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Abstract 

In 1995, the Basel Accords introduced an alternative method to compute the market risk 

charge through the use of a risk model developed internally by the financial institution. These 

internal models, based on the Value-at-Risk (VaR), follow certain rules that are defined under 

the Basel Accords. From this moment on, risk analysts and financial academics focused their 

attentions on how to accurately estimate the VaR in order to reduce the regulatory capital. 

However, considering the market risk framework defined in the Basel Accords, the best 

strategy to optimize the regulatory capital may not lie in truthfully disclosing an accurate 

VaR estimation. In this study, we propose to solve, through dynamic programming, for the 

optimal policy function for disclosing the reported VaR based on the estimated value that 

minimizes the daily capital charge. This policy function will provide the optimal percentage 

of the estimated 1-day VaR that should be disclosed, taking into account the impact that this 

disclosure decision will have in future capital charges, by managing the rules defined in the 

Basel Accords. Our goal is to prove that truthful disclosure of an accurately estimated VaR 

is suboptimal. The main results from our investigation show that using the optimal reporting 

strategy leads to an average daily reduction in the capital requirements of 4.32% in a 

simulated environment, compared with a normal strategy of always truthfully disclosing the 

estimated 1-day VaR, and leads to an average daily saving of 7.22% when applied to our 

S&P500 test portfolio. 
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Resumo 

Em 1995, os Acordos de Basileia introduziram um método alternativo para o cálculo o 

capital regulamentar, associado ao risco de mercado, através de um modelo de risco 

desenvolvido internamente pelas instituições financeiras. Estes modelos internos, baseados 

no Value-at-Risk (VaR), seguem as regras definidas nos Acordos de Basileia. A partir desse 

momento, analistas de risco e académicos procuraram descobrir e desenvolver métodos que 

permitissem estimar o VaR com maior precisão como forma de reduzir os requisitos de 

capital. Contudo, considerando o quadro regulamentar que se encontra definido nos Acordos 

de Basileia, a melhor estratégia para otimizar os requisitos de capital poderá não estar 

diretamente relacionada com a divulgação de uma estimativa precisa do VaR. Neste estudo 

propomos resolver, através de programação dinâmica, a função de política ótima para a 

divulgação do VaR que minimiza o capital regulamentar. Desta função irão resultar as 

percentagens ótimas do VaR diário estimado que deverão ser reportadas, tendo em conta o 

impacto que estas decisões irão ter nos requisitos de capital futuros, através da gestão das 

regras definidas nos Acordos de Basileia. O nosso objetivo principal é comprovar que o 

reporte de uma estimativa precisa do VaR é subótima. Os principais resultados desta 

investigação demonstram que o uso da estratégia de reporte ótima induz uma redução diária 

de 4.32% no capital regulamentar comparado com uma estratégia normal de reporte constante 

do valor estimado para o VaR, e conduz a uma redução na ordem dos 7.22% quando aplicada 

ao nosso portfólio de teste composto pelo índice S&P500. 
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1. Introduction 

In 1995, the Basel Committee on Banking Supervision (BCBS) introduced an internal 

model to compute the market risk – Value-at-Risk (VaR) – and define the regulatory capital 

charge used to cover future losses related to this type of risk. This model was described as 

the estimate for the worst possible loss that a certain portfolio could suffer considering a 

predetermined statistical confidence (Basel Committee on Banking Supervision, 1995).  

Since then, the Basel Accords, and the VaR method, were adopted by more than 100 

countries (Alexander, 2008). Due to this worldwide use, there exists a big literature on this 

topic and, in particular, about the methods to estimate the VaR (Angelovska, 2013; 

Aussenegg & Miazhynskaia, 2006; Hull & White, 1998; Totic, Bulajic, & Vlastelica, 2011; 

and Ünal, 2011). 

However, as far as we know, there exists few literature on possible strategies to optimize 

the daily capital charge based on VaR internal models. Some of these studies focus on the 

idea that the best method to optimize the daily capital charge is by accurately estimating the 

VaR (McAleer, 2009), while others explored the use of financial options to minimize VaR 

and, consequently, the capital charge (Ahn, Boudoukh, Richardson & Whitelaw 1999; and 

Deelstra, Ezzine, Heyman & Vanmaele 2007).  

Nevertheless, there is one study that stands out from the others that was introduced by 

McAleer, Jimenez-Martin & Pérez-Amaral (2009). In it, the authors developed a function 

that minimizes the daily capital charge through the management of the number of 

exceedances (i.e. number of days where the actual loss exceeds the VaR estimate) that a 

financial institution (FI) is allowed to have, according to the Basel rules (Basel Committee 

on Banking Supervision, 1995). With this model, risk analysts obtain the optimal percentage 

of the forecasted VaR that should be reported taking into account two variables: the number 

of exceedances recorded since the beginning of the regulatory period; and the number of 

exceedances recorded in the last 25 days. 

The authors reached the conclusion that using their function together with a VaR model 

could reduce the daily capital charges up to 14.3% when compared with the RiskMetrics 

Model.1 However, to achieve the perfect model it is necessary to do a calibration test for the 

                                                 
1 Method to compute the VaR created by Reuters and JP Morgan that assumes that the portfolio returns are 

normally distributed 
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parameters, which is computational intensive and time consuming, and no out-of-sample 

tests were performed in order to verify if this would work in a real life context.  

Considering this and the small number of studies in this field, we propose to create a 

model for the optimization of the regulatory capital charge by choosing the VaR disclosure 

based on the estimated VaR and other key variables. This optimal disclosure policy is solved 

using dynamic programming methods. 

Dynamic programming is a method to solve for optimization problems that can be stated 

recursively. The solution that is obtained is a policy function that defines the optimal course 

of action in each possible state of nature, taking into consideration the effect of those choices 

in the future. 

In the case of our model, the policy function represents the percentage of the estimated 

1-day VaR that should be disclosed, and this optimal decision will depend on three state 

variables which, together, fully describe the state of nature: time remaining for the regulator 

to do the backtesting and review the multiplier (𝑇𝑡𝑜𝐵); multiplier that is currently in use (𝐾); 

and the number of exceedances that were recorded until the moment of the decision, during 

the current regulatory period (𝐸𝐶). For each combination of these state variables, there exists 

an optimal decision that optimizes today’s capital charge taking into account the effect that 

this decision will have in the likelihood of future states of nature and, as a consequence, in 

future capital charges. The range of these variables was chosen according to the rules defined 

by the Basel Accords for the use of internal models (Basel Committee on Banking 

Supervision, 1995). 

This problem will be solved as an infinite horizon Markov decision process with the use 

of the function iteration algorithm on MatlabTM software. 

The advantage of our model is the elimination of any subjective choice or calibration 

need for the parameters, defining the optimal policy according to the maximization of a value 

function that represents the present value of a FI’s capital charges (that has a negative sign), 

which are directly related to the FI’s cost of capital. 

In a general way, the results of the optimal policy point out to an aggressive strategy 

when exceedances are low, i.e.  underreport the estimated VaR, and to a more conservative 

strategy when exceedances are high, i.e. overreport the estimated VaR. There are some 

deviations from this general strategy that will be analyzed later on in Section 4.  
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The results from this model will then be tested in a Monte Carlo simulation and 

afterwards they will be applied to a real portfolio in order to compare the performance of the 

optimal reporting strategy (i.e. reporting the 1-day VaR according to the optimal policy) with 

that of a strategy that truthfully reports the estimated VaR. The main results from these 2 

analyses were very promising. In the Monte Carlo simulation, we concluded that our model 

performed better in, approximately, 78% of the cases, which translated into an average 

relative saving in the daily capital charge of 4.32%. In our S&P500 portfolio simulation test, 

the results were even better, pointing out to a better performance of the optimal strategy 

model in 82% of the cases and an average relative saving in the daily capital charge of 7.22%. 

This investigation gives four main contributions for the financial literature: defines an 

optimal rule to minimize the regulatory capital charge that takes advantage of the Basel rules; 

demonstrates that the minimization of the capital requirements goes beyond the formulation 

of a good VaR estimation model even though, as we will see, the accurate estimation of the 

VaR plays an important role in the effectiveness of the optimal strategy; gives some insights 

related with the impact that the state variables may have in the choice of the disclosed 1-day 

VaR by risk analysts; and provides an incentive for the development of more complex studies 

and models to do this optimization. 

The next sections of this dissertation are organized as follows: Section 2 reviews the 

necessary concepts for the development of the model; Section 3 analyses the most relevant 

literature for this dissertation as well as the different uses of VaR in the literature; Section 4 

introduces our model, the methodology used to achieve the optimal policy function and 

analyses the results; Section 5 tests the performance of the optimal policy in the context of a 

Monte Carlo simulation while Section 6 does this in a real life context by applying the 

optimal policy to a real portfolio; Section 7 concludes the dissertation by summarizing the 

main findings and giving suggestions for future studies. 
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2. Theoretical Framework 

In this section we will review the most important concepts related with this dissertation. 

First we will give a summary about the purpose of the Basel Committee on Banking and 

Supervision (BCBS) alongside with the Basel Accords. Afterwards the VaR model will be 

explained. Lastly, we will introduce the dynamic programming framework that will be used 

to attain the goal of this dissertation, i.e. the optimization of the capital charge. 

 

2.1  Basel Accords 

The Bank for International Settlements (BIS) was established in 1930 with the mission 

of promoting the cooperation between central banks, the financial and monetary stability and 

to act as a bank for central banks (Bank for International Settlement, 2015). The BIS has 60 

member central banks, including Portugal’s Central Bank and the European Central Bank 

(ECB). 

In order to promote this cooperation, it hosts independent organizations and committees 

that have the purpose of improving financial stability. One of these committees is the Basel 

Committee on Banking Supervision (BCBS). The BCBS was created in 1974 by the central 

bank governors of the G10 countries as a forum to discuss regulation of banks with the goal 

of increasing the efficiency of risk management and banking supervision.2 From these forums 

a report arises with the name of Basel Accords that consists in a number of suggestions for 

the improvement of the current risk management framework (Bank for International 

Settlements, 2015).  

The first Basel Accord (1988) introduced minimum capital requirements to cover 

financial risks (in a standardized approach) and was the main driver for the importance of 

this issue in the future. Subsequent to this, in 1995 an amendment, known as Market Risk 

Amendment, was released in which it was discussed an internal model to address the market 

risk (Value at Risk), that was defined as an estimate of the worst possible loss that a bank 

could suffer according to a predetermined statistical confidence (Basel Committee on 

Banking Supervision, 1995).   

With the increase of the complexity of the financial products and the need to distinguish 

                                                 
2 Belgium, Canada, France, Germany, Italy, Japan, Netherlands, Sweden, UK and USA. 
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between the different types of financial risk, it was made a revision to the previous 

framework, which resulted in the Basel Accords II, launched in 2004. In this new framework 

there were defined three pillars: minimum capital requirements, supervisory reviews 

(recommendations for supervisors) and market discipline (disclosure requirements in order 

to increase transparency). And it was distinguished three types of risk: credit risk, operational 

risk and market risk. Since the focus of this dissertation is in the market risk, we will only 

analyze the impact of the Basel Accords for this type of risk. 

Although Basel II has defined some important guidelines about the purpose of the BCBS 

and the different types of risk, it did not change the computation process for the market risk 

capital requirements – which is what is important for this study – therefore the following 

measures result from the analysis of the 1995 Market Risk Amendment. 

According to the Basel rules (Basel Committee on Banking Supervision, 1995), the 

Market Risk Charge (MRC), i.e. the minimum capital requirement to cover the market risk, 

is divided in two types of risk: General Risk Charge (GRC) and Specific Risk Charge (SRC). 

 𝑀𝑅𝐶 = 𝐺𝑅𝐶 + 𝑆𝑅𝐶 (1) 

To compute these, two methods are described: the Standardized Method and Internal 

Models. The Standardized Method consists in predetermined rules that define the market risk 

according to the nature of the assets, e.g. bond or stock (for more information on this topic 

refer to Alexander 2008). The internal model – the focus of this dissertation – is a model 

developed by a bank, which needs to be approved by the regulator, that can accurately predict 

the market risk. When an entity chooses the internal model, these models should be based on 

the Value-at-Risk (VaR). The value computed with this method is the GRC while the SRC 

will depend on the ability of the risk model to capture specific risk. 

However, to use the internal model, some rules need to be followed: the model must 

estimate the 10-day VaR (2 weeks holding period) at a 1% significance level;3 the VaR 

should be estimated on a daily basis; the historical sample used should be at least 1 year of 

data; and the data must be updated every 3 months or when a sharp change in prices occurs. 

Considering these rules, one would assume that the GRC would be equal to the 10-day VaR 

at a 1% significance level. However, there are some risks in setting the GRC as the 10-day 

                                                 
3 If the portfolio is linear (i.e. does not have options) the 1-day VaR can be scaled by using the square root of 

time. 
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VaR at 1% significance level that the BCBS have identified, e.g. past observations cannot 

reflect the future behavior, normality assumption may not be verified, and, in statistical terms, 

a confidence level of 99% would mean that the bank could go bankrupt once every 4 years.  

 Because of this, the Market Risk Amendment (Basel Committee on Banking 

Supervision, 1995) also stipulates that the 10-day VaR should be multiplied by a factor (k) 

that is related to the performance of the FI’s model. This performance is evaluated by 

producing a backtesting that evaluates the model’s ability to predict the 1-day VaR in the last 

250 business days. This is done by comparing the VaR estimate with the profit/loss on that 

day, in order to determine whether an exceedance has occurred (i.e. if the loss was higher 

than the one predicted by the VaR). 

The factor, commonly known as the multiplier, is then defined according to Table 1. This 

allows supervisors to have a higher confidence when approving models and provides an 

incentive for risk analysts to create good models in order to reduce the capital requirements 

(i.e. the capital charge) through lower multipliers.  

Lastly, in order to avoid the need of sharp increases in the minimum required capital 

related with the high volatility of the market risk, especially when a sharp move in prices 

occurs, it is used the average of the last sixty days VaR in the calculation of the GRC. 

In short, the previous rules can be translated in equation 2. 

 

 
𝐺𝑅𝐶𝑡 = 𝑀𝑎𝑥 (𝑘 ×

1

60
∑ 𝑉𝑎𝑅1,1%,𝑡−𝑖

59

𝑖=0

× √10, 𝑉𝑎𝑅1,1%,𝑡 × √10) (2) 

In terms of the SRC the BCBS defines that it should be zero when regulators approve 

that the VaR model is capturing all the specific risk, otherwise it should be estimated 

according to the standardized method. 

An important note about the Basel accords is that none of these measures are mandatory, 

Exceedances 𝒌 factor 

≤4 3 

5 3.4 

6 3.5 

7 3.65 

8 3.75 

9 3.85 

≥10 4 
 

Table 1 – Relation between the number of exceedances and the k factor. 
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these are recommendations that are discussed by the committee, in order to improve risk 

management efficiency. The application of these measures depend on their adoption by the 

regulators in each country. Nonetheless, the first Basel accord and the 1995 Market Risk 

Amendment were adopted by more than 100 countries (Alexander, 2008) – including the 

Eurozone countries – which demonstrates the large influence of the BCBS. 

Due to the effect of the 2007/2008 financial crisis the BCBS revised Basel II and 

published a new report in 2009 entitled “Revisions to the Basel II market risk framework”. 

The main reason for this was that the previous measures did not account for some key risks, 

e.g. default risk and migration risk. 

In this report, some of the rules to use internal models were changed. FIs are now obliged 

to update their data once every month and they must compute, on a weekly basis, a stressed-

VaR (sVaR) measure in order to verify how their model would react to a period of financial 

stress. This sVaR is also part of the GRC, and it is added to equation 2.  

Regarding the SRC, for VaR models that have specific risk recognition it should now be 

added an IRC (Incremental Risk Charge) to the MRC, which is an estimate of the exposure 

to systematic and specific default, credit migration, credit spread and equity price risk in a 

period of 1 year and with a confidence level of 99.9%. 

These changes will not be considered in this study since the computation of the sVaR is 

ambiguous and difficult to implement in an optimization model. Therefore it will only be 

considered the rules reported until the Basel Accords II, meaning that our model will optimize 

one part of the GRC (equation 2) and not the full amount as it is defined nowadays. 

 

2.2  Value-at-Risk 

As it was stated above, the Value-at-Risk represents the loss that will not be exceeded 

with a certain confidence level (1 − 𝛼) over a certain period of time (ℎ) (Alexander, 2008). 

From this it is easy to understand that the VaR is a statistic and it is related with a probability: 

 𝑃(𝑋ℎ < −𝑉𝑎𝑅ℎ,𝛼) = 𝛼 (3) 

The popular use of this risk measure to address market risk is mainly due to its 

comprehensibility and ability to be disaggregated and aggregated while taking into account 

the dependencies between the assets, allowing the determination of the origin of the risks in 
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a portfolio. In order to estimate VaR it is necessary to define the values for the two parameters 

𝛼 and ℎ, the distribution of h-day returns (𝑋ℎ) and the method used to estimate the VaR.  

The first two parameters have to be chosen according to the rules under the Basel II – 𝛼 

is equal to 1% and ℎ is equal to 10 trading days. The return distribution will depend on the 

estimation method used. The choice of this method is the most important step in the 

development of the VaR model since it is one of the main drivers for its performance. In a 

study made by Beder (1995) the VaR was computed according to eight different 

methodologies for three portfolios and the results indicated eight significantly different 

values, varying in some cases by more than fourteen times in the same portfolio. 

Alexander (2008) explores three main methods for VaR estimation: Parametric VaR, 

Historical Simulation and Monte Carlo Simulation. The Parametric VaR model is based on 

the assumption that the return distribution follows a certain parametric distribution, usually 

the Normal distribution. The historical simulation is a nonparametric method that uses the 

empirical distribution of the returns in a given sample. The Monte Carlo Simulation is a more 

advanced method that consists in using a statistic model to simulate the future returns, being 

at the same time extremely flexible but also more prone to risk model risk. 

According to a survey made by Pérignon and Smith (2008), the most common method 

used by FIs is the historical simulation, choice that is not difficult to understand since it is 

the one that has the least assumptions and is easier to explain in case of failing. 

In this dissertation the estimation method used is the Parametric Normal – assumes that 

the return distribution follows a normal distribution – due to its simplicity and easy 

computation. Therefore the focus, from now on, will be on this method. 

To derive the formula for the VaR under the parametric normal it is necessary to assume 

that the return distribution follows a normal i.i.d. (independent and identically distributed) 

with a certain mean and standard-deviation (i.e. volatility): 

 𝑋ℎ~𝑁(𝜇ℎ, 𝜎ℎ) (4) 

Both parameters are the forecasts of the future expected return and volatility over the 

following h-days. From this assumption it is easy to derive the formula for the VaR.4 

 𝑉𝑎𝑅ℎ,𝛼 = 𝛷−1(1 − 𝛼) × 𝜎ℎ − 𝜇ℎ (5) 

                                                 
4 The full derivation can be found in Alexander (2008) page 56-57 
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Alexander (2008) demonstrated that using an expected value (i.e. mean) equal to zero 

makes the computation of VaR easier and only has a big effect in its value when the risk 

horizon (ℎ) is higher than one month. Thus, to simplify this equation, we will assume that 

the mean is equal to zero. 

 𝑉𝑎𝑅ℎ,𝛼 = 𝛷−1(1 − 𝛼) × 𝜎ℎ (6) 

Now that the formula is derived there is one last concept to understand: scalling. Basel 

rules define that the 1-day VaR can be scalled in order to obtain the 10-day VaR. The purpose 

of this strategy is to avoid the use of a big sample when a 10-day VaR is estimated, since this 

would lead to a forecast of the parameters based in a considerable amount of past data. 

This scalling is done by multiplying the 1-day VaR by the square root of time (in our 

case, 10 days).5 However, it is necessary to do an extra assumption to be able to use this rule: 

the arithmetic returns are approximately equal to the geometric returns. 

When this rule is used it means that we are computing a dynamic VaR. This assumes that 

the portfolio is rebalanced every day, i.e. its value has to remain the same in the end of each 

trading day over the h-day horizon. This is why the Basel Accords states that the VaR must 

be computed on a daily basis. 

Lastly, it is necessary to forecast the volatility to compute the VaR. This is another of the 

main drivers that are directly related with the performance of the model. Some of the most 

common methods, in ascending order of complexity, are the equally weighted variance, the 

EWMA (Exponentially Weighted Moving Average) and GARCH (Generalized 

Autoregressive Conditional Heteroscedasticity) models.  

The difference between the equally weighted variance and the others is that the first is 

sensitive to the sample size, while the others are not, because the weight of an observation in 

the volatility estimation decays exponentially with the age of that observation. Due to this, it 

becomes a better method to estimate future values.  

For these reasons, the method that will be used in the empirical tests is the EWMA since 

it is the simplest method that gives good forecasts for the future variance. 

The recursive equation of this method is the following (Alexander, 2008):  

 𝜎̂𝑡
2 = (1 − 𝜆)𝑟𝑡−1

2 + 𝜆𝜎̂𝑡−1
2  (7) 

                                                 
5 The full derivation can be found in Alexander (2008) page 59 
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According to this equation, the variance is computed in a recursive form and this is the 

reason for the smaller impact of past observations on the variance, as time passes. This can 

be observed in the next equation. 

 𝜎̂𝑡
2 = (1 − 𝜆)(𝑟𝑡−1

2 + 𝜆𝑟𝑡−2
2 + 𝜆2𝑟𝑡−3

2 + 𝜆3𝑟𝑡−3
2 + 𝜆4𝑟𝑡−4

2 + ⋯ ) (8) 

To apply this method it is necessary to give a value to the parameter 𝜆, i.e. the smoothing 

constant, in order to define the different weights that the most recent and older observations 

have in the future variance. JPMorgans and Reuters performed a calibration for this 

parameter in the “RiskMetricsTM – Technical Document” by using the RMSE (Root Mean 

Square Error). The values achieved were 0.94, when considering daily data, and 0.97, for 

monthly data. 

 

2.3  Dynamic Programming 

Dynamic programming (DP) is used to do optimizations when a multi-stage decision 

problem is addressed, i.e. the optimal decision depends on the current state. 

The base for the DP model is Bellman’s principle of optimality (Bellman, 1954) that 

states that an optimal policy should always define the optimal decision to take considering 

all the previous decisions in order to maintain the final result in its optimal level. 

Dynamic models are categorized depending on whether time, state space (𝑆) and action 

space (𝑋) are discrete or continuous (Miranda & Fackler, 2002). As it will be demonstrated 

later, the proposed optimization problem has a finite discrete space of states and an infinite 

continuous space of actions. However, in order to reduce the complexity of the problem, we 

will discretize the action variable, meaning that the correct model to use is one that is discrete 

in time, state and actions. The reason for this choice will be explained in Section 4.  

The discrete model that will be used is the discrete Markov Decision Model. Its structure 

is: in each period 𝑡 it is observed the current state 𝑠𝑡 and, according to the characteristics of 

that state, an action 𝑥𝑡 is taken by an agent, resulting in a reward 𝑓(𝑥𝑡, 𝑠𝑡) that is directly 

related with the state and the action (Miranda & Fackler, 2002). Given the decision, the agent 

will pass to the next state 𝑠𝑡+1. This transition is deterministic, if the next state can be 

determined just from knowing the current state of nature and action, otherwise it is stochastic. 

If it is stochastic, it is necessary to define a transition function 𝑔(𝑥𝑡, 𝑠𝑡) that contains the 

probabilities of transitioning from one state to another.  
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Taking all of this into account it is now possible to derive the Value Function according 

to Bellman’s principle of optimality (Miranda & Fackler, 2002): 

 𝑉𝑡(𝑠) = Max
𝑥 ∈ 𝑋(𝑠)

𝑓(𝑥, 𝑠) + 𝛿 ∑ 𝑃(

𝑠′∈ 𝑆

𝑠′|𝑥, 𝑠) × 𝑉𝑡+1(𝑠′) , 𝑠 ∈ 𝑆 (9) 

In the previous equation we have the reward function 𝑓(𝑥, 𝑠), a discount factor 𝛿, the 

probability of transitioning to the next state 𝑃(𝑠′|𝑥, 𝑠) (which represents 𝑔(𝑥𝑡, 𝑠𝑡)) and the 

value function of the next period 𝑉𝑡+1(𝑠′). This equation reflects the maximization problem 

that is: take an action 𝑥 today in order to maximize today’s reward and the discounted 

expected future rewards.  

To achieve the optimal policy 𝑥∗(𝑠), it is necessary to guarantee that, in each state, the 

decision maximizes the present and future rewards. This is achieved by using a recursion 

method, starting from the last period 𝑇 until today. This equation is named Bellman’s 

recursion equation (Miranda & Fackler, 2002). 

According to the time horizon there are two possible types: finite and infinite horizons. 

If the horizon is finite it means that the last decision is taken at time T. On the other hand, an 

infinite horizon means that it is necessary to take a decision for an infinite number of time 

periods, therefore Bellman’s equation does not depend on time. 

 𝑉(𝑠) = Max
𝑥 ∈ 𝑋(𝑠)

𝑓(𝑥, 𝑠) + 𝛿 ∑ 𝑃(

𝑠′∈ 𝑆

𝑠′|𝑥, 𝑠) × 𝑉(𝑠′) , 𝑠 ∈ 𝑆 (10) 

In equation 10, 𝑉(𝑠′) represents the value function considering the optimal results for 

𝑋(𝑠) until that moment. The main difference between equation 10 and equation 9 is the time-

dependence, i.e. while in equation 9 the purpose is to define an optimal decision for each 

point in time, in equation 10 the goal is to reach a single optimal policy that can be applied 

at every point in time.  

The problem that will be presented later on will be solved as an infinite horizon problem 

therefore the next step is to describe the method that is commonly used to achieve the optimal 

policy in this type of problems. 

Miranda & Fackler (2002) give some insight into the algorithms used to solve these 

problems using a computer software (e.g. MatlabTM), nevertheless it is first necessary to 

transform equation 10 into matrix notation. 

 𝑉1 = Max
𝑥

𝑓(𝑥) + 𝛿𝑃(𝑥) × 𝑉0 (11) 
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The value functions 𝑉(𝑠) and 𝑉(𝑠′) are represented, respectively, by the vector 𝑉1 ∈ ℜ𝑛 

and 𝑉0 ∈ ℜ𝑛. The reward function is the vector 𝑓(𝑥) ∈ ℜ𝑛 and the policy vector, that 

contains the optimal actions to be taken at each state, is denoted by 𝑥 ∈ 𝑋𝑛. Lastly, 𝑃(𝑥) ∈

ℜ𝑛×𝑛 represents the n-by-n probability transition matrix for a certain action. The 𝑛 represents 

the number of possible states of nature. 

After this, one can apply the specific algorithm in order to achieve the optimal value and 

policy function. In the case of the infinite horizon Markov decision model, the algorithm used 

is the Function Iteration Algorithm (Miranda & Fackler, 2002): 

0. Define the state variables 𝑆, action variable 𝑋, reward vector 𝑓(𝑥), discount factor 𝛿, 

transition matrix 𝑃(𝑥), termination condition 𝜏, and an initial value for 𝑉0; 

1. Compute 𝑉1 = Max
𝑥

𝑓(𝑥) + 𝛿𝑃(𝑥) × 𝑉0 ; 

2. Verify if the termination criteria is satisfied: ‖𝑉1 − 𝑉0‖ ≤ 𝜏 

3. If it is satisfied: 𝑥 → 𝑥∗. If not, update 𝑉0 to 𝑉1, and return to step 1. 

To solve this problem we will use MatlabTM since it is one of the best software to solve 

this type of algorithms. 
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3. Literature Review 

Since the creation of the Value-at-Risk, financial investigators started to study this 

estimation method for the market risk and the possible uses that it could have. 

Studies have been produced where the VaR measure is used as a substitute for the 

variance in portfolio optimization problems. A recent study conducted by Deng, Dulaney, 

Mccann & Wang (2013) combines the VaR concept with the Sharpe Ratio – amount of 

expected return an investor gains for each aditional unit of risk that it takes – in order to 

optimize the value of the portfolio. 

Another studies on this subject (e.g. Künzi-bay & Mayer (2006); Mansini, Ogryczak & 

Speranza (2007); Lim, Sherali & Uryasev ( 2010); and Wodzimierz & Liwiski (2011)) used 

the CVaR (Conditional Value-at-Risk) – measures the risk of extreme losses calculating a 

weighted average of the expected losses that go beyond the VaR estimate – instead of the 

VaR to optimize the return on portfolios using Linear Programming models. 

However, there are few studies related with the regulatory context of the VaR, namely 

optimization strategies for the market risk charge. 

Papers developed by Ahn, Boudoukh, Richardson & Whitelaw (1999) and Deelstra, 

Ezzine, Heyman & Vanmaele (2007) tried to minimize VaR with the use of options.  

The first article studied a method that could be used to find a put option that minimizes 

the VaR, considering a maximum hedging cost. This was performed by modeling a function 

that computes the optimal options’ strike price taking into account the underlying asset’s 

value, the mean and volatility of its return, the risk-free rate and the VaR hedging period. 

One of the main conclusions in this paper is that this optimal strategy can reduce the VaR by 

45% comparing it with a normal strategy of using at-the-money options, in an equity 

portfolio, at the same time that it can reduce the cost of the strategy by up to 80%. 

The second paper studied the optimal risk management strategy for a portfolio of bonds 

and consisted in determining the optimal strike price of a put option that would minimize the 

VaR for a certain hedging cost.  

Although these methods were proved to be good strategies to reduce VaR (hence reducing 

the capital charges), they focus in the use of other financial products and in portfolio 

management to achieve certain VaR objectives (i.e. its minimization).  



20 

 

What if there exists a method to optimize VaR without the need to incur in additional 

costs or in increasing the exposure to financial assets? 

A study entitled “The Ten Commandments for Optimizing Value-at-Risk and daily 

capital charges” conducted by McAleer (2009) addresses this question. In this paper, 

McAleer gives some guidelines about the improvements that can be made in VaR models in 

order to create better risk monitoring strategies and achieve superior forecasts for the VaR. 

The purpose is to manage the excessive risk taking, that is a characteristic of conservative 

financial institutions, and achieve an optimal VaR measure following the Basel rules.  

These guidelines, like the title suggests, are ten and are related with, for example, the 

choice of the volatility estimation model (conditional, stochastic or realized volatility; using 

a symetric, asymetric or leverage model to estimate the volatility) and the method used to 

forecast VaR (parametric, semiparametric and nonparametric models). 

Altough the presented methodology is of important use in the creation of a VaR model, 

it only gives an optimal strategy for risk monitoring and does not truly explores strategies to 

optimize the daily capital charges. Moreover, this study raises one question: Is disclosing a 

perfect estimation for the VaR the best strategy to optimize the capital charge? 

The first answer to this question came in 2009 in a paper written by McAleer, Jimenez-

Martin & Pérez-Amaral. This paper discussed the hypothesis that FIs could manage the 

number of exceedances that they are allowed to have according to the Basel Accords (10 

exceedances), in order to optimize the daily capital charge. To achieve this purpose, they 

created a function named DYLES (Dynamic Learning Strategy) that was based in the trade-

off between the expected number of exceedances and the expected capital requirements.  

This function gives the percentage of the forecasted VaR that should be disclosed, taking 

into account the number of exceedances that the FI had since the beginning of the regulatory 

period and the number of exceedances recorded in the last 25 days. The foundations of this 

function are related with the premise that risk managers are conservative when the number 

of exceedances is high and aggressive when this number is small or zero. This method tries 

to optimize the capital charges by doing a policy that manages the Basel rules, taking 

advantage of them.  

The authors tested this theory and reached to the conclusion that using DYLES reduces 

the daily capital charges by up to 14.3% when compared with the RiskMetrics Policy. 
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While this seems to be a great tool to optimize the capital requirements taking into 

account the Basel rules, there is still some inconvenients with it. The function has three 

parameters for which the value is a subjective choice, meaning that the performance of the 

function has some dependence on those parameters’ values.  

The authors give some suggestions about the numerical intervals for the parameters, 

however to achieve the perfect model it is necessary to do a callibration that consists in 

computing the results for DYLES using all the possible parameter combinations and then 

choosing the one that has the lowest number of exceedances and average capital 

requirements. Thus, this process is time consuming and makes the model less user friendly. 

The second incovenient is that it is an ad-hoc strategy, meaning that each strategy depends 

on the specific portfolio and does not have a general application. It is also important to point 

out that the authors only did an in-sample test, which means that the effectiveness of this 

model in a real life situation is unknown. 

Following this thought, we propose to present an alternative method to do this 

optimization. Based in the same principle as DYLES, this dissertation consists in creating a 

model that optimizes the daily capital charge through the use of DP.  

The objective is to achieve an optimal policy strategy that gives the percentage of the 

forecasted 1-day VaR that should be reported in every state of nature, taking into account the 

effects that each decision will have in the future capital charge. For this, we will consider 

three state variables: time that remains for the regulator to do the backtesting (𝑇𝑡𝑜𝐵); number 

of exceedances that were recorded until the moment of the decision, during the current 

regulatory period (𝐸𝐶); and multiplier that is currently in use (𝐾). The focus is in the 1-day 

VaR because the exceedances are defined according to its value, and it is the only one that is 

in the control of the risk analyst (see equation 2). 

The advantages of this model are: all the parameters are defined; in each state of nature 

there is an optimal decision; and the optimal policy strategy can be applied to any portfolio. 

The main contribute of this study, for the financial literature, is to demonstrate that, taking 

into account the market risk framework that is associated with the definition of the capital 

charge, the best strategy to optimize the regulatory capital may not be through the disclosure 

of a precise estimate for the 1-day VaR. 
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4. Optimization Model 

The goal of this dissertation, as it was mentioned in the previous section, is to create a 

model that allows the optimization of the market risk charge when the VaR method is used. 

It consists of maximizing a value function, through the use of DP, in order to obtain an 

optimal policy function that provides the optimal decision that an agent should take regarding 

the reported VaR. 

The policy function defines the percentage of the estimated VaR that should be reported 

in order to optimize the daily capital charge, taking into account all the future effects of 

today’s decision, in particular the likelihood of future exceedances and the future value of 

the multiplier 𝐾. 

The action space (𝑋) corresponds to all percentages of the estimated VaR that can be 

reported, which can be any value from 0 to infinity, therefore making the action space 

continuous. However, we tested the possibility of solving the dynamic programming problem 

with a continuous action space and reached the conclusion that it was computationally 

intractable. Therefore we decided to discretize the action space, maintaining a wide range of 

possibilities, ranging from 0.001 to 3, in steps of 0.001. 

 𝑋 = {0.001, 0.002, 0.003, 0.004,0.005, … ,3.000} (12) 

This means that the lowest value that can be reported is 0.1% and the highest value is 

300% of the estimated 1-day VaR. 

The choice of the percentage to report will depend on three state variables: time remaining 

for the regulator to do the backtesting and review the multiplier (𝑇𝑡𝑜𝐵); multiplier that is 

currently in use (𝐾) and the number of exceedances that were recorded until now (𝐸𝐶). All 

these state variables are discrete and the set of possible values are as follows: 

 𝑇𝑡𝑜𝐵 = {1, 2, 3, 4, 5, … , 250} (13) 

 𝐾 = {3, 3.4, 3.5, 3.65, 3.75, 3.85, 4, 100000} (14) 

 𝐸𝐶 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (15) 

The values of 𝑇𝑡𝑜𝐵 are derived from the Basel Accords, where it is defined that, to do 

the backtesting analysis, the regulator must use data from the last 250 days to evaluate the 

performance of the risk model (Basel Committee on Banking Supervision, 1995).  
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In terms of the 𝐸𝐶, the Basel Accords state that, when it is higher than 10, the most 

probable consequence is the obligation to use the standardized method instead of using the 

internal model. Therefore we restricted the 𝐸𝐶 variable to a maximum value of 11 since we 

assume that the agent pretends, at all costs, to use the internal model for an infinite horizon.  

The 𝐾 variable includes all the multipliers that are in the Basel accords plus an additional 

one (100,000). The purpose of this multiplier will be explained later. Table 2 relates the 

multiplier with the EC at the end of each 250-day period. 

For any combination of these three states, the optimal policy function gives the decision 

that should be taken in order to minimize the daily capital charge. 

This type of DP problem is known as infinite horizon Markov decision model and is 

solved with the function iteration algorithm (Miranda & Fackler, 2002) introduced in 

Subsection 2.3. 

 

4.1  Methodology 

In this subsection we are going to follow all the steps mentioned in the Subsection 2.3, in 

order to derive the Bellman’s equation and apply the Function Iteration Algorithm. 

First, it is necessary to change the notation of 𝐾 and 𝐸𝐶 variables. For a better connection 

between this explanation and the program code, the state variable 𝐾 and 𝐸𝐶 will be 

substituted by 𝐾𝑖𝑛𝑑𝑒𝑥 and 𝐸𝐶𝑖𝑛𝑑𝑒𝑥, respectively, which represent the index of each 

variable. For example, 𝐾𝑖𝑛𝑑𝑒𝑥 = 2 corresponds to the second smallest value of 𝐾, that is, 

3.4, and 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 1 corresponds to the smallest value of 𝐸𝐶, that is, 0. 

 𝐾𝑖𝑛𝑑𝑒𝑥 = {1, 2, 3, 4, 5, 6, 7, 8} (16) 

 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12} (17) 

The Reward Function 𝑓(𝑥, 𝑇𝑡𝑜𝐵, 𝐸𝐶, 𝐾) represents the daily capital charge according to 

the Basel accords (Basel Committee on Banking Supervision, 1995). However, three 

simplifications were made to make the problem computationally tractable: the 60-day 

average will be ignored; it is assumed that the capital charges will always be the 10-day VaR 

K 3 3.4 3.5 3.65 3.75 3.85 4 100,000 

EC ≤4 5 6 7 8 9 10 11 

Table 2 – Relation between the number of exceedances at the end of the year and the multiplier. 
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multiplied by the multiplier 𝐾; and the capital charge is equal to the GRC, meaning that we 

assume that the risk model as specific risk recognition (SRC=0). 

 𝑓(𝑥, 𝑇𝑡𝑜𝐵, 𝐸𝐶, 𝐾) = −𝑥 × 𝐾 × 𝑉𝑎𝑅1,0.01 × √10 (18) 

The Breakdown of this equation is the following: 

 𝑉𝑎𝑅1,0.01 × √10 – represents the 10-day VaR that is in compliance with the Basel 

Accords.  

 𝐾 – multiplier for the current period 

 𝑥 – percentage of the VaR to be reported (the action variable)  

As one can see, this function has a negative sign because we are maximizing the FI’s 

profit, meaning that the capital charge has a negative impact in the function. 

Now that this was explained, it is possible to justify the additional multiplier: 100,000. In 

the definition of the 𝐸𝐶 variable we limited the number of exceedances up to 11 because 

otherwise we would have 251 possible values for the 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 instead of 12. This would 

unnecessarily increase the dimensionality and complexity of the problem, making it 

intractable to reach a solution. To prevent this, we created a new multiplier (100,000), 

associated with an 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 equal to 12, that represents the transition to a state with a very 

high cost (equation 19).  With this mechanism we assure that the agent will do whatever it 

takes to prevent the transition to this state, which will probably result in disclosing the highest 

possible percentage of the 1-day VaR (i.e. 300%). Note that the value of this multiplier is 

only used to determine when the transition to this state occurs, meaning that it does not have 

an application in the general reward function (equation 18) as it can be seen in equation 19. 

 
𝑓(𝑥, 𝑇𝑡𝑜𝐵, 𝐸𝐶, 𝐾) = {

−𝑥 × 𝐾 × 𝑉𝑎𝑅1,0.01 × √10, 𝑖𝑓 𝐾𝑖𝑛𝑑𝑒𝑥 ≤ 7

−5000000000, 𝑖𝑓 𝐾𝑖𝑛𝑑𝑒𝑥 = 8
 (19) 

To be able to apply the Function Iteration algorithm it is essential to translate this function 

into matrix notation. This is done by creating a reward vector named RewFun with 250 ×

8 × 12 = 24,000 elements that represent the total number of possible state combinations 

(achieved by multiplying the total number of elements of each state variable). 

Lastly, it is necessary to construct the Transition Function 𝑔(𝑥, 𝑇𝑡𝑜𝐵, 𝐸𝐶, 𝐾) that will 

define how the transitions occur between states of nature. In this problem, one can see that 

the state variables are not independent because the multiplier (𝐾) depends on the 𝐸𝐶 when 
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𝑇𝑡𝑜𝐵 is equal to 1. The reason for this is that the multiplier must be reviewed at the end of 

each 250-day period in accordance with the 𝐸𝐶 variable. Due to this, it is necessary to 

implement a transition function with all the possible state combinations instead of doing one 

function for each state variable. Next we discuss the main ideas behind these transitions. 

The transition between 𝑇𝑡𝑜𝐵 states is deterministic, decreasing from 𝑡 to 𝑡 − 1 every 

period whenever 𝑡 > 1. When 𝑇𝑡𝑜𝐵 = 1 the transition is to 𝑇𝑡𝑜𝐵 = 250, reflecting the fact 

that at this time the backtesting is performed and the number of periods for the next 

backtesting is reset to 250 days.  

The transition between 𝐾𝑖𝑛𝑑𝑒𝑥 states is, most of the times, deterministic. Whenever 

𝑇𝑡𝑜𝐵 > 1 no backtesting is performed, which means that the multiplier is not revised. Hence, 

the state 𝐾𝑖𝑛𝑑𝑒𝑥 remains unchanged. But, at 𝑇𝑡𝑜𝐵 = 1, on the eve of performing the next 

backtest process, the state 𝐾𝑖𝑛𝑑𝑒𝑥 is updated, reflecting the results of the backtesting process 

and the Basel rules outlined in Table 2. In this scenario, the transition is stochastic, since it 

depends on the state 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 (how many exceedances were accumulated up to 𝑇𝑡𝑜𝐵 = 1) 

and whether there was an exceedance in the transition to the next period, which is a random 

event. The new state 𝐾𝑖𝑛𝑑𝑒𝑥 is determined as follows: for 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 < 5 (less than 4 

exceedances up to the eve of the backtesting procedure) 𝐾𝑖𝑛𝑑𝑒𝑥 transitions to 1 regardless 

of whether an exceedance is recorded in the transition to the next period; for 5 ≤ 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 <

12, 𝐾𝑖𝑛𝑑𝑒𝑥 transitions to the current value of 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 − 4 if no exceedance is recorded 

and, otherwise, to the current value of 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 − 3; and for 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 12, 𝐾𝑖𝑛𝑑𝑒𝑥 

transitions to 8, the catastrophic scenario that the agent wants to avoid at all costs. 

Finally, the transition between 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 states is, most of the times, stochastic. Whenever 

𝑇𝑡𝑜𝐵 > 1, there is some probability that an exceedance is recorded (portfolio loss is higher 

than the reported VaR), in which case the 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 state transitions from 𝑖 to 𝑖 + 1, and some 

probability that an exceedance is not recorded, in which case the 𝐸𝐶 state remains unchanged. 

At 𝑇𝑡𝑜𝐵 = 1 the transition is deterministic, since the exceedance count is reset when entering 

the new backtesting. Hence 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 transitions to 1. 

On top of this, there is always a possibility of falling into bankruptcy if the portfolio loss 

is larger than the capital charge set based on the reported VaR. This possibility, and its 
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associated high costs, effectively put a limit to extreme levels of VaR underreporting. In that 

case, and regardless of the current state of nature, the transition is made to a state of nature 

with 𝑇𝑡𝑜𝐵 = 250,  𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 12 and 𝐾𝑖𝑛𝑑𝑒𝑥 = 8 which, according to equation 19, is the 

state with a very large cost that reflect the bankruptcy cost. 

Table 3 summarizes the different transition scenarios and their probabilities. 

To compute the probabilities associated with each scenario we assumed that returns 

follow a standard normal distribution (mean zero and standard deviation of one). These 

probabilities of transition between states are then represented by a 24,000 by 24,000 matrix 

named TrMat. 

At this point we have all the essential tools to derive the value function that we want to 

maximize. This function is equation 11 that was introduced in subsection 2.3 (DP), with an 

adjustment for our notation. 

 State of nature  Probability 

From   𝑇𝑡𝑜𝐵 = 𝑡 > 1; 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 𝑖; 𝐾𝑖𝑛𝑑𝑒𝑥 = 𝑘   

To 𝑇𝑡𝑜𝐵 = 𝑡 − 1; 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 𝑖 + 1; 𝐾𝑖𝑛𝑑𝑒𝑥 = 𝑘 𝑃(𝑍 < 𝑉𝑎𝑅 × 𝑥) 

 𝑇𝑡𝑜𝐵 = 𝑡 − 1; 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 𝑖; 𝐾𝑖𝑛𝑑𝑒𝑥 = 𝑘 
1 − 𝑃(𝑍 < 𝑉𝑎𝑅 × 𝑥) 

−𝑃(𝑍 > 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) 

 State of bankruptcy 𝑃(𝑍 > 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) 

   

From 𝑇𝑡𝑜𝐵 = 1; 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 𝑖 < 5; 𝐾𝑖𝑛𝑑𝑒𝑥 = 𝑘  

To 𝑇𝑡𝑜𝐵 = 250; 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 1; 𝐾𝑖𝑛𝑑𝑒𝑥 = 1 𝑃(𝑍 < 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) 

 State of bankruptcy 𝑃(𝑍 > 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) 

   

From 𝑇𝑡𝑜𝐵 = 1; 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 𝑖; 𝐾 = 𝑘  

To 
𝑇𝑡𝑜𝐵 = 250; 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 1; 𝐾𝑖𝑛𝑑𝑒𝑥

= 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 − 4 
𝑃(𝑍 < 𝑉𝑎𝑅 × 𝑥) 

 
𝑇𝑡𝑜𝐵 = 250; 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 = 1; 𝐾𝑖𝑛𝑑𝑒𝑥

= 𝐸𝐶𝑖𝑛𝑑𝑒𝑥 − 3 

1 − 𝑃(𝑍 < 𝑉𝑎𝑅 × 𝑥) 

−𝑃(𝑍 > 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) 

 State of bankruptcy 𝑃(𝑍 > 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒) 

Table 3 – Resume of the transitions that occur in each scenario and the equations used to compute their associated 

probabilities (where 𝑍 represents the standard normal distribution and 𝑥 represents the action variable).  
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 𝑉1 = Max
𝑥

  𝑅𝑒𝑤𝐹𝑢𝑛(𝑥) + 𝛿 × 𝑇𝑟𝑀𝑎𝑡(𝑥) × 𝑉0 (20) 

To initiate the algorithm it is still necessary to define the value for the parameter 𝛿, which 

represents the discount factor and the importance of the future events into the current 

decision, the terminal condition 𝜏, and an initial value for the value function, 𝑉0.  

We defined a yearly discount factor of 0.9, meaning that the daily discount factor is 

approximately 0.99957865.6 Regarding the terminal condition, it is decided that the norm of 

the difference between 𝑉0 and 𝑉1 should be close to 0.001 in order to consider the policy 

function 𝑥 as the optimal one (in the case of our model, this value was 0.0013). 

Due to the complexity of this problem, it is essential to start with a reasonable guess for 

the initial value of 𝑉0 in order to reduce the number of iterations necessary to achieve the 

terminal condition (and the optimal solution). Thus, the initial value for 𝑉0 will be a 24,000 

by 1 vector, that was obtained from the solution of a similar optimization problem, but with 

a smaller number of possible actions (300 instead of 3000). 

As it was mentioned previously, the algorithm will be applied in a program created in 

MatLab. The code of this program can be found in Appendix B and its analysis is 

recommended for those seeking a detailed understanding of the proposed model. 

 

4.2  Model vs Reality 

After modeling the problem, it is necessary to understand the differences between our 

model and the real life problem. These differences will be important, later on, in the 

identification of the limitations of this study. 

One of the most important assumptions in the construction of the model is related with 

the distribution of returns. To simplify the computations, we assumed that the distribution 

and its parameters (expected return and volatility) are known with 100% certain.  

As mentioned in Subsection 2.2, using a value of zero for the expected return is a good 

proxy and does not have a material impact in the results. The biggest problem lies in the 

volatility since, in reality, it is unlikely to predict the true value for the future volatility. 

Usually one works with estimates that can either under or overestimate the true value of the 

volatility. In our case, the scenario of underestimation of the true volatility is the one that 

                                                 
6 Assuming 250 trading days per year. 
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represents a real danger. In that scenario, the underestimation of the volatility itself will be 

enough to generate too many exceedances. If, on top of that, the agent pursues the optimal 

VaR disclosing policy that is derived under the assumption that his volatility estimate is 

correct, he will tend to underreport and underestimate the VaR. That will inevitably lead to 

a fast accumulation of exceedances from which it is impossible to recover and that, next year, 

will result in a high multiplier being set by the regulator and thus high capital charges.  

The scenario of volatility overestimation is more benign. The agent will see too few 

exceedances being generated despite his VaR underreporting, but the only implication is that 

we will have more freedom to keep underreporting the VaR. 

These scenarios and their consequences for the application of the optimal VaR reporting 

policy will be tested later on in a Monte Carlo Simulation in order to investigate the extent 

to which the performance of the optimal policy is sensitive to the assumption that the true 

volatility is known. 

Going on with the volatility, in the model it is assumed that returns follow a standard 

normal distribution, i.e. a distribution with expected return of 0 and volatility equal to 1. This 

is a neutral assumption, with no impact on the results, as we demonstrate next. 

Demonstration 1: 

Knowing that 𝑃(−𝑉𝑎𝑅 < 𝑋) = 0.99 and 𝑋~𝑁(0, 𝜎), we start by substituting the VaR 

with its formula: 

 −𝑉𝑎𝑅ℎ,𝛼 = −𝛷−1(1 − 𝛼) × 𝜎ℎ (21) 

 𝑃(−𝛷−1(1 − 𝛼) × 𝜎 < 𝑋) = 0.99 (22) 

Following this, we standardize the variable 𝑋 to obtain a standard normal 

distribution 𝑍~𝑁(0,1): 

 
𝑃 (

−𝛷−1(1 − 𝛼) × 𝜎

𝜎
<

𝑋 − 0

𝜎
) = 0.99 (23) 

 𝑃(−𝛷−1(1 − 𝛼) < 𝑍) = 0.99 (24) 

As one can see, considering an expected return of zero, the standardization of the return 

distribution eliminates the standard deviation from the equation. This proves that the results 

are not influenced by the value given to the standard deviation.  
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The next assumption is related with the reward function. According to the 1995 Market 

Risk Ammendment (Basel Committee on Banking Supervision, 1995), the GRC is defined 

as the maximum between (a) the average of the 1-day VaR forecasted for the last sixty days 

multiplied by the square root of time and by 𝐾 and (b) the last forecast for the 1-day VaR 

multiplied by the square root of time. However, in the reward function defined in equation 

18 and 19, the maximization and the average are ignored, and it is assumed that the capital 

charge is always the reported 1-day VaR multiplied by the square root of time and by the 

multiplier 𝐾. 

Ignoring the maximization does not make any effect in the results since, assuming a 

constant portfolio, it is very unlikely to have the last VaR estimate to exceed 𝐾 times the 

average of the last sixty VaR’s because 𝐾 has a value between 3 and 4. Therefore the most 

important difference between the model and the real life problem is the averaging of the last 

sixty VaR’s, which is omitted in the model.  

This average is important to avoid a manipulation of the reported VaR, however it is hard 

to implement in an optimization problem and if implemented it dramatically increases its 

complexity, since we would have an additional 59 state variables (the VaR reported in the 

previous 59 days), making it intractable.  

Considering this, a possible solution is to ignore the average and only consider the last 

estimated VaR. We concluded that this does not result in the most optimized strategy but it 

gives a quite good approximation for it. The following demonstration proves this. 

Demonstration 2: 

For simplification, assume that there is no uncertainty, so we can drop expectations. The 

dynamic programming problem we solved is equivalent to minimizing the present value of 

the capital charges. 

 
𝑃𝑉(𝐺𝑅𝐶) = ∑ 𝛿𝑡𝐺𝑅𝐶𝑡

⋈

𝑡=0

 (25) 

 

The formula we consider for the GRC is: 

 𝐺𝑅𝐶𝑡
𝑚𝑜𝑑 = 𝑘√10𝑥𝑡𝑉𝑎𝑅𝑡 (26) 

In reality, the formula for GRC is (dropping the maximization): 
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𝐺𝑅𝐶𝑡
𝑟𝑒𝑎𝑙 = 𝑘√10

1

60
∑ 𝑥𝑡−𝑖𝑉𝑎𝑅𝑡−𝑖

59

𝑖=0

 (27) 

If the impact of the choice variable, 𝑥𝑡, in 𝑃𝑉(𝐺𝑅𝐶) is similar for both formulations of 

𝐺𝑅𝐶𝑡 (real and modeled), then the approximation has a small impact. 

 𝜕 𝑃𝑉(𝐺𝑅𝐶𝑚𝑜𝑑)

𝜕 𝑥𝑡
=

𝜕 ∑ 𝛿𝑡𝑘√10𝑥𝑡𝑉𝑎𝑅𝑡
⋈
𝑡=0  

𝜕𝑥𝑡

= 𝛿𝑡𝑘√10𝑉𝑎𝑅𝑡 
(28) 

In turn: 

 
𝜕 𝑃𝑉(𝐺𝑅𝐶𝑟𝑒𝑎𝑙)

𝜕 𝑥𝑡
=

𝜕 ∑ 𝛿𝑡𝑘√10
1

60
∑ 𝑥𝑡−𝑖𝑉𝑎𝑅𝑡−𝑖

59
𝑖=0

⋈
𝑡=0  

𝜕𝑥𝑡

= 𝑘√10𝑉𝑎𝑅𝑡

1

60
∑ 𝛿𝑡+𝑖

59

𝑖=0

= 𝛿𝑡𝑘√10𝑉𝑎𝑅𝑡

1

60
∑ 𝛿𝑖

59

𝑖=0

≈ 𝛿𝑡𝑘√10𝑉𝑎𝑅𝑡 
(29) 

Since: 

 1

60
∑ 𝛿𝑖

59

𝑖=0

≈ 1 (30) 

As long as 𝛿 is close to 1. In our case 𝛿 = 0.99957865 and so:7 

 1

60
∑ 𝛿𝑖

59

𝑖=0

≈ 0.9877 (31) 

 

The last assumption is related to the Basel Accords. As it was stated in Subsection 2.1, 

our optimization model is in accordance with the rules introduced until Basel Accords II, and 

does not take into account the changes made by the revisions to the market risk framework 

published in 2009 (Basel Committee on Banking Supervision, 2009). One of the impacts that 

this has in the model is related with the probability of default, which is overestimated in the 

model. This happens because with the new standards the GRC would incorporate a new 

element – sVaR – meaning that the daily capital charge would be higher than the value 

considered by the model. On the other hand, not considering the sVaR means that our model 

only optimizes part of the capital charge, i.e. only the one related with the VaR. 

                                                 
7 Note that this demonstration assumes that the multiplier 𝑘 is constant over time. 
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Nevertheless, this does not invalidate the use of our model (to optimize the part related 

with VaR) since, in the worst case, the effect of this change in the GRC would probably be a 

policy function where extreme underreporting is more likely to occur, especially when EC is 

low and in the last days of the 250-day cycle, due to lower probability of default. 

 

4.3  Optimal Policy Function 

In this subsection we are going to present the results of the optimization model. These 

represent the percentage of the estimated 1-day VaR that should be reported according to the 

three state variables: time remaining for backtesting (𝑇𝑡𝑜𝐵), number of exceedances so far 

(𝐸𝐶) and multiplier in use (𝐾). This will be referred, from now on, as the optimal policy.  

Figure 1 illustrates the percentage of the estimated 1-day VaR that should be reported for 

each point in time when the multiplier variable 𝐾 is 3, which is divided in two panels 

according to the number of the 𝐸𝐶 variable. Thus, in the vertical axis one can find the action 

variable (that can range between 0.01% and 300%) and in the horizontal axis one of the state 

variables – 𝑇𝑡𝑜𝐵 (ranges between 1 and 250). Each line represents the different decisions 

that should be taken according to the value of the exceedance count variable (𝐸𝐶) at that 

time, e.g. if the current number of exceedances is equal to 5, one should find the optimal 

decision in the lighter blue line in panel B. Figure 2 shows all the lines of the two panels of 

Figure 1 in one figure. 

The careful reader may have noticed that in both Figure 1 and Figure 2 it is not included 

the series for the EC equal to 10 and 11. These two will not be presented here because the 

optimal decision is always the same: report 300% when the EC is equal to 10 and report 0.1% 

when the EC is equal to 11. This happens for a simple reason: if in any day, during the 250-

day period, a portfolio records the 10th exceedance, it means that an extra exceedance will 

result in a transition to a state that we considered in the formulation of the model as a state 

with big consequences (e.g. the obligation to use the standardized method instead of the 

internal models) – referred, from now on, as the worst case scenario. Assuming that the 

agent does not want to face these consequences, he will do whatever it takes to avoid the 

extra exceedance, and the only decision that has the highest probability of not having an 

exceedance is reporting the maximum possible percentage of the VaR, 300%. 
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Panel A 

 
 

Panel B 

 
 

Figure 1 – Optimal Policy Function for a number of exceedances of 0 to 3 (Panel A) and 4 to 9 (Panel B) when the 

multiplier k is equal to 3. 
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In the opposite case, when the EC is equal to 11 it means that this extra exceedance 

already occurred, therefore there is nothing that the agent can do to avoid these consequences, 

and for this reason the percentage to report is the lowest possible (0.01%). In other words, 

the damage is done. 

Now that this detail was explained, we go on with the analysis of Figure 1. The first 

aspect that can be noticed is that until the 3rd exceedance (panel A), in most cases, the 

percentage to report, in a given day, increases as the number of exceedances increases (each 

line is above the previous), and from the 5th to the 9th exceedance (panel B) the same happens 

until the last 50 days. In general, the reason for this different behavior in the last 50 days of 

the last 5 series is that the agent has more factors to take into account when choosing the 

optimal decision to take, since the goal of the 4 exceedances was not attained. This difference 

will be analyzed later on. 

In the series for the 4th exceedance, the behavior is different because this is the maximum 

number of exceedances that an agent can have in order to maintain the base multiplier. As 

 
 

Figure 2 – Optimal policy function for all the number of exceedances when the multiplier k is equal to 3. 
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one can see, the percentage to disclose increases as the time to backtesting decreases, being 

the only series that has an increasing trend, ranging from 94.7% to 110%. This effort is made 

in order to avoid another exceedance that would lead to a multiplier higher than the base 

value (3) in the future. It is also important to notice that, when the barrier of the 4 exceedances 

is exceeded, this effort decreases, mostly due to the consequence of having a multiplier higher 

than the base value in the future (which translates in higher capital charges and lower long-

term benefits). 

In Table 4, one can see the average and median of each series. Both statistics increase as 

the number of exceedances increase, except on the transition from the 4th to the 5th 

exceedance where the effort to avoid an extra exceedance has a slight decrease. This confirms 

the reasoning used on the previous paragraph related with the series for an EC equal to 4, by 

showing that the incentives to avoid an extra exceedance decrease after overcoming the 

barrier of 4 exceedances. From the 7th exceedance onwards, this effort is again high, reaching 

values higher than 100% when the worst case scenario is approaching.  

Looking at the average of the whole series (0.9650), we conclude that, on average, it is 

better to disclose a lower 1-day VaR than the estimated one, i.e. to underreport. This is a 

natural conclusion because our model is designed in order to achieve 4 exceedances, 

objective that is attained through the underreporting of the 1-day VaR. If the estimated VaR 

is reported truthfully (i.e. no under nor overreporting), then on average there will be only 2.5 

exceedances in a year. This leaves room to underreport and reap the short term benefit of 

lower capital charges without incurring in the cost of larger long term capital charges due to 

larger multipliers as consequence of accumulating more than 4 exceedances in a 250-day 

period. 

Next we go into detail for each series. In the first three series (𝐸𝐶 equal to 0, 1 and 2), 

there is a decreasing trend, i.e. the first percentage to report, when 𝑇𝑡𝑜𝐵 is equal to 250, is, 

respectively, 90.4%, 92.2% and 93.3%, and after that, these values decrease until they both 

reach 33.6% when 𝑇𝑡𝑜𝐵 is equal to 1. This behavior was expected since, in the beginning of 

EC 0 1 2 3 4 5 6 7 8 9 

Average 0.7655 0.8118 0.8634 0.9190 0.9771 0.9083 0.9476 0.9930 1.1029 1.3611 

Median 0.8305 0.8765 0.9230 0.9410 0.9470 0.9035 0.9435 1.0125 1.1335 1.3965 

 

Table 4 – Statistical analysis of the optimal policy. 
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the 250-day cycle, the agent is more risk averse due to the possibility of incurring in early 

exceedances that may accumulate to more than 4 by the end of the cycle, and, as time passes, 

this risk becomes smaller and the percentage to report decrease. 

When the EC is equal to 3 (fourth series), the trend is also in general a downward one, 

although there is a slight increase between the 249th and 92nd day to the next backtesting, 

going from 0.936 to 0.96. This is explained by the fact that the portfolio is 1 exceedance 

away from the 4th, i.e. the maximum value for the 𝐸𝐶 variable that guarantees the base 

multiplier, and it is related with the formulation of the optimization model. Since the goal is 

to optimize the PV of the capital charge, there are two factors that drive the optimal decision: 

report a lower percentage of the 1-day VaR to reduce the capital charge in the present (short-

term benefits); or report a higher percentage to avoid an increase of the multiplier and benefit 

from this saving in the future (long-term benefits). To achieve an optimal model it is 

necessary to balance these two factors (referred from now on as “balancing factors”).  

Considering this, in the first 157 days the predominant factor is the long-term benefits of 

having the base multiplier in the next regulatory period (hence there is an increase in the 

percentage to report), whereas after this, since the end of the period is approaching and the 

likelihood of incurring in two more exceedances reduces, the short-term benefits seem to 

gain the lead as the predominant factor and the percentage to report decreases. 

The next series (𝐸𝐶 equal to 4) is the only one with an increasing trend, explained by the 

fact that it represents the maximum value that guarantees the base multiplier. Nevertheless, 

in the first 86 days the percentage to report marginally decreases from 94.7% to 93%. This 

is, again, a result of the balancing factors, explained previously, considering that in the first 

86 days the predominant effect is the short-term benefits of having lower capital charges in 

the present and, following this, it seems to be better to report a higher percentage of the 

estimated VaR to benefit from a smaller multiplier in the future (in this case, the base 

multiplier).  

Another possible explanation for this type of behavior (mix between decreasing and 

increasing trend) is related with the value of the 𝐸𝐶 variable in the early days. If, for example, 

an agent records 4 exceedances too quickly, it will be difficult to maintain this number until 

the end of the period, thus there is no incentive to be conservative and disclose an higher 

percentage of the estimated 1-day VaR (decreasing trend). However, as time passes, if this 
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extra exceedance does not materialize, the agent will try to avoid it by increasing the 

percentage to report, in order to guarantee the smaller multiplier in the next period (increasing 

trend). This reasoning applies to all the series that show this type of behavior. 

From the 4th exceedance on, every additional exceedance results in an increase of the 

multiplier up to the 11th exceedance, which represents the transition in the future to the worst 

case scenario. Hence, the balancing factors will also drive the trend of the next series.  

For an 𝐸𝐶 equal to 5, 7, 8 and 9, one can notice that the curves have a decreasing trend 

and represent a higher risk aversion – the smallest percentage of the 1-day VaR to report is 

83.1%. Also, for most of the time, the curves for the 7th, 8th and 9th exceedance are above 

100%, which is due to the proximity to the worst case scenario (reaching 11 exceedances). 

Nevertheless, there is a curious observation when comparing the series for an 𝐸𝐶 equal to 5 

and 7: in the last 30 days the values are higher in the former. The expectation for this would 

have been a persistence of higher values for an 𝐸𝐶 equal to 7. This different behavior can be 

explained with the effect of a future higher multiplier in the scenario where the 𝐸𝐶 is equal 

to 7 (3.65) compared with the scenario of an EC equal to 5 (3.4), meaning that the short-term 

benefits have an higher impact in the agent’s decision – report a lower percentage to increase 

current savings, instead of a higher percentage to reduce future costs (the damage in the future 

multiplier is already done). 

Considering the series for an 𝐸𝐶 equal to 6, one can observe a similar scenario to the 

series for an 𝐸𝐶 of 4: a decreasing trend until the last 48 days, and after that, an increasing 

trend. Like in that case, this change in the trend is due to the effect of the balancing factors 

because, following the increase of 0.4 in the base multiplier – 𝐸𝐶 equal to 5 – the second 

highest increase in the multiplier (0.15) occurs when the 𝐸𝐶, in the end of the regulatory 

period, is equal to 7. Therefore in the first 202 days the predominant effect is the saving in 

the current capital charges (short-term benefits), while in the last 48 days it is the long-term 

benefits derived from the 0.15 saving in the future multiplier that leads to higher percentages 

to disclose. 
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An interesting feature from the analysis of Figure 1 and Figure 2 is that a higher number 

of exceedances does not always lead to a higher percentage to report, in a given day. Figure 

3 represents the evolution of the optimal decision (vertical axis) depending on the number of 

exceedances (horizontal axis) for the same day.  

Following the blue line (TtoB equal to 100), one can see that the percentage to report 

increases until the 4th exceedance and then it falls from 0.969 to 0.888, followed by an 

increase until the highest possible number of exceedances. This decrease that occurs when 

the 𝐸𝐶 is equal to 5 is due to the increase of 0.4 in the base multiplier (the highest possible 

increase, compared with 0.1 and 0.15 for additional exceedances), which translates into lower 

future savings and consequently lower long-term benefits. Since this possible saving in the 

multiplier was not achieved, the incentives to avoid another exceedance decrease and the 

current savings (short-term benefits, benefit today from reporting a lower VaR) seem to have 

a higher impact in the optimization strategy. For the curve where TtoB is 170 (red line), this 

fall occurs in the transition from the 3rd to the 4th exceedance, which is even more surprising 

 
 
Figure 3 – Evolution of the optimal decision as a function of the number of exceedances for the same day. 
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since the change in the multiplier occurs only in the 5th exceedance. This seems to be an 

effect from the balance between having current savings in the capital charge (report smaller 

percentages of VaR) and benefit from these savings in the future (report higher percentages 

to assure a small multiplier in the future). 

Finally, it is important to remind that the analysis of the optimal policy function 

performed in this subsection was based on the scenario where the multiplier 𝐾 is equal to 3. 

However, all the qualitative results obtained from this analysis stand for different values of 

K. In particular, the optimal policies for different values of K are very similar to each other. 

The only difference is that, for higher multipliers, the short-term benefit of underreporting 

the observed VaR obviously increases. Since the long-term benefit of reporting the VaR more 

conservatively is independent of the current multiplier (it is only a function of future 

multipliers), a higher multiplier will then increase the incentive to underreport the VaR. This 

can be clearly seen in Figure 4, which plots the optimal percentage of the observed VaR to 

report as a function of TtoB for all different multipliers when EC is 4. For other values of 

 
 
Figure 4 – Optimal policy function for a number of exceedances (EC) of 4 considering different multipliers (K 

variable). 
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EC, the conclusion is the same. Notice that the distance between each line is roughly 

proportional to the difference in the values of the corresponding multipliers, reflecting the 

fact that the more the multiplier increases, the more the incentive to underreport increases. 

In Appendix A one can find the figures for the optimal policy considering the other 

multipliers. 

In general, these results seem to be, more or less, consistent with the principle of DYLES 

(McAleer, Jimenez-Martin & Pérez Amaral, 2009): risk managers are conservative (report 

higher percentages) when the number of exceedances is high and aggressive (report lower 

percentages) when this number is small. 

Since all the important aspects of the results were already explained and analyzed, the 

next step is to implement this strategy using simulated/historical data to test if it can be 

applied in a real market risk framework. First we will perform this evaluation with a 

simulated portfolio by doing a Monte Carlo Simulation, and after that we will apply the 

policy to a portfolio composed by the S&P500 index. 
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5. Monte Carlo Simulation 

In this section, we perform a Monte Carlo simulation in order to obtain simulated 

portfolio returns and evaluate the performance of the optimal policy presented in the previous 

section.  

To do this process, we use MatLab’s random number generator (RND) to generate returns 

from a normal distribution – using the inverse CDF of the normal – with an expected return 

of 0 and a certain standard deviation. Considering this, we will simulate the returns based on 

the following equation: 

  𝑟 = 𝛷−1(𝑅𝑁𝐷)              𝑟 ∩ 𝑁(0, 𝜎) (32) 

The base value for the 1-day standard deviation is 1.7%, which we considered to be 

reasonable for a standard portfolio. To compute the VaR we use the same Parametric Normal 

Method that was considered when solving for the optimal strategy. 

Two scenarios are going to be simulated. In the first one, labeled Normal Strategy 

scenario, it is always reported 100% of the estimated VaR. In the second one, labeled 

Optimal Strategy scenario, the percentage to report is defined according to the optimal 

policy. To limit the possible number of exceedances to 11 (like in the optimization model), 

when the EC is equal to 10 in both scenarios, it is reported 300% of the VaR (i.e. the same 

value defined by the optimal strategy). Another way of understanding this assumption is that, 

in both cases, going to the 11th exceedance means transitioning to the worst case scenario 

(mentioned in the previous section) which is something that the agent wants to avoid, 

regardless of the strategy in use. Due to this, the agent will always report a high value when 

the number of exceedances is equal to 10, in order to almost surely guarantee that the 11th 

exceedance is avoided.  

It is also incorporated a mechanism for bankruptcy detection, i.e. if the loss in a certain 

day is higher than the daily capital charge it is assumed that the institution defaults, which 

brings that specific simulation to an end. 

 

5.1  Normal Simulation 

The first simulation that we will perform consists of 100,000 simulations of a period of 

30 years, considering that each year has 250 business days. The value defined previously for 
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the standard deviation will also be used to calculate the daily VaR according to equation 6. 

The multiplier used in the first year of each simulation is always the base value (3). 

We start by analyzing the daily capital charge variable in order to verify if the optimal 

strategy delivers lower values than the normal strategy, and then we look closely at the other 

variables to confirm whether their behavior is in line with our expectations regarding the 

optimization model. 

Figure 5 shows a histogram with the distribution of the average of the daily capital charge 

across simulations (i.e. in each 30-year period) for the two strategies, and two lines 

representing the cumulative frequencies.   

From the analysis of Figure 5, one can notice that there is a clear separation between the 

optimal and the normal strategy. The values for the optimal strategy seem to be concentrated 

between 35% and 38% while, in the normal strategy, these are concentrated around 38% and 

39%, clearly pointing out to a better performance of the optimal strategy. The line for the 

cumulative frequencies proves this, since with the optimal strategy the capital charge is below 

 

 
Figure 5 – Distribution of the average daily capital charge across simulations, and the respective cumulative 

frequencies (right axis). 
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38% in, approximately, 100% of the simulations, whereas, with the normal strategy, this only 

happens in, approximately, 40% of the simulations.  

Taking this into account, it is clear that the optimal strategy delivers lower values for the 

daily capital charge in almost all simulations. 

Table 5 complements Figure 5 by analyzing the annual average of the daily capital charge 

with 5 important statistics computed in two different ways: (1) by averaging the statistics 

calculated in each simulation (i.e. in each 30-year period); and (2) by computing the statistic 

on all the data (i.e. the results of all simulations). 

As expected from the analysis of Figure 5, Table 5 confirms the better performance of 

the optimal strategy in terms of the capital charge since, with the analysis of the mean, it is 

easy to see that this strategy offers a lower capital charge.  

Continuing with Table 5, the average of the standard deviation for the optimal strategy is 

almost twice the value computed for the normal one. This higher value was expected due to 

the risk associated with the optimal strategy (i.e. the risk to report a higher value than the 

estimated 1-day VaR) that is translated in a higher standard deviation. This can be observed 

clearly in Figure 5, since the values for the optimal strategy are more dispersed. 

In the case of the maximum and minimum (average and global), the results confirm the 

outperformance of the optimal strategy as both statistics deliver lower values considering this 

strategy. 

As the careful reader may have noticed, the value for the global maximum, in both 

strategies, is around 70%, which is a value that stands out from the others. The reason                         

for such a high value is the trigger mechanism related with a number of                                      

 Capital Charge 

 Mean Median Maximum Minimum Std. Dev. 

Optimal Strategy      

Average of the statistic 36.47% 35.45% 43.12% 32.51% 2.94% 

Statistic of the simulation 36.47% 35.34% 68.54% 31.20% 3.00% 

Normal Strategy      

Average of the statistic 38.12% 37.52% 44.03% 37.52% 1.72% 

Statistic of the simulation 38.12% 37.52% 70.24% 37.52% 1.82% 

 

Table 5 – Average of the statistics computed for the annual average of the daily capital charge in each simulation (30-

year period) and the statistics for the global simulation. 
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exceedances of 10 – report 300% of the estimated 1-day VaR in both policies. From this we 

can conclude that, when the market conditions are adverse, the disclosure of the estimated 1-

day VaR (normal strategy) does not necessarily lead to better results.  

Table 6 shows the analysis of the percentage of times, in each simulation, where the 

optimal policy delivers lower values for the capital charge. This table shows that the optimal 

strategy outperforms, on average, the normal strategy in 78% of the times, which is a very 

good result taking into account the risks associated with this strategy.  

Looking at the maximum and minimum, it can be noticed a big range between them. On 

one hand, we have simulations where the optimal policy is always better (100%) during the 

30-year period and, on the other hand, simulations where this value goes as low as 36.67%. 

Once again, this behavior can be explained by the risk associated with the optimal strategy 

that is translated in the standard deviation of this variable (8.55%). 

To increase the reliability of these results, it was created a confidence interval for the 

average of this percentage.  Considering a confidence level of 99.99%, there is statistical 

evidence to believe that the true percentage of times where the optimal strategy outperforms 

the normal strategy is between 77.71% and 77.91%. 

Next, we move on to the analysis of the number of exceedances (EC) and multiplier (K) 

variables. In the formulation of the optimization problem, it was considered that the objective 

of the optimal policy would be to take advantage of the Basel rules by managing the number 

of exceedances, in order to maintain the base multiplier (maximum of 4 exceedances). The 

purpose of the next analysis is to show if this event is true when this policy is applied. 

As one can see in Figure 6, the distribution of the EC variable is significantly different 

for each strategy. In the Normal Strategy, the variable seems to follow a lognormal 

distribution with a mode equal to 2, while in the Optimal Strategy the variable is clearly 

concentrated in the 4th exceedance – the maximum number of exceedances that does not 

result in the increase of the base multiplier. This proves that the optimal policy is taking 

advantage of the Basel rules, regarding the exceedances, because there is a big discrepancy 

 Mean Median Maximum Minimum Std. Dev. 

Optimal better than Normal 77.81% 76.67% 100.00% 36.67% 8.55% 

 

Table 6 – Statistical analysis of the variable: percentage of times, in a 30-year period (each simulation), where the 

optimal strategy outperforms the normal strategy. 
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between the numbers of years that end with 4 exceedances (58%) and also because the 

minimum relevant number of exceedances, in the optimal strategy, is 3 (vs 0 in the normal 

strategy). 

Another way of seeing this is by analyzing the exceedance rate in the simulation. For the 

normal strategy this value is equal to the significance level used in the estimation of the 1-

day VaR, i.e. 1.0%, while for the optimal strategy this rate is 1.9%, which is, as expected, 

higher than the significance level due to the criteria that the optimal strategy needs to follow 

(having 4 exceedances).  

An important detail that one can see in Figure 6 is that all the years that ended with an 

EC different than 4, in the optimal strategy, are unsuccessful tries to reach that value. Two 

factors justify these failed attempts: the bankruptcy risk/mechanism that prevents the agent 

from reporting sufficiently low values that result in an exceedance (EC smaller than 4), and 

the risk associated with the use of the optimal policy model (EC higher than 4). This risk is 

related with the disclosure of a smaller value than the estimated 1-day VaR and it can be 

 
 

Figure 6 – Distribution of the EC variable, in the end of the period, across the various simulations, and the respective 

cumulative frequencies (right axis). 
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observed in the lines for the cumulative probability because, in the optimal strategy, it is more 

likely to have an EC higher than 4 (33%) than in the normal strategy (11%).  

In Figure 7, it is represented the relative frequencies of the multiplier variable. From its 

analysis, one can notice that, in both strategies, the base multiplier is used in more than 65% 

of the simulated years like it was expected with the analysis of the EC variable histogram. 

This result strengthens the hypothesis that the optimal strategy is better than the normal 

strategy, because it shows that the different data dispersion in the EC variable results in a 

similar multiplier histogram for both strategies.  

Considering this, the major difference between the two strategies is that the optimal 

strategy optimizes the disclosed 1-day VaR in order to remain with the base multiplier (3). 

Sometimes this leads to higher multipliers due to the risk of the strategy (which can be 

observed in the lines for the cumulative frequencies since there is a higher probability 

associated with the higher multipliers in the case of the optimal strategy)  but, overall, the 

goal is successfully achieved.  

 
 

Figure 7 – Distribution of the multiplier k variable across the various simulations and the respective cumulative 

frequencies. 
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To complement Figure 5 and Figure 6, Table 7 summarizes the statistical analysis of these 

two variables.8 

With the analysis of Table 7 it is easy to understand that in the optimal strategy all figures 

point out to a number of exceedances around 4 and a multiplier around 3 (which is the base 

value), whereas in the normal strategy the results are around 2 exceedances and, also, a 

multiplier of 3. The only significant difference between the strategies is in the standard 

deviation that is higher in the optimal strategy for the K variable, as a result of the higher 

probability of having higher multipliers with this strategy, as it was mentioned previously.  

Considering all the previous points, it is possible to say that, as expected, the optimal 

strategy outperforms the normal strategy given that the different data dispersion in the 

exceedances histogram (Figure 6) leads to a similar multiplier histogram (Figure 7). 

Table 8 answers the question: Are the savings in the capital charge significant to 

compensate the risk of using a policy that, in most cases, discloses a lower 1-day VaR than 

the estimated one? 

From the analysis of Table 8, one can see that the daily average savings in the capital 

charge (relative saving), from the use of the optimal strategy relative to the normal strategy, 

is 4.32%. This may seem a small saving, however in the case of a portfolio with a high market 

value it will make a significant difference, taking into account that it is a daily saving (we 

will get back to this below). 

                                                 
8 The method used to calculate the statistics is the same as in table 5. 

 EC K 

 Mean Mode Median Std. Dev. Mean Mode Median Std. Dev. 

Optimal Strategy         

Average of the statistic 4.74 4.00 4.05 1.46 3.18 3.00 3.01 0.28 

Statistic of the simulation 4.74 4.00 4.00 1.50 3.18 3.00 3.00 0.28 

Normal Strategy         

Average of the statistic 2.50 2.00 2.32 1.56 3.05 3.00 3.00 0.14 

Statistic of the simulation 2.50 2.00 2.00 1.57 3.05 3.00 3.00 0.15 

 

Table 7 – Average of the statistics computed for the EC and K variable in each simulation (30-year period) and the 

statistics for the global simulation. 
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The maximum average relative saving achieved in a simulation was 9.34% while the 

minimum was -3.36%, reflecting the risk of using this policy. Nonetheless, the possible 

positive outcomes seem to outweigh the negative outcomes. To support this conclusion, a 

statistical test for the average of the saving was performed with the following hypothesis: 

H0: The average daily saving in a 30-year period is higher than or equal to 4% 

H1: The average daily saving in a 30-year period is lower than 4% 

The test used was the z-test because the distribution of the average saving is 

approximately normal (central limit theorem). Following this, there is statistical evidence 

that confirms that, with a significance level of 5%, the average saving that results from the 

use of the optimal strategy is higher than 4%. 

Lastly, it is important to understand the meaning of these savings. Considering that the 

agent can reduce the capital charge for a certain amount invested in the asset, this extra 

amount can be used to increase the exposure to the asset and increase the absolute 

accumulated return in the end of the period. 

To show this, we are going to perform a simulation where the exposure to the asset is 

increased or decreased in order to always have a regulatory capital charge equal to the FI’s 

defined capital charge limit, using the following assumptions: (1) the FI’s capital charge limit 

is 100,000 monetary units (m.u.); (2) the price of the asset is fixed at 1 m.u./unit of the asset; 

(3) the annual return on the asset is fixed at 6%. The objective is to compute the accumulated 

return in each simulation and compare the performance of both strategies. 

The result of this simulation and the associated statistics computed over the relative 

annual gain that an agent has with the use of the optimal strategy can be found in Table 8. 

By using this strategy, in this scenario, the agent can increase the average of the annual return 

up to 10.90% or reduce the gain by a maximum of 2.29%, when compared to the normal 

strategy. Looking at the mean, one can conclude that the annual gain is, on average, 5.20% 

 Mean Median Maximum Minimum Std. Dev. 

Relative saving 4.32% 4.39% 9.43% -3.36% 1.45% 

Relative annual gain 5.20% 5.25% 10.90% -2.29% 1.51% 

 

Table 8 – Statistical analysis of the variables: average daily saving, in a 30 year period,  that results from the use of 

the optimal strategy (“Relative saving”); and average of the annual relative return in each simulation (“Relative 

annual gain”). 
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in each simulation (30-year period), which is a considerably high reward taking into account 

that the return on the asset is 6%/year. 

In a nutshell, all the results indicate that the behavior of the optimal strategy is in line 

with our expectations, namely: (1) it is clearly taking advantage of the Basel rules regarding 

the exceedances (EC and K variable analysis); (2) it has a better performance than the normal 

strategy in most of the times (mean of 77.81%); and (3) the relative saving from using the 

optimal strategy is, on average, 4.32%. These conclusions support our optimization model, 

meaning that reporting the 1-day VaR according to the optimal policy leads to positive 

outcomes when compared to reporting the estimated value. 

 

5.2  Simulation with undervaluation of the volatility 

Next it is important to understand the impact of using a poor VaR estimation model with 

the optimal strategy. As it was mentioned in Subsection 2.2 (VaR), the method used to 

estimate the volatility is one of the main drivers for a good VaR model due to its direct 

relation with the formula to compute the VaR (see equation 6).  

If the estimated value for the volatility is undervalued, the forecast for the VaR will also 

be undervalued, resulting in a higher exceedance rate and, possibly, in the increase of the 

probability of ending a certain period in the critical scenario (having 11 exceedances). In 

addition, one of the assumptions of the optimization model is that the volatility is always 

estimated with precision, which is difficult to hold. 

Due to these aspects it is necessary to test the impact of an undervaluation or 

overvaluation of the volatility in the results of the simulation, particularly in the capital 

charge. Since, in the simulation, we define the real value for the volatility of the return 

distribution, in the next simulation we will compute the value for the 1-day VaR considering 

different levels of under/overvaluation of the volatility used to generate the returns (1.7%). 

This level ranges from 60% to 120% of the base volatility, in steps of 1%. To evaluate the 

impact in the optimal strategy we created Figure 8 that indicates the relative saving (left axis) 

and the percentage of times where the optimal strategy outperforms the normal strategy (right 

axis) for each level of under and over-valuation. 

Starting by analyzing the levels of overvaluation, as one can see in Figure 8, the 

performance of the optimal strategy increases as the level of overvaluation increases, 
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reaching 100% of times where the optimal strategy is better than the normal strategy using 

120% of the volatility. This is easy to understand because an overvaluation of the volatility 

means that the estimate for the 1-day VaR will be higher than necessary resulting in a lower 

likelihood of having an exceedance. Due to this, there is a higher safety margin to underreport 

the 1-day VaR without having an exceedance.  

On the opposite case, an undervaluation of the volatility leads to a worst performance of 

the optimal strategy, however this only happens until a certain point. Before digging into this 

fact, we are going to analyze the downward part of the series.  

Looking at the blue line, one can see that the average of the relative saving (i.e. the 

average saving in the simulation that results from the use of the optimal strategy compared 

with the normal strategy) decreases until -8%, which represents a level of 77% of the 

volatility. The explanation for this is exactly the opposite of the previous one used to explain 

the overvaluation: using a value for the volatility lower than the real one leads to a poor 

estimate for the 1-day VaR, i.e. a value lower than necessary, which results in a higher 

 
 

Figure 8 – Average daily relative saving and percentage of times where the optimal strategy is better than the normal 

strategy considering different levels of under/overvaluation. 
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probability of having a negative return higher than the disclosed 1-day VaR (i.e. leading to 

an exceedance). Since the optimal strategy normally consists in disclosing a value for the 1-

day VaR lower than the estimated one, in the end, the probability of having an exceedance 

would be even higher and the exceedances would occur too quickly without giving the model 

the necessary time to adjust to this scenario.  

Nonetheless, Figure 8 shows that for small undervaluation levels, i.e. up to 6%, the 

optimal strategy continues to be the best one. At this level, the results are a slight relative 

saving of 0.14% and a better performance of the optimal strategy in 59% of the times. In the 

next subsection we will explore all the results associated with this level. 

Despite of this, one can see that the two lines do not have a decreasing trend, as it would 

be expected. Instead, the trend of the lines changes when the level of undervaluation is 77% 

(blue line) and 84% (red line) of the volatility, with the relative saving reaching positive 

values again when this level is at 63% (relative saving of 0.12%). A possible explanation for 

this behavior is the ability of the optimal strategy to adapt to different scenarios (i.e. different 

values for the number of exceedances result in different percentages of the estimated 1-day 

VaR to disclose) while the normal strategy is always static.  

In other words, since the normal strategy always reports the estimated VaR and a higher 

level of undervaluation leads to a lower estimated 1-day VaR, compared with the required 

value, from a certain level of undervaluation the exceedances start to occur quickly, resulting 

in a predominance of the critical scenario (having 11 exceedances) and the need to report 

substantially high values for the 1-day VaR (due to the trigger mechanism). In the case of the 

optimal strategy, its dynamic feature delays this scenario, for a little amount of time, which 

allows savings in the capital charge, relative to the normal strategy. 

In short, Figure 8 demonstrates that: (1) a small level of undervaluation still results in a 

good performance of the optimal strategy (6%); (2) there is a positive correlation between 

the overvaluation of the volatility and the performance of the optimal strategy; and (3) there 

is a limit to the underperformance of the optimal strategy.  

In the next 2 subsections we are going into more detail in two levels of undervaluation: 

94% of the volatility (undervaluation of 6%) because it is the level where the optimal strategy 

continues to outperform the normal strategy; and 80% of the volatility (20% undervaluation), 

in order to do a statistical analysis of a catastrophic situation. 
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5.2.1 Undervaluation of 6% 

 

 

 

 
 

Figure 9 – Distribution of the average daily capital charge across simulations, and the respective cumulative 

frequencies (right axis), for a 6% undervaluation level. 

 Capital Charge 

 Mean Median Maximum Minimum Std. Dev. 

Optimal Strategy      

Average of the statistic 36.85% 37.10% 43.47% 31.54% 3.47% 

Statistic of the simulation 36.85% 37.31% 93.50% 29.33% 3.53% 

Normal Strategy      

Average of the statistic 36.96% 35.30% 43.97% 35.27% 2.79% 

Statistic of the simulation 36.96% 35.27% 84.90% 35.27% 2.83% 

 

Table 9 – Average of the statistics computed for the annual average of the daily capital charge in each simulation (30-

year period) and the statistics for the global simulation, for a 6% undervaluation level. 

 

 
 Mean Median Maximum Minimum Std. Dev. 

Optimal better than Normal 58.89% 60.00% 96.67% 20.00% 9.87% 

 

Table 10 – Statistical analysis of the variable: percentage of times, in a 30-year period (each simulation), where the 

optimal strategy outperforms the normal strategy, for a 6% undervaluation level. 
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Figure 10 – Distribution of the EC variable, in the end of the period, across the various simulations, and the respective 

cumulative frequencies (right axis), for a 6% undervaluation level. 

 

Figure 11 – Distribution of the multiplier k variable across the various simulations and the respective cumulative 

frequencies, for a 6% undervaluation level. 
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In Figure 9 one can observe a completely different scenario compared with Figure 5. In 

the previous simulation the histogram of the capital charge showed a clear distinction 

between both policies, whereas in this simulation the histogram tells a different story, since 

the capital charge in both policies is more or less equivalent – the bars overlap. The most 

relevant differences between Figure 9 and Figure 5 are the higher dispersion and amplitude 

of the values for the normal strategy, which is a result of the undervaluation. 

Nonetheless, when analyzing the cumulative frequencies, one can see that the optimal 

strategy offers a lower capital charge for more than 50% of the times. This can also be 

observed on Table 9 and Table 10, since the average of the capital charge with the optimal 

strategy is lower than the same value for the normal strategy (36.85% vs 36.96%), and in 

58.89% of the times the optimal strategy has a better performance. These points represent the 

main reasons that explain the better performance, on average, of the optimal strategy. 

In the case of the EC variable (Figure 10), in the optimal strategy there is still a 

predominance of the value 4 and, in the normal strategy, the distribution continues to be 

similar to a lognormal distribution but now with a mode of 3 (in the normal simulation the 

mode was 2).  

 EC K 

 Mean Mode Median Std. Dev. Mean Mode Median Std. Dev. 

Optimal Strategy         

Average of the statistic 6.10 4.50 5.83 2.01 3.41 3.05 3.44 0.35 

Statistic of the simulation 6.10 4.00 6.00 2.04 3.41 3.00 3.50 0.35 

Normal Strategy         

Average of the statistic 3.59 3.07 3.43 1.86 3.14 3.00 3.00 0.24 

Statistic of the simulation 3.59 3.00 3.00 1.88 3.14 3.00 3.00 0.24 

 

Table 11 – Average of the statistics computed for the EC and K variable in each simulation (30-year period) and the 

statistics for the global simulation, for a 6% undervaluation level. 

 

 
 Mean Median Maximum Minimum Std. Dev. 

Relative saving 0.14% 0.18% 6.56% -8.15% 1.72% 

Relative annual gain 1.00% 1.02% 7.38% -5.77% 1.65% 

 

Table 12 – Statistical analysis of the variable: average daily saving, in a 30 year period, that results from the use of the 

optimal strategy, for a 6% undervaluation level. 
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The major difference between this simulation and the normal simulation is in the 

probabilities of each EC value for the optimal strategy. Compared with the normal simulation 

results, the probability of having an EC equal to 4 decreased to almost half (34% vs 58%) 

while the probability of having an EC higher than 4 increased from 33% to 62%. This means 

that the unsuccessful attempts to reach an EC equal to 4 increased, essentially due to the 

constant failure in estimating the real value of the volatility that is inherent to this simulation.  

Looking at Table 11, and doing a comparison with Table 7, one can reach the same 

conclusion since the average of the EC variable increases from 4.74 to 6.10 and the median, 

considering all the simulations, increases from 4 to 6. 

Figure 11 leads to the same conclusion as the probability of having the base multiplier, 

in the optimal policy, decreases from 68% to 38%, when compared with the normal 

simulation, and the probability of having the higher multipliers (3.75, 3.85 and 4) rises to 

31% (vs 9% in the normal simulation). In the normal policy there is also a decrease in the 

probability of having the base multiplier (71% vs 89%), however it is not as significant as in 

the optimal strategy. 

Even with these differences, we can see in Table 12 that the average relative saving that 

results from the use of the optimal strategy continues to be a positive number (0.14%), 

meaning that this strategy continues to have a slightly better performance even in a scenario 

of undervaluation. However, one can see that this saving results in a relatively small gain 

(1% return) when compared with the possible gains in the scenarios where the volatility has 

an inexistent undervaluation level (Table 8).9 

It is important to understand that the results of this simulation should be seen as a 

pessimistic scenario because what normally happens in the estimation of the volatility is that 

sometimes the value is underestimated and other times it is overestimated. 

In short, this simulation highlights one of the main drawbacks of the optimal strategy and 

demonstrates its effect in the capital charge and in the average relative saving. Two main 

conclusions are derived from these results: first, it is crucial to have a good estimation model 

to forecast the volatility with precision, as this will be critical to define the success of the 

optimal strategy; and second, the optimal strategy continues to have positive effects even 

when the volatility has a slight undervaluation (more or less up to 6%). 

                                                 
9 The method used to calculate the relative annual gain is the same as in Table 8.  
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5.2.2 Undervaluation of 20%  

 
 

Figure 12 – Distribution of the average daily capital charge across simulations, and the respective cumulative 

frequencies (right axis), for a 20% undervaluation level. 

 Capital Charge 

 Mean Median Maximum Minimum Std. Dev. 

Optimal Strategy      

Average of the statistic 45.89% 38.68% 122.75% 29.85% 20.30% 

Statistic of the simulation 45.89% 38.55% 289.40% 25.25% 21.78% 

Normal Strategy      

Average of the statistic 44.46% 38.15% 126.31% 30.09% 21.11% 

Statistic of the simulation 44.46% 37.74% 289.98% 30.01% 22.85% 

 

Table 13 – Average of the statistics computed for the annual average of the daily capital charge in each simulation 

(30-year period) and the statistics for the global simulation, for a 20% undervaluation level. 

 

 
 Mean Median Maximum Minimum Std. Dev. 

Optimal better than Normal 44.27% 43.33% 83.33% 10.00% 8.70% 

 

Table 14 – Statistical analysis of the variable: percentage of times, in a 30-year period (each simulation), where the 

optimal strategy outperforms the normal strategy, for a 20% undervaluation level. 
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Figure 13 – Distribution of the EC variable, in the end of the period, across the various simulations, and the respective 

cumulative frequencies (right axis), for a 20% undervaluation level. 

 

 

 
 

Figure 14 – Distribution of the multiplier k variable across the various simulations and the respective cumulative 

frequencies, for a 20% undervaluation level. 
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Like it was expected, all figures point out to a worst performance of the optimal strategy. 

Starting by analyzing the capital charge, in Figure 12 one can see that the normal strategy 

seems to offer, on average, lower values than the optimal strategy. Moreover, the line for the 

normal strategy cumulative frequencies (blue line) is always one step behind the red line 

(optimal strategy cumulative frequencies), meaning that, in every point, it is more likely to 

have a lower capital charge when using the normal strategy.  

An interesting comparison between the results of this simulation and the normal 

simulation is that in Figure 12 the normal strategy has values as low as 35% while in the 

normal simulation (Figure 5) this minimum value was around 37.5%. On the other hand, the 

maximum value in the case of this simulation increased compared with the normal simulation 

(39.5% vs 62.5%). This is due to the constant undervaluation in the estimation of the 1-day 

VaR. 

Like in the previous simulation (6% undervaluation), the capital charge for the normal 

strategy seems to follow more closely a normal distribution. From this we may conclude that 

as the level of undervaluation increases, the distribution of the normal strategy appears to be 

closer to the normal distribution. 

 EC K 

 Mean Mode Median Std. Dev. Mean Mode Median Std. Dev. 

Optimal Strategy         

Average of the statistic 9.26 9.64 9.42 0.95 3.87 3.95 3.90 0.21 

Statistic of the simulation 9.26 10.00 9.00 1.00 3.87 4.00 3.85 0.21 

Normal Strategy         

Average of the statistic 7.47 8.91 7.69 2.16 3.65 3.80 3.71 0.32 

Statistic of the simulation 7.47 10.00 8.00 2.17 3.65 4.00 3.75 0.32 

 

Table 15 – Average of the statistics computed for the EC and K variable in each simulation (30-year period) and the 

statistics for the global simulation, for a 20% undervaluation level. 

 

 
 Mean Median Maximum Minimum Std. Dev. 

Relative Saving -11.90% -10.97% 6.97% -57.53% 6.85% 

Relative annual gain -1.19% -1.28% 11.04% -8.61% 2.07% 

 

Table 16 – Statistical analysis of the variables: average daily saving, in a 30 year period,  that results from the use of the 

optimal strategy (“Relative saving”); and average of the annual relative return in each simulation (“Relative annual 

gain”), for a 20% undervaluation level. 
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Looking at Table 13, one can see that the average of the daily capital charge is in line 

with the histogram (Figure 12) because the normal strategy offers, on average, a lower value, 

meaning that it has a better performance when compared with the optimal strategy. This worst 

performance is confirmed in Table 14, as the normal strategy outperforms the optimal 

strategy in 55.73% of the times. 

Figure 13 shows that the objective of the optimal strategy is not being achieved, since the 

number of exceedances with the highest frequencies, in the end of each period, are 9 and 10, 

representing almost 90% of the times. The explanation for this is simple: since a constant 

large undervaluation of the volatility (20%) leads to an undervaluation of the estimated 1-

day VaR, the optimal strategy will be constantly failing the objective of ending each period 

with 4 exceedances and it will not be able to adapt to this scenario (by reporting higher values 

than the estimated one) in order to avoid more exceedances. For the normal strategy the 

scenario is quite similar, however in a smaller scale because it is always reported the 

estimated 1-day VaR (i.e. there is no underreporting). 

Moreover, Figure 14 illustrates the real impact of having high values for the EC variable, 

as the multipliers for the optimal strategy are, in most of the times, the two highest ones: 3.85 

and 4. The same happens to the normal strategy but the impact is a little bit less significant 

as it can be seen on Table 15 (average of 3.65 vs 3.87 in the optimal strategy). 

This constant failure in reaching the 4th exceedance, and assuring the base multiplier, is 

the main reason for the failure of the optimal strategy in this undervaluation scenario. 

All of this bad performance ends in a negative average relative saving of 11.90% in the 

capital charge and an effective average loss (relative annual gain) of 1.19% if the optimal 

strategy is used (Table 16) 

In a nutshell, this simulation demonstrated the negative impact that a high undervaluation 

of the volatility has in the capital charge and in the effectiveness of the optimal strategy and, 

once again, strengthens the importance of having a good model to estimate the volatility. 
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5.3  Optimal Model Formulation Risk 

In Subsection 2.1 we introduced the equation that we would use to compute the GRC 

(which is equal to the MRC assuming that the SRC is equal to 0). Equation 33 is a 

reproduction of that equation (equation 2). 

 

𝐺𝑅𝐶𝑡 = 𝑀𝑎𝑥 (𝑘 ×
1

60
∑ 𝑉𝑎𝑅1,1%,𝑡−𝑖

59

𝑖=0

× √10, 𝑉𝑎𝑅1,1%,𝑡 × √10) (33) 

However, in Subsection 4.1, where the optimization problem was created, we simplified 

the problem by eliminating the maximization and the average of the last sixty 1-day VaRs, 

and came up with equation 34 (which is a reproduction of equation 18). 

 𝑓(𝑥, 𝑇𝑡𝑜𝐵, 𝐸𝐶, 𝐾) = −𝑥 × 𝐾 × 𝑉𝑎𝑅1,0.01 × √10 (34) 

Regarding this simplification, in Subsection 4.2 we demonstrated that we were still able 

to achieve a quite good approximation of the real optimal policy.  

In this subsection we are going to test how good this approximation is by performing a 

final simulation, referred from now on as the simplified model simulation, where we use 

equation 34 to compute the daily capital charge, i.e. we will ignore the average of the last 

sixty 1-day VaR in the definition of the daily capital charge. 

In Figure 15 one can see two histograms with the average of the daily capital charge for 

this simulation (panel A) and the normal simulation (panel B), which is a reproduction of 

Figure 5. Analyzing both histograms, one can see that there does not seem to be a significant 

difference in the normal strategy. However the histogram for the optimal strategy in panel A 

suffered a slight move to the left, compared with panel B, which means that the spread in the 

daily capital charge between the two strategies increased in the simplified model simulation. 
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Panel A 

 
 

Panel B 

 
 

Figure 15 – Distribution of the average daily capital charge in each simulation and the respective cumulative 

frequencies (right axis), for the simplified model simulation (Panel A) and the normal simulation (Panel B). 
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Panel A 

 
 

Panel B 

 
 

Figure 16 – Distribution of the EC variable, in the end of the period, across the various simulations, and the respective 

cumulative frequencies (right axis), for the simplified model simulation (Panel A) and the normal simulation (Panel 

B). 
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Panel A 

 
 

Panel B 

 
 

Figure 17 – Distribution of the multiplier k variable across the various simulations and the respective cumulative 

frequencies, for the simplified model simulation (Panel A) and the normal simulation (Panel B). 
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Table 17 confirms the previous conclusion because, when compared with Table 5 (normal 

simulation) we can see that the statistics for the normal strategy are almost equal and the 

statistics for the optimal strategy are slightly smaller in this simulation (e.g. average of 

36.05% vs 36.47% in the normal simulation), which explains the increase in the spread 

between the two strategies. This increase is also visible in Table 18, which shows a slightly 

higher percentage of times where the optimal strategy is better, when compared with Table 

6 (80% vs 77.81% in the normal simulation). 

Figure 16 compares the histogram of the EC variable in the end of each period for the 

normal simulation (Panel B) and this simulation (Panel A). At a naked eye, there is no 

difference between the two histograms, which means that the two simulations lead to the 

same results in terms of number of exceedances. The same happens in Figure 17 (histograms 

for the multiplier variable), as the relative and cumulative frequencies are very similar in the 

two panels. 

 Capital Charge 

 Mean Median Maximum Minimum Std. Dev. 

Optimal Strategy      

Average of the statistic 36.05% 35.32% 43.00% 31.23% 3.05% 

Statistic of the simulation 36.05% 35.24% 78.87% 28.72% 3.11% 

Normal Strategy      

Average of the statistic 38.12% 37.52% 44.04% 37.52% 1.72% 

Statistic of the simulation 38.12% 37.52% 80.28% 37.52% 1.82% 

 

Table 17 – Average of the statistics computed for the annual average of the daily capital charge in each simulation 

(30-year period) and the statistics for the global simulation, considering the simplified model simulation. 

 

 
 Mean Median Maximum Minimum Std. Dev. 

Optimal better than Normal 80.00% 80.00% 100.00% 36.67% 8.24% 

 

Table 18 – Statistical analysis of the variable: percentage of times, in a 30-year period (each simulation), where the 

optimal strategy outperforms the normal strategy, considering the simplified model simulation. 

 



64 

 

In order to do a more detailed analysis, we can compare the values for the statistics, 

computed over the two variables (EC and K), that are in Table 19, with the ones in Table 7 

(normal simulation). From this analysis one can see that both tables have the exact same 

values meaning that both simulations offer the same performance in terms of these variables. 

The higher spread in the capital charge of both strategies that we mentioned earlier is 

now reflected in a higher average relative saving of 5.41% presented in Table 20, compared 

with 4.32% (Table 8). This superior saving explains the higher relative annual gain presented 

also in Table 20, compared with the one obtained in the normal simulation (Table 8). 

In brief, these results point out to a slightly better performance of the optimal strategy in 

the case where the sixty days average is ignored in the equation for the capital charge, which 

ends in an approximately 25% higher average daily relative saving. This means that our 

optimization model is a good approximation for the final solution, however there is some 

room to improve this model in order to reflect the real equation and have slightly better 

results. 

 

 EC K 

 Mean Mode Median Std. Dev. Mean Mode Median Std. Dev. 

Optimal Strategy         

Average of the statistic 4.74 4.00 4.05 1.46 3.18 3.00 3.01 0.28 

Statistic of the simulation 4.74 4.00 4.00 1.50 3.18 3.00 3.00 0.28 

Normal Strategy         

Average of the statistic 2.50 2.01 2.32 1.56 3.05 3.00 3.00 0.14 

Statistic of the simulation 2.50 2.00 2.00 1.57 3.05 3.00 3.00 0.15 

 

Table 19 – Average of the statistics computed for the EC and K variable in each simulation (30-year period), 

considering the simplified model simulation. 

 

 
 Mean Median Maximum Minimum Std. Dev. 

Relative saving 5.41% 5.46% 11.29% -2.26% 1.48% 

Relative annual gain 6.98% 7.00% 14.51% -1.13% 1.69% 

 

Table 20 – Statistical analysis of the variables: average daily saving, in a 30 year period,  that results from the use of 

the optimal strategy (“Relative saving”); and average of the annual relative return in each simulation (“Relative 

annual gain”, considering the simplified model simulation. 

 



65 

 

6. Portfolio Simulation 

Until now we have tested the performance of the optimal strategy in a simplified and 

controlled world where returns follow a normal distribution with a pre-determined mean and 

volatility. From this analysis we concluded that reporting the 1-day VaR according to the 

optimal policy can provide savings in the capital charge when compared with a policy of 

reporting the estimated 1-day VaR. We also demonstrated that these savings lead to a relative 

annual gain when considering different levels of exposure to the asset in order to achieve 

always the same value for the market risk charge. However, in a real world, these 

assumptions do not hold, meaning that this strategy may have a different performance. 

In this section we are going to test the performance of the optimal policy when applied 

to a diversified portfolio. This portfolio will be represented by the S&P 500 index. 

To perform a more relevant simulation, we will use the Historical VaR model, which is 

the most worldwide used method. This model consists in using the empirical return 

distribution to compute the VaR instead of imposing a parametric distribution to the data. 

However, instead of using the plain-vanilla method that would only reflect the previous 

years’ market conditions, we will do a refinement that consists in adjusting all the returns in 

order to reflect the current market conditions (i.e. the future volatility). This refinement is 

known as volatility adjustment. 

To do this adjustment we will use equation 35. What this equation does is to compute the 

adjusted return by considering the estimate for the future 1-day volatility (𝜎̂𝑇). 

 
𝑟̂𝑡 =

𝜎̂𝑇

𝜎̂𝑡
× 𝑟𝑡 (35) 

To estimate the volatility, we will use the EWMA method (explained in Subsection 2.2), 

with a parameter lambda of 0.94, since we are considering daily data. 

The capital charge will be computed according to equation 2 (using the same 

methodology as previously). We will use the data from 22-04-1986 to 20-01-2016, 

representing 30 periods of 250 days (the same number of periods that were simulated in the 

previous section). 
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Panel A 

 
 

Panel B 

 
 

Figure 18 – Time series for the daily capital charge for each strategy (Panel A) and for the daily saving from using the 

optimal strategy (Panel B), for the portfolio simulation. 

 

 
 Capital Charge 

 Mean Median Maximum Minimum Std. Dev. 

Optimal Strategy 24.99% 20.59% 136.16% 9.42% 14.93% 

Normal Strategy 26.61% 21.74% 133.77% 10.81% 15.31% 

Relative Saving 7.22% 6.90% 57.13% -19.15% 8.86% 

 

Table 21 – Statistics computed over the daily capital charge, for the portfolio simulation. 
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Figure 19 – Distribution of the EC variable, for the portfolio simulation. 

 

 
 

Figure 20 – Distribution of the multiplier (K) variable, for the portfolio simulation. 
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We will start this analysis by observing the time series for the daily capital charge. In 

Panel A of Figure 18 one can observe that the optimal strategy (red line) is generally below 

the line for the normal strategy (blue line). Panel B of the same figure confirms this since the 

relative saving of using the optimal strategy is almost always above 0.  

To complement the analysis of the figure we have in Table 21 the statistics computed for 

the daily capital charge. As one can see, there is a clear difference between both strategies 

that lead to a better performance of the optimal strategy, namely a smaller mean, median and 

minimum value. A curious fact is that even the standard deviation of the capital charge is 

smaller in the case of the optimal strategy, which is something that did not happen in the 

Monte Carlo simulations.  

Moreover, in Table 21 we can also see that the optimal strategy offers an average relative 

saving of 7.22%, which is a consequence of the better performance of this strategy in 82.29% 

of the days (relative to the normal strategy). This result is even higher than the one achieved 

in the normal simulation (77.81%). This higher relative saving may be a result of an 

overestimation of the volatility by the employed model, which would consequently mean an 

overestimation of the VaR. In that case, and under the assumptions of our model, the level of 

overestimation would be around 8%, according to Figure 8. 

Figure 19 shows the distribution of the number of exceedances in the end of each period. 

These exceedances, in the optimal strategy, are concentrated around 4 and include some 

failed attempts to reach this number (3 and 5 exceedances). These failed attempts do not 

represent a big impact in the performance as it can be seen in Table 22, since all the statistics 

for the optimal strategy are near 4. Concerning the Normal Strategy, the distribution is more 

conservative, because there are years where the number of exceedances is below 3 

(something that does not happen in the optimal strategy), which translates in a value around 

3 for the mean, mode and median. 

 EC K 

 Mean Mode Median Std. Dev. Mean Mode Median Std. Dev. 

Optimal Strategy 4.83 4 4 1.61 3.25 3 3 0.29 

Normal Strategy 3.30 3 3 1.93 3.30 3 3 0.22 

 

Table 22 – Statistics computed over the number of exceedances (EC) and multiplier (K), for the portfolio simulation. 
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Finally, Figure 20 demonstrate, as expected, that the different data dispersion in the EC 

histogram (Figure 19) leads to a similar histogram for the multiplier in both strategies. 

All in all, this section provided the necessary information to complete the evaluation of 

the optimal strategy. In the end we conclude that all figures point out to a better performance 

of the optimal strategy, relative to the normal strategy, going from the capital charge, which 

is smaller in the optimal strategy, to the exceedances and multiplier management, meaning 

that this strategy can deliver positive outcomes when applied to a real portfolio.   
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7. Conclusion 

In this study, we used dynamic programming to solve a model that would allow a FI to 

optimize its capital charges related with the market risk regulation (that is defined in the Basel 

Accords), by giving the optimal percentage of the 1-day VaR that should be disclosed in 

every state of nature, also named the optimal policy. In this model, we identified the three 

state variables that are relevant to choose the VaR disclosure: the time remaining for the 

regulator to do the backtesting and review the multiplier (𝑇𝑡𝑜𝐵); the multiplier for the current 

regulatory period (𝐾); and the number of exceedances recorded during the current regulatory 

period until the moment of the decision (𝐸𝐶). 

In the analysis of the results of the optimal policy, we concluded that two combined 

factors (the balancing factors) were driving the results: use an aggressive strategy, i.e. 

disclose a lower 1-day VaR than estimated in order to save in the current capital charges and 

have short-term benefits; or use a conservative strategy, i.e. disclose a higher 1-day VaR,  to 

avoid more exceedances that would lead to a multiplier higher than the base value (3) in the 

future regulatory period, which would reduce the capital charges in the future (long-term 

benefits).  Moreover, we found that, on average, the model led to a strategy of underreporting 

the estimated 1-day VaR. 

These results are in line with the premises that were used by McAleer, Jimezes-Martin & 

Pérez Amaral (2009): risk managers are conservative (report higher percentages) when the 

number of exceedances is high and aggressive (report lower percentages) when this number 

is small. Nevertheless, in our study we were able to reduce some of the incovenients of 

DYLES by creating a model that does not have unknown parameters, neither is an ad-hoc 

model. 

The optimal policy was then tested in a controled environment (Monte Carlo simulation), 

where the true value for the volatility was known. Here, we compared the optimal strategy, 

i.e. a strategy were the optimal policy was applied, with the normal strategy, i.e. a stratagy 

were it is always truthfully reported the estimated 1-day VaR. The main conclusions were 

that the optimal strategy outperformed the normal strategy in about 78% of the times, which 

translated into an average saving in the daily capital charge of 4.32% (relative to the normal 

strategy). The major explanation for this is that the optimal strategy is clearly taking 

advantage of the Basel rules, because in about 66% of the times, the number of exceedances 
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in the end of the regulatory period is smaller than or equal to 4 (meaning that the multiplier 

is the base value 3). This extra saving can be translated into a higher annual gain of 5.20%, 

due to the possible increase in the exposure to the asset (considering a fixed value for the 

maximum market risk charge of a certain portfolio and a fixed annual return). 

Nonetheless, there are three important limitations regarding our investigation. (1) In the 

derivation of the optimal policy we assumed that the distribution of returns and its parameters 

(mean and volatility) were known with 100% certainty; (2) in the reward function, which 

represents the value for the daily capital requirements in the optimization model, we ignored 

the average of the last sixty 1-day VaR; (3) and we only considered the regulatory framework 

until the Basel accords II. 

Concerning the distribution assumption (1), we tested the impact of under/overestimating 

the true volatility by performing a simulation where the volatility used to compute the 1-day 

VaR was always affected by a level of under/overvaluation. From this, we concluded that the 

optimal strategy continues to outperform the normal strategy when there is a slight 

undervaluation of the volatility (up to 6%). Moreover, there is a limit to the 

underperformance of the optimal strategy, attained when the level of undervaluation is at 

37% (mainly due to the dynamic aspect of the optimal policy which sometimes report values 

higher than 100% of the estimated 1-day VaR). In turn, an overvaluation always leads to an 

even better performance of the optimal strategy.  

In terms of the sixty days average assumption (2), in Subsection 4.3 we demonstrated that 

even though our optimization model was not optimizing the real value for the capital charge, 

it was a good proxy for the final solutions. This was also tested by performing a simulation 

where the daily capital charge was computed with the formula used for the reward function, 

i.e. ignoring this average, and the results were only slightly better compared to our first 

simulation (the optimal strategy was better in 80% instead of 78% of the times and the daily 

average relative saving was 5.41% instead of 4.32%). This means that there is some room to 

improve this model by considering the real equation defined in the Basel accords to compute 

the daily capital charge, however from these results one can conclude that our solution is a 

good approximation for the final result. 

The last assumption (3) is related with the complexity of the regulation that was defined 

after the Basel accords II, namely the concept of sVaR (stressed VaR). In this study, we 
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considered that the capital charge is calculated by multiplying the average of the last sixty 1-

day VaR by the multiplier factor and the square root of 10 (considering 10 trading days), 

without considering sVaR that was added to this formula later on in the revisions that were 

made to this regulatory framework. Therefore, in our model we only optimize one part of  the 

market risk charge and not the full amount.  

Considering all of these limitations, we ended this study by analyzing the performance of 

our model in a real life context by applying the optimal strategy to the S&P 500 index (using 

data from the last 30 years) and compare it to the normal strategy. This analysis supported 

the results of the simulation because the optimal strategy outperformed the normal strategy 

in 82% of the times and the average daily saving in the capital charge was around 7.22%, 

which represent an even better performance than the one achieved in the simulation. This 

result may be just luck of the draw, or it may be a consequence of an overestimation of the 

VaR by the model employed (which according to Figure 8 would be consistent with a level 

of overvaluation of 8%). 

All in all, in this study we demonstrated that, contrary to common sense, the best solution 

that optimizes the daily capital charge may not be the disclosure of a good estimate for the 

1-day VaR but the management of the rules defined in the market risk framework in order to 

benefit from them in the best possible way. 

For new studies on this subject, it would be interesting to: compare the performance of 

our model against DYLES (McAleer, Jimenez-Martin, & Pérez-Amaral, 2009); apply our 

optimal strategy to a large amount of financial products and understand if there is a significant 

difference in the results between different kinds of portfolios (stock, bond and mix); develop 

an optimization model without the limitations that our model have, namely using the real 

equation for the capital charge and optimizing the capital charge according to the risk 

framework defined after the Basel accords II. 
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9. Appendices 

Appendix A – Optimal policy function for different values of the 

multiplier K 
 

 
 

Figure 21 – Optimal policy function for all the number of exceedances when the multiplier k is equal to 3. 

 

 

 

 
 

Figure 22 – Optimal policy function for all the number of exceedances when the multiplier k is equal to 3.4. 
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Figure 23 – Optimal policy function for all the number of exceedances when the multiplier k is equal to 3.5. 

 

 

 

 

 
 

Figure 24 – Optimal policy function for all the number of exceedances when the multiplier k is equal to 3.65. 
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Figure 25 – Optimal policy function for all the number of exceedances when the multiplier k is equal to 3.75. 

 

 

 

 

 
 

Figure 26 – Optimal policy function for all the number of exceedances when the multiplier k is equal to 3.85. 
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Appendix B – Dynamic Programming Model Code 
 
%% Optimal VaR 

%% Step 0: model parameters 

 

% define the values for the standard parameters 

TtoB = 250; % Time remaining to Backtesting 

EC = 12; % number of possible exceedances 

K = 8; % index of the multiplier 

M = 0; % distribution mean 

Std = 1 ; % distribution standard deviation 

Kindex = [1 1 1 1 1 2 3 4 5 6 7 8]'; 

NormVaR1=norminv(0.99,M,Std); % normal +VaR(1,99%) 

NormVaR10=-NormVaR1*sqrt(10); % normal -VaR(10,99%) 

DiscFac = 0.9^(1/TtoB); % Discount factor 

Kmultipliers=[3 3.4 3.5 3.65 3.75 3.85 4 100000]; % vector of multipliers 

Kmult = 

[3*ones(TtoB*EC,1);3.4*ones(TtoB*EC,1);3.5*ones(TtoB*EC,1);3.65*ones(TtoB

*EC,1);3.75*ones(TtoB*EC,1);3.85*ones(TtoB*EC,1);4*ones(TtoB*EC,1);10000*

ones(TtoB*EC,1)]; % Multiplier according to the Kindex variable in a 

144x1 matrix 

N=TtoB*EC*K; % possible state combinations 

 

% the possible percentage of the 1-day VaR to report can range between 

0.001 and 3 with steps of 0.001 

VaR1=0.001;  

VaR2=3;  

 

 
 

Figure 27 – Optimal policy function for all the number of exceedances when the multiplier k is equal to 4. 
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Interval=0.001; 

NPVaR=3000; %number of possible VaRs to Report 

 

% Necessary variables for the Dynamic Programming (DP) problem 

MaxIter = 10000000000000000000000000000; % Maximum number of value 

function iterations 

StopIter = 1e-4; % Stopping value for the value function iteration 

 

 

%% Reward Function 

RewFun=zeros(N,NPVaR); matrix with the calculations of the daily capital 

charge, considering all of the different possibilities for the percentage 

to report of the estimated VaR, for each state of nature 

w=1; 

for i=VaR1:Interval:VaR2 

    RewFun(:,w)=i*Kmult*NormVaR10; 

    w=w+1; 

end 

 

RewFun(TtoB*EC*(K-1):TtoB*EC*K,:)=-5000000000; % value given to the worst 

case scenario (EC equal to 11) in order to avoid this extra exceedance 

 

%% Standard Transition Matrix 

 

TrMat = zeros(TtoB,EC,K,TtoB,EC,K); % creation of the matrix that has the 

probabilities of transitioning between states 

Prob=0.99; 

 

% The transition matrix will be constructed based on index numbers that 

will be substituted by the real probabilities associated with each of the 

percentages to report using the function TransitionMatrix_2 

 

for i=1:1:K 

   for j=1:1:EC 

       for z=1:1:TtoB 

           if z==1 %when it is left 1 day for backtesting all variables 

will have the initial value (TtoB=250, EC=1 (corresponding to zero 

exceedances)) except for the multiplier that will be chosen according to 

the number of exceedances 

               if j<=4 %when the number of exceedances is smaller than or 

equal to 4 

                TrMat(z,j,i,TtoB,1,1)=100+i; 

                TrMat(z,j,i,TtoB,EC,K)=200+i; 

               elseif j==EC % when the number of exceedances has reached 

its maximum value (12) 

                TrMat(z,j,i,TtoB,1,K)=1; %Multiplier will be the 

highest one (number 8)                 

               else %when the number of exceedances is between 5 and 11 

                temp=zeros(1,EC); 

                temp(j)=1; 

                TrMat(z,j,i,TtoB,1,temp*Kindex)=400; % Multiplier if 

there is no exceedance 

                TrMat(z,j,i,TtoB,1,temp*Kindex+1)=300+i; % Multiplier 

if an exceedance occurs and there is no bankrupcy 

                TrMat(z,j,i,TtoB,EC,K)=200+i; % If an exceedance occurs 

and there is bankrupcy 

               end     
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           else 

               if j==EC 

                TrMat(z,j,i,z-1,j,i)=1; 

               else 

                TrMat(z,j,i,z-1,j,i)=400; 

                TrMat(z,j,i,z-1,j+1,i)=300+i; 

                TrMat(z,j,i,TtoB,EC,K)=200+i; 

               end 

           end 

       end 

   end 

end 

 

TrMatR=sparse(reshape(TrMat,TtoB*EC*K,TtoB*EC*K)); %transform this matrix 

into a sparse matrix 

 

[TrMatLine, TrMatColumn, TrMatValue] = find(TrMatR); % reduce the memory 

used by this large matrix by storing only the coordinates for the values 

and the specific values in 3 matrices 

 

 

%% step 3: Infinite Horizon 

Val=zeros(N,NPVaR); % Matrix for the value function considering the 

different states (N) and different values for the decision variable 

(NPVaR) 

ValFun = zeros(N,1); % Matrix where the values for the value function, 

considering the most optimized choices in the current iteration, are 

stored 

% ValFunGuess=zeros(N,1); % First guess for the value function (in our 

case we used the value achieved from a smaller DP problem. However a 

vector of zeros can also be used. 

Pol = zeros(N,1); % matrix where the most optimized decisions are stored 

(optimal policy vector) 

Pol2=Pol; 

for i=1:1:MaxIter 

    tic 

    disp(i) 

    w=1; 

        for z=VaR1:Interval:VaR2 %change this when changing the number of 

possible VaR to report!!! 

         Val(:,w) = 

RewFun(:,w)+DiscFac*TransitionMatrix_2(z,NormVaR1,M,Std,TrMatValue,TrMatL

ine,TrMatColumn,K,Kmultipliers)*ValFunGuess; %computation for the value 

function in each state of nature and for each possible value for the 

action variable 

         w=w+1; 

         %disp(z) 

        end 

    [ValFun Pol] = max(Val,[],2); % Definition of the most optimized 

decisions to take in this iteraction (the results of this iteration) 

     

    if rem(i/10,1)==0 

     ValFunNorm=norm(ValFun-ValFunGuess) 

     DifPol=sum(Pol-Pol2) 

     Pol2=Pol; 

     toc 
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 % save the values for the most optimized value function and the 

optimal decisions to take until this iteration 

     save('Value_Function_Final','ValFunGuess');  

     save('Policy_Function_Final','Pol') 

    end 

%if the norm of the difference in both value functions is lower than the 

defined value, the best optimal policy was achieved, otherwise update 

ValFunGuess with ValFun and perform a new iteration 

    if norm(ValFun-ValFunGuess) < StopIter  

        sprintf('Value function iteration converged to a solution in %d 

iterations',i) 

        break 

    else 

        ValFunGuess = ValFun; 

    end 

     

end 

if i==MaxIter 

    disp('Value function iteration did not converge to a solution. 

Increase MaxIter') 

end 

 

Pol=Pol/1000; 

%% 

OptimalVaR=reshape(Pol,TtoB,EC,K); 

 

disp('The results are in the matrix OptimalVaR(TtoB,EC,K)To find out')  

disp('which VaR should be reported use this matrix replacing the 

variables') 

disp('(note: EC=1 -> 0 exceedances, and so on; and N=1 -> 0 in excel 

file)') 

 

 

Appendix C – Transition Matrix Function Code 
 
function 

TrMatR=TransitionMatrix_2(Percentage_Reported_VaR,Normal_VaR_1_day,Mean,S

tandard_Deviation,Transition_Matrix_Values_Normal_VaR,Transition_Matrix_L

ine_Coordinates, Transition_Matrix_Column_Coordinates, 

Number_of_Multipliers,Vector_of_Multipliers) 

%,Time_to_Backtesting,Number_of_Possible_Excedances,Number_of_Multipliers

,Distribution_Mean,Distribution_Standard_Deviation) 

R=Percentage_Reported_VaR; 

NVaR=Normal_VaR_1_day; 

M=Mean; 

Std=Standard_Deviation; 

Values=Transition_Matrix_Values_Normal_VaR; 

Line=Transition_Matrix_Line_Coordinates; 

Column=Transition_Matrix_Column_Coordinates; 

K=Number_of_Multipliers; 

Kmult=Vector_of_Multipliers; 

% Final 02-09-2016 

%% 

 

Values(Values==400)=normcdf(NVaR*R,M,Std); %Substitute with the 

probability of not having an exceedance 
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for i=1:1:K 

ProbNB=normcdf(NVaR*R*sqrt(10)*Kmult(i),M,Std); 

Values(Values==100+i)=ProbNB; %Probability of not going bankrupt when it 

is left 1 day for backtesting 

Values(Values==200+i)=1-ProbNB; %Probability of having an exceedance and 

going bankrupt 

Values(Values==300+i)=1-normcdf(NVaR*R,M,Std)-(1-ProbNB); %Probability of 

having an exceedance and not going bankrupt 

end 

 

TrMatR=sparse(Line,Column,Values); 

end 

 

 

Appendix D – Monte Carlo Simulations Code 
 
%%Under/Over Valuation Simulation FINAL 02-09-2016 

%% Define Parameters 

tic 

%undervaluation level for the volatility 

Level = 1; 

 

% simulation 

NumSimul=100000; %number of simulations 

N=30; %Number of years to simulate 

Std=1.7/100; %Standard Deviation of the distribution of returns 

Limit=3; % Maximum percentage to report when EC is equal to 10 

 

%other parameters 

M=0; %Mean of the distribution of returns 

NProb=0.99; % confidence level for the VaR 

TtoB=250; %Number of days in a year (and also represents time left until 

backtesting) 

EC=12; %maximum number of exceedances considered in the model 

K=8; %number of possible multipliers 

 

 

%% Load matrix with optimal policy function 

 

 

load('Policy_Function_Final.mat') % load the optimal policy vector 

 

OptPol=reshape(Pol/1000,TtoB,EC,K); % reshape to OptPol=zeros(TtoB,EC,K) 

clear('Pol') 

 

OptPol(:,11,:)=Limit; % change the maximum percentage to report in the 

optimal policy vector 

 

Kmult=[3 3 3 3 3 3.4 3.5 3.65 3.75 3.85 4 100000; 1 1 1 1 1 2 3 4 5 6 7 

8]; %Multiplier and index according to the number of exceedances starting 

in 0 and finishing in 11 

 

%% Create the matrices for the result of the simulation for both policies 

 

StdinUse=Std*Level; % volatility that will be used to compute the VaR 



83 

 

NInv = norminv(NProb,M,StdinUse); % estimated 1-day VaR 

 

    %Normal Policy 

NormAnnualCapitalCharge=zeros(TtoB,NumSimul); %matrix to store the daily 

capital charge in  a year 

NormCapitalCharge = zeros(N,NumSimul); % matrix to store the anual 

average of the daily capital charge 

NormEC = zeros(N,NumSimul); % number of exceedances in each 

year/simulation 

NormK = zeros(N,NumSimul); % multiplier used in each year/simulation 

NormK(1,:) = 3; % the multiplier used in the first year of each 

simulation is always the base multiplier (3) 

NormLastVars = zeros(60,NumSimul); % matrix that stores the last 60 1-day 

VaR, to compute the average for the capital charge 

 

    %Optimal Policy 

OptimalAnnualCapitalCharge=zeros(TtoB,NumSimul); %matrix to store the 

daily capital charge in  a year     

OptimalCapitalCharge = zeros(N,NumSimul); % matrix to store the anual 

average of the daily capital charge 

AnnualOptimalVaR=zeros(TtoB,NumSimul); %matrix to store the daily Optimal 

1-day VaR in  a certain year  

OptimalVaR = zeros(N,NumSimul); % matrix to store the anual average of 

the Optimal 1-day VaR 

OptimalEC = zeros(N,NumSimul); % number of exceedances in each 

year/simulation 

OptimalK = zeros(N,NumSimul); % multiplier used in each year/simulation 

OptimalK(1,:) = 3; % the multiplier used in the first year of each 

simulation is always the base multiplier (3) 

OptimalKindex = zeros(N,NumSimul); % index of the multiplier in use in 

each year/simulation 

OptimalKindex(1,:) = 1; % the index of the base multiplier (3), that is 

always used in the first year, is 1. 

OptimalLastVars = zeros(60,NumSimul); % matrix that stores the last 60 

Optimal 1-day VaR, to compute the average for the capital charge (in the 

first year of each simulation, this is equal to the normal) 

 

 

    % To compute the statistics 

OptimalStatisticsVaR = zeros(NumSimul,5); %Mean, Median, Min, Max, Std 

DailySaving=zeros(N,NumSimul); 

 

    % amount invested in the asset (level of exposure) 

AmountInvested=zeros(TtoB,NumSimul,2); % 1-Normal, 2-Optimal 

AnnualReturn=zeros(N,NumSimul,2); % 1-Normal, 2-Optimal 

AnnualAverageAmountInvested=zeros(N,NumSimul,2);% 1-Normal, 2-Optimal 

AnnualAverageEffectiveReturn=zeros(N,NumSimul,2); % return on the anual 

average invested capital 

AllowedRegulatoryCapital=100000; % Maximum value defined for the MRC 

PriceUnit=1; 

DailyReturn=(6/100)/TtoB; %daily return on the asset 

 

%% Start the simulation 

        

for n=1:N 

    % Reset variables 

    AmountInvested(:,:,:)=0; 
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    NormLastVars(:,:) = NInv; 

    OptimalLastVars(:,:) = NInv; 

    NormAnnualCapitalCharge(:,:)=0; 

    OptimalAnnualCapitalCharge(:,:)=0; 

    AnnualOptimalVaR(:,:)=0; 

     

        disp(n) 

         

    for t=TtoB:-1:1 

        DailyRet = norminv(rand(1,NumSimul),M,Std); % random daily return 

in day t for each simulation 

 

        % Normal Strategy 

        NormVaR = ones(1,NumSimul)*NInv; % matrix with the estimated 1-

day VaR 

        if t < 250 %if the number of exceedances is 10, it will be 

reported the highest possible percentage of the VaR 

           NormVaR(NormEC(n,:)==10) = Limit*NInv; 

        end 

        NormLastVars(mod((n-1)*TtoB+t-1,60)+1,:) = NormVaR; % substitute 

the older by the new estimated 1-day VaR to the matrix with the last 

sisty 1-day VaR 

        NormAnnualCapitalCharge(TtoB-t+1,:) = mean(NormLastVars) .* 

NormK(n,:) * sqrt(10); % calculation of the daily capital charge 

         

        % Portfolio 

        AmountInvested(TtoB-

t+1,:,1)=AllowedRegulatoryCapital./(NormAnnualCapitalCharge(TtoB-

t+1,:).*PriceUnit); %definition of the exposute to the asset according to 

the daily capital charge and the maximum defined MRC 

        % 

         

        if t==250 %verify if an exceedance/bankrupcy ocurred 

            NormEC(n,:) = (DailyRet < -NormVaR) * 1 + (DailyRet < -

reshape(NormAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * (-99); 

        else 

            NormEC(n,:) = NormEC(n,:) + (DailyRet < -NormVaR) * 1 + 

(DailyRet < -reshape(NormAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * 

(-99); 

        end  

        if min(NormEC(n,:),[],2) < 0 

            disp('Normal: Bankruptcy')  

            return   

        end 

         

        if t==1 && n<N %review the multiplier when t is equal to 1 

            NormK(n+1,:) = Kmult(1,NormEC(n,:)+1); 

        end 

         

        %Optimal Strategy 

        OptPolt = reshape(OptPol(t,:,:),EC,K); 

        if t==250 % define the optimal percentage of the 1-day VaR to 

report 

            AnnualOptimalVaR(TtoB-t+1,:) = 

OptPolt(1,OptimalKindex(n,:))*NInv;  

        else 
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            AnnualOptimalVaR(TtoB-t+1,:) = OptPolt(sub2ind([EC, 

K],OptimalEC(n,:)+1,OptimalKindex(n,:)))*NInv; 

        end 

         

        OptimalVaRt = reshape(AnnualOptimalVaR(TtoB-t+1,:),1,NumSimul); 

         

        OptimalLastVars(mod((n-1)*TtoB+t-1,60)+1,:) = OptimalVaRt;  % 

substitute the older by the new disclosed 1-day VaR to the matrix with 

the last sisty 1-day VaR 

        OptimalAnnualCapitalCharge(TtoB-t+1,:) = mean(OptimalLastVars) .* 

OptimalK(n,:) * sqrt(10); % calculation of the daily capital charge 

        

        % Portfolio 

        AmountInvested(TtoB-

t+1,:,2)=AllowedRegulatoryCapital./(OptimalAnnualCapitalCharge(TtoB-

t+1,:).*PriceUnit); %definition of the exposute to the asset according to 

the daily capital charge and the maximum defined MRC         

        % 

         

        if t==250 %verify if an exceedance/bankrupcy ocurred 

            OptimalEC(n,:) = (DailyRet < -OptimalVaRt) * 1 + (DailyRet < 

-reshape(OptimalAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * (-99); 

        else 

            OptimalEC(n,:) = OptimalEC(n,:) + (DailyRet < -OptimalVaRt) * 

1+(DailyRet < -reshape(OptimalAnnualCapitalCharge(TtoB-

t+1,:),1,NumSimul)) * (-99); 

        end 

        if min(OptimalEC(n,:),[],2) < 0 

            disp('Optimal: Bankrupcy')  

            return   

        end 

        if t==1 && n<N %review the multiplier when t is equal to 1 

            OptimalK(n+1,:) = Kmult(1,OptimalEC(n,:)+1); 

            OptimalKindex(n+1,:) = Kmult(2,OptimalEC(n,:)+1); 

        end 

    end 

     

        %Anual Statistics 

    NormCapitalCharge(n,:)=mean(NormAnnualCapitalCharge); 

    OptimalCapitalCharge(n,:)=mean(OptimalAnnualCapitalCharge); 

    OptimalVaR(n,:)=mean(AnnualOptimalVaR);     

    DailySaving(n,:)=mean(1-

OptimalAnnualCapitalCharge./NormAnnualCapitalCharge); 

     

        %Portfolio 

    AnnualReturn(n,:,1)=sum(AmountInvested(:,:,1)*PriceUnit*DailyReturn); 

    AnnualAverageAmountInvested(n,:,1)=mean(AmountInvested(:,:,1)); 

    AnnualReturn(n,:,2)=sum(AmountInvested(:,:,2)*PriceUnit*DailyReturn); 

    AnnualAverageAmountInvested(n,:,2)=mean(AmountInvested(:,:,2)); 

    

AnnualAverageEffectiveReturn(n,:,1)=AnnualReturn(n,:,1)./AnnualAverageAmo

untInvested(n,:,1); 

    

AnnualAverageEffectiveReturn(n,:,2)=AnnualReturn(n,:,2)./AnnualAverageAmo

untInvested(n,:,2); 

     

end 
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%% Statistics for the Capital Charge, Multiplier (K) and number of 

exceedances (EC) 

 

% statistics per simulation 

    %Normal Policy 

 

NormStatisticsCapC = zeros(NumSimul,5); %Mean, Median, Min, Max, Std 

NormStatisticsCapC(:,1)=mean(NormCapitalCharge);  

NormStatisticsCapC(:,2)=median(NormCapitalCharge); 

NormStatisticsCapC(:,3)=min(NormCapitalCharge); 

NormStatisticsCapC(:,4)=max(NormCapitalCharge); 

NormStatisticsCapC(:,5)=std(NormCapitalCharge); 

 

NormStatisticsEC = zeros(NumSimul,4); %Mean,Mode, Median, Std 

NormStatisticsEC(:,1)=mean(NormEC); 

NormStatisticsEC(:,2)=mode(NormEC); 

NormStatisticsEC(:,3)=median(NormEC); 

NormStatisticsEC(:,4)=std(NormEC); 

 

NormStatisticsK = zeros(NumSimul,4); %Mean,Mode, Median, Std 

NormStatisticsK(:,1)=mean(NormK); 

NormStatisticsK(:,2)=mode(NormK); 

NormStatisticsK(:,3)=median(NormK); 

NormStatisticsK(:,4)=std(NormK); 

 

    %Optimal Policy 

OptimalStatisticsCapC = zeros(NumSimul,5); %Mean, Median, Min, Max, Std 

OptimalStatisticsCapC(:,1)=mean(OptimalCapitalCharge); 

OptimalStatisticsCapC(:,2)=median(OptimalCapitalCharge); 

OptimalStatisticsCapC(:,3)=min(OptimalCapitalCharge); 

OptimalStatisticsCapC(:,4)=max(OptimalCapitalCharge); 

OptimalStatisticsCapC(:,5)=std(OptimalCapitalCharge); 

 

OptimalStatisticsEC = zeros(NumSimul,4); %Mean,Mode, Median, Std 

OptimalStatisticsEC(:,1)=mean(OptimalEC); 

OptimalStatisticsEC(:,2)=mode(OptimalEC); 

OptimalStatisticsEC(:,3)=median(OptimalEC); 

OptimalStatisticsEC(:,4)=std(OptimalEC); 

 

OptimalStatisticsK = zeros(NumSimul,4); %Mean,Mode, Median, Std 

OptimalStatisticsK(:,1)=mean(OptimalK); 

OptimalStatisticsK(:,2)=mode(OptimalK); 

OptimalStatisticsK(:,3)=median(OptimalK); 

OptimalStatisticsK(:,4)=std(OptimalK); 

 

% Average of the Statistics 

        %Capital Charge 

NormAverageStatistics=zeros(3,5); % average of the statistics for the 

Normal Policy: 1-Capital Charge, 2-EC, 3-K 

OptimalAverageStatistics=zeros(3,5); % average of the statistics for the 

Optimal Policy: 1-Capital Charge, 2-EC, 3-K 

 

NormAverageStatistics(1,1)=mean(NormStatisticsCapC(:,1)); 

NormAverageStatistics(1,2)=mean(NormStatisticsCapC(:,2)); 

NormAverageStatistics(1,3)=mean(NormStatisticsCapC(:,3)); 

NormAverageStatistics(1,4)=mean(NormStatisticsCapC(:,4)); 
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NormAverageStatistics(1,5)=mean(NormStatisticsCapC(:,5)); 

 

OptimalAverageStatistics(1,1)=mean(OptimalStatisticsCapC(:,1)); 

OptimalAverageStatistics(1,2)=mean(OptimalStatisticsCapC(:,2)); 

OptimalAverageStatistics(1,3)=mean(OptimalStatisticsCapC(:,3)); 

OptimalAverageStatistics(1,4)=mean(OptimalStatisticsCapC(:,4)); 

OptimalAverageStatistics(1,5)=mean(OptimalStatisticsCapC(:,5)); 

 

        %EC 

NormAverageStatistics(2,1)=mean(NormStatisticsEC(:,1)); 

NormAverageStatistics(2,2)=mean(NormStatisticsEC(:,2)); 

NormAverageStatistics(2,3)=mean(NormStatisticsEC(:,3)); 

NormAverageStatistics(2,4)=mean(NormStatisticsEC(:,4)); 

 

OptimalAverageStatistics(2,1)=mean(OptimalStatisticsEC(:,1)); 

OptimalAverageStatistics(2,2)=mean(OptimalStatisticsEC(:,2)); 

OptimalAverageStatistics(2,3)=mean(OptimalStatisticsEC(:,3)); 

OptimalAverageStatistics(2,4)=mean(OptimalStatisticsEC(:,4)); 

 

        %K 

NormAverageStatistics(3,1)=mean(NormStatisticsK(:,1)); 

NormAverageStatistics(3,2)=mean(NormStatisticsK(:,2)); 

NormAverageStatistics(3,3)=mean(NormStatisticsK(:,3)); 

NormAverageStatistics(3,4)=mean(NormStatisticsK(:,4)); 

 

OptimalAverageStatistics(3,1)=mean(OptimalStatisticsK(:,1)); 

OptimalAverageStatistics(3,2)=mean(OptimalStatisticsK(:,2)); 

OptimalAverageStatistics(3,3)=mean(OptimalStatisticsK(:,3)); 

OptimalAverageStatistics(3,4)=mean(OptimalStatisticsK(:,4)); 

 

 

%statistics for the whole simulation 

    %Normal Policy 

NormStatistics=zeros(3,5); % 1-CS, 2-EC, 3-K 

ReshapedNormCapitalCharge=reshape(NormCapitalCharge,N*NumSimul,1); 

ReshapedNormEC=reshape(NormEC,N*NumSimul,1); 

ReshapedNormK=reshape(NormK,N*NumSimul,1); 

        %Capital Charge 

NormStatistics(1,1)=mean(ReshapedNormCapitalCharge); 

NormStatistics(1,2)=median(ReshapedNormCapitalCharge); 

NormStatistics(1,3)=min(ReshapedNormCapitalCharge); 

NormStatistics(1,4)=max(ReshapedNormCapitalCharge); 

NormStatistics(1,5)=std(ReshapedNormCapitalCharge); 

        %EC 

NormStatistics(2,1)=mean(ReshapedNormEC); 

NormStatistics(2,2)=mode(ReshapedNormEC); 

NormStatistics(2,3)=median(ReshapedNormEC); 

NormStatistics(2,4)=std(ReshapedNormEC); 

        %K 

NormStatistics(3,1)=mean(ReshapedNormK); 

NormStatistics(3,2)=mode(ReshapedNormK); 

NormStatistics(3,3)=median(ReshapedNormK); 

NormStatistics(3,4)=std(ReshapedNormK); 

 

    %Optimal Policy 

OptimalStatistics=zeros(3,5); %estatisticas para a distribuição toda; CS, 

EC, K 
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ReshapedOptimalCapitalCharge=reshape(OptimalCapitalCharge,N*NumSimul,1); 

ReshapedOptimalEC=reshape(OptimalEC,N*NumSimul,1); 

ReshapedOptimalK=reshape(OptimalK,N*NumSimul,1); 

        %Capital Charge 

OptimalStatistics(1,1)=mean(ReshapedOptimalCapitalCharge); 

OptimalStatistics(1,2)=median(ReshapedOptimalCapitalCharge); 

OptimalStatistics(1,3)=min(ReshapedOptimalCapitalCharge); 

OptimalStatistics(1,4)=max(ReshapedOptimalCapitalCharge); 

OptimalStatistics(1,5)=std(ReshapedOptimalCapitalCharge); 

        %EC 

OptimalStatistics(2,1)=mean(ReshapedOptimalEC); 

OptimalStatistics(2,2)=mode(ReshapedOptimalEC); 

OptimalStatistics(2,3)=median(ReshapedOptimalEC); 

OptimalStatistics(2,4)=std(ReshapedOptimalEC); 

        %K 

OptimalStatistics(3,1)=mean(ReshapedOptimalK); 

OptimalStatistics(3,2)=mode(ReshapedOptimalK); 

OptimalStatistics(3,3)=median(ReshapedOptimalK); 

OptimalStatistics(3,4)=std(ReshapedOptimalK); 

 

 

% Distribution for the Percentage of times where the Optimal Policy is 

lower than the normal policy 

 

BetterThanNormal = mean(OptimalCapitalCharge < NormCapitalCharge); 

 

StatisticsBetterThanNormal=zeros(5,1); 

StatisticsBetterThanNormal(1,1)=mean(BetterThanNormal); 

StatisticsBetterThanNormal(2,1)=median(BetterThanNormal); 

StatisticsBetterThanNormal(3,1)=min(BetterThanNormal); 

StatisticsBetterThanNormal(4,1)=max(BetterThanNormal); 

StatisticsBetterThanNormal(5,1)=std(BetterThanNormal); 

 

 

% Distribution for the Average daily saving in each simulation 

 

Savings=mean(DailySaving); 

StatisticsSavings=zeros(5,1); 

StatisticsSavings(1,1)=mean(Savings); 

StatisticsSavings(2,1)=median(Savings); 

StatisticsSavings(3,1)=min(Savings); 

StatisticsSavings(4,1)=max(Savings); 

StatisticsSavings(5,1)=std(Savings); 

 

 

toc 

 

Appendix E – Monte Carlo Simulations for different levels of 

under/overvaluation Code 
 
%%Under/Over Valuation Simulation 

 

%% Define Parameters 

tic 

%undervaluation levels for the volatility 
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LevelStart=0.6; % Starting Level of undervaluation 

NumberLevels = 60; % steps in the level of undervaluation 

LevelEnd=1.2; %Last level of under/over valuation 

 

% simulation 

NumSimul=100000; %number of simulations 

N=30; %Number of years in each simulation 

Std=1.7/100; %Standard Deviation of the distribution of returns 

Limit=10; % Maximum percentage to report when EC is equal to 10 

 

%other parameters 

M=0; %Mean of the distribution of returns 

NProb=0.99; %confidence level for the VaR 

TtoB=250; %Number of days in a year (and also represents time left until 

backtesting) 

EC=12; %maximum number of exceedances considered in the model 

K=8; %number of possible multipliers 

 

 

%% Load matrix with optimal policy function 

 

 

load('Policy_Function_Final.mat') % load the optimal policy vector 

 

OptPol=reshape(Pol/1000,TtoB,EC,K); % reshape to OptPol=zeros(TtoB,EC,K) 

clear('Pol') 

 

OptPol(:,11,:)=Limit; % change the maximum percentage to report in the 

optimal policy vector 

 

Kmult=[3 3 3 3 3 3.4 3.5 3.65 3.75 3.85 4 100000; 1 1 1 1 1 2 3 4 5 6 7 

8]; %Multiplier and index according to the number of exceedances starting 

in 0 and finishing in 11 

 

%% Create the matrices for the results of the simulation for both 

policies 

 

%Matrix to compute the statistics 

StatisticMeanDiff=zeros(NumberLevels+1,3); 

StatisticCSNorm=zeros(NumberLevels+1,3); 

StatisticCSOpt=zeros(NumberLevels+1,3); 

 

l=0; 

for Level=LevelStart:((LevelEnd-LevelStart)/NumberLevels):LevelEnd 

 

    WorstCenarioN=0; %number of times that the worst scenario (reaching 

11 exceedances) occurs in the normal policy 

    WorstCenarioO=0; %number of times that the worst scenario (reaching 

11 exceedances) occurs in the optimal policy 

 

    StdinUse=Std*Level; % volatility that will be used to compute the VaR 

    NInv = norminv(NProb,M,StdinUse); % estimated 1-day VaR 

    DailySaving=zeros(N,NumSimul); 

     

    %Normal Policy 

NormAnnualCapitalCharge=zeros(TtoB,NumSimul); %matrix to store the daily 

capital charge in  a year 
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NormCapitalCharge = zeros(N,NumSimul); % matrix to store the annual 

average of the daily capital charge 

NormEC = zeros(N,NumSimul); % number of exceedances in each 

year/simulation 

NormK = zeros(N,NumSimul); % multiplier used in each year/simulation 

NormK(1,:) = 3; % the multiplier used in the first year of each 

simulation is always the base multiplier (3) 

NormLastVars = zeros(60,NumSimul); % matrix that stores the last 60 1-day 

VaR, to compute the average for the capital charge 

 

    %Optimal Policy 

OptimalAnnualCapitalCharge=zeros(TtoB,NumSimul); %matrix to store the 

daily capital charge in  a certain year     

OptimalCapitalCharge = zeros(N,NumSimul); % matrix to store the anual 

average of the daily capital charge 

AnnualOptimalVaR=zeros(TtoB,NumSimul); %matrix to store the daily Optimal 

1-day VaR in  a year  

OptimalVaR = zeros(N,NumSimul); % matrix to store the anual average of 

the Optimal 1-day VaR 

OptimalEC = zeros(N,NumSimul); % number of exceedances in each 

year/simulation 

OptimalK = zeros(N,NumSimul); % multiplier used in each year/simulation 

OptimalK(1,:) = 3; % the multiplier used in the first year of each 

simulation is always the base multiplier (3) 

OptimalKindex = zeros(N,NumSimul); % index of the multiplier in use in 

each year/simulation 

OptimalKindex(1,:) = 1; % the index of the base multiplier (3) is 1. 

OptimalLastVars = zeros(60,NumSimul); % matrix that stores the last 60 

Optimal 1-day VaR, to compute the average for the capital charge (in the 

first year of each simulation, this is equal to the normal) 

 

 

%% Start the simulation 

 

l=l+1; 

disp(l) 

   

for n=1:N 

    % Reset variables 

    NormLastVars(:,:) = NInv; 

    OptimalLastVars(:,:) = NInv; 

    NormAnnualCapitalCharge(:,:)=0; 

    OptimalAnnualCapitalCharge(:,:)=0; 

    AnnualOptimalVaR(:,:)=0; 

    WorstCenarioO=0; 

     

        disp(n) 

    for t=TtoB:-1:1 

        DailyRet = norminv(rand(1,NumSimul),M,Std); % random daily return 

in day t for each simulation 

 

        % Normal Strategy 

        NormVaR = ones(1,NumSimul)*NInv; % matrix with the estimated 1-

day VaR 

        if t < 250 %if the number of exceedances is 10, it will be 

reported the highest possible percentage of the VaR 

           NormVaR(NormEC(n,:)==10) = Limit*NInv; 
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        end 

        NormLastVars(mod((n-1)*TtoB+t-1,60)+1,:) = NormVaR; % substitute 

the older by the newer estimated 1-day VaR to the matrix with the last 

sisty 1-day VaR 

        NormAnnualCapitalCharge(TtoB-t+1,:) = mean(NormLastVars) .* 

NormK(n,:) * sqrt(10);  % calculation of the daily capital charge 

         

        if t==250 % verify if an exceedance/bankrupcy ocurred 

            NormEC(n,:) = (DailyRet < -NormVaR) * 1 + (DailyRet < -

reshape(NormAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * (-99); 

        else 

            NormEC(n,:) = NormEC(n,:) + (DailyRet < -NormVaR) * 1 + 

(DailyRet < -reshape(NormAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * 

(-99); 

        end  

        if min(NormEC(n,:),[],2) < 0 

            disp('Normal: Bankruptcy')  

            return   

        end 

        if t==1 && n<N % review the multiplier when t is equal to 1 

            NormK(n+1,:) = Kmult(1,NormEC(n,:)+1); 

        end 

         

        %Optimal Strategy 

        OptPolt = reshape(OptPol(t,:,:),EC,K); 

        if t==250 % define the optimal percentage of the 1-day VaR to 

report 

            AnnualOptimalVaR(TtoB-t+1,:) = 

OptPolt(1,OptimalKindex(n,:))*NInv; 

        else 

            AnnualOptimalVaR(TtoB-t+1,:) = OptPolt(sub2ind([EC, 

K],OptimalEC(n,:)+1,OptimalKindex(n,:)))*NInv; 

        end 

         

        OptimalVaRt = reshape(AnnualOptimalVaR(TtoB-t+1,:),1,NumSimul); 

         

        OptimalLastVars(mod((n-1)*TtoB+t-1,60)+1,:) = OptimalVaRt; % 

substitute the older by the new disclosed 1-day VaR to the matrix with 

the last sisty 1-day VaR 

        OptimalAnnualCapitalCharge(TtoB-t+1,:) = mean(OptimalLastVars) .* 

OptimalK(n,:) * sqrt(10); % calculation of the daily capital charge 

         

        if t==250 % verify if an exceedance/bankrupcy ocurred 

            OptimalEC(n,:) = (DailyRet < -OptimalVaRt) * 1 + (DailyRet < 

-reshape(OptimalAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * (-99); 

        else 

            OptimalEC(n,:) = OptimalEC(n,:) + (DailyRet < -OptimalVaRt) * 

1+(DailyRet < -reshape(OptimalAnnualCapitalCharge(TtoB-

t+1,:),1,NumSimul)) * (-99); 

        end 

        if min(OptimalEC(n,:),[],2) < 0 

            disp('Optimal: Bankrupcy')  

            return   

        end 

        if t==1 && n<N % review the multiplier when t is equal to 1 

            OptimalK(n+1,:) = Kmult(1,OptimalEC(n,:)+1); 

            OptimalKindex(n+1,:) = Kmult(2,OptimalEC(n,:)+1); 



92 

 

        end 

    end 

    %Anual Statistics 

    WorstCenarioO=WorstCenarioO+nnz(AnnualOptimalVaR==Limit*NInv); 

%Number of times where an agent reaches the worst case scenario 

    NormCapitalCharge(n,:)=mean(NormAnnualCapitalCharge); % Average of 

the capital charge computed with the normal strategy 

    OptimalCapitalCharge(n,:)=mean(OptimalAnnualCapitalCharge); % Average 

of the capital charge computed with the optimal strategy 

    OptimalVaR(n,:)=mean(AnnualOptimalVaR); %Average of the Optimal VaR    

    DailySaving(n,:)=mean(1-

OptimalAnnualCapitalCharge./NormAnnualCapitalCharge); % Average of the 

daily saving in each level of undervaluation 

     

 

end 

 

 

ReshapedNormCapitalCharge=reshape(NormCapitalCharge,N*NumSimul,1); 

ReshapedOptimalCapitalCharge=reshape(OptimalCapitalCharge,N*NumSimul,1); 

 

StatisticMeanDiff(l,1)=mean(ReshapedNormCapitalCharge-

ReshapedOptimalCapitalCharge); % difference between the normal and 

optimal strategy (capital charge) 

StatisticMeanDiff(l,2)=mean(ReshapedOptimalCapitalCharge<ReshapedNormCapi

talCharge); % optimal strategy better than normal strategy 

StatisticMeanDiff(l,3)=mean(reshape(DailySaving,N*NumSimul,1)); 

 

StatisticCSNorm(l,1)=mean(ReshapedNormCapitalCharge); % average of the 

capital charge in the simulation 

StatisticCSNorm(l,2)=mean(mean(NormK)); % average of the multiplier k in 

the simulation 

StatisticCSNorm(l,3)=WorstCenarioN; % number of times that the worst case 

scenario is used 

 

StatisticCSOpt(l,1)=mean(ReshapedOptimalCapitalCharge); % average of the 

capital charge in the simulation 

StatisticCSOpt(l,2)=mean(mean(OptimalK)); % average of the multiplier k 

in the simulation 

StatisticCSOpt(l,3)=WorstCenarioO; % number of times that the worst case 

scenario is used 

 

end  

 

toc 

 

 

Appendix F – Monte Carlo Simulations for the Simplified Model Code 
 
%%Under/Over Valuation Simulation FINAL 02-09-2016 

%% Define Parameters 

tic 

%undervaluation levels for the volatility 

Level = 1; 

 

% simulation 
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NumSimul=100000; %number of simulations 

N=30; %Number of years to simulate 

Std=1.7/100; %Standard Deviation of the distribution of returns 

Limit=3; % Maximum percentage to report when EC is equal to 10 

 

%other parameters 

M=0; %Mean of the distribution of returns 

NProb=0.99; 

TtoB=250; %Number of days in a year (and also represents time left until 

backtesting) 

EC=12; %maximum number of exceedances considered in the model 

K=8; %number of possible multipliers 

 

 

%% Load matrix with optimal policy function 

 

 

load('Policy_Function_Final.mat') 

 

OptPol=reshape(Pol/1000,TtoB,EC,K); %OptPol=zeros(TtoB,EC,K) 

clear('Pol') 

 

OptPol(:,11,:)=Limit; % change the maximum percentage to report in the 

optimal policy vector 

 

Kmult=[3 3 3 3 3 3.4 3.5 3.65 3.75 3.85 4 100000; 1 1 1 1 1 2 3 4 5 6 7 

8]; %Multiplier and index according to the number of exceedances starting 

in 0 and finishing in 11 

 

%% Create the matrices for the result of the simulation for both policies 

 

StdinUse=Std*Level; % volatility that will be used to compute the VaR 

NInv = norminv(NProb,M,StdinUse); % estimated 1-day VaR 

 

    %Normal Policy 

NormAnnualCapitalCharge=zeros(TtoB,NumSimul); %matrix to store the daily 

capital charge in  a year 

NormCapitalCharge = zeros(N,NumSimul); % matrix to store the anual 

average of the daily capital charge 

NormEC = zeros(N,NumSimul); % number of exceedances in each 

year/simulation 

NormK = zeros(N,NumSimul); % multiplier used in each year/simulation 

NormK(1,:) = 3; % the multiplier used in the first year of each 

simulation is always the base multiplier (3) 

 

    %Optimal Policy 

OptimalAnnualCapitalCharge=zeros(TtoB,NumSimul); %matrix to store the 

daily capital charge in  a year     

OptimalCapitalCharge = zeros(N,NumSimul); % matrix to store the anual 

average of the daily capital charge 

AnnualOptimalVaR=zeros(TtoB,NumSimul); %matrix to store the daily Optimal 

1-day VaR in  a certain year  

OptimalVaR = zeros(N,NumSimul); % matrix to store the anual average of 

the Optimal 1-day VaR 

OptimalEC = zeros(N,NumSimul); % number of exceedances in each 

year/simulation 

OptimalK = zeros(N,NumSimul); % multiplier used in each year/simulation 
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OptimalK(1,:) = 3; % the multiplier used in the first year of each 

simulation is always the base multiplier (3) 

OptimalKindex = zeros(N,NumSimul); % index of the multiplier in use in 

each year/simulation 

OptimalKindex(1,:) = 1; % the index of the base multiplier (3) is 1. 

 

 

    %Para calcular as estatisticas 

OptimalStatisticsVaR = zeros(NumSimul,5); %Mean, Median, Min, Max, Std 

DailySaving=zeros(N,NumSimul); % relatie saving: the saving in the 

capital charge that derives from the use of the optimal startegy relative 

to the normal strategy 

 

    %New thing: amount invested in the asset 

AmountInvested=zeros(TtoB,NumSimul,2); % 1-Normal, 2-Optimal 

AnnualReturn=zeros(N,NumSimul,2); % 1-Normal, 2-Optimal 

AnnualAverageAmountInvested=zeros(N,NumSimul,2);% 1-Normal, 2-Optimal 

AnnualAverageEffectiveReturn=zeros(N,NumSimul,2); %return on the anual 

average invested capital 

AllowedRegulatoryCapital=100000; 

PriceUnit=1; 

DailyReturn=(6/100)/TtoB; 

 

%% Start the simulation 

        

for n=1:N 

    % Reset variables 

    AmountInvested(:,:,:)=0; 

    NormAnnualCapitalCharge(:,:)=0; 

    OptimalAnnualCapitalCharge(:,:)=0; 

    AnnualOptimalVaR(:,:)=0; 

        disp(n) 

    for t=TtoB:-1:1 

        DailyRet = norminv(rand(1,NumSimul),M,Std); % random daily return 

in day t for each simulation 

 

        % Normal Strategy 

        NormVaR = ones(1,NumSimul)*NInv; % matrix with the estimated 1-

day VaR 

        if t < 250%if the number of exceedances is 10, it will be 

reported the highest possible percentage of the VaR 

           NormVaR(NormEC(n,:)==10) = Limit*NInv; 

        end 

       

        NormAnnualCapitalCharge(TtoB-t+1,:) =  NormVaR .* NormK(n,:) * 

sqrt(10);  % calculation of the daily capital charge 

         

        % Portfolio 

        AmountInvested(TtoB-

t+1,:,1)=AllowedRegulatoryCapital./(NormAnnualCapitalCharge(TtoB-

t+1,:).*PriceUnit); %definition of the exposute to the asset according to 

the daily capital charge and the maximum defined MRC 

        % 

         

        if t==250 %verify if an exceedance/bankrupcy ocurred 

            NormEC(n,:) = (DailyRet < -NormVaR) * 1 + (DailyRet < -

reshape(NormAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * (-99); 
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        else 

            NormEC(n,:) = NormEC(n,:) + (DailyRet < -NormVaR) * 1 + 

(DailyRet < -reshape(NormAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * 

(-99); 

        end  

        if min(NormEC(n,:),[],2) < 0 

            disp('Normal: Bankruptcy')  

            return   

        end 

        if t==1 && n<N % review the multiplier when t is equal to 1 

            NormK(n+1,:) = Kmult(1,NormEC(n,:)+1); 

        end 

         

        %Optimal Strategy 

        OptPolt = reshape(OptPol(t,:,:),EC,K); 

        if t==250 % define the optimal percentage of the 1-day VaR to 

report 

            AnnualOptimalVaR(TtoB-t+1,:) = 

OptPolt(1,OptimalKindex(n,:))*NInv; 

        else 

            AnnualOptimalVaR(TtoB-t+1,:) = OptPolt(sub2ind([EC, 

K],OptimalEC(n,:)+1,OptimalKindex(n,:)))*NInv; 

        end 

         

        OptimalVaRt = reshape(AnnualOptimalVaR(TtoB-t+1,:),1,NumSimul); 

         

         

        OptimalAnnualCapitalCharge(TtoB-t+1,:) = OptimalVaRt .* 

OptimalK(n,:) * sqrt(10); % calculation of the daily capital charge 

        

        % Portfolio 

        AmountInvested(TtoB-

t+1,:,2)=AllowedRegulatoryCapital./(OptimalAnnualCapitalCharge(TtoB-

t+1,:).*PriceUnit); %definition of the exposute to the asset according to 

the daily capital charge and the maximum defined MRC          

        % 

         

        if t==250 % verify if an exceedance/bankrupcy ocurred 

            OptimalEC(n,:) = (DailyRet < -OptimalVaRt) * 1 + (DailyRet < 

-reshape(OptimalAnnualCapitalCharge(TtoB-t+1,:),1,NumSimul)) * (-99); 

        else 

            OptimalEC(n,:) = OptimalEC(n,:) + (DailyRet < -OptimalVaRt) * 

1+(DailyRet < -reshape(OptimalAnnualCapitalCharge(TtoB-

t+1,:),1,NumSimul)) * (-99); 

        end 

        if min(OptimalEC(n,:),[],2) < 0 

            disp('Optimal: Bankrupcy')  

            return   

        end 

        if t==1 && n<N % review the multiplier when t is equal to 1 

            OptimalK(n+1,:) = Kmult(1,OptimalEC(n,:)+1); 

            OptimalKindex(n+1,:) = Kmult(2,OptimalEC(n,:)+1); 

        end 

    end 

     

        %Anual Statistics 

    NormCapitalCharge(n,:)=mean(NormAnnualCapitalCharge); 
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    OptimalCapitalCharge(n,:)=mean(OptimalAnnualCapitalCharge); 

    OptimalVaR(n,:)=mean(AnnualOptimalVaR);     

    DailySaving(n,:)=mean(1-

OptimalAnnualCapitalCharge./NormAnnualCapitalCharge); 

     

        %Portfolio 

    AnnualReturn(n,:,1)=sum(AmountInvested(:,:,1)*PriceUnit*DailyReturn); 

    AnnualAverageAmountInvested(n,:,1)=mean(AmountInvested(:,:,1)); 

    AnnualReturn(n,:,2)=sum(AmountInvested(:,:,2)*PriceUnit*DailyReturn); 

    AnnualAverageAmountInvested(n,:,2)=mean(AmountInvested(:,:,2)); 

    

AnnualAverageEffectiveReturn(n,:,1)=AnnualReturn(n,:,1)./AnnualAverageAmo

untInvested(n,:,1); 

    

AnnualAverageEffectiveReturn(n,:,2)=AnnualReturn(n,:,2)./AnnualAverageAmo

untInvested(n,:,2); 

     

end 

 

%% Statistics for the Capital Charge, Multiplier (K) and number of 

exceedances (EC) 

 

% statistics per simulation 

    %Normal Policy 

 

NormStatisticsCapC = zeros(NumSimul,5); %Mean, Median, Min, Max, Std 

NormStatisticsCapC(:,1)=mean(NormCapitalCharge);  

NormStatisticsCapC(:,2)=median(NormCapitalCharge); 

NormStatisticsCapC(:,3)=min(NormCapitalCharge); 

NormStatisticsCapC(:,4)=max(NormCapitalCharge); 

NormStatisticsCapC(:,5)=std(NormCapitalCharge); 

 

NormStatisticsEC = zeros(NumSimul,4); %Mean,Mode, Median, Std 

NormStatisticsEC(:,1)=mean(NormEC); 

NormStatisticsEC(:,2)=mode(NormEC); 

NormStatisticsEC(:,3)=median(NormEC); 

NormStatisticsEC(:,4)=std(NormEC); 

 

NormStatisticsK = zeros(NumSimul,4); %Mean,Mode, Median, Std 

NormStatisticsK(:,1)=mean(NormK); 

NormStatisticsK(:,2)=mode(NormK); 

NormStatisticsK(:,3)=median(NormK); 

NormStatisticsK(:,4)=std(NormK); 

 

    %Optimal Policy 

OptimalStatisticsCapC = zeros(NumSimul,5); %Mean, Median, Min, Max, Std 

OptimalStatisticsCapC(:,1)=mean(OptimalCapitalCharge); 

OptimalStatisticsCapC(:,2)=median(OptimalCapitalCharge); 

OptimalStatisticsCapC(:,3)=min(OptimalCapitalCharge); 

OptimalStatisticsCapC(:,4)=max(OptimalCapitalCharge); 

OptimalStatisticsCapC(:,5)=std(OptimalCapitalCharge); 

 

OptimalStatisticsEC = zeros(NumSimul,4); %Mean,Mode, Median, Std 

OptimalStatisticsEC(:,1)=mean(OptimalEC); 

OptimalStatisticsEC(:,2)=mode(OptimalEC); 

OptimalStatisticsEC(:,3)=median(OptimalEC); 

OptimalStatisticsEC(:,4)=std(OptimalEC); 
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OptimalStatisticsK = zeros(NumSimul,4); %Mean,Mode, Median, Std 

OptimalStatisticsK(:,1)=mean(OptimalK); 

OptimalStatisticsK(:,2)=mode(OptimalK); 

OptimalStatisticsK(:,3)=median(OptimalK); 

OptimalStatisticsK(:,4)=std(OptimalK); 

 

% Average of the Statistics 

        %Capital Charge 

NormAverageStatistics=zeros(3,5); % average of the statistics for the 

Normal Policy: 1-Capital Charge, 2-EC, 3-K 

OptimalAverageStatistics=zeros(3,5); % average of the statistics for the 

Optimal Policy: 1-Capital Charge, 2-EC, 3-K 

 

NormAverageStatistics(1,1)=mean(NormStatisticsCapC(:,1)); 

NormAverageStatistics(1,2)=mean(NormStatisticsCapC(:,2)); 

NormAverageStatistics(1,3)=mean(NormStatisticsCapC(:,3)); 

NormAverageStatistics(1,4)=mean(NormStatisticsCapC(:,4)); 

NormAverageStatistics(1,5)=mean(NormStatisticsCapC(:,5)); 

 

OptimalAverageStatistics(1,1)=mean(OptimalStatisticsCapC(:,1)); 

OptimalAverageStatistics(1,2)=mean(OptimalStatisticsCapC(:,2)); 

OptimalAverageStatistics(1,3)=mean(OptimalStatisticsCapC(:,3)); 

OptimalAverageStatistics(1,4)=mean(OptimalStatisticsCapC(:,4)); 

OptimalAverageStatistics(1,5)=mean(OptimalStatisticsCapC(:,5)); 

 

        %EC 

NormAverageStatistics(2,1)=mean(NormStatisticsEC(:,1)); 

NormAverageStatistics(2,2)=mean(NormStatisticsEC(:,2)); 

NormAverageStatistics(2,3)=mean(NormStatisticsEC(:,3)); 

NormAverageStatistics(2,4)=mean(NormStatisticsEC(:,4)); 

 

OptimalAverageStatistics(2,1)=mean(OptimalStatisticsEC(:,1)); 

OptimalAverageStatistics(2,2)=mean(OptimalStatisticsEC(:,2)); 

OptimalAverageStatistics(2,3)=mean(OptimalStatisticsEC(:,3)); 

OptimalAverageStatistics(2,4)=mean(OptimalStatisticsEC(:,4)); 

 

        %K 

NormAverageStatistics(3,1)=mean(NormStatisticsK(:,1)); 

NormAverageStatistics(3,2)=mean(NormStatisticsK(:,2)); 

NormAverageStatistics(3,3)=mean(NormStatisticsK(:,3)); 

NormAverageStatistics(3,4)=mean(NormStatisticsK(:,4)); 

 

OptimalAverageStatistics(3,1)=mean(OptimalStatisticsK(:,1)); 

OptimalAverageStatistics(3,2)=mean(OptimalStatisticsK(:,2)); 

OptimalAverageStatistics(3,3)=mean(OptimalStatisticsK(:,3)); 

OptimalAverageStatistics(3,4)=mean(OptimalStatisticsK(:,4)); 

 

%statistics for the whole simulation 

    %Normal Policy 

NormStatistics=zeros(3,5); % 1-CS, 2-EC, 3-K 

ReshapedNormCapitalCharge=reshape(NormCapitalCharge,N*NumSimul,1); 

ReshapedNormEC=reshape(NormEC,N*NumSimul,1); 

ReshapedNormK=reshape(NormK,N*NumSimul,1); 

        %Capital Charge 

NormStatistics(1,1)=mean(ReshapedNormCapitalCharge); 

NormStatistics(1,2)=median(ReshapedNormCapitalCharge); 
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NormStatistics(1,3)=min(ReshapedNormCapitalCharge); 

NormStatistics(1,4)=max(ReshapedNormCapitalCharge); 

NormStatistics(1,5)=std(ReshapedNormCapitalCharge); 

        %EC 

NormStatistics(2,1)=mean(ReshapedNormEC); 

NormStatistics(2,2)=mode(ReshapedNormEC); 

NormStatistics(2,3)=median(ReshapedNormEC); 

NormStatistics(2,4)=std(ReshapedNormEC); 

        %K 

NormStatistics(3,1)=mean(ReshapedNormK); 

NormStatistics(3,2)=mode(ReshapedNormK); 

NormStatistics(3,3)=median(ReshapedNormK); 

NormStatistics(3,4)=std(ReshapedNormK); 

 

    %Optimal Policy 

OptimalStatistics=zeros(3,5); %estatisticas para a distribuição toda; CS, 

EC, K 

ReshapedOptimalCapitalCharge=reshape(OptimalCapitalCharge,N*NumSimul,1); 

ReshapedOptimalEC=reshape(OptimalEC,N*NumSimul,1); 

ReshapedOptimalK=reshape(OptimalK,N*NumSimul,1); 

        %Capital Charge 

OptimalStatistics(1,1)=mean(ReshapedOptimalCapitalCharge); 

OptimalStatistics(1,2)=median(ReshapedOptimalCapitalCharge); 

OptimalStatistics(1,3)=min(ReshapedOptimalCapitalCharge); 

OptimalStatistics(1,4)=max(ReshapedOptimalCapitalCharge); 

OptimalStatistics(1,5)=std(ReshapedOptimalCapitalCharge); 

        %EC 

OptimalStatistics(2,1)=mean(ReshapedOptimalEC); 

OptimalStatistics(2,2)=mode(ReshapedOptimalEC); 

OptimalStatistics(2,3)=median(ReshapedOptimalEC); 

OptimalStatistics(2,4)=std(ReshapedOptimalEC); 

        %K 

OptimalStatistics(3,1)=mean(ReshapedOptimalK); 

OptimalStatistics(3,2)=mode(ReshapedOptimalK); 

OptimalStatistics(3,3)=median(ReshapedOptimalK); 

OptimalStatistics(3,4)=std(ReshapedOptimalK); 

 

 

% Distribution for the Percentage of times where the Optimal Policy is 

lower than the normal policy 

 

BetterThanNormal = mean(OptimalCapitalCharge < NormCapitalCharge); 

 

StatisticsBetterThanNormal=zeros(5,1); 

StatisticsBetterThanNormal(1,1)=mean(BetterThanNormal); 

StatisticsBetterThanNormal(2,1)=median(BetterThanNormal); 

StatisticsBetterThanNormal(3,1)=min(BetterThanNormal); 

StatisticsBetterThanNormal(4,1)=max(BetterThanNormal); 

StatisticsBetterThanNormal(5,1)=std(BetterThanNormal); 

 

 

% Distribution for the Average daily saving in each simulation 

 

Savings=mean(DailySaving); 

StatisticsSavings=zeros(5,1); 

StatisticsSavings(1,1)=mean(Savings); 

StatisticsSavings(2,1)=median(Savings); 
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StatisticsSavings(3,1)=min(Savings); 

StatisticsSavings(4,1)=max(Savings); 

StatisticsSavings(5,1)=std(Savings); 

 

Toc 

 

 

Appendix G – Algorithm used for the portfolio simulation 
 

0. Compute the returns for each trading day and the corresponding volatility using the 

EWMA method with a parameter lambda of 0.94. 

1. Compute the volatility adjusted returns according to equation 𝑟̂𝑡 =
𝜎̂𝑇

𝜎̂𝑡
× 𝑟𝑡 for day 𝑡 

considering the forecasted volatility for the next day (𝜎̂𝑇). 

2. Estimate the 1-day VaR according to the Historical Method using the last 2500 

adjusted returns (ten periods of 250 days). 

3. Define the 1-day VaR to report according to the normal strategy and optimal 

strategy 

4. Verify if an exceedance (or bankruptcy) has occurred according to the values 

reported by both strategies. Additionally, in every 250 days (when 𝑇𝑡𝑜𝐵 = 1) 

review the multiplier that will be used in the next regulatory period (taking into 

account the accumulated number of exceedances of the current period). 

5. If there are no more days, end the simulation. Otherwise return to step 1. 

 


