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Abstract. This paper discusses opportunities and feasibility of integrating neu-

rophysiologic analysis methods, based on electroencephalography (EEG), in the 

current landscape of usability evaluation methods. The rapid evolution and 

growing availability of low-cost, easier to use devices and the accumulated 

knowledge in feature extraction and processing algorithms allow us to foresee 

the practicality of this integration.  

The work presented in this paper is focused on reading and readability, identi-

fied as a key element of usability heuristics, and observable in the neurophysio-

logic signals’ space. The experiments are primarily designed to address the dis-

crimination of the reading activity (silent, attentive and continuous) and the ver-

ification of decreasing readability, associated with the user’s mental workload 

analysis.  The results obtained in the series of experiments demonstrate the va-

lidity of the approach for each individual user, and raise the problem of inter-

subject variability and the need for designing appropriate calibration procedures 

for different users. 
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1 Introduction 

The current usability evaluation methods range from interpretative to predictive, the 

former based on the observation and study of the actual use of an artifact during its 

development cycle, and the latter exploring external analyses performed by experts 

equipped with standards, heuristics and modeling techniques [1]. The methods cap-

ture either the behavior and perceptions of users or the interactive attributes of the 

artifact, and converge to evaluation conclusions based on the qualitative or quantita-

tive analysis of empirically collected data. 

Alternative, or complementary, methods based in the measurement of physical and 

physiological signals of the human user (e.g. eye-movements, heart rate (HR) and 

heart rate variation (HRV), skin conductance (SC), or electroencephalography (EEG)) 

have been used more frequently in contexts with critical requirements for human per-

formance [2], and tested in dedicated labs, as opposed to the use of the former empiri-



cal methods, typically adopted by usability labs participating in the design and devel-

opment of interactive artifacts for the general user or consumer.  

The evolution of the technological landscape leads us reassess the opportunities for 

expanding and improving the set of tools for usability evaluation. First, capture devic-

es are cheaper, more reliable, less intrusive, and usable with increasing autonomy. 

Examples of this evolution are HR or SC measurement devices, which have become 

portable and wireless and even EEG systems have left the controlled conditions of 

clinical settings (see for example, the design of dry electrode devices [3]. Second, the 

capacity to process these signals evolved dramatically, both in computing power and 

in the understanding of the algorithms that extract meaning from the human data.  

As a result of this evolution, we can envision a feasible integration of human phys-

ical and physiological information in common interactive artifacts, as a new modality. 

On the other hand, in the scope of usability evaluation, we can aim at incorporating 

those human signals in the analysis setup, namely in the common usability lab envi-

ronment, thus reinforcing the mature and widely adopted empirical methods with 

easier to use physical measurement methods. 

In this paper we assess the effectiveness of a brain signal analysis in usability eval-

uation, with a focus on readability - the ability of a user being able to read a text. This 

is not a sufficient condition for system usability, but it is, in many interactive artifacts, 

a necessary one. Readability is affected by interface design decisions, with a particu-

lar relevance on presentation choices. Readability has an impact in usability heuris-

tics, discussed below.  

Our focus is therefore the detection and analysis of the cognitive activity of read-

ing. Again, readability is not a sufficient condition for a user to read but it is a neces-

sary one. The detection of reading should be a good indicator of readability, provided 

that variables that create obstacles to reading such as high text complexity, foreign 

language, distraction, fatigue, or even cultural bias, are eliminated. In this work, we 

considered that a strong correlation between reading and readability should be sought 

in continuous attentive reading activities. This avoids the need of discrimination be-

tween recognizing word and text as grammatically appropriate character sequences, 

and recognizing isolated words as individual learned symbols. 

The next section reviews a number of works that have used physiological signal 

processing in the scope of the analysis of the usability of some system or tool.  In the 

following two sections, we scope this work along the baseline aspects: (i) reading as 

an activity correlated with readability, which is in turn directly affected by user inter-

face design decisions and has an impact on heuristically defined usability criteria, and 

(ii) the set of computational techniques used in the processing of brain signals. The 

concrete experimental framework is then presented, followed by the results of a set of 

experiments. The implications for future work towards an effective integration of 

brain signal processing in usability evaluation are elaborated in the conclusion. 



2 Related Work 

Beer et al. refer that “the usability lab of the future” must integrate analysis tools 

based in physiological measures, including the EEG [4]. These signals are potentially 

valuable for measuring users’ emotional valence and vigilance during the interaction 

[5].  As the data generated with these methods comes directly from the users’ physical 

processes, without intermediation of an observer or expert, it can reveal, for example, 

social masks, when users avoid giving negative answers in interviews. Still, this inte-

gration is preliminary. The studies quoted below compare physiological based analy-

sis with classical usability methods, e.g. questionnaires. 

 
Refer-

ence 
Main Goals Analysis Methods Main Conclusions 

#1  [6] 
 

5 partic-

ipants 
 

Distinguish emo-
tional states using 3 

distinct menus:  

˗ regular &familiar  

˗ illegible  

˗ error  

Physiological: EEG  
Theta, alpha and beta rhythms 

of  the best 2 out of 10 elec-

trodes 
Classical: 

˗ Questionnaire 

˗ Task Difficulty classification  

˗ A/V and eye tracking record-

ings 

˗ Attested the correlation between 
EEG and inquiry data (1 user); 

˗ Attest the correlation between 

EEG and difficulty classification 

(5 users) 

#2  [7] 

 
43 parti-

cipants 

Study the emotional 

response to 2 alter-
native prototypes for 

an e-government 

site, (with/without 
anthropomorphic 

Web Assistant) 

Physiological: ESR1 differen-

tial analysis with (max-min)/ 
min, max and 1st peak  value 

Classical: 

Inquiries, SMEQ2 Scale Inquiry 

˗ Attest the correlation between 

ESR and classical methods 

˗ Users preferred Web Assistant 

version 

˗ Differences between both sites 

were statistically relevant with 
both measures 

#3 [8,9] 

 

20 par-

ticipants 

˗ Performance test 

to evaluate an uni-

versity learning 

system 

˗ Non moderated 
time limited tasks 

Different system 

experienced users. 

Physiological: ESR and HRV3 

Classical: 

˗ Extended NPL4 inquiry 

˗ TAP5 

˗ A/V recordings 

˗ SUS6 questionnaire 

˗ Attest the correlation between 

users performance and emotional 

state; 

˗ Both groups reveled emotional 

differences 

#4 
[10,11] 

 
10 par-

ticipants 

Study mental work-

load differences  in a 

set of equivalent 
tasks in MS Excel 

2003 and 2007 

Physiological: EEG 

Alpha and beta rhythms’ aver-

age Normalized PSD. 
Classical: SUS questionnaire 

˗ Attest the correlation between 

both types of measures software 

experience and alpha and beta 
ratio variation 

˗ Users preferred (and showed less 

mental workload) Excel 2007 

                                                           
1 Electrodermal Skin Response 
2 Subjective Mental Effort Questionnaire 
3 Heart rate variation 
4 National Physics Laboratory 
5 Think Aloud Protocol 
6 System Usability Scale 



Refer-

ence 
Main Goals Analysis Methods Main Conclusions 

#5 [12]  
 

4 partic-

ipants 
 

Performance versus 
workload test in a 

simple game with 3 

distinct difficult 
levels 

Physiological:  

˗ EEG: Avg. PSD7 (in alpha, 

beta, theta, delta and gamma), 

cross spectrum and coherence  

˗ fNIR8: Normalized Oxygena-

tion Variation 

Classical: User performance 
(game score) 

˗ Performance is proportional with 
level’s difficulty 

˗ Accuracy classification depends 

on the used measure (better with 

fNIR) 

˗ fNIR may interfere with EEG 

sensors 

#6 [13] 

 
10 par-

ticipants 

 

Evaluate user pref-

erences and emo-
tional states regard-

ing 4 car company 

web-sites 

Physiological:  

˗ EEG (ERPs,  PSD in beta and 

theta) 

˗ HR (Std, Greater and minor 

freq. ratio) 

Classical: 

˗ Preference questionnaire  

˗ Error and Task completion 

rates 

˗ Task Execution time 

˗ A/V and screen recordings 

˗ 100% of correlation between 

classical versus EEG results 

˗ 60% of correlation between 
classical versus ECG results 

#7 [14] 

 
36 par-

ticipants 

Game UX evalua-

tion of an immersive 
game using 2 input 

devices and con-

soles: 

˗ Standard gamepad 

in PSP2 

˗ Wii Remote in 

Nintendo 

Physiological: EEG - Normal-

ized PSD in alpha, beta, delta, 
theta and gamma 

Classical: Questionnaires 

˗ GEQ (Game Experience 
Questionnaire)  

˗ Auto-localization, to evaluate 

perception of physical loca-

tion and action options in VR 
environment 

˗ Attest the correlation between 

both types of measures; 

˗ WII Remote scores better in 

questionnaires and also causes a 

greater mental activity  

Table 1. Studies comparing physiological-based methods with classical empirical methods for 

analysis of specific usability dimensions. 

These studies show the potential of physiological measures in usability and user 

experience evaluation and demonstrate the correlation between physiological and 

traditional methods. The test cases are however very constrained situations, and 

several open issues are identified. First, capture devices are expensive, intrusive and 

complex to handle, making it possible to generate emotions that are not directly 

related with the interaction [5]. Secondly, it is difficult to generalize the results, 

because of the various degrees of variation, such as gender, age and culture. Finally, 

the interpretation of the measures is complex, even when the cause and effect are 

known, because it strongly depends on the social and interpersonal context [15]. 

                                                           
7 Power Spectrum Density 
8 Functional Near Infrared Spectroscopy 



3 Reading in Usability 

Usability heuristics have become generalized tools to evaluate usability of 

interactive products, systems or services. These heuristics are empirically 

consolidated reflections of the structural coupling [16] requirements that a usable user 

interface implicitly meets. This coupling between a user and an artefact is maintained 

as long as the properties of the artifact are compatible with the user’s cognitive or 

physical abilities. On one side we have characteristics of the artifact like legibility, 

language, visibility or aesthetics, and on the other we have human cognitive processes 

like reading, understanding, memory or different emotional reactions. 

As an example, let us consider the universally acknowledged Nielsen heuristics  

[17] listed in Table 2. The table relates the heuristics with cognitive processes 

through a number of (not exhaustive and non orthogonal) determining user interface 

characteristics or interaction mechanisms. This tentative mapping is partially justified 

by the experimentations reported in the previous section (quoted in column 4 of Table 

2). 

Heuristic (1) 
Determining UI            

Characteristics (2) 

Cognitive               

processes (3) 

Related 

work(4) 

1.  Visibility of system 

status 

Legibility, visual9 expression, 
feedback (e.g. icons) 

Perception incl. Reading #2 

2.  Match system and real 

world  

Semiotic design  

(e.g. metaphors) 

Understanding, Memory, 

Emotion 

#2 

3.  User control and free-
dom 

Multitasking, escapability, 

recovery (e.g. undo/redo) 

Memory, Workload, 

Learning, Emotion 

#3, #7 

 

4.  Consistency, standards    
Visual design, Homogeneity 
(e.g. layout, menus) 

Perception, Memory #1 

5.  Error prevention  
Legibility, visual feedback 

(e.g. data formats)  

Perception incl. Reading, 

Memory, Workload 

#1 

 

6.  Recognition rather than 

recall  

Semiotic design, legibility  

(e.g. menus) 

Perception incl. Reading, 

Memory 

#1 

 

7.  Flexibility, efficiency of 

use  

Attention requirements, 
Adaptability (e.g. shortcuts) 

Workload, Memory, 
Learning 

#3, #4, #5, 
#7 

 

8.  Aesthetic, minimalist 
design  

Legibility, visual design  
(e.g. look) 

Perception, Reading, 

Emotion 

#6 
 

9.  Help users recognize, 

diagnose, and recover from 
errors 

Legibility, visual feedback  

(e.g. error messages) 

Perception, Reading, 

Problem solving 

 

Table 2. Relations between (de facto standard) usability heuristics and cognitive processes. 

The above associations express a path between usability heuristics and cognitive 

processes that can be observed through their external manifestations in physical and 

physiological signals. This path is conceptually important for an integrated 

perspective of the analysis and evaluation methods. 

                                                           
9 “Visual” is mentioned here in the broad sense of an external, perceptually intelligible repre-

sentation, but it can be based in any other modality like audio or haptic forms. 



Reading, especially continuous, attentive, and silent reading, as not been analyzed 

in this context. In fact, reading in the common user interface is generally associated 

with word recognition for most of the textual elements of the user interface (e.g. 

labels, menus, icons or forms). Its performance can be severely affected by several 

design factors including: typeface and text features problems (e.g. inappropriate color 

and text or line spacing), poor contrast between background and text, uncomfortable 

screen distance, design and formatting problems (e.g. too wide or too narrow text and 

center or right justification) [18]. Readability can therefore be considered as a 

usability guideline among the heuristics referred above [19]. 

4 Brain Signals 

In this section, we briefly describe the hardware and software platform used to 

capture and process the brain signals. The selected and used computational techniques 

are also briefly enumerated, as a more detailed explanation and discussion of the 

processing techniques can be found elsewhere [20, 21].  

The signal acquisition and selection was based in two fundamental requirements. 

First, the acquisition devices should be low-end devices, usable in the environment of 

a usability lab, as opposed to a clinical environment. The low-end devices, with a 

limited number of channels, do still require some level of expertise to set up an 

acquisition session (electrode placement and impedance adjustment) but are 

manageable by an experienced technician or researcher, and are in line with the 

expected evolution of more usable and portable acquisition devices.  

Second, the signals to observe should avoid highly demanding synchronization 

requirements. Since the goal is to detect and discriminate reading activity, the focus of 

the analysis was the variation of brain waves instead of the brain responses to discrete 

stimuli. This focus leads to the choice of the analysis of brain rhythms (alpha (α), beta 

(β), delta (δ), theta (θ), and gamma (γ)), instead of ERP (Event Related Potentials), 

which require controlled synchronization conditions between stimuli and acquired 

signal (a few milliseconds). While the later signals provide the proper information for 

studying brain responses and are actually the main source of “input” in BCI (Brain 

Computer Interfaces), see [22-24], the former analysis is appropriate for cognitive 

process detection and better suited for future lightweight devices. 

4.1 Signal Aquisition 

The signal acquisition was made in an open space human-computer interaction lab 

with MindSet MS-1000, a sixteen (16) channel digital capture device, and its 

proprietary software acquisition tool named MindMeld. All sensors were attached to 

an ElectroCap cap and positioned accordingly with the 10-20 International System: 

six (6) in the frontal area, four (4) in the temporal, and the remaining six (6) in the 

parietal, central and occipital (two in each area). 

The capture was performed at 256Hz using referential electrodes placed in ear 

lobes.  All requirements defined by EEG capture experts and the devices fabricants 



were met: all users were connected to a ground wire to reduce the electrical noise 

peak; hair was brushed with a wooden brush to reduce electrostatic; scalp sensors 

place was previously cleaned with alcohol; conductive gel was applied in all elec-

trodes and impedance was maintained below 5000kΩ in all electrodes. 

4.2 Signal Processing Chain 

The components of the signal processing chain we applied to the brain signals are 

shown in Fig. 1. In the figure, the thicker connectors mean “mandatory path”; traced 

connectors mean “alternative or optional”, and the thinner connection shown the con-

tribution of feature selection to the indicated steps in the chain.  

 

Fig. 1. The Signal Processing Chain. 

The sixteen (16) signals, one per channel, are pre-processed individually to reduce 

non EEG artifacts (e.g. electrical noise), and transformed into feature vectors, where 

each vector is composed by 16x5(80) real values – the estimated average power spec-

trum in delta, theta, alpha, beta and gamma rhythms, determined in one second peri-

ods (also called windows), overlapped in 0.5 seconds. A feature vector can then be 

classified in certain classes related to user cognitive processes, such reading and non-

reading. In the process, feature vector dimension can previously be reduced, to in-

crease the chain and classification overall performance, through transformation and/or 

selection methods [25]. The feature selection can also be based on relevance analysis. 

This analysis ranks features according to their contribution to the discrimination of 

the classes under observation [21].  

All the results presented and discussed in this paper were obtained using PSD 

(Power Spectrum Density) feature extraction and an SVM (Support Vector Machines) 

classifier. PSD measures the energy of the signal in a certain frequency [21]. It is a 

frequency feature, so to get its variation over time, the PSD is determined in one se-

cond length rectangular windows, overlapped in 0.5 seconds.  SVM are supervised 

classifiers proven to be successful in EEG analysis [26]. SVMs divide the solution 

space in hyper-planes through discriminating functions. In our case we use the kernel 

trick that makes SVMs, originally linear, nonlinear classifiers. This kernel uses a 

Gaussian radial basis function (RBF), generally used in BCI research. 



Preprocessing methods that were used in the results presented in this paper only in-

clude a Notch (narrow band) filter, which allows reducing electrical noise peek at 

50Hz, still present after grounding users. No method has been used to reduce eye and 

movement artifacts. Our goal is to build a method robust enough to handle these inter-

ferences that naturally result from user interaction. 

5 Experimental Procedures 

An experimental session (or trial) is composed by a sequence of several distinct 

experiments, all related with silent reading in a screen. A session takes approximately 

twenty-five (25) minutes. All experiments were separated by thirty (30) second rest-

ing periods, during which users were asked about the text topic (they just read), when 

they stopped reading, and their overall mental and emotional state.  

All the results presented in this paper were performed with six (6) users, three (3) 

women and three (3) man, ages between 20 and 45, without relevant neurological or 

sight or visual known conditions, three (3) using glasses, and one (1) left-handed. All 

users concluded successfully a higher educational degree and frequently read literary, 

technical and/or news texts in both paper and digital format. There was no previous 

training, but all users repeated the experiences in different days, with distinct texts 

and images.  

All texts were written in the native language and never repeated for the same user. 

An event generator application was used to build and display an event script such as a 

slide show [20]. We built twenty-three (23) different scripts for these experiments. All 

content was displayed in a 15.4’’ laptop LCD colored screen, with a 1280x800 resolu-

tion and 4,295E+9 colors. The laptop was set in a regular desk, with about 70-80 cen-

timeters height. Users sat in front of the screen, at a distance between 50-60 centime-

ters. In general, all texts were displayed with Arial 21px font in a black foreground 

over a white background, unless experiments thus required. The experiments whose 

results are described in this paper are the following: 

1. Text versus Blank Screen: Users read two texts (with news) for 30 seconds each, 

interleaved with a blank screen for 20 seconds. This was a preliminary experiment, 

to evaluate whether it was possible distinguishing silent reading cognitive state 

from another basic visual state, such as looking at a blank screen, to tune algo-

rithms and also to study the variation between sessions and users. 

2. Text versus Drawings:  this is a similar experience, but, instead of a blank screen, 

it interleaves text with black and white unfilled drawings for 30 seconds. It allows 

assessing the possibility of distinguishing silent reading cognitive state regarding a 

simple visual, non verbal, stimulus. 



  

Fig. 2. Example of news and drawing display used in the first two experiments. 

3. Text Size Decrease. Users read a 70 words news text, one word at a time, each 

lasting one second. Every ten seconds the size of text decreases by 3px, varying be-

tween 21px and 3px.  

 

Fig. 3. Text size variation simulation used in Text Size Decrease experiment. 

4. Background/Text Contrast Decrease (by varying background). Users read 

news text during seventy (70) seconds while every ten (10) seconds the back-

ground is darkened about 16% in relation to white. This was preceded by the same 

experience without text to serve as control.  

5. Background/Text Contrast Decrease (by varying text). Users read news text 

during seventy (70) seconds while every ten (10) seconds the text is lighten about 

16% in relation to black. 

6. RGB Difference Background/Text Decrease. Users read news text during seven-

ty (70) seconds while every ten (10) seconds the RGB difference between back-

ground and text is reduced between 5 to 15%. 

All these experiments concern directly and indirectly the usability heuristics (1) 

visibility, (4) standards, or (8) aesthetic and minimalist design, mentioned in Table 2. 

As previously mentioned, text visual characteristics influence readability, and conse-

quently reading performance. This indirectly influences all other heuristics where the 

reading cognitive process plays a role, such as Recognition and Recall. 

5.1 W3C (World Wide Web Consortium
 
) Thresholds 

To guarantee that a text can be read in a screen by users with color deficits , the 

W3C proposes a minimum font size for screens of 9px [28] and a contrast and RGB 

difference thresholds of 125 and 500 respectively [27]. The last two sizes (6px and 

3px) in experiment 3 violate these W3C recommendations, and the intensity and RGB 

values that were used in experiments 4-6 are shown in the next tables. 



Experimental 

Step 

Back. 

Intensity (B) 

Text 

Intensity (T) 
(B)-(T) 

Compliance with 

W3C threshold 

1 255 0 255 Yes 

2 214 0 214 Yes 

3 173 0 173 Yes 

4 132 0 132 Yes 

5 91 0 91 No 

6 51 0 51 No 

Table 3. Experiment 4. Intensity values and compliance with W3C thresholds. 

 
Experimental 

Step 

Back. 

Intensity(B) 

Text 

Intensity(T) 
(B) –(T) 

Compliance with 

W3C threshold 

1 255 0 255 Yes 

2 255 40 215 Yes 

3 255 81 174 Yes 

4 255 122 133 Yes 

5 255 163 92 No 

6 255 204 51 No 

Table 4. Experiment 5. Intensity values and compliance with W3C thresholds. 

 

Experi-

mental 

Step 

Background Text 
RGB Dif-

ference 

Compli-

ance w/ 

W3C 

threshold 
Red Green Blue Red Green Blue 

1 255 255 255 0 0 0 765 Yes 

2 255 247 215 20 0 40 657 Yes 

3 235 239 215 20 0 120 549 Yes 

4 235 223 215 20 0 200 453 No 

5 195 223 215 60 0 200 373 No 

6 175 223 175 80 8 200 335 No 

Table 5. Experiment 6. RGB values and compliance with W3C thresholds. 

6 Results and Discussion 

The organization of this section is the following: In section 6.1. are presented the 

results regarding experiments 1-2, where is analysed silent continuous reading 

distinction towards other simple visual states. Here are discussed topics such as user 

and session generalization. 



The results of the remaining experiments, which vary text or background aspects 

that affect readability, are discussed in section 6.2. Based on the work of Kimura and 

Masaki [10,11], we analyze the correlation between classical evaluation based 

measures, such as inquiries, and an EEG based measure.  This measure was the be-

ta/alpha PSD ratio, considered to be indicative of mental workload [10,11].  

The presented results consider the following data corpus subsets: 

 Intra-user data set (A). Includes 13 sessions of a single unique user. 

 Inter-user data set (B). Includes 12 sessions of six users, two sessions each. 

All the procedures and metrics were initially tuned using data set A. The following 

section discusses the results of processing these experiments using both data sets.  

6.1 Silent Reading Distinction 

The results of silent reading distinction (with both data set A and B) are shown in Fig. 

4. F-Measure is a classification performance measure that averages precision and 

recall geometrically in a single value. It varies between 0%, the worst possible result 

and, 100%, the best, where all mental states were 100% correctly classified.  

 

 

Fig. 4. Silent Reading Detection Results. 

We used both classical and modified versions of cross-validation. Cross-validation 

is an evaluation procedure, commonly applied while using supervised classifiers. 

These classifiers learn upon some correctly class labeled training data set, requiring a 

previous training step. This causes the results to depend on the selection of the train-

ing and test sets. Cross-validation
10

 minimizes this dependency, making this selection 

                                                           
10 Cross-validation splits randomly the available data set in similarly sized sub-sets, called 

folds, 10 in our case. It then performs 10 runs of train and test classification procedures, 

training with 9 folds and testing with the remaining one. The final result is the average of all 

classification iterations. 
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more trustworthy. Modified schemes test the result generalization to distinct sessions 

and users
11

. 

Classic cross-validation schema results in Set A, 94,77% and 95,22%, suggest that 

there is a clear distinction between the silent reading mental state and alternative pat-

terns. This also attests that the feature vectors of both classes clearly fall into different 

areas of the solution space, which is split in two by SVM. Session generalization re-

sults, 91,90% and 90,93%, show a slight decay of the classifier performance, but are 

promising towards the possibility of training the classifier with previously recorded 

sessions.  

Inter-user Set B classic 10-fold results were above 85%, which indicates that the 

reading pattern is also detected in this case but session and user generalization per-

formed poorly. User generalization can only be possible if both mental states are very 

similar in all users. Session generalization is also affected by this, since we have ses-

sions belonging to distinct users. 

 

6.2 Classical Measures Correlation 

Our main goal is to successfully relate EEG based measures with classical methods 

measures, such as reading performance and inquiry data, while varying readability 

aspects such as text size and background/text contrast (Experiments 3 to 6).  

We considered that a possible measure could be mental workload − beta/alpha ra-

tio, which has been proved to be related with mental workload and user discomfort 

[10,11]. Beta rhythm (13-30Hz) has been related with mental activity and alpha (8-

13Hz), to the mental rest in usability related experiments. So when user’s mental 

workload is high the amount of alpha rhythm decreases, and the amount of beta and 

beta/alpha increases [10,11].  

Mental Workload measure was first determined in each channel, using one seconds 

segments with 0.5 seconds overlapping, and then averaged twice. First it was spatially 

averaged in all channels to obtain the mean overall mental workload. Next it was 

temporally averaged in all samples belonging to a distinct experimental step, which 

we consider to be a reading situation where the text characteristics, such as size, con-

trast or color difference, remain constant. Next two sections discuss the results ob-

tained while relating this measure with classical method measures, starting by per-

formance based heuristics, directly determined from the text characteristics. 

Performance Based Measures Correlation.  

We considered that the following two heuristics could approximate reading per-

formance by changing some text or background relevant property (e.g. text size): 

 Reading performance, inversely proportional to the considered aspect, that is: 

 Reading performance(step
i
) aspect(step

i
) aspect(step

1
)  (1) 

                                                           
11 The folds of these schemes coincide with sessions and users, which means that we are testing 

if the classifier can be trained with sessions and users, distinct from the sessions and users 

tested. 



 W3C related ranking, where the difference of the aspect regarding W3C orienta-

tions was quantified as 

   C related ranking(step
i
) 

 
 
 

 
 

0,if diff(statei)   0 
1, if 0    diff(statei)    5 
 ,if  5    diff(statei)    0 
 ,if  0    diff(statei)   105 

4,if diff(statei)    105 

  (2) 

where 

 diff(step
i
) aspect(step

i
)   C threshold    (3) 

Both heuristics consider that the initial step always assures a better readability that 

the following steps.  

Next table shows the results of the correlation analysis between these performance 

heuristics and the mean workload in all sessions. The use of averaging in EEG is 

widely disseminated in order to reduce variability, and in this case results are not 

definitive but can show a trend. 

 

Experiment Heuristic 
Reading 

Performance 

W3C   

Ranking 

Text Size Decrease 
CORR 0,794 0,906 

PVAL 0,033 0,005 

Back./Text  

Contrast Decrease 

Varying Back. 
CORR  -0,134 -0,097 

PVAL 0,800 0,856 

Varying Text 
CORR -0,196 -0,107 

PVAL 0,710 0,840 

Back./Text RGB  

Difference Decrease 

CORR 0,722 0,716 

PVAL 0,105 0,109 

Table 5. Correlation of the mean step workload with performance heuristics (inter-user Set B). 

Correlation measures the probability of existing a linear relation between two 

measures; when it is close to 1 or -1, it is considered very strong; when is 0, it doesn’t 

exist. In this case we are using Pearson correlation: PVAL is the p-value or the 

probability of the correlation being null; when it is below 0.05 or at least 0.1 it means 

that the conclusion is probabilistically relevant. Correlation and un-correlation 

evidence is signaled in the table through  and ; the remaining values are 

inconclusive but point towards a possible correlation. 

The results displayed show that mean mental workload is highly correlated with 

text size aspect variation, but the same conclusion does not hold in the remaining 

experiments. Both contrast experiments show significantly uncorrelated values, which 

means that mental workload very likely background/text contrast decrease is not 

linear related with the contrast difference itself. However, RGB difference shows a no 

significant correlation with both performance metrics. 



Inquiry Based Measures Correlation.  

The same methodology was applied to the inquiry data that was registered both 

previously and during experimental sessions. This includes indicators of user fatigue 

and reading stop, which were approximated with the following two heuristics: 

 Fatigue State:  rates the user perceived fatigue state: 

  atigue  tate(triali) 

 
 
 

 
 
1, completely awake

 , awake
 , lightly  tired

4, tired
5, very tired

  (4) 

 Reading (Occurrence) State: signals whether reading has occurred or not in a 

certain experimental step: 

 Reading  tate(step
i
)  

1, read
0, didn t read

0.5 , read partially

  (5) 

Figure 5 presents graphically the correlation variation between the fatigue heuris-

tic and the average mental workload in each step of experiments 3-6, also in inter-user 

Set B. For simplicity sake we omit the p-value (PVAL) and just display correlation 

values. All grayed areas signal correlations above 0.5. The significance of the correla-

tions will be referred in context.  

The obtained results show that the correlation with reported fatigue varies with the 

readability aspect being considered. In general texts resize experiment steps are sig-

nificantly correlated, contrast steps, uncorrelated and color difference, insignificantly 

correlated. For example, Graphic a) shows a significant trend of a positive correlation 

between fatigue reported state and mental workload when text size gets smaller. This 

also means that minor size text reading implied a greater mental workload in users 

that reported to be more fatigue.  

 

 

a) Text Resize Experiment 

 

b) Back./Text Contrast (Varying Back.) 
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c) Back./Text Contrast (Varying Text) 

 

d) Back./Text RGB Difference 

Fig. 5. Fatigued state-Mental workload correlation results (inter-user Set B). 

Regarding RGB difference, it revealed some positive correlation in some color 

combinations, and contrast variation experiments were generally uncorrelated with 

fatigue reported state. When RGB difference lowers below the W3C defined thresh-

old (in step 4) correlation visibly decreases, indicating this may cause a greater mental 

workload in more fatigue users (see Graphic d).  

Additionally, graphics b) and c) show a similar correlation values in the initial 

steps, in line with the fact that both experiments start with the same text and back-

ground colors. And also in graphics b) and d) one can verify that there are mental 

workload differences when user reads or does not read, even when the backgrounds 

are the same.  

Table 6 presents the correlation results regarding the remaining inquiry based heu-

ristic: reading (occurrence) state. These were performed in some specific steps (usual-

ly the last) of the described experiments also in inter user Set B. In text size experi-

ment we use the last but one step, because in the last step all users reported that they 

couldn’t read the text
12

; in RGB difference, users declared to read in all steps. 

Experiment Step CORR PVAL 

Text Size 6) 6px 0,732 0,0162 

Background/Text 

Contrast 

Varying Background 6) 51 0,027 0,933 

Varying Text 6) 51 0,028 0,933 

RGB Difference NA 

Table 6. Read occurrence-Mental workload correlation results (inter-user Set B). 

These results point that there is a correlation between reading occurrence and mental 

workload only in text variation experiment.  As it was told before this requires further 

study because this can be text size specific. 

                                                           
12 Correlation with constant functions cannot be mathematically determined. 
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7 Conclusions and Future Work 

The integration of low cost and feasible neurophysiologic methods in the usability 

analysis framework is possible and can be effective in some specific conditions. This 

is the main conclusion that can be drawn from the suite of experiences reported in this 

paper.  

Based on the mapping of usability heuristics or guidelines onto specific cognitive 

processes, such as reading in our case, and on the appropriate feature extraction and 

measurement, we can observe neurophysiologic changes of the user that are directly 

correlated with the manipulation of typical usability conditions of an interface. In 

other words, the analysis of the EEG signals performed by an appropriate and compu-

tationally sensible processing chain can make convincingly discriminating decisions 

concerning reading states and corresponding readability analysis. 

The effectiveness of this method for a single user is clearly demonstrated in the 

classification results that were presented. Its generalization for different users is still 

an open question, and suggests further work in, at least two directions. The first, aim-

ing at generalization, is the increase of the corpus size that may lead to the discovery 

of a significant average pattern for the cognitive state under observation. The second, 

in the opposite direction of personalization, is the design of a calibration procedure 

that will lead to different baselines for different users, and therefore different classifi-

cation thresholds. 

This paper also discussed the relation of mental workload, an EEG based measure, 

and reading performance heuristics or inquiry based measures, based in readability 

aspects variation such as text size, contrast and color. The results obtained so far are 

promising, indicating that it is possible to successfully relate both types of measures 

in some of the experiments, and also in some legibility aspects.  A greater corpus, 

with more users and more sessions with the same users are required to deal more ef-

fectively with EEG variability. 
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