
Novelty-Driven Cooperative Coevolution

Jorge Gomes jgomes@di.fc.ul.pt
Instituto de Telecomunicações, Lisbon, Portugal; BioMachines Lab, Lisbon, Portugal;
BioISI, Faculdade de Ciências, Universidade de Lisboa, Portugal

Pedro Mariano plmariano@fc.ul.pt
BioISI, Faculdade de Ciências, Universidade de Lisboa, Portugal

Anders Lyhne Christensen anders.christensen@iscte.pt
Instituto de Telecomunicações, Lisbon, Portugal; BioMachines Lab, Lisbon, Portugal;
Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal

doi:10.1162/EVCO_a_00173

Abstract
Cooperative coevolutionary algorithms (CCEAs) rely on multiple coevolving popula-
tions for the evolution of solutions composed of coadapted components. CCEAs enable,
for instance, the evolution of cooperative multiagent systems composed of heteroge-
neous agents, where each agent is modelled as a component of the solution. Previous
works have, however, shown that CCEAs are biased toward stability: the evolution-
ary process tends to converge prematurely to stable states instead of (near-)optimal
solutions. In this study, we show how novelty search can be used to avoid the counter-
productive attraction to stable states in coevolution. Novelty search is an evolutionary
technique that drives evolution toward behavioural novelty and diversity rather than
exclusively pursuing a static objective. We evaluate three novelty-based approaches
that rely on, respectively (1) the novelty of the team as a whole, (2) the novelty of
the agents’ individual behaviour, and (3) the combination of the two. We compare
the proposed approaches with traditional fitness-driven cooperative coevolution in
three simulated multirobot tasks. Our results show that team-level novelty scoring is
the most effective approach, significantly outperforming fitness-driven coevolution at
multiple levels. Novelty-driven cooperative coevolution can substantially increase the
potential of CCEAs while maintaining a computational complexity that scales well
with the number of populations.

KEYWORDS
Cooperative coevolution, multiagent systems, neuroevolution, novelty search, conver-
gence to stable states, behaviour exploration.

1 Introduction

Cooperative coevolutionary algorithms (CCEAs) are capable of evolving solutions that
consist of coadapted, interacting components (Potter and De Jong, 2000). Such ap-
proaches are promising because they potentially allow for large problems to be decom-
posed into smaller and more tractable subproblems. In a typical CCEA, each component
of the solution is evolved in a separate population. Components are evaluated as part
of a complete solution that consists of one component from each population. The indi-
vidual components are thus scored based on the performance of the complete solution
as a whole rather than their individual performance.

Manuscript received: October 28, 2014; revised: June 9, 2015; accepted: November 2, 2015.
C© 2017 by the Massachusetts Institute of Technology Evolutionary Computation 25(2): 275–307

J. Gomes, P. Mariano, and A. L. Christensen

A common application of CCEAs is the evolution of multiagent behaviours (Potter
et al., 2001). The natural decomposition of the problem into subcomponents makes mul-
tiagent systems a good fit for cooperative coevolution. Each agent can be represented
as a component of the solution, and the coevolutionary algorithm evolves a set of agent
behaviours that solve the given task. In this way, coevolution allows for the synthesis
of heterogeneous multiagent systems, where each individual agent can evolve a spe-
cialised behaviour (see, e.g., Potter et al., 2001; Yong and Miikkulainen, 2009; Nitschke
et al., 2009).

Cooperative coevolutionary algorithms are, however, plagued by a number of is-
sues, among which premature convergence to stable states stands out (Wiegand, 2004;
Panait and Luke, 2005a; Popovici et al., 2012). In a CCEA, the individuals of a given
population are scored to optimise team performance, in the context of the individu-
als (team members) found in the other populations. But as the other populations are
also evolving, the fitness of each individual is subjective: it depends on the collabora-
tors with which it is evaluated. CCEAs therefore tend to gravitate toward stable states
(Panait, 2010) regardless of whether such states correspond to optimal solutions for a
given problem.

Convergence to stable states in CCEAs is substantially different from convergence
to local optima in non-coevolutionary algorithms (Panait et al., 2006b). In contrast to
non-coevolutionary algorithms, it has been shown that even under ideal conditions
of populations with an infinite number of individuals, CCEAs are not necessarily
attracted to the global optimum (Panait, 2010). The two pathologies correspond to
different types of deception. In non-coevolutionary algorithms, evolution might be de-
ceived by the fitness gradient generated by the fitness function (Whitley, 1991), while
in CCEAs each population might be deceived by the fitness gradient resulting from
the choice of collaborators from the other coevolving populations (Wiegand et al.,
2001).

Lehman and Stanley (2008; 2011a) recently proposed an evolutionary approach
aimed at avoiding deception in non-coevolutionary algorithms, called novelty search. In
novelty search, candidate solutions are scored based on the novelty of their behaviour
with respect to the behaviours of previously evaluated individuals, and not based on a
traditional, static fitness objective. Given the dynamic nature of the objective, novelty
search has the potential to avoid deception and premature convergence. The approach
has attained considerable success in many different domains (Doncieux and Mouret,
2014), especially in evolutionary robotics, both in single-robot systems (Mouret and
Doncieux, 2012) and in multirobot systems (Gomes et al., 2013).

In this paper, we show how novelty search can be applied to cooperative coevolu-
tion in the embodied multiagent domain. We propose three algorithms to accomplish
novelty-driven coevolution: novelty search at the team behaviour level (NS-Team), at
the individual agent behaviour level (NS-Ind), and a combination of the two (NS-Mix).
In NS-Team, the novelty score assigned to an individual is based on the behaviour
displayed by the team in which it is evaluated regardless of the individual’s specific
contribution. In NS-Ind, the novelty score assigned to an individual is solely based on
the behaviour of that individual agent when collaborating with a team. We conduct a
detailed analysis of the proposed algorithms in the evolution of neural controllers for
predator agents in a predator-prey pursuit task (Nitschke et al., 2012a; Yong and Miikku-
lainen, 2009), a benchmark task that requires a high degree of cooperation. The proposed
algorithms are additionally evaluated in a simulated multirover task (Nitschke et al.,
2009) and in a herding task (Potter et al., 2001).

276 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

We evaluate state-of-the-art fitness-based techniques for overcoming convergence
to suboptimal equilibria, and show how they often become ineffective in more com-
plex setups that involve more than two populations. We show how novelty-driven
coevolution, because of its dynamic novelty objective, can overcome the problem of
convergence to poor equilibrium states, and display a superior performance in almost
all experimental setups. We additionally study the proposed novelty-driven algorithms
according to behaviour space exploration and convergence, diversity of solutions, and
scalability with respect to the number of populations.

This paper is a substantially revised version of a previous paper by Gomes et al.
(2014a), in which we proposed novelty-driven cooperative coevolution. In this paper,
we have refined and improved the previously proposed algorithms, and we perform
a comprehensive evaluation at multiple levels. The key novel contributions of this
paper include the following: (1) We introduce NS-Mix, a combination of team and
individual novelty; (2) we use a multiobjective algorithm to combine the novelty and
fitness scores; (3) we study the phenomenon of premature convergence using techniques
found in previous works; (4) we compare novelty-driven coevolution with previously
proposed techniques for overcoming premature convergence to stable states; (5) we
analyse the scalability of NS-Team regarding the number of populations; (6) we show
the diversity of team behaviours that NS-Team can evolve; (7) we study a variation of
NS-Team where only the novelty scores are used; and (8) we evaluate the proposed
approaches in two new tasks, the herding task and the multirover task, and with a more
capable neuroevolutionary algorithm (NEAT).

2 Background

2.1 Cooperative Coevolution

In the domain of embodied multiagent systems, such as multirobot systems, several
tasks have been solved with cooperative coevolutionary algorithms. Some examples
include (1) the predator-prey task (Nitschke et al., 2012a; Yong and Miikkulainen, 2009;
Rawal et al., 2010; Gomes et al., 2014a), a common testbed in coevolution studies where
a team of predators must cooperate to catch a fleeing prey; (2) the herding task (Potter
et al., 2001; Gomes et al., 2015b), in which a team of shepherds must cooperate to
drive a sheep toward a corral while at the same time keep a fox at distance; (3) the
gathering and collective construction task (Nitschke et al., 2012b), in which robots must
carry different types of building blocks to a construction zone and place them in a
specific sequence; (4) the multirover task (Nitschke et al., 2009), which consists of a team of
simulated vehicles (rovers) that must detect different types of features of interest spread
throughout the environment; (5) keepaway soccer (Gomes et al., 2014a), a simplified
version of robot soccer in which multiple keepers have to maintain possession of the
ball against one or more takers; and (6) an item collection task (Gomes et al., 2015a), where
a ground robot cooperates with an aerial robot to collect items in the environment.

The classic cooperative coevolution architecture (Potter and De Jong, 2000) models
a system comprising two or more species, with each species isolated in a separate
population. This means that individuals only compete and reproduce with members
of their own species. Because of complete separation of populations, it is possible to
have different evolutionary algorithms and different individual representations for
each population (Gomes et al., 2015a) (e.g., neural networks could be evolved in one
population, while program trees could be evolved in another). At every generation of
the evolutionary process, each population is evaluated in turn. To evaluate an individual

Evolutionary Computation Volume 25, Number 2 277

J. Gomes, P. Mariano, and A. L. Christensen

from one population, teams are formed with one representative from each of the other
populations. The resulting teams are then evaluated by a fitness function in the task
domain, and the individual under evaluation receives the fitness score obtained by the
team as a whole. If the same individual is evaluated in multiple different teams, the
scores are aggregated by taking the average or the maximum value (Wiegand et al.,
2001).

2.2 Convergence to Equilibrium States

In a cooperative coevolutionary algorithm, the fitness landscape of each population is
defined (and limited) by the behaviour of the team members. The fitness landscape
is thus constantly changing as the individuals from the other populations evolve. The
fitness of an individual can vary significantly depending on with which collaborators it
is evaluated. It is therefore easy for a population to be misled by a particular selection of
collaborators from the other populations. CCEAs are naturally attracted to equilibrium
states where each population is perfectly adapted to one other, such that changing one
of the team members would result in a lower team performance. There is, however,
no guarantee that such stable states correspond to globally optimal solutions (Panait,
2010). A related problem is relative overgeneralisation, which occurs when populations in
the system are attracted to regions of the search space in which there are many strategies
that perform well with the individuals from the other populations (Panait et al., 2004;
Wiegand and Potter, 2006).

Because of these pathological dynamics, it has been shown that, in many cases,
CCEAs are actually attracted to suboptimal regions of the search space (Panait, 2010;
Jansen and Wiegand, 2004). Premature convergence to equilibrium states should be dis-
tinguished from the typical local convergence problems that plague non-coevolutionary
algorithms (Panait et al., 2006b). While under ideal conditions a genetic algorithm is
theoretically attracted to the global optimum, the same does not hold for cooperative
coevolutionary algorithms. Panait (2010) has shown that even under ideal conditions
of infinite populations, the CCEA might still not be attracted to the optimum. The
lack of bias toward optimal solutions compromises the effectiveness of cooperative
coevolutionary algorithms (Panait and Luke, 2005a).

A number of strategies have been proposed to overcome convergence to subop-
timal equilibria in two-population CCEAs. Panait et al. (2004), Wiegand et al. (2001),
and Popovici and De Jong (2005) demonstrated that an optimistic reward scheme can
be used to bias coevolution toward globally optimal solutions. The optimistic scheme
evaluates an individual, not with only one collaboration but in N trials, each with a ran-
domly formed collaboration, and only the maximum reward obtained is considered.
Panait (2010) showed that this optimistic scheme guarantees convergence to a global
optimum if given enough resources, that is, sufficiently large populations and a suffi-
ciently high number of collaborations N. This scheme can naturally have a drastic effect
on the computational complexity of the algorithm. To reduce the number of necessary
evaluations, Panait and Luke (2005b) proposed a variation of the optimistic reward
scheme, wherein the number of collaborations N decreases with time.

Panait et al. (2006a) presented an archive-based algorithm called iCCEA, in which
the number of evaluations is reduced by maintaining an archive of informative collabo-
rations for each population. iCCEA builds an archive of collaborators that produce the
same ranking of individuals in the other population as they would receive if they were
tested against the full population of collaborators. The authors, however, acknowledge

278 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

that the archive can become large, which makes evaluation computationally expensive,
and that it is unclear if/how the algorithm would scale to complex domains.

The optimistic reward scheme was extended by Panait et al. (2006b). The fitness is
based partly on the maximum score obtained in N collaborations with randomly chosen
partners and partly on the reward obtained when partnering with the optimal collabora-
tor, that is, the collaborator with which the individual under evaluation would receive
the highest possible fitness score. The results showed that computing the fitness of an
individual based on its performance with the optimal collaborator can significantly
increase the performance of the algorithm. The assumption that the optimal collabora-
tor is known is, however, largely unrealistic for most domains, and as such heuristic
methods would be necessary for estimating the optimal collaborator.

Existing studies on premature convergence to suboptimal equilibria are mostly
focused on function optimisation (e.g., Wiegand et al., 2001; Panait et al., 2006b; Popovici
and De Jong, 2005) and evolutionary game theory (e.g., Panait, 2010; Wiegand et al., 2002;
Wiegand and Potter, 2006) and always with only two coevolving populations. It is thus
unclear whether these methods for overcoming convergence to suboptimal equilibria
are efficient and effective in the embodied multiagent domain. In this domain, systems
are often composed of more than two agents, and existing methods rely on the use of
large numbers of collaborations to assess the fitness of each individual. When evolving
controllers for embodied agents, the number of generations can only be reduced to some
extent—a large number of generations is typically needed for fine-tuning the controllers
(which can have hundreds of parameters in the case of neural networks), even with
a perfect fitness gradient. An increase in the number of collaborators therefore results
in a steep increase of computational complexity that is not viable in domains that rely
on time-consuming simulations for evaluating the individuals. In previous works on
embodied multiagent systems, collaborations are typically formed with only the best
individual of each population (e.g., Potter et al., 2001; Yong and Miikkulainen, 2009;
Nitschke et al., 2012b).

To the best of our knowledge, the issue of premature convergence to suboptimal
equilibria has not been directly studied in the domain of embodied multiagent systems.
The principles of the pathology, however, apply to any cooperative coevolution appli-
cation (Panait, 2010). In a number of studies that apply CCEAs to embodied multiagent
systems, problem decomposition techniques (Panait and Luke, 2005a)—incremental
evolution (Gomez and Miikkulainen, 1997) in particular—are used to achieve successful
solutions in reasonable time (Nitschke et al., 2009, 2012a, 2012b; Yong and Miikkulainen,
2009). The need to resort to using problem decomposition can potentially be ascribed
to the tendency of traditional CCEAs to converge to suboptimal equilibria.

2.3 Novelty Search

Novelty search (Lehman and Stanley, 2011a) is a proposed evolutionary approach
to overcome the problem of deception. Novelty search drives evolution toward be-
havioural novelty instead of a predefined goal. The distinctive aspect of novelty search
is how the individuals of the population are scored. Instead of being scored accord-
ing to how well they perform a given task, which is typically measured by a static
fitness function, the individuals are scored based on their behavioural novelty accord-
ing to a dynamic novelty metric, which quantifies how different an individual is from
other, previously evaluated individuals. This reward scheme therefore creates a con-
stant evolutionary pressure toward behavioural innovation and actively tries to avoid
convergence to a single region in the solution space.

Evolutionary Computation Volume 25, Number 2 279

J. Gomes, P. Mariano, and A. L. Christensen

Novelty search has mainly been studied in the evolutionary robotics domain,
including the evolution of (1) single-robot controllers (e.g., Mouret and Doncieux,
2012; Lehman and Stanley, 2011a), (2) controllers for homogeneous multirobot sys-
tems (Gomes et al., 2013), (3) two-population competitive coevolution (Gomes et al.,
2014b), (4) morphologies (Lehman and Stanley, 2011b), and (5) plastic neural networks
(Risi et al., 2010). A few applications of novelty search outside the robotics domain can
also be found in the literature, for instance, in machine learning (Naredo et al., 2013;
Naredo and Trujillo, 2013) and game content generation (Liapis et al., 2015). The pre-
vious works have shown that novelty search is able to find good solutions faster and
more consistently than fitness-based evolution in many different applications. Novelty
search is particularly effective when dealing with deceptive domains (Lehman et al.,
2013). It has also been shown that novelty search can evolve a diverse set of solutions
in a single evolutionary run, as opposed to fitness-based evolution, which typically
converges to a single region in the solution space (Gomes et al., 2013).

Implementing novelty search requires little change to any evolutionary algorithm
aside from replacing the fitness function with a domain-dependent novelty metric
(Lehman and Stanley, 2011a; Gomes et al., 2015c). To measure how far an individual
is from other individuals in behaviour space, the novelty metric relies on the average
behaviour distance of that individual to the k-nearest neighbours:

ρ(x) = 1
k

k∑
i=1

dist(x, μi), (1)

where μi is the ith-nearest neighbour of x with respect to the distance metric dist .
Potential neighbours include the other individuals of the current population and a
sample of individuals from previous generations, stored in an archive. The archive can
be composed stochastically, with each individual having a fixed probability of being
added, or by adding the behaviours that are sufficiently different from the ones already
there (Gomes et al., 2015c). The function dist is a measure of behavioural difference
between two individuals.

2.3.1 Behaviour Distance Measures
The behaviour of each individual is typically characterised by a real-valued vector. The
behaviour distance dist is then the distance between the corresponding characterisation
vectors. The design of a behaviour characterisation has direct implications for the effec-
tiveness of novelty search. An excessively detailed characterisation can open the search
space too much and might cause evolution to focus on regions of the behaviour space
that are irrelevant for solving the task (Cuccu and Gomez, 2011). On the other hand,
an incomplete or inadequate characterisation can cause counterproductive conflation
of different behaviours (Kistemaker and Whiteson, 2011).

Task-Specific Distance Measures. Most previous works on behavioural diversity rely on
behaviour characterisations designed specifically for the given task. These characteri-
sations are composed of behavioural traits that the experimenter considers relevant for
describing agent behaviour in the context of the given task. In the evolutionary robotics
domain, the characterisations typically have a strong focus on the spatial relationships
between entities in the task environment, or the location of the robots in the environ-
ment (Gomes et al., 2014c). They typically comprise only a small number of different
behavioural traits (up to four) and are based either on the final state of the environment
or on a single quantity sampled or averaged over the evaluation trial.

280 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Generic Distance Measures. Doncieux and Mouret (2010) proposed generic behaviour
similarity measures to overcome the necessity of manually designing behaviour char-
acterisations in single-robot tasks. The proposed measures are exclusively based on the
sensor-effector states of the agent. They rely on comparisons between the sequences of
all binary sensor and effector values of the agent through time, or counting how many
times the agent was in each possible sensor-effector state. These generic similarity mea-
sures were extended by Gomes and Christensen (2013), making them applicable to
multiagent systems and to nonbinary sensors and effectors. While generic measures are
widely applicable, they can result in a very large behaviour space (Cuccu and Gomez,
2011; Mouret, 2011). To address this issue, Gomes et al. (2014c) proposed a middle
ground between generic and task-specific characterisations: systematically derived be-
haviour characterisations (SDBCs), which are based on behaviour features systematically
extracted from a formal description of the agents and their environment. Such features
include, for instance, average distances between the agents, agents’ average speed,
energy levels, and so on.

Mouret and Doncieux (2012) compared task-specific and generic characterisations
in a comprehensive empirical study with a number of single-robot tasks. Doncieux and
Mouret (2013) showed how different similarity measures (generic or task-specific) can
be combined, either by switching between them throughout evolution or by calculating
the behaviour distance based on all similarity measures.

2.3.2 Balancing Novelty and the Objective
Previous works have found that combining the exploratory character of novelty search
with the exploitative character of fitness-based evolution often is an effective way to
apply novelty search (Lehman et al., 2013; Gomes et al., 2015c). A number of techniques
have been proposed to accomplish this combination. One possible way is to establish a
task-dependent minimal criterion that the individuals must meet in order to be consid-
ered viable for selection. This minimal criterion can either focus on a certain aspect of
the individual’s behaviour and be provided by the experimenter (MCNS, Lehman and
Stanley, 2010), or be dynamic and calculated based on the fitness scores of the current
population (PMCNS, Gomes et al., 2014d).

Cuccu and Gomez (2011) proposed to score each individual based on a linear scalari-
sation of its novelty and fitness scores, with a parameter ρ controlling the relative weight
of fitness and novelty. Mouret (2011) proposed novelty-based multi-objectivisation,
which we use in this study, where a novelty objective is added to the task objective (fit-
ness function) in a multiobjective evolutionary algorithm. Gomes et al. (2015c) showed
that multiobjectivisation was one of the most effective approaches for combining nov-
elty and fitness, and it has the advantage of not relying on additional parameters.

3 Novelty-Driven Cooperative Coevolution

We propose three distinct approaches based on novelty search to overcome conver-
gence to stable states in multipopulation cooperative coevolution. The first approach,
NS-Team, is based on traditional cooperative coevolution principles: an individual’s
novelty score is calculated based on the behaviour of the team in which it participated,
without any discrimination of the individual agent behaviours. The second approach,
NS-Ind, is based on the typical implementation of novelty search in non-coevolutionary
algorithms: individuals are rewarded for exhibiting novel individual behaviours with
respect to the other individuals in their population, thus maintaining behavioural
diversity inside each population. The third approach, NS-Mix, is a combination of

Evolutionary Computation Volume 25, Number 2 281

J. Gomes, P. Mariano, and A. L. Christensen

the first two: individuals are rewarded for displaying both novel individual behaviours
and for causing novel team behaviours.

3.1 Team-Level Novelty

Team-level novelty (NS-Team) is described in Algorithm 1. In NS-Team, as in a typical
cooperative coevolutionary algorithm, the evaluation of each individual begins with the
formation of one team (joint solution) composed of that individual and representative
individuals from each of the other populations (step 7). The chosen representative of
each population is the individual that obtained the best team fitness score in the previous
generation (step 4) or a random one in the first generation. The collective performance
of the team is then assessed by evaluating it in the problem domain (step 8). NS-Team
relies on the characterisation of the behaviour of a team as a whole. The novelty score
of each individual is computed based on the team-level characterisation of the team
with which it was evaluated (step 10). The novelty of the individual thus corresponds
to the novelty of the team as a whole. This process is analogous to typical CCEAs, in
which an individual receives the fitness of the team in which it participated, without
discriminating the individual’s contribution.

Besides the team’s novelty score (step 10), the team’s fitness score is also taken
into consideration in the selection process (step 11). The motivation for such combi-
nation is to drive evolution toward the exploration of promising behaviour regions
(see Section 2.3.2). The key difference is that while the team fitness measure is static,
the team novelty measure is dynamic. Contrary to what happens in fitness-driven
CCEAs, in NS-Team the attractors keep changing throughout evolution: what is novel
in one generation will only remain so for a few generations. The evolutionary process
is constantly led toward novel regions of the team behaviour space, which can avoid
premature convergence to a single region of the solution space.

It should be noted that the method used to compute the novelty scores (step 10),
the technique used to combine novelty and fitness (step 11), and the implementation of
the archive update (step 12) are independent of NS-Team. We followed implementations
for these steps commonly found in novelty search applications (Gomes et al., 2015c),
described in Section 2.3. In our experiments, the combination of novelty and team fitness

282 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

objectives is achieved with the NSGA-II multiobjective algorithm (Deb, 2001). The
proposed algorithm only concerns the evaluation phase of the evolutionary algorithm,
and therefore any underlying evolutionary algorithm can theoretically be used (step 11).

Team behaviour can be characterised using the design principles proposed by
Gomes et al. (2013): the behaviour characterisation focuses on the team as a whole, with-
out directly discriminating between the respective contributions of individual agents.
Previous studies have shown that such team-level characterisations can be crafted with
task-specific knowledge (Gomes et al., 2013) or without it (Gomes and Christensen,
2013), see Section 2.3.1. Regarding task-specific characterisations, which are used in the
experiments presented in this paper, we have shown (Gomes et al., 2014c) that team-
level characterisations can be based on measures of how the team influences the task
environment, or by averaging agents’ behavioural traits over all the members of the
team.

3.2 Individual-Level Novelty

In domains where a high degree of cooperation is required for a joint solution to be
successful, it may not be possible to assess the contribution of each agent to the success
of the team. This issue is commonly known as the credit assignment problem (Potter and
De Jong, 2000). Nonetheless, it is possible to describe the behaviour of each individual
agent when participating in a team, ignoring to some extent whether the agent’s actions
are harmful or beneficial with respect to the team’s objectives.

We study a novelty-based coevolutionary algorithm that uses individual agent be-
haviour characterisations instead of the team-level behaviour characterisations used in
NS-Team. In NS-Ind, individuals are rewarded for displaying novel agent behaviours
regardless of the behaviour of the teams in which the individuals were evaluated. The
objective of NS-Ind is to directly promote behavioural diversity inside each popula-
tion, thus preventing premature convergence of the evolutionary process, following
the previous successes of novelty-based techniques in single-population evolutionary
algorithms (Lehman and Stanley, 2011a; Gomes et al., 2013; Mouret and Doncieux, 2012).

The implementation of NS-Ind is similar to the novelty search implementation in
non-coevolutionary algorithms, with one novelty archive for each population, and the
novelty scores are computed inside each population. NS-Ind is detailed in Algorithm 2.

Evolutionary Computation Volume 25, Number 2 283

J. Gomes, P. Mariano, and A. L. Christensen

During the evaluation of an individual, the behaviour of that individual in the context
of a team is characterised (step 8). This characterisation is then used to compute the
novelty of the individual by comparing it with the other behaviours observed in the
respective population, and in the archive of that population (step 10). The novelty of the
individual is then combined with the fitness of the team in which it participated (step
12) in order to drive the coevolutionary system toward novel, high-quality solutions.
As in NS-Team, in our experiments we use a multiobjective algorithm to combine the
individual novelty and team fitness scores.

3.3 Mixed Novelty

We additionally propose and evaluate NS-Mix, which combines NS-Team and NS-Ind. In
NS-Mix, the individuals are rewarded both for causing novel team behaviours and novel
agent behaviours. The implementation relies on NS-Team and NS-Ind. The team-level
novelty scores (nsteam) are calculated according to Algorithm 1, while the individual-
level novelty scores (nsind) are calculated according to Algorithm 2. These two sets
of novelty scores, together with the team fitness scores, are used to select and breed
the individuals of each population. In the experiments described in this paper, we
implement NS-Mix with a multiobjective algorithm, maximising the three scores: team
novelty, individual novelty, and team fitness score.

4 Behaviour Exploration Analysis

The analysis of the individuals in coevolutionary algorithms can provide a valuable
insight into potential coevolutionary pathologies. Previous works have focused on the
analysis of the best individuals evolved in each population, at every generation (best-
of-generation individuals) (Popovici and De Jong, 2006). By plotting the trajectory of
such individuals over the evolutionary run, it is possible to visualise to which regions
of the solution space the coevolutionary process is converging. Since we study prob-
lems with more than two populations, and since individuals have multidimensional
genomes/behaviours, the previously proposed methods cannot be directly applied. In-
stead, we rely on the behaviour of the team that obtained the highest fitness score in a
given generation. The multidimensional behaviour space is reduced to two dimensions
with Sammon mapping (Sammon, 1969) in order to produce a graphical representa-
tion. Besides the graphical representation, we define one metric for quantifying the
behavioural dispersion of the best-of-generation teams (BoG team dispersion).

Previous works in novelty search have also shown that analysing the behaviour
space exploration, based on all the evolved individuals, can be an important tool to
uncover the evolutionary dynamics. For instance, Lehman and Stanley (2011b) and
Gomes et al. (2013) analyse the exploration of the behaviour space to discover the
diversity of solutions for a given task. In a novelty-based evolutionary process, looking
only at the best-of-generation individuals can be misleading, as a great deal of the
exploration of the behaviour space can correspond to solutions with lower fitness
scores. To this end, we implemented two measures of exploration, to cover both the
team behaviour space (all team dispersion) and the individual behaviour space (individual
dispersion).

For all three metrics, dispersion is given by the mean difference between behaviour
characterisations. Considering a set of teams/individuals ϕ, the mean difference (MD)

284 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

is given by

MD(ϕ) =
∑
i∈ϕ

∑
j∈ϕ

dist(i, j)
|ϕ|(|ϕ| − 1)

(2)

where dist is the Euclidean distance between the respective behaviour characterisation
vectors. The mean difference is a nonparametric measure of statistical dispersion that is
not defined in terms of a measure of central tendency. A low mean difference value
means that most teams/individuals have very similar behaviour characterisations,
while a high value means the teams/individuals are well dispersed in the behaviour
space. We defined the following metrics based on the MD.

BoG team dispersion. The behavioural dispersion of the best-of-generation teams
evolved during a given evolutionary run (ϕb). The BoG team dispersion is given
by MD(ϕb), where the distance between any two teams, dist , is given by the Eu-
clidean distance between the respective team behaviour characterisations. This
metric is intrinsically related to convergence; a low value means that the highest
scoring teams always displayed very similar team behaviours, which suggests that
evolution converged to a specific region of the team behaviour space.

All team dispersion. Similar to BoG teams dispersion, but considering all teams
evaluated during a given evolutionary run (ϕa). All team dispersion is thus given
by MD(ϕa), with dist calculated based on the team behaviour characterisations.

Individual dispersion. The mean dispersion of the individual (agent) behaviours
evolved in each population, averaged over all the populations. The distance dist

between any two individuals is given by the Euclidean distance between the respec-
tive individual behaviour characterisations. Considering P as the set of populations
in the coevolutionary system, and ϕp the set of individuals evolved in population
p, individual dispersion is given by

Di(ϕ) =
∑
p∈P

MD(ϕp)
|P | (3)

5 Predator-Prey Experiments

Predator-prey pursuit is one of the most common tasks studied in multiagent coevo-
lution, both in cooperative coevolution (Nitschke et al., 2012a; Yong and Miikkulainen,
2009; Rawal et al., 2010) and in competitive coevolution (Nolfi, 2012; Rawal et al., 2010).
Pursuit tasks involve a number of agents (predators) chasing a prey. The predators
cannot move faster than the prey, and they therefore need to cooperate in order to
successfully capture the prey. In cooperative coevolution studies (Nitschke et al., 2012a;
Yong and Miikkulainen, 2009), only the team of predators is evolved, while the prey
has a prespecified fixed behaviour. The predator-prey task is especially interesting in
cooperative coevolution studies because heterogeneity in the predator team is required
to effectively catch the prey, along with a tight coordination among the predators.

5.1 Task Setup

The predators are initially placed in linear formation at one end of the arena, in the slots
depicted in Figure 1a. We defined task variants with different number of predators,
from two to seven. A single prey is randomly placed near the centre of the arena.
The arena is not bounded by walls, and if the prey escapes the arena, the trial ends.
The task parameters are listed in the Appendix. We use a version of the task where

Evolutionary Computation Volume 25, Number 2 285

J. Gomes, P. Mariano, and A. L. Christensen

Figure 1: Predator-prey task setup. (a) Initial conditions of the simulation, with the
possible prey vision ranges (V) and the possible predators’ starting positions (circles
at the top). (b) Sensors and effectors of each predator: the predator senses the distance
Dp and relative orientation αp of the prey, and the effectors control the speed Dm and
turning angle αm. (c) The structure of the neural network controller of each predator.

the predators cannot communicate nor sense one another (Yong and Miikkulainen,
2009; Rawal et al., 2010). Each predator is controlled by a neural network that receives
only two inputs: (1) the distance to the prey (Dp), and (2) the relative orientation of the
agent with respect to the prey (αp). These inputs are normalised before being fed to the
neural network, and the network’s two outputs control the speed (Dm) and the rotation
(αm) of the agent (see Figure 1b). The neural network that controls each predator is a
Jordan network (Jordan, 1997), a simple recurrent network with a state layer connected
to the output neurons (see Figure 1c). The network has two inputs, eight hidden neurons,
two outputs, and is fully connected.1

The predators move at most at the same speed as the prey (1 unit/step). The
behaviour of the prey consists of moving away from any predator within a radius of
V around the prey. If there are no predators within the radius of V, the prey does not
move. Otherwise, the prey moves at a constant speed, with a direction opposite to the
centre of mass of the nearby predators. We use task variants with different values for
the radius V, ranging from 4 to 13 units. The prey is captured if a predator collides with
it. A trial ends if the prey is captured, escapes the arena, or if T = 300 simulation steps
elapse. Each team of predators is evaluated in five simulation runs, varying the starting
position of the prey.

The fitness function Fpp is based on previous works (Nitschke et al., 2012a; Yong
and Miikkulainen, 2009). If the prey was captured, Fpp increases as the time to capture
the prey (τ) decreases; otherwise it increases as the average final distance from the
predators to the prey (df) decreases:

Fpp =
{

2 − τ/T if prey captured,

max(0, (di − df)/size) otherwise,
(4)

where T is the maximum simulation length, di is the average initial distance from the
predators to the prey, and size is the side length of the arena.

1The structure of the neural network and the number of hidden neurons were tuned empirically.
Feedforward networks and Elman networks (Elman, 1990) were also tested, and the number of hidden
neurons was varied from three to ten.

286 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Table 1: Behaviour characterisations used in the predator-prey domain. All features
have values normalised to the range [0,1].

Team-Level Characterisation βpp(t) Individual-Level Characterisation βpp(a)

Whether the prey was captured or not Whether agent a captured the prey
Average final distance of the predators to the

prey
Final distance of a to the prey

Average distance of each predator to the other
predators over the trial

Average distance of a to the other predators
over the trial

Trial length

The behaviour characterisations were defined based on systematically derived be-
haviour characterisations (SDBC) (Gomes et al., 2014c). We chose a subset of the ex-
tracted features, based on the estimated relevance of the features with the predator-prey
task. The team-level behaviour characterisation βpp(t) is a vector of length 4. The agent-
level characterisation of an agent (βpp(a)) is based on the same behaviour features of
βpp(t) but measured for a specific agent instead of the whole team. The characterisations
are described in Table 1.

5.2 Evolutionary Setup

We use a canonical genetic algorithm to evolve the neural networks that control the
agents. The weights of the networks are directly encoded in the chromosomes. The
algorithm uses tournament selection, the genes (weights) are mutated individually
with a fixed probability, and we apply one-point crossover. The elite of each population
passes directly on to the next generation. The parameters of the algorithm were tuned
in preliminary experiments using the predator–prey task with three agents and V = 7.
See the Appendix for parameter values.

Novelty search is implemented as described in Section 2.3 and configured according
to the results presented by Gomes et al. (2015c). Individuals are randomly added to the
archive, and the archive size is bounded for computational and memory efficiency:
after reaching the size limit, random individuals are removed to allow space for new
ones. The novelty objectives are combined with the team fitness objective with the
multiobjective optimisation algorithm NSGA-II, as proposed by Mouret (2011).

Each experimental treatment was repeated in 30 evolutionary runs. In all experi-
ments, the highest-scoring team of each generation was reevaluated a posteriori in 50
simulation trials. As the initial position of the prey is stochastic, the reevaluation yields
a more accurate estimate of the team fitness. All the team fitness plots presented in the
paper are based on the scores obtained in this postevaluation.

5.3 Base Fitness-Driven Cooperative Coevolution

In the first set of experiments, we analyse how fitness-based coevolution performs
when faced with varying degrees of task difficulty. We vary the difficulty of the task
by varying the prey’s visual range (V). Increasing V allows the prey more room and
time to escape from the predators. As such, a higher degree of cooperation, as well as a
more fine-tuned strategy, are required in the team of predators in order to successfully
catch the prey. In setups with high V values (V10, V13), only one noncooperating agent
might be sufficient to compromise the performance of the whole team, as it can drive

Evolutionary Computation Volume 25, Number 2 287

J. Gomes, P. Mariano, and A. L. Christensen

Figure 2: Team fitness scores achieved with fitness-based evolution in task setups with
varying prey vision (V). Left, Highest fitness scores achieved so far at each generation,
averaged over 30 runs for each setup. The grey areas depict the standard error. Right,
Boxplots of the highest scores achieved in each evolutionary run, for each task setup.
The whiskers represent the highest and lowest value within 1.5 IQR, and the dots
indicate outliers.

the prey away or leave room for it to escape. Figure 2 shows performance achieved with
fitness-driven coevolution for three predators and with values of V varying from 4 to
13.

The results show that fitness-driven coevolution (Fit) is only able to consistently
evolve effective solutions in the easiest setup (V 4). In the other setups, Fit rarely reaches
high-quality solutions. It should be noted that it is possible to find effective solutions
for all these task setups. To determine the reason for failure, we analyse the best-
of-generation (BoG) teams (see Section 4). Figure 3 shows the behaviour of the BoG
teams in representative evolutionary runs,2 along with the mean value of the BoG team
dispersion (D) for each task setup. These results show that in the easier task setup
(V4), coevolution can consistently explore the behaviour space and reach regions of the
behaviour space where high-quality solutions can be found. In the other task setups,
however, coevolution converges prematurely to a narrow region of the behaviour space,
resulting in a relatively low degree of BoG team dispersion (D).

5.4 Increasing the Number of Collaborations

We experimented with techniques studied in previous works to try to overcome conver-
gence to suboptimal solutions in fitness-driven coevolution. As suggested by Wiegand
et al. (2001), we increased the number of random collaborations with which each in-
dividual is evaluated. The fitness assigned to an individual is the maximum reward
it obtained with any collaboration. To evaluate each individual, N + 1 collaborations
are formed: one with the best individuals from the previous generation, and N collab-
orations composed with randomly chosen collaborators. According to previous results
(Panait, 2010; Wiegand et al., 2001; Popovici and De Jong, 2005), increasing the number
N of collaborations should increase the likelihood of the coevolutionary algorithm to
converge to the global optimum. We therefore evaluated how varying the number N af-
fects the performance of fitness-based coevolution. Since this scheme has, to the best of
our knowledge, only been used in coevolutionary setups with two populations, we also

2For each setup, we chose the evolutionary run that had a value of BoG dispersion (D) closest to the
mean of all runs in that setup.

288 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Figure 3: Behaviour of the best-of-generation teams in representative evolutionary runs
of fitness-driven coevolution. Each cross represents one team, mapped according to its
team behaviour. The four-dimensional behaviour space was reduced to two dimensions
using Sammon mapping (see Section 4). D is the BoG team dispersion of the respective
run, and F is the highest fitness score achieved.

Figure 4: Left, Highest team fitness scores achieved in each evolutionary run, for each
task setup with varying task difficulty (prey’s vision range – V), and a varying number
of random collaborators (N). The V4/2 setup uses only two predators, while the other
setups use three predators. Right, Behavioural dispersion of the best-of-generation (BoG)
teams. Standard error bars are shown.

experimented with a predator-prey setup with only two predators (V4/2) to establish
a fair basis for comparison. In the remaining setups, three predators are used, and the
random collaborations are formed by partnering the individual that is being evaluated
with one randomly chosen individual from each of the other populations.

Figure 4 (left) shows the effect of increasing N in the different task setups. It should
be noted that the number of generations was the same (500) in all evolutionary config-
urations, meaning that the number of evaluations increases linearly with N. The results
show that using random collaborations can significantly improve the performance of
fitness-based coevolution in the two-population setup (V4/2, p = 0.005, Kruskal–Wallis
test), with respect to the highest team fitness scores achieved. This result is coherent
with previous studies performed with two-population setups. The results obtained in
the three-agent setups, however, reveal a substantially different trend. In V7, no sig-
nificant differences in the performance were found (p = 0.389, Kruskal–Wallis), and in
V4, V10, and V13, increasing the number of collaborations can actually result in a lower
performance (p = 0.019, p < 0.001, and p = 0.006, respectively).

Evolutionary Computation Volume 25, Number 2 289

J. Gomes, P. Mariano, and A. L. Christensen

Figure 4 (right) shows the influence of N on behavioural convergence (as defined in
Section 4). In the setups V4, V10, and V13, increasing the number of collaborations led to
an increase in convergence to specific region of the solution space (p < 0.001, Kruskal–
Wallis), which in turn correlates with inferior performance. In the other setups, the
influence of N is less clear.

Our results suggest that the traditional methods of overcoming convergence to
stable states may not be effective in coevolutionary setups with more than two pop-
ulations, and with a large number of individuals. Panait (2010) demonstrated that a
CCEA converges to the global optimum if a sufficient number of collaborations are
used to evaluate each individual. An insufficient number of random collaborations
might lead to poor fitness estimates that can result in convergence to suboptimal solu-
tions. A sufficient number of random collaborations is, however, highly problem-dependent
(Panait, 2010). As the number of possible collaborations increases exponentially with
the number of populations and the number of individuals, the collaborations required
to obtain a proper estimate of an individual’s fitness may also increase significantly,
maybe even exponentially. Unfortunately, our results do not provide a definite answer
to this question, as exponentially increasing the number of collaborations is typically
not computationally feasible in the domain of embodied multiagent systems.

5.5 Novelty-Driven Coevolution

In this section, we analyse how novelty-driven cooperative coevolution can overcome
the problem of premature convergence. We compare fitness-driven coevolution (Fit)
with team-level novelty (NS-Team), individual-level novelty (NS-Ind), and a combina-
tion of the two (NS-Mix). In the novelty-based approaches, a multiobjective algorithm,
NSGA-II, is employed to combine the novelty and fitness objectives (see Section 3).
Based on the previously discussed results, we did not use random collaborations in any
of the methods: each individual is evaluated together with the individuals of the other
populations that obtained the highest fitness scores in the previous generation. Three
predators were used in all experiments.

5.5.1 Overcoming Premature Convergence
Figure 5 (left) shows the highest team fitness scores achieved with each method, for
each level of task difficulty. Figure 5 (right) shows the behavioural dispersion of the
best-of-generation teams, which can be a good indicator of premature convergence.
Figure 6 shows the highest fitness score achieved at each generation, averaged over the
30 evolutionary runs.

As discussed in the previous section, the performance of fitness-driven coevolution
drastically decreases as the difficulty of the task is increased. NS-Team, on the other hand,
can consistently evolve effective solutions (fitness > 1.0) in all task setups. The average
team fitness of the best solutions evolved by NS-Team is significantly superior to the
solutions evolved by Fit in all setups except the easiest one (adjusted3 p < 0.001, Mann–
Whitney test). NS-Team was clearly the highest performing approach among the novelty
variants, while NS-Ind displayed the lowest performance. NS-Ind could not consistently
evolve effective solutions, even in the easiest task setup, and was significantly inferior to
all other novelty-based methods (adjusted p < 0.001). The performance of NS-Mix was
significantly superior to NS-Ind in all setups, but it was inferior to NS-Team (adjusted

3When multiple comparisons within the same set of results were made, the p-values were adjusted
with the Holm–Bonferroni correction.

290 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Figure 5: Left, Highest team fitness scores achieved in each evolutionary run with the
different methods, for each task setup with varying task difficulty (V). Right, Behavioural
dispersion of the best-of-generation teams. Standard error bars are shown.

Figure 6: Performance of fitness-based evolution and the novelty-based approaches in
each task setup. The plots show the highest team fitness scores achieved so far at each
generation, averaged over 30 runs for each method. The grey areas depict the standard
error.

p < 0.01). NS-Team could also achieve higher quality solutions earlier in the evolution-
ary process (see Figure 6).

As the results in Figure 5 (right) show, both NS-Team and NS-Mix were able to over-
come the issue of premature convergence to stable states. In Figure 7, we also show the
dispersion patterns of the best-of-generation teams, for a representative evolutionary
run of each setup. Although it is possible to observe that NS-Team can still get attracted
to low-quality regions of the collaboration space (especially in V10 and V13), NS-Team
is ultimately capable of escaping these regions, and can reach high-quality collabora-
tions. NS-Ind, on the other hand, was mostly ineffective. Rewarding novel individual
behaviours was not an effective strategy to avoid premature convergence to narrow
regions of the team behaviour space.

5.5.2 Exploration of the Behaviour Space
We resorted to the dispersion measures that use all teams (all team dispersion) and
all individuals (individual dispersion) (see Section 4), to better understand the differ-
ence between the proposed novelty search implementations. The results are shown in
Figure 8. Fitness-driven coevolution always displays significantly inferior degrees of
dispersion (adjusted p < 0.001, Mann–Whitney) when compared to NS-Team, both in

Evolutionary Computation Volume 25, Number 2 291

J. Gomes, P. Mariano, and A. L. Christensen

Figure 7: Behaviour of the best-of-generation teams in representative evolutionary runs.
The behaviour space was reduced to a two-dimensional space with Sammon mapping.

Figure 8: Analysis of team behaviour dispersion, considering all the evolved teams (left),
and individual behaviour dispersion (right), with each evolutionary treatment, for task
setups with varying difficulty (V).

terms of the dispersion of team behaviours (Figure 8, left), and individual behaviours
(Figure 8, right). These results confirm the attraction of fitness-based coevolution to
stable states. Novelty-driven coevolution (NS-Team) displays substantially different
evolutionary dynamics and does not seem to converge to specific regions of the collab-
oration space. It explores a much wider range of collaborations (team behaviours) and
can reach more collaboration regions associated with high-quality behaviours.

292 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

As previously mentioned, the performance of individual-level novelty (NS-Ind)
was substantially inferior to NS-Team, failing to achieve effective solutions across all
task setups. As the results in Figure 8 (right) show, NS-Ind is effective in discovering a
reasonable diversity of agent behaviours, when compared to NS-Team and Fit (adjusted
p < 0.001). However, this diversity of agent behaviours does not translate into the dis-
covery of novel collaborations (see Figure 8, left). The individual novelty objective is not
aligned with the team novelty objective, despite the similarity in the dimensions of the
individual-level and team-level behaviour characterisations (see Table 1). Cooperation
is not directly taken into account in NS-Ind, which results in poorly performing joint
solutions.

The set of team behaviours discovered by NS-Ind was the least diverse among the
considered novelty-based treatments (p < 0.001). To directly encourage some degree of
exploration of team behaviours, we also proposed NS-Mix: a combination of NS-Team
and NS-Ind where the team novelty objective is added to the individual novelty and
team fitness objectives. NS-Mix increased both the team and individual behavioural
diversity when compared to NS-Ind. The diversity of team behaviours, however, was
still significantly inferior to NS-Team (p < 0.001).

The results obtained with NS-Ind and NS-Mix suggest that favouring diversity of
individual agent behaviours can actually be harmful. As each separate population is
encouraged to constantly evolve toward individual behavioural novelty, it might be
hard to form effective collaborations, as the individuals of a population do not have
enough time or incentive to adapt to the other populations. This evolutionary dynamic is
contrary to what occurs in NS-Team, where each population can specialise in one area of
the agent behaviour space at a time, thus allowing a better adaptation of the populations
to each other. Overall, we showed that for the purpose of achieving effective solutions,
novelty search with team-level characterisations was the most effective method of
introducing novelty search in cooperative coevolutionary algorithms.

5.6 Diversity of Solutions

Besides the ability of overcoming premature convergence, novelty search has been
shown capable of discovering a wide range of solutions for a given task (Gomes et al.,
2013; Lehman and Stanley, 2011b). In this section, we present a qualitative analysis of
the exploration of the behaviour space and diversity of solutions evolved. To make a
fair comparison between the diversity of solutions evolved, we used the task setup
with three predators and V = 4, since this was the only setup where Fit and NS-Team
achieved similar team fitness scores (see Figure 5).

The four dimensions of the behaviour characterisation were reduced to two dimen-
sions using a Kohonen map in order to obtain a visual representation of the team be-
haviour space exploration. Kohonen (self-organising) maps produce a two-dimensional
discretised representation of the input space, preserving the topological properties of
the input space. The Kohonen map was trained with a sample (of size 25,000) of all
the behaviours found; it is depicted in Figure 9 (top). The individuals evolved in each
evolutionary run were then mapped: each individual was assigned to the node (map
region) with the closest weight vector. In Figure 9 (bottom), we show the behaviour
exploration in a typical evolutionary run of Fit and NS-Team.

As discussed in Section 5.5, fitness-driven coevolution often explores a relatively
narrow region of the behaviour space (corresponding to the top-right corner of the map,
Figure 9), and converges to solutions in regions (10,9) and (10,8) (see Figure 9) in all
evolutionary runs. NS-Team evolves individuals that cover a wider range of behaviour

Evolutionary Computation Volume 25, Number 2 293

J. Gomes, P. Mariano, and A. L. Christensen

Figure 9: Top, Trained Kohonen map, where each unit represents a region of the team
behaviour space. The high-quality behaviour regions (where the prey is caught most of
the time) are found along column 10 and near it. Bottom, Team behaviour exploration
in a typical evolutionary run of fitness-based coevolution and NS-Team, with the easiest
task setup (V4). The darker a region, the more individuals were evolved belonging to
that behaviour region.

regions, and can find diverse high-quality solutions. These results are consistent with the
exploration measures in Section 5.5. To confirm the diversity of solutions, we inspected
the highest-scoring solutions found in the high-quality behaviour regions. Figure 10
depicts typical movements of the predators and the prey in the different solutions. It
is noteworthy that for this task difficulty level (V = 4), NS-Team discovered solutions
where only two predators actually chase the prey (see, for instance, regions (8,1) and
(10,2)), which highlights the diversity of team behaviours that NS-Team can evolve.

5.7 Scalability with Respect to Team Size

We conducted evolutionary runs in setups with between two and seven predators
to assess the scalability of NS-Team with respect to the number of populations (see
Figure 11, left). To assess if NS-Team is able to take advantage of the higher number of
available agents, we analyse how many predators actually participate in catching the
prey, compared to the total number of predators. We consider a predator as participant
if it is near the prey (within 1.5 × V) in the moment the prey is caught, as the predators

294 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Figure 10: Examples of solutions evolved by NS-Team in the V4 task setup, found in
the behaviour regions associated with high-quality solutions (the numbers indicate the
coordinates in the plots in Figure 9). The three preys (red) start at the top of the arena,
and the prey (blue) starts in the centre.

Figure 11: Left, Highest team fitness scores achieved with NS-Team in task setups with
multiple combinations of number of predators and prey vision range V. Right, Mean
number of participant predators in the best-of-generation solutions evolved in each
setup.

typically surround the prey in order to catch it (see, for instance, Figure 10). Figure 11
(right) shows the mean number of participant predators in each setup, considering the
best-of-generation individuals only.

As the results in Figure 11 (left) show, adding more predators to the system never
negatively impacts the performance of NS-Team. In the most challenging setups, V10
and V13, adding more agents always resulted in a significant improvement of the team
fitness scores achieved by NS-Team (p < 0.05, Mann–Whitney). The results in Figure 11
(right) confirm that the highest scoring solutions take advantage of the higher number
of predators available, even though a smaller number of agents is often enough to solve
the task. For a given task difficulty level (V), adding more predators always resulted in
a significantly higher number of participant predators (p < 0.001). Overall, our results

Evolutionary Computation Volume 25, Number 2 295

J. Gomes, P. Mariano, and A. L. Christensen

suggest that NS-Team can scale with the number of populations—it performed well with
up to seven populations and was able to take advantage of all or most of the agents
available.

5.8 Combination of Novelty and Team Fitness

In all the experiments described so far, the novelty-based approaches always consisted
of one or two novelty objectives combined with the team fitness objective through a
multiobjective algorithm (see Section 3). This choice was based on previous findings
that show that the combination of novelty and fitness is the most effective way of
applying novelty search in optimisation problems (Gomes et al., 2015c; Lehman et al.,
2013). Nevertheless, a number of previous works also show that, in some situations,
novelty search alone might suffice to solve challenging tasks (Lehman and Stanley,
2011a; Gomes et al., 2013). In this case, the only drive in the evolutionary process is
behavioural novelty, and the quality of the evolved solutions is completely ignored.

In this section, we evaluate the necessity of combining novelty with team fitness.
We only focus on NS-Team, since it is clearly the best-performing approach. We intro-
duce NS*-Team, which is implemented similarly to NS-Team (see Algorithm 1) with the
following differences:

• The selection score of each individual is simply the team novelty score that
individual obtained—the behavioural novelty of the team with which the
individual was evaluated.

• The representative of each population is the individual that obtained the high-
est novelty score in the previous generation.4

In Figure 12, we compare NS-Team with NS*-Team, and present fitness-driven co-
evolution as baseline. We use different task difficulty levels (V), and the number of
predators is always three. The results show that the performance of pure novelty search
(NS*-Team) is significantly inferior to the multiobjectivisation of novelty and team fitness
(NS-Team) across all task setups (p < 0.001, Mann–Whitney). Nonetheless, it is notewor-
thy that the performance of NS*-Team was never significantly inferior to fitness-driven
coevolution, and actually managed to achieve a significantly higher performance in the
V7 and V10 task setups (p < 0.001). As novelty search encourages the exploration of
behaviour regions that have not been visited so far, the coverage of the behaviour space
is greater, and it is thus more likely to discover solutions in behaviour regions associated
with high fitness scores. Our results thus suggest that novelty-driven coevolution can
achieve high-quality cooperative solutions without explicitly looking for them in the
first place, which is consistent with previous non-coevolutionary novelty search studies
(Gomes et al., 2013; Lehman and Stanley, 2011a).

The results in Figure 12 (middle) show that pure novelty search is effective in
avoiding convergence to stable states across all setups, and can find a good diversity of
team behaviours (Figure 12, right). The lack of a team fitness objective, however, makes
the behavioural exploration rather ineffective: in the more demanding task setups, pure
novelty search fails to reach the high-quality regions of the collaboration space.

4Other possibilities for the selection of the representative individuals could be considered, for in-
stance, using the individual with the highest fitness score in the previous generation. We chose the
most novel individual as the representative in order to avoid introducing any biases from the fitness
function into the evolutionary process.

296 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Figure 12: Comparison of pure novelty search (NS*-Team) and NS-Team, where there
is a multiobjectivisation with the novelty and team fitness objectives. Left, Highest
team fitness scores achieved in each evolutionary run, with each approach and in
each task setup. Middle, Behavioural dispersion of the best-of-generation teams. Right,
Behavioural dispersion of all the evolved teams.

6 Experiments with the Multirover and Herding Tasks

We evaluate the proposed approaches in two additional robotics tasks, the multi-rover
task and the herding task, to assess the general applicability of novelty-driven cooper-
ative coevolution. These tasks require more complex controllers than the predator-prey
task (Section 5), as the agents have a higher number of sensors and effectors. To deal
with this higher complexity, we use the NEAT algorithm (Stanley and Miikkulainen,
2002) to evolve the neural controllers for the agents.

6.1 Multirover Task Setup

The multirover task requires a team of vehicles (rovers) to find and collect features of
interest (rocks) in the environment. More than one rover is needed to collect one rock,
and each rover must use a different actuator. Each rover can only use one actuator
at a time. Therefore, behaviour specialisation and cooperation in the team of rovers
is required to solve the task. Our version of the task is similar to the multirover task
presented by Nitschke et al. (2009), but in our setup we use only two rovers and one
type of rock. The task is challenging because the rovers must find each other in the
environment, then they also need to find the rocks and complement each other to
successfully collect them. The experimental parameters are listed in the Appendix.

The task environment is depicted in Figure 13 (left). Eight rocks are placed randomly
inside an arena bounded by walls. The two rovers start in random locations and with
random orientations. Each rover has the following sensors: (1) two short-range sensors
(c1, c2) to detect collisions, (2) three sensors for the detection of rocks (r1 − r3), (3) three
sensors for the detection of the other rover (d1 − d3), and (4) one sensor that returns the
type of the actuator currently used by the nearby rover. Two outputs control the linear
speed and turning angle of the rover, and two other outputs control the two actuators.
When an actuator is activated, the rover remains still. To collect a rock, the two rovers
need to be simultaneously over the rock. Then one rover needs to activate its type 1
actuator while the other rover activates its type 2 actuator. The rock disappears from
the environment when it is collected.

The fitness function Fr corresponds to the number of rocks collected during the
simulation trial. The team-level behaviour characterisation βr (t) is composed of four

Evolutionary Computation Volume 25, Number 2 297

J. Gomes, P. Mariano, and A. L. Christensen

Figure 13: Left, Example of the initial conditions in the multirover task. Both rovers have
the same sensor and effector setup, although the setup is only shown for Rover 1. Right,
Initial conditions in the herding task. The shepherds start in a linear formation. In the
figure on the right we have moved the top-most shepherd to show the sensor setup.
The two foxes are placed randomly along the respective line segment.

features: (1) mean distance between the rovers, (2) mean movement speed, averaged
over the two rovers, (3) mean distance of each rover to the nearest rock, averaged over
the two rovers, and (4) number of rocks collected. The individual-level characterisation
βr (a) is composed of the following features: (1) mean distance between a and the nearest
rock, (2) mean movement of a, (3) for how long the type 1 actuator was activated by a,
and (4) for how long the type 2 actuator was activated by a. All means are taken over
the simulation time, and all features are normalised to the range [0,1]. Each team of
individuals is evaluated in ten independent simulation trials.

6.2 Herding Task Setup

In the herding task (Potter et al., 2001), a group of shepherds must drive one or more
sheep into a corral. Additionally, foxes can also be present, which try to capture the
sheep and must be kept away by the shepherds. In our task setup, there are four
shepherds, one sheep, and two foxes. As shown by Potter et al. (2001), the presence of
foxes increases the number of skills required to solve the task, and as such behavioural
specialisation within the shepherds group might be required to solve the task. Only the
controllers for the shepherds are evolved. The shepherds are physically homogeneous.

The initial conditions of the herding task are depicted in Figure 13 (right). Each fox
is placed randomly at the right side of the arena. The shepherds and the sheep have
fixed initial positions. Each shepherd has the following sensors: (1) four sensors that
return the distance of the nearest shepherd (s1 − s4), and (2) eight sensors that return
the distance and relative orientation of the sheep, the two foxes, and the centre of the
corral. The two outputs control, respectively, the linear speed and turning angle of the
shepherd. The experimental parameters are listed in the Appendix.

When a shepherd approaches the sheep or one of the foxes (distance inferior to the
action range A), the sheep/fox moves away from that shepherd. The sheep is otherwise
passive. The behaviour of the foxes is preprogrammed: each fox tries to intercept the
sheep by estimating its future position and by heading in that direction. A trial ends
when the sheep enters the corral or is captured by a fox.

298 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

The fitness function rewards the shepherds for getting the sheep closer to the corral,
and in case the sheep is successfully corralled, for the amount of time it took:

Fh =
{

2 − τ/T if sheep is corralled,

max(0, 1 − df /di) otherwise,
(5)

where τ is the number of time steps elapsed, T is the maximum trial length, df is the
final distance of the sheep to the corral, and di is the initial distance.

The team-level behaviour characterisation βh(t) describes the effects of the shep-
herds on the sheep: (1) final distance of sheep to the corral, (2) mean distance of sheep to
the border of the arena, (3) mean distance between the sheep and the foxes, and (4) trial
length. The agent-level characterisation βh(a) describes the role of shepherd a: mean
distance of a to (1) the sheep, (2) the corral, (3) the first fox, and (4) the second fox. All
means are taken over the simulation time, and all features are normalised to the range
[0,1]. Each team is evaluated in ten independent simulation trials.

6.3 Evolutionary Setup

NEAT (Stanley and Miikkulainen, 2002) is a widely used neuroevolution algorithm,
and one of the most successful approaches in the evolutionary robotics domain. NEAT
simultaneously optimises the connection weights and the topology of the neural net-
work. It employs speciation and fitness sharing to maintain high genotypic diversity
in the population, and to protect topological innovations. It should be noted, however,
that in the evolutionary robotics domain, the genotypic diversity is largely unrelated
to behavioural diversity. Very similar behaviours can be originated by totally differ-
ent genotypes (neural networks), while similar neural networks can originate different
behaviours (see e.g., Mouret and Doncieux, 2012). Increasing the genotypic diversity
therefore does not necessarily cause a greater exploration of the behaviour space (Gomes
et al., 2015c).

The parameters of the NEAT algorithm were the same for both tasks and are listed in
the Appendix. Novelty-driven cooperative coevolution was implemented over NEAT
(see Section 3) with the same parameter values as the predator-prey experiments (see
Section 5.2). In order to implement the NSGA-II algorithm in NEAT, the individuals were
scored according to their Pareto front and crowding distance, respecting the original
NSGA-II ranking, and the selection and speciation processes relied on these scores.

6.4 Results

Figure 14 summarises the highest team fitness scores achieved in each evolutionary run
for each method and each task. Overall, the results obtained in both tasks are consistent
with the results obtained with the predator-prey task (see Section 5). In the herding task,
Fit displays a very poor performance, and the best solutions consistently failed to drive
the sheep toward the corral. In the multirover task, the performance of Fit displayed a
very high variability: some runs achieved good solutions, where a reasonable number
of rocks were collected, while others failed completely, with not a single rock collected.
In both tasks, NS-Team significantly outperformed Fit (Mann-Whitney, adjusted p <

0.001). In the herding task, NS-Team consistently evolved solutions where the sheep was
corralled (fitness over 1), and in the multirover task it consistently evolved solutions
where at least three rocks were collected.

The relative performance of the novelty variants is also similar to the previous
results. Novelty with team-level characterisations (NS-Team) displayed the highest per-
formance in the multirover task (p < 0.01) and a similar performance to NS-Mix in the

Evolutionary Computation Volume 25, Number 2 299

J. Gomes, P. Mariano, and A. L. Christensen

Figure 14: Highest team fitness scores achieved with each method and task. Each treat-
ment was repeated in 30 independent evolutionary runs. The whiskers represent the
highest and lowest value within 1.5 IQR.

herding task (p = 0.35). Novelty based on individual-level characterisations (NS-Ind)
was always significantly inferior to NS-Team (adjusted p < 0.05). The herding task was
the only one where NS-Mix was able to match the performance of NS-Team. One possi-
ble reason for this result is that the herding task requires division of labour rather than
tight cooperation between the agents: each agent can perform its subtask independently
without relying on other agents, for example, chasing one specific fox or attempting to
corral the sheep.

The analysis of the best-of-generation (BoG) teams (see Figure 15) reveals that Fit
fails in the herding task because it strongly converges to a very narrow region in the
team behaviour space. In the multirover task, the problem of premature convergence
is not so severe, as evidenced by the relatively high levels of BoG team dispersion
(see Figure 16). The performance of Fit was, however, significantly inferior to the other
methods that obtained similar values of BoG team dispersion. The results in Figure 15
(top) suggest an explanation for this phenomenon: although Fit achieves a fair amount
of behavioural exploration, this exploration is focused on a region that is distant from
high-quality solutions (bottom right corner of the space).

In both tasks, NS-Team and NS-Mix display the highest levels of team behaviour
dispersion, considering all teams (p < 0.001). NS-Ind has relatively high levels of in-
dividual behaviour dispersion in both tasks, but they neither translate into a higher
diversity of team behaviours nor achieve higher-quality solutions.

7 Discussion

7.1 Premature Convergence to Stable States

Our results with a simple genetic algorithm and the predator-prey task first showed
that fitness-based coevolution (Fit) often fails as the task becomes more complex. The
populations often converge to suboptimal equilibria and therefore fail to achieve ef-
fective solutions for the task. In Section 6, we tried fitness-based coevolution with a
more elaborate neuroevolution algorithm, NEAT, that sustains high genetic diversity
in the populations. We experimented with two additional tasks: multirover and herd-
ing. Even with higher genetic diversity in the populations, fitness-based coevolution
often converged prematurely in these tasks. As previous works have shown (Wiegand,
2004; Panait et al., 2006b), premature convergence is not necessarily caused by lack of
genetic diversity but by a strong attraction to stable states: populations can become

300 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Figure 15: Behaviour of the best-of-generation teams in representative evolutionary
runs. The behaviour space was reduced to a two-dimensional space with Sammon
mapping.

Figure 16: Mean dispersion of the best-of-generation individuals, team behaviour ex-
ploration, and individual behaviour exploration (see Section 4) for each evolutionary
setup. The respective standard error bars are shown.

overadapted to one another. The issue is not related to the evolutionary algorithm itself
but to the way the population individuals are rewarded in a coevolutionary algorithm.

As suggested in previous works (Panait, 2010), we increased the number of collabo-
rations with which an individual is evaluated, to increase the likelihood of convergence
to (near-)optimal solutions. This strategy, however, only worked in the two-population
setup. In the three-population setups, increasing the number of random collaborations
failed to improve the performance of fitness-based coevolution. Our results showed that
increasing the number of collaborations does not help the coevolutionary algorithm to
escape stable states.

Evolutionary Computation Volume 25, Number 2 301

J. Gomes, P. Mariano, and A. L. Christensen

7.2 Novelty-Driven Coevolution

To overcome convergence to suboptimal equilibria, we proposed to add a novelty score
in the evaluation of the individuals of each population. We assessed three coopera-
tive coevolutionary algorithms based on novelty search, each with a different way of
computing the novelty scores: (1) novelty based on team-level behaviour characterisa-
tions (NS-Team), (2) novelty based on agent-level characterisations (NS-Ind), and (3) a
combination of the two (NS-Mix). In all methods, we used a multiobjective algorithm,
NSGA-II, to combine the novelty and team fitness objectives. In the case of NS-Mix,
three objectives were used: individual novelty, team novelty, and team fitness.

Our results clearly revealed that the most effective way of introducing novelty
search in CCEAs is NS-Team. The relative performance of the novelty-based methods
was consistent across all the considered task setups: NS-Team > NS-Mix > NS-Ind. The
algorithms based on individual-level evaluations (NS-Ind and NS-Mix) could evolve
more diverse agent behaviours, but typically this did not translate to more diverse
or effective team solutions. Our results suggest that encouraging novelty of agent be-
haviours can actually be harmful for the adaptation of the populations to one another.
NS-Ind was always the lowest-performing novelty-based method.

When compared to fitness-driven coevolution, NS-Team evolved significantly better
solutions for almost all task setups. The more challenging the task setup was, the greater
the performance difference between NS-Team and Fit, as NS-Team successfully managed
to avoid convergence to stable states. NS-Team could also discover a greater diversity
of team behaviours in a single evolutionary run. In the predator-prey task, we showed
that NS-Team evolved a diverse set of solutions for the task, whereas Fit tended to focus
on a single class of solutions.

Besides the three tasks used in this article, recent work has also confirmed the
advantages of NS-Team using two different simulated multirobot tasks: a keepaway
soccer task (Gomes et al., 2014a) and a cooperative item collection task (Gomes et al.,
2015a). In future work, we will evaluate the solutions evolved by NS-Team in real
multirobot systems, to validate that the diversity and quality of evolved behaviours are
transferable to real systems.

7.3 Scalability with the Number of Agents

In the predator–prey task, we evaluated NS-Team in task setups varying from two to
seven agents, with each agent evolving in a separate population. NS-Team scaled well
with the number of agents, evolving good solutions for all team sizes. For the same
task setup, increasing the number of predators never harmed the performance of NS-
Team. Our analysis revealed that NS-Team can take advantage of most of the available
agents to solve the task even when a lower number of agents is actually enough, which
suggests that NS-Team can evolve cooperation for a relatively large number of agents.

In future work, we will evaluate the proposed approach with larger multiagent
systems. One concern is that with relatively large teams, one particular agent might
not have a significant impact in the behaviour of the team as a whole, thus resulting
in less accurate fitness and novelty gradients. In recent work (Gomes et al., 2015b),
we proposed an algorithm, Hyb-CCEA, for the evolution of partially heterogeneous
teams, that is, heterogeneous teams with homogeneous subteams. In ongoing work, we
are assessing how Hyb-CCEA can be combined with novelty-driven coevolution. We
hypothesise that by having multiple agents share the same controller, it might be easier
for evolution to modify the behaviour of the team as a whole.

302 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

7.4 Parameter Sensitivity and Generalisation

One of the main concerns when using novelty-based techniques is the necessity of
providing a behaviour similarity measure (Kistemaker and Whiteson, 2011). For each
of the considered tasks, we chose a small number of behavioural traits that intuitively
described the behaviour of the agents in the context of the task objective. The cho-
sen behavioural traits were based on systematically derived behaviour characterisations
(Gomes et al., 2014c): they were always directly observable in the task and did not
require complex calculations or fine tuning. Although the definition of behavioural
measures did not pose a problem in our tasks, in future work we will experiment with
task-independent (generic) behaviour distance measures (Doncieux and Mouret, 2010;
Gomes and Christensen, 2013) and other techniques that make novelty less sensitive to
the choice of the distance measure (Doncieux and Mouret, 2013).

In our experiments, we used both team-level (in NS-Team) and individual-level
characterisations (in NS-Ind and NS-Mix). The definition of individual-level
characterisations can be more delicate, as it can be hard to describe the behaviour
of a single agent in a way that it is mostly independent from the other cooperating
agents. Our results, however, showed that the use of individual-level characterisa-
tions never brought significant advantages over NS-Team, which uses only team-level
characterisations.

Another significant algorithmic parameter is the combination of novelty and fitness
scores. In most of the experiments presented in this article, the novelty objectives were
always combined with a team fitness objective via multiobjective optimisation (Mouret,
2011; Gomes et al., 2015c; Lehman et al., 2013), which does not rely on domain-specific
parameters. One possible direction of future work would be to investigate techniques for
combining novelty and team fitness specifically tailored for coevolutionary algorithms.

Our tasks were based on two different neuroevolution algorithms: a simple genetic
algorithm with direct encoding and no crossover, and NEAT (Stanley and Miikkulainen,
2002), a neuroevolution algorithm with topology evolution, crossover, and fitness shar-
ing. Novelty-driven coevolution performed well with both algorithms, and the relative
performance of the methods was consistent, which suggests that the proposed methods
are independent of the underlying evolutionary algorithm. As novelty-driven coevolu-
tion is essentially just a different approach for scoring the individuals, in future work we
will assess how novelty-driven coevolution can be integrated in other more elaborate
coevolutionary algorithms, such as CONE (Nitschke et al., 2009) or Hyb-CCEA (Gomes
et al., 2015b).

8 Conclusion

In this article, we addressed the problem of premature convergence in cooperative
coevolutionary algorithms (CCEAs), a well-known problem that compromises the use
of CCEAs as optimisation tools. We showed that rewarding individuals that cause
novel team behaviours (NS-Team) is a promising approach to avoid convergence to
suboptimal equilibria. NS-Team consistently outperformed traditional fitness-driven
coevolution across multiple task setups, achieving higher team fitness scores and a
wider diversity of effective solutions. The proposed approach only requires one col-
laboration to evaluate each individual, which contrasts with previous approaches
that relied on using a large number of collaborations to overcome premature con-
vergence. Therefore, NS-Team can be used in problem domains where the evaluations
are costly, such as in embodied multiagent systems, and scales well with the number of

Evolutionary Computation Volume 25, Number 2 303

J. Gomes, P. Mariano, and A. L. Christensen

populations in the coevolutionary algorithm. NS-Team has been successfully used in a
total of five different multirobot tasks so far, which confirms the general applicability
of the proposed approach. To the best of our knowledge, our approach is the first that
overcomes the problem of convergence to suboptimal equilibria in the domain of em-
bodied multiagent systems and in a cooperative coevolutionary algorithm with more
than two populations.

Acknowledgments

This research was supported by Fundação para a Ciência e Tecnologia (FCT) under grants
SFRH/BD/89095/2012, UID/EEA/50008/2013, and UID/Multi/04046/2013.

References

Cuccu, G., and Gomez, F. J. (2011). When novelty is not enough. In Proceedings of the European
Conference on the Applications of Evolutionary Computation, pp. 234–243.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. New York: Wiley.

Doncieux, S., and Mouret, J.-B. (2010). Behavioral diversity measures for evolutionary robotics.
In Proceedings of the Congress on Evolutionary Computation, pp. 1–8.

Doncieux, S., and Mouret, J.-B. (2013). Behavioral diversity with multiple behavioral distances.
In Proceedings of the Congress on Evolutionary Computation, pp. 1427–1434.

Doncieux, S., and Mouret, J.-B. (2014). Beyond black-box optimization: A review of selective
pressures for evolutionary robotics. Evolutionary Intelligence, 7(2): 71–93.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2): 179–211.

Gomes, J., and Christensen, A. L. (2013). Generic behaviour similarity measures for evolution-
ary swarm robotics. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pp. 199–206.

Gomes, J., Mariano, P., and Christensen, A. L. (2014a). Avoiding convergence in cooperative
coevolution with novelty search. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, pp. 1149–1156.

Gomes, J., Mariano, P., and Christensen, A. L. (2014b). Novelty search in competitive coevolution.
In Parallel Problem Solving from Nature, pp. 233–242.

Gomes, J., Mariano, P., and Christensen, A. L. (2014c). Systematic derivation of behaviour
characterisations in evolutionary robotics. In Proceedings of the International Conference on
the Synthesis and Simulation of Living Systems, pp. 202–209.

Gomes, J., Mariano, P., and Christensen, A. L. (2015a). Cooperative coevolution of morpho-
logically heterogeneous robots. In Proceedings of the European Conference on Artificial Life,
pp. 312–319.

Gomes, J., Mariano, P., and Christensen, A. L. (2015b). Cooperative coevolution of partially
heterogeneous multiagent systems. In Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 297–305.

Gomes, J., Mariano, P., and Christensen, A. L. (2015c). Devising effective novelty search
algorithms: A comprehensive empirical study. In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO), pp. 943–950.

Gomes, J., Urbano, P., and Christensen, A. L. (2013). Evolution of swarm robotics systems with
novelty search. Swarm Intelligence, 7(2-3): 115–144.

304 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Gomes, J., Urbano, P., and Christensen, A. L. (2014d). PMCNS: Using a progressively stricter
fitness criterion to guide novelty search. International Journal of Natural Computing Research,
4:1–19.

Gomez, F., and Miikkulainen, R. (1997). Incremental evolution of complex general behavior.
Adaptive Behavior, 5(3-4): 317–342.

Jansen, T., and Wiegand, R. P. (2004). The cooperative coevolutionary (1+1) EA. Evolutionary
Computation, 12(4): 405–434.

Jordan, M. I. (1997). Serial order: A parallel distributed processing approach. In J. W. Donahoe and
V. P. Dorsel (Eds.), Neural-network models of cognition: Biobehavioral foundations, pp. 471–495.
Amsterdam: North-Holland.

Kistemaker, S., and Whiteson, S. (2011). Critical factors in the performance of novelty search. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 965–972.

Lehman, J., and Stanley, K. O. (2008). Exploiting open-endedness to solve problems through the
search for novelty. In Proceedings of the International Conference on Artificial Life, pp. 329–336.

Lehman, J., and Stanley, K. O. (2010). Revising the evolutionary computation abstraction: Minimal
criteria novelty search. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pp. 103–110.

Lehman, J., and Stanley, K. O. (2011a). Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary Computation, 19(2): 189–223.

Lehman, J., and Stanley, K. O. (2011b). Evolving a diversity of virtual creatures through nov-
elty search and local competition. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pp. 211–218.

Lehman, J., Stanley, K. O., and Miikkulainen, R. (2013). Effective diversity maintenance in
deceptive domains. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pp. 215–222.

Liapis, A., Yannakakis, G. N., and Togelius, J. (2015). Constrained novelty search: A study on
game content generation. Evolutionary Computation, 23(1): 101–129.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. (2005). Mason: A multiagent
simulation environment. Simulation, 81(7): 517–527.

Mouret, J.-B. (2011). Novelty-based multiobjectivization. In S. Doncieux, N. Bredéche, and
J.-B. Mouret (Eds.), New horizons in evolutionary robotics, pp. 139–154. Studies in Computa-
tion Intelligence, vol. 341. Berlin: Springer.

Mouret, J.-B., and Doncieux, S. (2012). Encouraging behavioral diversity in evolutionary robotics:
An empirical study. Evolutionary Computation, 20(1): 91–133.

Naredo, E., and Trujillo, L. (2013). Searching for novel clustering programs. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pp. 1093–1100.

Naredo, E., Trujillo, L., and Martı́nez, Y. (2013). Searching for novel classifiers. In Proceedings of
the European Conference on Genetic Programming, pp. 145–156.

Nitschke, G. S., Eiben, A. E., and Schut, M. C. (2012a). Evolving team behaviors with specialization.
Genetic Programming and Evolvable Machines, 13(4): 493–536.

Nitschke, G. S., Schut, M. C., and Eiben, A. E. (2009). Collective neuro-evolution for evolving
specialized sensor resolutions in a multi-rover task. Evolutionary Intelligence, 3(1): 13–29.

Nitschke, G. S., Schut, M. C., and Eiben, A. E. (2012b). Evolving behavioral specialization in
robot teams to solve a collective construction task. Swarm and Evolutionary Computation, 2:
25–38.

Evolutionary Computation Volume 25, Number 2 305

J. Gomes, P. Mariano, and A. L. Christensen

Nolfi, S. (2012). Co-evolving predator and prey robots. Adaptive Behavior, 20(1): 10–15.

Panait, L. (2010). Theoretical convergence guarantees for cooperative coevolutionary algorithms.
Evolutionary Computation, 18(4): 581–615.

Panait, L., and Luke, S. (2005a). Cooperative multi-agent learning: The state of the art. Autonomous
Agents and Multi-Agent Systems, 11(3): 387–434.

Panait, L., and Luke, S. (2005b). Time-dependent collaboration schemes for cooperative
coevolutionary algorithms. In Proceedings of the AAAI Fall Symposium on Coevolutionary and
Coadaptive Systems, pp. 18–25.

Panait, L., Luke, S., and Harrison, J. F. (2006a). Archive-based cooperative coevolutionary
algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pp. 345–352.

Panait, L., Luke, S., and Wiegand, R. P. (2006b). Biasing coevolutionary search for optimal
multiagent behaviors. IEEE Transactions on Evolutionary Computation, 10(6): 629–645.

Panait, L., Wiegand, R. P., and Luke, S. (2004). A visual demonstration of convergence properties
of cooperative coevolution. In Parallel Problem Solving from Nature, pp. 892–901.

Popovici, E., Bucci, A., Wiegand, R. P., and De Jong, E. D. (2012). Coevolutionary principles. In
G. Rozenberg, T. Bäck, and J. N. Kok, (Eds.), Handbook of natural computing, pp. 987–1033.
Berlin: Springer.

Popovici, E., and De Jong, K. A. (2005). A dynamical systems analysis of collaboration methods
in cooperative co-evolution. In Proceedings of the AAAI Fall Symposium on Coevolutionary and
Coadaptive Systems, pp. 26–34.

Popovici, E., and De Jong, K. (2006). The dynamics of the best individuals in co-evolution. Natural
Computing, 5(3): 229–255.

Potter, M. A., and De Jong, K. A. (2000). Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation, 8(1): 1–29.

Potter, M. A., Meeden, L. A., and Schultz, A. C. (2001). Heterogeneity in the coevolved behaviors of
mobile robots: The emergence of specialists. In Proceedings of the International Joint Conference
on Artificial Intelligence, pp. 1337–1343.

Rawal, A., Rajagopalan, P., and Miikkulainen, R. (2010). Constructing competitive and cooperative
agent behavior using coevolution. In Proceedings of the IEEE Conference on Computational
Intelligence and Games, pp. 107–114.

Risi, S., Hughes, C. E., and Stanley, K. O. (2010). Evolving plastic neural networks with novelty
search. Adaptive Behavior, 18(6): 470–491.

Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on
Computers, 18(5): 401–409.

Stanley, K., and Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2): 99–127.

Whitley, L. D. (1991). Fundamental principles of deception in genetic search. In G. Rawlins (Ed.),
Foundations of genetic algorithms, pp. 221–241. San Mateo, CA: Morgan Kaufmann.

Wiegand, R. P. (2004). An analysis of cooperative coevolutionary algorithms. Unpublished doctoral
dissertation, George Mason University, Fairfax, VA.

Wiegand, R. P., Liles, W. C., and De Jong, K. A. (2001). An empirical analysis of collaboration meth-
ods in cooperative coevolutionary algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 1235–1245.

306 Evolutionary Computation Volume 25, Number 2

Novelty-Driven Cooperative Coevolution

Wiegand, R. P., Liles, W. C., and De Jong, K. A. (2002). Analyzing cooperative coevolution
with evolutionary game theory. In Proceedings of the Congress on Evolutionary Computation,
pp. 1600–1605.

Wiegand, R. P., and Potter, M. A. (2006). Robustness in cooperative coevolution. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO), pp. 369–376.

Yong, C. H., and Miikkulainen, R. (2009). Coevolution of role-based cooperation in multiagent
systems. IEEE Transactions on Autonomous Mental Development, 1(3): 170–186.

Appendix Experimental Parameters

All the evolutionary techniques described in this paper were implemented over ECJ.5

The simulated tasks were implemented over MASON (Luke et al., 2005).6 The source
code can be found here: https://github.com/jorgemcgomes/mase/releases/tag/ECJ_
novelty_driven_coevolution. The parameters of the novelty search algorithm were the
same for all experiments. All experiments with predator–prey task used the same genetic
algorithm parameters, and the experiments with the multirover and herding tasks used
the same NEAT parameters. The parameters are listed in Table 2.

Table 2: Parameters used in the experiments.

Parameter Value Parameter Value Parameter Value

Novelty search
Novelty nearest-k 15 Add archive prob. 2.5% Max. archive size 2000

Genetic algorithm
Population size 150 Elite size 5 Tournament size 5
Mutation type Gaussian Gene mutation prob. 0.05 Crossover prob. 0.5
Crossover type one point

NEAT
Population size 150 Target species count 5 Crossover prob. 0.2
Recurrency allowed true Mutation prob. 0.25 Prob. add link 0.05
Prob. add node 0.03 Prob. mutate bias 0.3

Predator–prey task
Arena side length 100 u Prey placement area 100 u2 Max. trial length 300 s
Prey speed 1 u/s Pred. linear speed 1 u/s Pred. turn speed 45◦/s
Num. predators 2–7 Prey vision range 4–13 u

Multirover task
Arena side length 150 u Max. trial length 1000 s Max. linear speed 1 u/s
Max. rotation speed 23◦/s Sensor range 25 u Min. actuator 25 s
Rock diameter 12 u Agent diameter 4 u activation time

Herding task
Arena side length 150 u Max. trial length 500 s Sheep speed 1 u/s
Fox speed 1 u/s Shepherd linear speed 1 u/s Shep. turn speed 23◦/s
Action range 5 u Shep. sensor range 25 u

5http://cs.gmu.edu/∼eclab/projects/ecj/
6http://cs.gmu.edu/∼eclab/projects/mason/

Evolutionary Computation Volume 25, Number 2 307

