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ABSTRACT 
 

The possibility of chaotic systems oscillate in a coherent and synchronized way is not an obvious 
phenomenon, since it is not possible to reproduce exactly the initial conditions and the sensitive dependence on 
initial conditions is one of the main characteristics associated with the chaotic behavior. We consider 
synchronization phenomena of discrete chaotic dynamical systems (identical or non-identical) with nonlinear 
unidirectional and bidirectional coupling schemes. In order to illustrate the synchronization methods present in this 
paper, we always use a system of two coupled chaotic quadratic maps. First, we present a systematic way to 
design unidirectional and bidirectional coupling schemes for synchronizing arbitrary pairs of one-dimensional 
chaotic maps. In dissipative coupling, we use two methods to study the stability of synchronous state: the linear 
stability and the Lyapunov functional analysis. Second, we explore other coupling schemes. With the 
unidirectional coupling based on the singular value decomposition it is possible to suppress the exponential 
divergence of the dynamics of the synchronization error and to guarantee linear stability of the synchronized state 
in all points of the state space. The other coupling scheme is asymmetric and appears in natural a family of 
analytic complex quadratic maps.  
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INTRODUCTION 

 

Synchronization of dynamical systems is a well-know phenomenon in physics, nature, economics, engine-
ering and many other scientific areas. The first observations related to synchronization were reported by Huygens 
in 1665. In that case, the synchronization was indicated by the equal periods of coupled clocks. Nowadays, syn-
chronization is used in a more generalized sense: occurring in periodic and chaotic coupled systems. Coupled 
dynamical systems are constructed from simple, low-dimensional maps and form new and more complex 
organizations, with the belief that dominant features of the underlying components will be retained. This building 
up approach can also be used to create a novel system which behavior is more flexible or richer than that of the 
components, but which analysis and control remains tractable. One of the main characteristics associated with 
the chaotic behavior is the sensitive dependence on initial conditions, that is, any infinitesimal perturbations of the 
initial conditions lead to the divergence of nearby starting orbits. However, when ensembles of chaotic systems 
are coupled, the attractive effect of a suitable coupling can counterbalance the trend of the trajectories to separate 
due to chaotic dynamics. As a result, it is possible to reach full or partial synchronization in chaotic systems, 
depending on the coupling degree. In synchronization we seek subspaces of the coupled system space - the 
synchronization set - in which a special kind of motion, which relates the coupled system, takes place.  

Since the seminal papers of Fujisaka and Yamada (1) and Pecora and Carroll (2), various synchronization 
methods and several news concepts necessary for analyzing chaos synchronization have been developed. The 
most well-known regimes of synchronization are the identical (or complete) synchronization, the phase synch-
ronization and the generalized synchronization. Identical synchronization means that the periodic or the chaotic 
oscillations of the coupled identical systems coincide exactly in time due to the strong interaction between them. 
Generalized synchronization is a kind of synchronization where exists a one-to-one smooth mapping between 
oscillations of each subsystem. Hence, knowing the state of one subsystem enables us to know the state of the 
other subsystem. Phase synchronization is defined as the appearance of a certain relationship between the 
phases of the coupled systems while the amplitudes can remain uncorrelated.  

 
Coupled dynamical systems in discrete time 

Let’s consider the following maps 

    and                                                     (1) 
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where   and  are real dynamical variables,    and  are chaotic maps and the 

constants    represent the control parameters.  Both maps in (1) satisfy a global dissipative condition 
and hence have a global attractor. 

As the dynamics of each map is chaotic, in the case of uncorrelated systems we can observe two 
independent random-like processes without any mutual correlation. Now let us introduce an interaction between 
the two systems. Though there are several ways to couple mathematically two maps, we want the coupling to 

have some relevant properties. The coupling should be dissipative, that is, it tends to make the states  and  

closer to each other, and does not affect the symmetric synchronous state . The proper way to apply a 
coupling operator to the nonlinear maps (1) is like follows: 

 

where  and  are the coupling parameters. So, we obtain the coupled system  

                                     
(2) 

as a result of bidirectional coupling. The coupled systems in (2) are synchronized if  

as , for a certain range of the control parameters   and . The main method of research on this 

problem is analytical: for given parameter values  and , we want to find coupling values of  and  so that 

for close initial values and , synchronization must occurs. 

    The simplest case is the identical synchronized regime, where  and  . In this case, 
the system (2) takes the form 

                    .                   (3) 

The coupled system is completely symmetric with respect to changes of the variables , and the 

coupling parameter   is the coupling strength. 
    This bidirectional coupling scheme can be clearly interpreted in populations light dynamics. One can 

think of  and  as simulating the population dynamics of a particular species at two adjacent 
locations. If the species can migrate in both directions within the time intervals between the stages of their 

reproduction and death, then  represents the fraction of these species, which migrate to the neighboring 

location, that is,  is a measure of the diffusion of individuals between the two locations. For , the 
phase volume suffers additional contraction in comparison with the magnitude it would have without coupling. 
This fact gives grounds to call this type of coupling scheme as dissipative coupling. 

There are other simple ways to couple two maps. For instance, we could have the linear coupling 

                                             ,                                                              (4) 

and the bilinear coupling if the linear terms in (4) is replaced by . However, such coupling 
schemes are not biologically realistic as they involve the mixing of generations: some of the individuals have been 
allowed to reproduce and die and have also been allowed to move into the other location. 

In dissipative coupling, large enough coupling strength  should eventually bring about the 

synchronization of the considered system (3), for any value of  . In particular, when , the two variables 

 and  are completely independent and uncorrelated, that is, the two systems act independently. For 

, after few iterations the two variables  and  become identical and we immediately observe the 

synchronous state  for all . When the synchronous state is reached, the dynamics of both systems 

corresponds to that of the single map . As the coupling does not affect this state, the dynamics of  and  
are the same as in the uncoupled systems, that is, chaotic. Such a regime, where each of the maps shows chaos 
and their states are identical at each moment in time, is called full synchronization. So, when the synchronous 

state  is reached, the chaotic dynamics of  and  are restricted to the one-dimensional invariant 

attracting subspace , called the synchronization set. Thus, the problem of synchronization can be 
understood as a problem of stability of a one-dimensional chaotic attractor embedded in the two-dimensional 

phase space. If we consider the coupling parameter  as a bifurcation parameter that increases gradually from 

, a complex bifurcation structure is generally observed, but one clearly sees a tendency to closer correlation 
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between the variables  and . The goal is to keep the systems as loosely coupled as possible, but still have 

them synchronize. One can find a critical coupling  such that for  the synchronous state 

 is established. The synchronization near this the coupling threshold   appears to be highly sensitive. 

The points outside the diagonal  represent the non-synchronous state. With the increasing of , the 

distribution of the points tends towards the diagonal, and beyond the critical coupling  all points satisfy 

. The critical coupling value  is obtained from the Lyapunov exponent of the uncoupled chaotic 
system. 

 
Stability analysis of the synchronous state in dissipative coupling 
Linear stability analysis 

 

The coupling threshold  in which we obtain stable synchronous state in (3) can be computed by the 

linearization around the synchronous state, where . To characterize the synchronization transition at 

, it is convenient to define two new variables 

    and                                               

Geometrically, the variable  is directed along the diagonal , while the variable  

corresponds to the direction transverse to this diagonal. In the synchronous state,  and 

. Close to the synchronous state, the variable  is small and its evolution will determine the 

stability of the synchronous state. Note that, since system (3) remains invariant under the transformation , 

the synchronous state  is a solution of (3) for all values of . So , if the initial conditions are symmetric, 

, the symmetry is preserved in time. If we want the synchronous state to be observed not only for 
specific, but also for general initial states, we must impose the stability condition: the full synchronous state 

  should be an attractor, that is, synchronization should establish even from non-symmetric initial states. 

This stability condition will give us the critical coupling  for the onset of synchronization. The rate of growth 
of a small difference along two trajectories on the chaotic attractor is measured through the Lyapunov exponent 

 and the evolution of perturbations in the perpendicular direction, which determines the stability of the 

synchronous attractor, is characterized by the transversal Lyapunov exponent . 
The system (3) can be written in the form 

. 

We make this system linear near the synchronous state , where the variable  is small, and obtain a 

couple of linear maps for small perturbations of and  given by 

 and                                 (5) 

where the derivative  is evaluated along the synchronous state. Since in the linear 

approximation the perturbations of  and  do not interact, the perturbations can be treated separately. For 

, the Lyapunov exponent  is nothing else than the Lyapunov exponent  for the uncoupled map 

 

and the transversal Lyapunov exponent  can be written in terms of  in the following simple way: 

. Because of this simple dependence on , the boundary of stability of the synchronous 
state can be immediately deduced: the synchronous state is stable if the Lyapunov exponent corresponding to the 

difference variable  is negative, that is  (and unstable if ), and the range of stability is given 
by 

. 

The coupling threshold is then defined from the condition , that is 

. 
 
Global stability analysis 

 

Global stability in a neighborhood of an equilibrium point is confirmed if there exist a positive definite 
function defined in that neighborhood, whose derivative is negative semi-definite (3). To get conditions for the 
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global stability of synchronization of two systems in variables x and y, we define the associated Lyapunov function 
by 

. 

Since , the equality holds only when the systems are exactly synchronized. For the 
asymptotic global stability of the synchronous state, the Lyapunov function should satisfy the following condition in 
the region of stability, 

.                                                                      (6) 
If we consider the coupling scheme (3), the Lyapunov function is written as 

 

and, using the Taylor expansion of  about , we obtain 

                            
(7) 

If the expression in the square bracket on the right hand-side is bounded then always exist some values of 

 around  for which the synchronous state will be stable. 
As an example, consider now the bidirectional coupling scheme (3) with the one-dimensional quadratic 

map , 

 

where  is the control parameter. The map   defines a discrete dynamical system 
whose behavior has been intensively studied. The system obtained by coupling exhibits a much richer dynamics 
that the single quadratic map, but is still simple enough to allow the study of its behavior. In what follows we will 

always consider  higher than the Misiurewicz point  (Figure 1), where the quadratic maps are 
chaotic.  
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Figure 1. Bifurcation diagram of the one-dimensional quadratic map . 

By (7) the corresponding Lyapunov function leads to 
 

, 
that is,  

. 
Hence, it follows that we have the approximation 

, 

and onsidering  , we obtain 
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and finally, by the synchronization condition (6) we have  that is, 

. Moreover, if we consider a more realistic bound for as ,  a 

better range for  can be obtained 

 
In order to illustrate the efficiency of this synchronization method we consider some numerical simulations 

with chaotic maps.  
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Figure 2. Dissipative coupling (3) with  , ,  and : (a) hyperplane 

of synchronization, (b) time series 

For example, if ,  and different initial conditions , 

, the synchronization takes place after few steps (  iterations). Figure 2 illustrates the stabilization of 

the dynamics of the coupled system on the synchronization set . The transition points (  iterations) are 

the points outside the attractor. We also represent the time series of the  and  variables and the error 

. For any value of  closer to the critical threshold the synchronization is attained in the shorter time 
interval. 

 
Unidirectional coupling based on singular value decomposition 

 

Consider two identical chaotic dynamical systems  and , where 

 is the control parameter. We want to synchronize these systems by using a unidirectional dissipative 
coupling, that is 

                                          ,                                                                (8) 

where  , depending on , is the coupling matrix that suppresses the local expansion of the 

flow along the non-contracting directions. In this unidirectional coupling,  and  are the real dynamical 
variables of the drive (or master) and the response (or slave) systems, respectively. The expression 

 is called the coupling term. As we see, in unidirectional coupling only the dynamics of the 
response system is affected by the drive system through the coupling; the reverse does not hold.  

Junge and Parlitz (3) show that the synchronization of chaotic systems can be explained by the 

suppression of expanding dynamics in the state space transversal to the synchronization manifold . For 
that, it was considered the singular value decomposition (SVD) of the Jacobian matrix, 

, 

where  and  are orthogonal matrices and    is a diagonal matrix with positive 

elements , represented by the singular values of . Thus, we can use one of the most powerful coupling 
schemes defined by 
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where we assume that exist  local non-contracting directions at  and   are the column 

vectors of  with corresponding singular values . Note that, choosing 

, 

the matrix  governing the synchronization error dynamics , yielding by (8) as 

, 
is  given by the singular value decomposition 

, 

where appear only singular values that are smaller than . So that, the choice of this matrix   
guarantees the linear stability of the synchronous state. With this method, systems can be synchronized using a 
minimum of transmitted information. In fact, Junge and Parlitz (3) have showed that this scheme coupling allows 
for breaking the coupling from time to time in order to reduce the information flow from the drive to the response 

system. They discuss two ways to exploit this feature: by sporadic coupling (where  iterations are performed 
before the next coupling signal is computed from the current state and transmitted to the response system where 

it is applied in the coupling) and in partitioned state space (the singular values  de  depend, in 

general, on the state , so one may restrict the coupling to the regions in the state space where strong 
expansion has to be suppressed). 

To show the efficiency of the proposed coupling, in deficit to linear coupling, we consider again the one-

dimensional quadratic map . The singular value of the Jacobian matrix of  is given by the 

square root of the eigenvalue of the matrix . Thus, we have the characteristic equation 

 and the singular value is . For  we observe chaotic 
motion for the quadratic map. Then we find a positive Lyapunov exponent and the singular value satisfy 

, when , indicating expansion. Choosing the coupling constant 

, the coupling term can be written as 

, 
and the coupling scheme is given by 

 

In practical simulation the synchronization is achieved in a very short time. With  and the 

initial conditions ,  we obtain the Figure 3. 
The first question we want to address with this example is how much the approximation of the local 

singular values and vectors at the response system degrades the performance of this coupling. For this purpose 
we have compared the coupling given below with a corresponding coupling given by linear and quadratic 
coupling. We can observe that for the similar initial conditions and parameter settings, the synchronization is 

achieved after more than  iterations. This is very important since in economical or biological systems the 
expenses to apply these synchronization techniques are very elevated and not practical if the time to achieve 
synchronization is very large. 

 
Bidirectional coupling based on complex quadratic maps 

 

Consider the family of analytic complex quadratic maps defined by 

 

, where we proceed to the decomposition into real and imaginary parts. Further 

considering  and , we obtain 

 

According to Isaeva et al. (4), the variable and parameter changes , , 

 and , where  is a arbitrary constant, lead to the following system: 
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this is equivalent to the simplified form 

                                                                                                          (9) 

where . In (9) we have an asymmetric coupling between two one-dimensional  

quadratic maps, where  is the coupling strength and  is the nonlinear coupling term. 

The constants  and  are the control parameters of the subsystems in coupling.  
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Figure 3. Unidirectional coupling given by SVD with  ,  and  : (a) 

hyperplane of synchronization, (b) time series. 
 
 

Consider the coupled system (9) with ,  

                                                                                                        (10) 

In this case, the difference  evolves with respect to the difference equation defined by  

 

The equation  is equivalent to  

. 

Proposition: For each fixed value of  and initial conditions  and  such that , there is an 

interval  of values of  for which stable asymptotic synchronization in the coupled system (10) is 
achieved. 

For any  the difference  explodes to infinity. Let  the control 

parameter in the coupled system (10). In the next table the interval  for some values of  is 
presented: 

 

     

     
 



© Journal of Mathematics and Technology, ISSN: 2078-0257, February, 2010 

 12 

The amplitude of the intervals  decreases when the difference between the initial 

conditions  and  increases. If , in decimal step, all the intervals  have 

 as superior extreme. If , in decimal step, the stable asymptotic synchronization is achieved 

only for . So, it was guaranteed the stable synchronization in the coupled system (10) for  
for all the symmetric initial conditions, even if the distance between them is a high value (Figure 4).  

A small deviation on the value of a leads to a change in the interval . 
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Figure 4. Bidirectional coupling in (10) taking : (a) time series, (b) hyperplane of 

synchronization 
 

Now consider initial conditions  and  such that . For example  and . 

If  the difference  is bounded to an interval . The amplitude of the interval 

  increases with . If  the amplitude of  is smaller than , so it is 

achieved practical synchronization in the Kapitaniak sense for these values of . At  the 

synchronization error varies in the interval  of minimal amplitude. 
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