal, Other Collateral 

Loan Value 
Loan Maturity 

Default Value / Loan Value 
Seasoning / Maturity 

4.2 Loan 
Characteristics 

Interest Rate 
Industry 

Age of Relationship 
Firm Age 

4.3 Customer 
Characteristics 

Geographic Location 
Table 17 – List of Explanatory Variables 

The table lists the 10 variables used as explanatory variables for the recovery rate models. The 
variables represent guarantee, loan and customer characteristics. 
 

In order to study the relationship between each variable and the recovery rate, the 

CHAID – Chi-squared Automatic Interaction Detector (Kass 1980) methodology is 

applied. Through this classification tree methodology it is possible to classify the 

                                                 
41 If data was available, other variables such as the ratio between the value of the loan and the value of 
the collateral, the borrower rating, borrower size and business line could have been tested. 
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observations of a given categorical or continuous variable into homogeneous groups. 

It is based on an iterative algorithm that attempts at each step to find the optimal split 

of the predictor variable through a chi-squared test. Thus, in this study, this 

methodology is applied for each independent variable, in order to find homogeneous 

groups of observations in terms of the average recovery rate for each group. The 

advantage of this procedure can be illustrated by considering the Industry variable as 

an example. Instead of directly considering the 43 different industries represented in 

the sample, only four groups of industries are considered, each group containing 

industries with similar recovery experiences. Given the low number of observations of 

the sample (1,200), estimating 3 parameters for this variable instead of 42 represents 

an important increase in the degrees of freedom of the model. 

Next, we provide a description of the variables selected and the relationship 

between each variable and the recovery event. 

 

4.1 Guarantee Characteristics 

 

4.1.1 Guarantee Type 

 

Four types of guarantees are considered: personal guarantees, mortgage collateral 

(residential or commercial), financial collateral and other collateral. For the selected 

loans, 89% have a personal guarantee associated and 38% have some type of 

collateral. Overall, the average RR is 48.59%, collateralized loans have an average 

55.25% RR, while uncollateralized loans have an average RR of 45.12%. Araten et al. 

(2004) report a global 56.7% RR, with 59.1% RR for secured loans and 49.5% for 

unsecured loans.  

Since the bank demands a high degree of coverage for the loans with 

collateral, this variable will be introduced in the multivariate model as dummy 

variables for each type considered. Analyzing Table 18, loans with higher historical 

recovery rates have financial collateral, followed by loans with other non-financial 



 

 89

collateral. Finally, loans with personal guarantees have lower recovery rates. Araten et 

al. (2004) report a similar result, loans associated with financial collateral have the 

highest historical recovery rate, followed by loans with other non-financial collateral: 

accounts receivable, inventory, fixed assets, and mortgages.  

 
Guarantee 

Type 
% Number 
Guarantees 

Average 
RR 

Std. 
Deviation 

Financial 2.72% 72.14% 28.96% 
Other Coll. 6.90% 65.77% 39.97% 
Mortgage 20.17% 49.20% 41.98% 
Personal 70.21% 46.69% 42.89% 

Table 18 – Guarantee Weight and Recovery Rate by Guarantee Type 
The table presents both the weight of each type of guarantee, the average historical recovery rate and 
the standard deviation for the defaulted loans associated with each type of guarantee. The guarantee 
types considered are: Personal Guarantee, Mortgage, Financial and Other Collateral. 

 

4.2 Loan Characteristics 

 

4.2.1 Loan Value 

 

The size of the loan at the time of default can be an indicator of the recovery rate 

since banks have a higher propensity to dedicate more resources to monitor and 

recover high value loans. Figure 40 presents this relationship with the loans ranked in 

the highest percentiles, in terms of loan value having the highest recovery rates. Hurt 

and Felsovalyi (1998) and Dermine and Carvalho (2006) report the opposite result, 

stating that larger loans are more complex and take longer periods of time to recover 

than smaller loans.  
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Figure 40 – Average Recovery Rate by Loan Value Percentile 

This figure illustrates the relationship between Loan Value and the historical Recovery Rate. Loans are 
ranked in ascending order, in terms of their value at the time of default. For each percentile the average 
recovery rate is calculated.  

 

Summary Statistics 
Mean 201,245.47 
Median 42,000.00 
StDev 956,098.75 
Min 949.72 
Max 19,951,915.88 

Table 19 – Loan Value Summary Statistics, in EUR 
This table presents summary statistics for the Loan Value variable. The statistics presented are the 
Mean, Median, Standard Deviation, Minimum and Maximum. 

 

4.2.2 Loan Maturity  

 

The maturity of the loan can be interpreted as a recovery rate regressor since long-

term loans have low amortization schedules, thus if the defaulted loan becomes 

performing again, i.e. the customer restarts payment according to the original plan, the 

sum of the discounted recovery payments will be lower for longer-termed loans.  

Table 20 displays this relationship, short-term loans with maturity less or 

equal to 1 year have an average recovery rate lower than middle-term loans (with 

maturities between 2 and 5 years), which in turn have a lower average recovery rate 

than the long-term loans (maturity higher than 5 years).  
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To the best of our knowledge, and up to this point, no study has reported 

empirical recovery rates for corporate bank loans by loan maturity.  

 
Maturity, 

Years 
% Number 

Observations 
Average 

RR 
Std. 

Deviation 
0<Y<=1 32.83% 50.88% 46.38% 
2<Y<=5 56.60% 48.63% 41.04% 
5<Y 10.58% 41.24% 38.35% 

Total 100.00% 48.59% 42.66% 
Table 20 – Loan Frequency and Recovery Rate by Loan Maturity 

This table presents the relative loan frequency, average historical recovery rate and standard deviation 
for short (maturity up to 1 year), medium (maturity between 2 and 5 years) and long-term loans 
(maturity higher than 5 years). 

 

4.2.3 Default-to-Loan Value and Seasoning-to-Loan Maturity Ratios 

 

Two dynamic measures of the sunk-in effect from the loan amortization over time on 

the recovery rate are the relative weight of the seasoning of a loan over its original 

maturity, and the weight of the default value over the original value of the loan. Both 

variables provide alternative evidence of the higher propensity to recover on more 

seasoned loans. The lower the ratio between the default amount and the original value 

of the loan, the higher the recovery rate. Conversely, high recovery rates are also 

usually associated with high seasoning to maturity ratios. Due to the diversity of 

amortization schedules of the loans considered, both measures are not highly 

correlated.  

Up to this point and to the best of our knowledge, no study has considered 

these variables as corporate bank loan recovery drivers. Figure 41 and Figure 42 

provide evidence of the relationships described, presenting the average recovery rates 

for each percentile of the value of each ratio, ranked in ascending order, while Table 

21 provides the summary statistics for both variables. 
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Figure 41 – Average Recovery Rate by Default-to-Loan Value Ratio Percentile 

The figure shows the relationship between the Default-to-Loan Value Ratio and the historical Recovery 
Rate. Loans are ranked in ascending order, in terms of the value of the ratio at the time of default. For 
each percentile the average recovery rate is calculated. 
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Figure 42 – Average Recovery Rate by Seasoning-to-Maturity Ratio Percentile 

This figure illustrates the relationship between the Seasoning-to-Maturity Ratio and the historical 
Recovery Rate. Loans are ranked in ascending order, in terms of the value of the ratio at the time of 
default. For each percentile the average recovery rate is calculated. 
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Summary 
Statistics D-L Ratio S-M Ratio 

Mean 78.37% 54.54% 
Median 88.84% 51.76% 
StDev 25.60% 33.30% 
Min 1.34% 2.08% 
Max 100.00% 100.00% 

Table 21 – Default-to-Loan Value and Seasoning-to-Maturity Ratios Summary Statistics 
This table presents the summary statistics for the Default-to-Loan Value and Seasoning-to-Maturity 
Ratios. The statistics presented are the Mean, Median, Standard Deviation, Minimum and Maximum. 

 

4.2.4 Interest Rate 

 

The original interest rate of the loan is also used to predict recovery rates. For this 

dataset, loans with higher interest rates are associated with lower recovery rates. The 

inclusion of this variable can be interpreted has a proxy for the risk of the firm if the 

bank has a risk based pricing for the spreads, and also as a reflection of the market 

conditions at the time the loan is granted. Table 22 below provides evidence of this 

effect, using the CHAID methodology a dummy is constructed for loans with low (<= 

4.25%) or high (> 4.25%) interest rates.  

 

Interest Rate % Number 
Observations 

Average 
RR 

Std. 
Deviation 

<= 4.25% 20.81% 58.47% 43.29% 
>   4.25% 79.19% 45.99% 42.13% 
Total 100.00% 48.59% 42.66% 

Table 22 – Loan Frequency and Recovery Rate by Interest Rate 
This table presents the relative loan frequency, average historical recovery rate and standard deviation 
for low and high interest rate groups. 
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4.3 Customer Characteristics 

 

4.3.1 Firm Industry 

 

The firm industry variable is constructed by grouping together level 3 NACE codes 

(classification of economic activities in the European community) with similar 

historical recovery experiences. Applying the CHAID methodology, 4 groups are 

considered. Appendix 2 provides the details on how the 4 groups are formed and 

Table 23 provides the sample distribution and average recovery rate for each industry 

group.  

Group A, were the most representative industry is the NACE code 70 – Real 

Estate Activities, has the highest average recovery rate. Group B represented by 

industry 45 – Construction has the second highest average recovery rate. Next, 

Groups C and D have the lowest average recovery rates. The most representative 

industries in Group C are services and manufacturing activities, while wholesale trade 

is the major industry in Group D.  

Dermine and Carvalho (2006) report a similar result, stating that the 

manufacturing and trade sectors have lower recoveries than the real sector, while 

Franks et al. (2004) found little systematic relationship between industry groups and 

recovery rates.  

 

Group % Number 
Observations 

Average 
RR 

Std. 
Deviation 

A 7.61% 78.92% 32.49% 
B 35.28% 58.53% 39.92% 
C 20.14% 47.74% 41.59% 
D 36.97% 33.32% 41.64% 

Total 100.00% 48.59% 42.66% 
Table 23 – Loan Frequency and Recovery Rate by Industry Group 

This table presents the sample distribution by industry group and the historical recovery experience for 
each group.  
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4.3.2 Age of Relationship 

 

The age of the relationship between the customer and the bank can be a recovery rate 

indicator in view of the fact that if the relationship is strong, the firm could have a 

higher incentive to repay the defaulted loans.  

Franks et al. (2004) report higher average recovery rates for older customers 

with more than 5 years of relationship, than for new customers with less than 5 years. 

Table 25 provides the relative number of observations and the average 

recovery rates for defaulted loans with short to long-term customer-bank 

relationships. The average RR does not increase consistently with the age of 

relationship, but for very long-term relationships (over 20 years), the historical 

recovery rate is clearly higher than for shorter relationships. 

 

Summary Statistics 
Mean 7.4 
Median 6.0 
StDev 4.8 
Min 0.0 
Max 23.0 

Table 24 – Age of Relationship Summary Statistics, in Years 
This table presents summary statistics for the Age of Relationship variable. The statistics presented are 
the Mean, Median, Standard Deviation, Minimum and Maximum. 
 

Years % Number 
Observations 

Average 
RR 

Std. 
Deviation 

  0<Y<=2 10.58% 44.33% 37.97% 
  2<Y<=10 66.33% 50.66% 42.45% 
10<Y<=20 19.63% 42.99% 45.05% 
20<Y 3.47% 62.02% 40.66% 
Total 100.00% 48.59% 42.66% 

Table 25 – Loan Frequency and Recovery Rate by Age of Relationship 
This table presents the sample distribution and the historical recovery experience by the age of 
relationship between the customer and the bank. 
 

4.3.3 Firm Age 

 

Loan recovery can occur at several stages, first the customer is able to repay 

according to the original plan, second the customer is able to pay but only with an 
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alternative payment plan, or finally, the customer is not able to repay and either the 

guarantees provided can cover the outstanding debt or recovery can only occur 

through legal dispute. Considering firm age we hypothesize that defaulted loans on 

older firms have higher likelihood of being recovered in the earlier stages. The earlier 

the recovery, the higher the sum of the discounted cash-flows.  

Evidence from our data (see Table 27) suggests that although the RR does not 

increase consistently with firm age, the historical RR associated with defaulted loans 

on very young firms (up to two years) is clearly lower than the RR on older firms’ 

loans.  

Dermine and Carvalho (2006) report a similar result, stating that for older 

firms it is easier to evaluate management and asset quality. 

 

Summary Statistics 
Mean 14.4 
Median 11.0 
StDev 12.7 
Min 1.0 
Max 103.0 

Table 26 – Firm Age Summary Statistics, in Years 
This table presents summary statistics for the Firm Age variable. The statistics presented are the Mean, 
Median, Standard Deviation, Minimum and Maximum. 
 

Years % Number 
Observations 

Average 
RR 

Std. 
Deviation 

  0<Y<=2 2.96% 33.83% 36.56% 
  2<Y<=10 39.85% 49.99% 41.69% 
10<Y<=20 29.36% 50.31% 43.79% 
20<Y 18.61% 43.98% 43.79% 
#N/A 9.22% -- -- 
Total 100.00% 48.59% 42.66% 

Table 27 – Loan Frequency and Recovery Rate by Firm Age 
This table presents the sample distribution and the historical recovery experience by the age of the 
customer. 
 

4.3.4 Geographic Location 

 

Economic conditions in a given region may affect the recovery rates for the loans 

granted to customers in those areas. For example, if an economic crisis affects a given 

region, the value of mortgage collateral and other firms’ assets would most likely 
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decrease, affecting recovery rates. Another important factor could be the bank 

structure. If the bank has a decentralized structure, with regional departments using 

different policies to evaluate and monitor loans, there could be a regional bias 

affecting recovery rates.  

Several studies have considered geographic location has a recovery driver, but 

at a country level: Hurt and Felsovalyi (1998) compare recovery experiences in 27 

different Latin American countries, while Franks et al. (2004) report results for three 

European countries. 

Table 28 provides the relative number of observations and the historical 

average RR for each major region in Portugal. The regions with better and worse 

average RRs are the island groups Açores and Madeira, respectively. This might be a 

reflection of the fact that both regions have administrative autonomy that could result, 

for example, in different timings to solve legal disputes in courts. Another interesting 

result is that all regions in the center and south of mainland Portugal have RRs higher 

than the overall average, while regions in the North have lower RRs than the average 

(with the exception of Beira Interior). 

 

Location % Number 
Observations 

Average 
RR 

Std. 
Deviation 

Açores 1.18% 58.22% 28.21%
Beira Interior 4.74% 56.74% 41.94%
Algarve 2.62% 52.40% 41.79%
Lisboa 26.82% 51.51% 42.75%
Estremadura 6.68% 49.25% 42.62%
Alentejo 4.40% 48.64% 39.81%
Beira Litoral 18.10% 47.00% 43.20%
Trás-os-Montes 2.12% 46.82% 45.13%
Porto 11.93% 46.53% 42.68%
Minho 20.56% 44.69% 43.69%
Madeira 0.76% 39.28% 38.79%
#N/A 0.08% -- -- 
Total 100.00% 48.59% 42.66%

Table 28 – Loan Frequency and Recovery Rate by Geographic Location 
This table displays the sample distribution and the historical recovery experience for the major regions 
in Portugal. 
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5 LGD Modeling 
 

 

The modeling of the LGD differs from standard regression models in two 

fundamental ways: first, the dependent variable is usually restricted to the [0,1] 

interval; second, the dependent variable clearly does not follow a normal distribution, 

with heavy concentrations on the extremes. Classic OLS regression would yield a 

poor fit to the data and would predict recovery rates outside the [0,1] interval. 

Two alternative methodologies will be employed in order to overcome these 

issues. The first, the Beta Transformation methodology consists on a two-step 

transformation of the dependent variable. First, the Beta distribution is fitted to the 

observed recovery rates, if the fit is satisfactory, a second transformation is performed 

in order to map the range of outcomes from the probability space to the normalized 

space. After this second transformation it is now possible to apply the standard 

regression techniques. 

The second alternative consists on applying the Generalized Linear Model 

(GLM) methodology to our data. This methodology allows to directly overcome the 

two issues mentioned above by estimating a regression where the dependent variable 

is mapped to the real space and, at the same time, allowing for an alternative for the 

normal distribution of the errors. The two methodologies are discussed in detail 

below, and the results from applying each of them are presented. 
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5.1 Beta Transformation Methodology 

 

The Beta Transformation methodology attempts to map the recovery values to the 

normalized space through the use of a parametric distribution42. If this empirical 

match between the historical recovery rates and the Beta distribution is reasonable 

then it will be possible to apply the standard regression techniques to the transformed 

dependent variable. 

The probability function of the Beta distribution with domain [0,1] is given by: 

  

 ( ) ( )
( ) ( ) ( ) 1 1, , 1 ,b x x xβ αα β

α β
α β

− −Γ +
= −
Γ Γ

 (10) 

 

where Γ is the gamma function, and α and β are the shape parameters. These shape 

parameters can be derived from the mean µ and standard deviation σ of the 

population: 

( ) ( ) ( )
2 2

1 1
1         and        1 1

µ µ µ µ
α µ β µ

σ σ
− −⎛ ⎞ ⎛ ⎞

= − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

By matching the population moments to the sample moments ˆ ˆ(µ= 0.486, =0.425)σ , a 

Beta Distribution with parameters α = 0.186 and β = 0.197 is fitted:  

 

                                                 
42 See for example: Gupton and Stein (2005), or Miu and Ozdemir (2005). 
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Figure 43 – Beta Distribution Fit to Empirical Recovery Rate Distribution 
This figure illustrates the fit of a Beta distribution with parameters α = 0.186 and β = 0.197 to the 
empirical recovery rate distribution. 
 

Descriptive Statistics 

Mean 49.27% 
Median 56.32% 
Std Deviation 42.54% 
Min 0.00% 
Max 100.00% 

Table 29 – Beta Fit Descriptive Statistics 
This table provides the descriptive statistics mean, median, standard deviation, minimum and 
maximum for the beta fit to the Recovery Rate variable. 
 

Given that the Beta distribution seems to provide a satisfactory fit to the sample 

recovery data, the Beta transformation of the dependent variable is given by: 

 

 ( )1 , , ,i iY N RR α β−= Β⎡ ⎤⎣ ⎦  (11) 

 

where N-1 is the inverse normal cumulative distribution, Β is the Beta cumulative 

distribution and RRi is the observed recovery rate. Since the inverse normal 

cumulative distribution function is not defined for the extreme values 0% and 100%, 

the observed recovery rates need to be adjusted by a small value ε at the extremes.  

With the normalized dependent variable it is now possible to apply the 

standard regression techniques. In order to be able to directly compare the results 

from the Beta and GLM methodologies, the model is estimated using Maximum-
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Likelihood procedure. Applying backward and forward variable selection techniques, 

the final model is43: 

 

Explanatory 
Variable 

Estimated 
Coefficient 

Standard 
Error 

Wald Test 
P-Value 

S/M  0.1569 0.0377 0.000 
D/L -0.3142 0.0483 0.000 
irate_d -0.0572 0.0290 0.048 
ind2 -0.2345 0.0472 0.000 
ind3 -0.3321 0.0498 0.000 
ind4 -0.5907 0.0467 0.000 
g_per -0.1312 0.0377 0.001 
g_oth  0.1802 0.0414 0.000 
g_fin  0.1865 0.0637 0.003 
const 1.0205 0.0770 0.000 

 
Number of observations 1133 
Wald Chi-Squared Test 418.6 
P-Value Wald Test 0.000 
AIC 0.909 
BIC -7736 
McFaden R-squared 0.262 

Table 30 – Maximum-Likelihood estimates of long-term cumulative recovery rates, Beta 
Methodology 

This table shows the Beta Methodology maximum-likelihood estimates for the cumulative recovery 
rate model. A positive relationship between the variables Seasoning-to-Maturity Ratio (S/M) and 
Collateral Dummies (g_oth and g_fin) and the Recovery Rate is suggested. Conversely, a negative 
relationship is estimated between the Recovery Rate and the other variables, the Default-to-Loan Value 
Ratio (D/L), the high Interest Rate Dummy (irate_d), and Industry Groups 2, 3 and 4 (ind2, ind3, ind4) 
relative to Group 1. The statistical significance of each individual coefficient is provided by the p-value 
of the individual Wald test. A Wald test to the overall significance of the model, the McFaden R^2 and 
the AIC/BIC information criteria are also provided.  
 

where, 
S/M = Seasoning to Maturity Ratio; 
D/L = Default to Loan Value Ratio; 
Irate_d = Interest Rate Dummy; 
Indi = Dummy for industry belonging to group i; 
G_per = Dummy for personal guarantee; 
G_other = Dummy for collateral than mortgage or financial;  
G_fin = Dummy for financial collateral; 
 

The sign of the estimated coefficients is consistent with the economic intuition, as 

discussed in the previous section: higher recovery rates are estimated for more 

seasoned loans (measured by the Seasoning-to-Maturity Ratio – S/M), and for loans 
                                                 
43 Appendix 3 provides a definition of the statistics used. 



 

 102

with collateral (measured by the dummies g_oth and g_fin). Conversely, lower 

recovery rates are estimated for loans that have low repayment rates by the time of 

default (measured by the Default-to-Loan Value Ratio – D/L), for loans with high 

interest rates (measured by the dummy irate_d), and for loans granted to customers of 

industry groups 2, 3 and 4 (dummies ind2, ind3, ind4). The other variables mentioned 

in the previous section, Loan Value, Loan Maturity, Age of Relationship, Firm Age 

and Geographic Location were also tested but are not significant. 

Regarding statistical significance, each individual coefficient and the overall 

regression are significant at a 5% level. As to residual analysis, model 

misspecification can be detected if the estimated residuals clearly are not normal 

distributed. Figure 44 below provides a plot of the estimated recovery rates against the 

Pearson residuals of the regression, no gross misspecification is detected, although 

there is a slight bias towards low estimated recoveries:  
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Figure 44 – Pearson Residuals Plot by Estimated Recovery Rate, Beta Methodology 

This figure presents the scatter between the estimated recovery rates, using the Beta Methodology, and 
the Pearson Residuals of the estimate.  
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5.2 GLM Methodology 

 

The GLM models represent a generalization of the classical regression models in the 

sense that the relationship between the dependent variable y and the covariates x need 

not to be linear, and the dependent variable can follow a distribution other than the 

normal distribution44. GLM requires that the relationship of a transformation of y, 

given by a link function g( ), and x to be linear, with y following a given distribution 

F: 

 

 ( ){ }  ,      g E y x y Fβ= ∼  (12) 

 

In the case of this study, we are interested in specifications for g( ) and F that 

take in consideration the fact that the dependent variable is a proportion, and that it 

follows a bimodal distribution. One possible solution would then be to consider the 

binomial family, with denominator 1, and the loglog link function. With the binomial 

family, other link functions that map y from the probability space to the real space are 

feasible, such as the logit and cloglog functions45.  

The loglog link is used since it is asymmetric, biased towards the lower values, 

which fits well with the high concentration on the 0% to 5% observed recoveries in 

our sample (see Figure 37). The logit function is symmetric while the cloglog function 

is asymmetric but biased towards positive values: 

 

                                                 
44 See Hardin and Hilbe (2001) for more details on GLM models. 
45 Results using the 3 proposed link functions yield similar results, although the loglog regressions 
seems to provide the best fit. 



 

 104

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

-5 -4 -3 -2 -1 0 1 2 3 4 5

cloglog logit loglog
 

Figure 45 – Cloglog, Logit and Loglog Link Functions 
The figure presents the three link functions considered. With the Loglog function there is a bias 
towards lower recoveries, which is closer to the empirical recovery rate distribution of the sample. The 
Cloglog function is biased towards high recoveries, while the Logit function lies between the other two. 

 

where, 

( ){ }cloglog ln ln 1 y= − − , ( ){ }logit ln / 1y y= − , ( ){ }loglog ln ln y= − −  

 

Model estimation is then developed using the Maximum Likelihood method. The log-

likelihood function for observation i is given by: 

 

( ) ( ) ( ) ( ) ( )ln ln 1 ln 2 ln , 1 ln 1 ,i i i i i i iL y y y g x b y g x b= − Γ + − Γ − + + − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (13) 

 

The estimated results for our sample are: 
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Explanatory 
Variable 

Estimated 
Coefficient 

Standard 
Error P-Value 

S/M  0.9268 0.1167 0.0000 
D/L -1.1460 0.1766 0.0000 
irate_d -0.2344 0.1001 0.0190 
ind2 -1.2999 0.2003 0.0000 
ind3 -1.5642 0.2058 0.0000 
ind4 -2.3143 0.1964 0.0000 
g_per -0.4703 0.1359 0.0010 
g_oth  0.6879 0.1507 0.0000 
g_fin  0.7009 0.2225 0.0020 
const  2.9608 0.2998 0.0000 

 
Number of observations 1133 
Wald Chi-Squared Test 519.6 
P-Value Wald Test 0.000 
AIC 1.015 
BIC -7125 
McFaden R-squared 0.203 

Table 31 – Maximum-Likelihood estimates of long-term cumulative recovery rates, GLM 
Methodology 

This table shows the GLM Methodology maximum-likelihood estimates for the cumulative recovery 
rate model. The same variables are selected as for the Beta Methodology model. A positive relationship 
between the variables Seasoning-to-Maturity Ratio (S/M) and Collateral Dummies (g_oth, g_fin) and 
the Recovery Rate is suggested. Conversely, a negative relationship is estimated between the Recovery 
Rate and the other variables, the Default-to-Loan Value Ratio (D/L), the high Interest Rate Dummy 
(irate_d), and Industry Groups 2, 3 and 4 (ind2, ind3, ind4) relative to Group 1. The statistical 
significance of each individual coefficient is provided by the p-value of the individual Wald test. A 
Wald test to the overall significance of the model, the McFaden R^2 and the AIC/BIC information 
criteria are also provided. 

 

where, 
S/M = Seasoning to Maturity Ratio; 
D/L = Default to Loan Value Ratio; 
Irate_d = Interest Rate Dummy; 
Indi = Dummy for industry belonging to group i; 
G_per = Dummy for personal guarantee; 
G_other = Dummy for collateral than mortgage or financial;  
G_fin = Dummy for financial collateral; 
 

The same explanatory variables are used as in the Beta Transformation methodology. 

Again, the sign of the estimated coefficients agrees with economic intuition. 

Regarding statistical significance, each individual coefficient and the overall 

regression are significant with a 5% level. A plot of the estimated recovery rates 

against the Pearson residuals again shows no evidence of gross misspecification: 
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Figure 46 – Pearson Residuals Plot by Estimated Recovery Rate, GLM Methodology 

This figure presents the scatter between the estimated recovery rates, using the GLM Methodology, and 
the Pearson Residuals of the estimate.  

 

Comparing the results from both methodologies, we can conclude that both are able to 

suitably model the LGD of the portfolio considered in this study. The resulting 

models are similar in the sense that the same variables are selected, and both can be 

used to predict long-run LGDs, producing predictions on the ]0,1[ interval.  

Although the GLM methodology is simpler to apply, since the Beta 

methodology involves a two-step transformation of the dependent variable, it is the 

Beta methodology that provides the best overall fit: it has a higher McFadden R2 

(26.22% against 20.25%), and lower values for both AIC (0.9089 against 1.0146) and 

BIC (-7736 against -7125) information criteria. As reference, Dermine and Carvalho 

(2006) report Pseudo R2 of 20% and 18% for two alternative GLM models, using the 

loglog link function.  

Furthermore, a random sample of 60 observations, representing 5% of the 

overall sample is used for out-of-sample testing, providing similar results for both 

methodologies. A Root Mean Squared Error (RMSE) of 35.41 is estimated for the 

Beta methodology, while the RMSE for predictions using the GLM methodology is 

34.5446. 

                                                 
46 See Appendix 3 for more details on the RMSE. 
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6 Conclusion 
 

 

LGD modeling of bank loans for privately-held firms is usually hampered by the lack 

of available data. Unlike probability of default (PD) the LGD sample does not 

comprise the whole corporate bank loan portfolio, but only those loans where there 

has been a default. Starting from this considerable smaller base, a considerable 

amount of information is then required for these observations over a long period of 

time, that should encompass at least one full economic cycle. All the cash-flows 

generated during the recovery processes should be retrieved, typified (capital, interest, 

and cost), quantified and dated. The present value of these cash-flows should then be 

computed using the appropriate discount rate that can change over time, across 

institutions and over different business segments.  

These issues have been addressed in this study using simplifying assumptions. 

First of all, since it is not possible to retrieve interest and cost cash-flows for most 

observations only capital recoveries are considered and an overall cost of 2.45% of 

total recoveries is distributed per recovery process according to the size of each loan. 

Additionally, a constant annual discount rate of 15% is chosen, representing the 

opportunity cost to the bank of holding capital against defaulted assets. Furthermore, 

since only a limited time frame of data is available (1999-2005), a considerable 

number of observations have limited recovery time. Given the objective of modeling 

long-term LGD, survival analysis is applied to these observations in order to simulate 

cumulative recoveries over longer periods.   

Regardless of these data issues we are able to provide two alternative 

specifications that provide simple but efficient models for long-term LGD prediction. 

Relationships suggested by each model are stable across samples and different 

recovery horizons. The models presented encompass exclusively explanatory 

variables that are known at the time the loans are granted and thus can be used to 

predict long-term LGDs for new bank loans. Overall 10 explanatory variables are 
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considered, representing three relevant dimensions: guarantee, loan and customer 

characteristics. 

Two alternative modeling methodologies are considered that attempt to 

overcome the fact that LGD has a bimodal distribution with heavy concentrations on 

the [0,1] interval. The Beta Transformation methodology maps the recovery values to 

the normalized space through the use of a parametric distribution. It relies on the fact 

that the empirical match between the historical recovery rates and the Beta 

distribution is reasonable. Alternatively, the GLM methodology represents a 

generalization of the classical regression models allowing the dependent variable to 

follow a distribution other than the normal distribution and for a nonlinear 

relationship between the dependent variable and the covariates. Although both 

methodologies suggest similar valid models, the Beta Transformation methodology 

provides the best fit to the data considered in this study. 

Further work would consider a larger dataset comprising interest due not paid 

recoveries, a more detailed study on the indirect and direct costs of recovery incurred 

by the bank and the firm during the recovery process, and alternative specifications 

for the discount rate. In terms of the modeling methodology, a non-parametric 

approach could be tested that could potentially provide a better fit over the 

methodologies presented in this study, at the expense of increasing the model 

complexity. 
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Appendix 1 – Kaplan Meier Survival Analysis 
 

 

The Kaplan-Meier (1958) survival analysis is a nonparametric, actuarial technique for 

estimating time-related events. It can be used to measure the length of time required to 

recover from a given default event. An important feature of this analysis is that it 

takes into account censored data, the losses from the sample before the final outcome 

is observed. The Kaplan-Meier estimate for the survival function is given by: 

( )ˆ 1 ,
i

i

t t i

rS t
d<

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∏  

where, 

ri = amount recovered in period ti; 

di = amount that can be recovered in period ti.  
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Appendix 2 – Industry Groups by Economic Activity 
 

 

Group NACE Description 

37 Recycling 
30 Manufacture of office machinery and computers 
71 Renting of machinery and equipment without operator… 
14 Other mining and quarrying 
02 Forestry, logging and related service activities 
35 Manufacture of other transport equipment 
70 Real estate activities 

A 

80 Education 
31 Manufacture of electrical machinery and apparatus n.e.c. 
05 Fishing,  fish farming and related service activities 
22 Publishing, printing and reproduction of recorded media 
92 Recreational, cultural and sporting activities 
15 Manufacture of food products and beverages 
55 Hotels and restaurants 
45 Construction 
52 Retail trade, except of motor vehicles and motorcycles; repair of personal … 
01 Agriculture, hunting and related service activities 

B 

13 Mining of metal ores 
60 Land transport; transport via pipelines 
72 Computer and related activities 
74 Other business activities 
33 Manufacture of medical, precision and optical instruments, watches and clocks 
93 Other service activities 
34 Manufacture of motor vehicles, trailers and semi-trailers 
19 Tanning and dressing of leather; manufacture of luggage, handbags, saddlery, … 
91 Activities of membership organizations n.e.c. 
28 Manufacture of fabricated metal products, except machinery and equipment 
36 Manufacture of furniture; manufacturing n.e.c. 
85 Health and social work 

C 

25 Manufacture of rubber and plastic products 
51 Wholesale trade and commission trade, except of motor vehicles and motorcycles 
20 Manufacture of wood and of products of wood and cork, except furniture; … 
18 Manufacture of wearing apparel; dressing and dyeing of fur 
29 Manufacture of machinery and equipment n.e.c. 
40 Electricity, gas, steam and hot water supply 
17 Manufacture of textiles 
26 Manufacture of other non-metallic mineral products 
50 Sale, maintenance and repair of motor vehicles and motorcycles; retail sale … 
63 Supporting and auxiliary transport activities; activities of travel agencies 
98 Unknown Activity 
24 Manufacture of chemicals and chemical products 
27 Manufacture of basic metals 

D 

64 Post and telecommunications 
Table 32 – Industry Groups by Economic Activity Classification 

The table lists the level 3 NACE codes (classification of economic activities in the European 
community) associated with each industry group. The groups are formed using the CHAID 
methodology, linking together industries with similar recovery experiences. 
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Appendix 3 – Regression Fit Analysis 
 

 

This appendix provides a technical description of the several metrics used in this 

study in order to assess the overall fit of the estimated regressions and to compare 

results from different methodologies. Four types of fit measures are considered: 

residual analysis, information criteria, R2 and Mean Squared Error measures:  

 

Residual Analysis – Pearson Residuals 

 

Residual analysis provides a description of the divergence between the observed and 

fitted values for each individual observation. Model misspecification can be detected 

if the estimated residuals clearly are not normal distributed. The Pearson residuals are 

defined as: 

( )
ˆ

,
ˆ

i i
i

i

y yr
V y
−

=  

where, 

yi = observed values for observation i; 
ˆiy = fitted values for observation i; 

( )ˆiV y = variance function of the distribution family considered. 
 

Information Criteria 

 

Model comparison for models estimated with the maximum likelihood procedure can 

be performed through the use of information criteria that balance likelihood results 

with penalty terms based on the degrees of freedom of a model. Two popular criteria 

are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC), the lower the value of each criterion, the better the fit of the model: 

2 ln 2AIC ,L k
n

− +
=  
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BIC ( ) ln( ),D n k n= − −  

where, 

L = overall likelihood of the model; 
k = number of predictors; 
n = number of observations; 
D = overall deviance of the model. 
 

Pseudo-R2 

 

For likelihood estimated models, the classical R2 measure cannot be directly 

computed. Instead several alternatives have been suggested that attempt to measure 

the percent variance explained. One popular alternative is the McFadden likelihood-

ratio index: 

( )
( )

12

0

ln
1 ,

lnM

L M
R

L M
= −  

where, 

M1 = model with intercept and predictors; 
M0 = model with intercept only. 
 

Root Mean Squared Error (RMSE) 

 

An indicator of model prediction performance is obtained by taking the root of the 

average of the squared errors of the prediction, the lower the value of the RMSE, the 

better the fit: 

( )2ˆ
1

i iy y
RMSE

n
−

=
−

∑  

where, 

yi = observed values for observation i; 
ˆiy = predicted values for observation i; 

n = number of observations; 
 


