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Abstract 

 

Time series analyses in financial area have been attract some special attention in the recent 

years.  The stock markets are examples of systems with a complex behaviour and, sometimes, 

forecasting a financial time series can be a hard task. In this thesis we compare linear against 

non-linear models, ARIMA and Artificial Neural Networks. Using the log returns of nine 

countries we tried to demonstrate that neural networks can be used to uncover the non-

linearity that exists in the financial field. First we followed a traditional approach by 

analysing the characteristics of the nine stock series and some typical features. We also 

produce a BDS test to investigate the nonlinearity, the results were as expected, and none of 

the markets exhibit a linear dependence. In consequence, traditional linear models may not 

produce reliable forecasts. However, this didn’t mean that neural networks can. We trained 

four types of neural networks for the nine stock markets and the results between them were 

quite similar varying most in their structure and suggesting that more studies about the hidden 

units between the input and output layer need to be done. This study stresses the importance 

of taking into account nonlinear effects that are quite evident in the stock market MODELS.  

JEL Classification: C32, C45, C53. 

Keywords: Stock returns; Neural-Networks; ARIMA; Linear Time series; Non-Linear Time 

Series.  
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Resumo 

A analise de séries temporais na area financeira tem atraido especial atenção nos últimos anos. 

Os mercados financeiros são exemplos de sistemas com um comportamento complexo e, por 

vezes, a previsão de séries temporais nesta àrea pode se tornar numa tarefa árdua. Nesta tese, 

iremos  comparar os retornos logarítmicos proveninetes de nove mercados e monstrar que as 

redes neuronais podem ser utilizadas para detectar a não-linearidade existente nestes modelos. 

Primeiro, seguimos uma abordagem tradicional onde foram analisadas as características 

inerentes a cada um dos mercados. Executamos ainda o teste BDS para investigar a não-

linearidade nas séries e, tal como esperado, os resultados confirmaram que nenhum dos 

mercados se apresenta como tendo um padrão linear. Dado este facto, os modelos lineares 

tradicionais poderão não produzir  previsões fiáveis. Contudo, tal não quer dizer que as redes 

neuronais o façam. Foram treinadas quatro tipologias de redes para cada um dos nove 

mercados, sendo que, os resultados entre as mesmas foram bastante similares(variando em 

grande parte na estrutura que cada um das redes exibia) e, sugerindo que mais estudos devem 

ser feitos de modo a analisar o peso que as camadas ocultas possuem entre os neurónios de 

entrada e os de saída. Este estudo, enfatisa a importancia de se ter em conta que os efeitos não 

lineares devem ser estudados com certa significância nos mercados financeiros.  

JEL Classification: C32, C45, C53. 

Keywords:  Retornos bolsistas; Redes-Neuronais, ARIMA; Séries Temporais Lineares; Séries 

Temporais não-lineares.  
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Sumário Executivo 

 

    As séries temporais na área financeira têm atraído especial atenção nos últimos anos. Os 

mercados financeiros são exemplos de sistemas que apresentam um comportamento bastante 

complexo, na maioria dos casos, prever uma série financeira é muitas vezes uma tarefa 

considerada difícil. O estudo do comportamento dos valores dos mercados financeiros já 

existe à algum tempo e tem recebido uma permanente atenção ao longo das últimas décadas. 

Por exemplo em 1965, Fama, colocou ênfase na natureza estocastica do comportamento dos 

mercados financeiros e a partir daqui vários estudos seguiram com esta abordagem. 

   Esta tese pretende contribuir para uma melhor compreensão do problema relacionado com a 

previsão de variáveis provenientes de mercados financeiros. Para tal iremos procurar 

comparar modelos lineares (por exemplo, ARIMA) com modelos não lineares (Redes 

Neuronais) e perceber quais os modelos que obtêm uma maior performance/poder preditivo. 

Nesse sentido, iremos comparar a previsão de séries temporais, metodologia mais 

convencional e que se baseia em modelos de tendência/sazonalidade, com metodologias que 

assentam em modelos não lineares verificando qual dos métodos é o mais eficiente e em que 

condições, concretamente, quando tais modelos são aplicados a séries que não são muito bem 

comportadas. 

   A escolha do método ideal de previsão para uma determinada série não é um exercício 

simples, sendo que, uma revisão de literatura aponta que o aumento da complexidade das 

técnicas estáticas não implica um melhoramento da performance preditiva, ou  a “accuracy”, 

muitas vezes os métodos considerados mais simples/tradicionais podem ser aplicados e 

apresentar uma performance superior. Gooijer e Hyndman (2006) referem que diversos 

autores apontam para a importância de que estudos futuros investiguem e definam as 

fronteiras em que Redes Neuronais Artificias e as técnicas tradicionais se superam umas em 

relação a outras.  

  Através de um conjunto de retornos logaritmicos provenientes de nove mercados (Portugal, 

Espanha, França, Alemanha, Itália, Grécia, Reino Unido, Japão, Estados Unidos) retirados 

através do DataStream. 

  Executamos ainda o teste BDS para investigar a não-linearidade nas séries e, tal como 

esperado, os resultados confirmaram que nenhum dos mercados se apresenta como tendo um 

padrão linear. Dado este facto, os modelos lineares tradicionais poderão não produzir  

previsões fiáveis. Contudo, tal não quer dizer que as redes neuronais o façam. 
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  Foram treinadas quatro tipologias de redes para cada um dos nove mercados e os resultados 

entre si foram bastante similares, variando em grande parte na estrutura que cada um das 

redes exibia e sugerindo que mais estudos deveram ser feitos de modo a analisar o peso que as 

camadas ocultas entre os neurónios de entrada e os de saída. 

  Este estudo enfatisa a importância de se ter em conta que os efeitos não lineares devem ser 

estudados com certa significância nos mercados financeiros.  



Linear and 	on-Linear Time Series Analysis 

 

vi 

 

Contents 

 Page

Introduction 1

Chapter 1 3

1.1 Literature Review 3

1.1.1. Financial Time Series Analysis 3

1.1.2. Linear Time Series Analysis (ARIMA) 4

1.1.3. Non-Linear Time Series Analysis (Artificial Neural Networks) 11

Chapter 2 18

Forecasting Financial Markets 18

2.1 Methodology 18

2.2. Data Understanding and Data Preparation 20

2.3. Modeling 28

2.3.1. ARIMA – Modeling Results 28

2.3.2. Artificial Neural Networks – Modeling Results 31

2.4. Comparison between Neural Networks and ARIMA Results 40

Conclusion 42

References 43

Appendix A xlv

Appendix B l

Appendix C li

Appendix D lv
 



Linear and 	on-Linear Time Series Analysis 

 

vii 

 

List of figures 

Page 

Schematic of a Biological Neuron 12

Logistic Function 14

Gaussian Function 14

Representation of neural network diagram with multiple linear discriminant functions 15

Example of a Feedforward Networks Diagram 17

Stages in CRISP-DM Process   20

Daily observations on the upper panel and returns on the lower panel of: (a) USA (b) Italy (c) 
Greece (d) Spain (e) Portugal (f) France (g) Japan (h) UK (i) Germany  21

ARIMA Model Detection 28

The two “best accuracy” neural networks 33
 

 
 
 
 
 



Linear and 	on-Linear Time Series Analysis 

 

viii 

 

List of tables 

Page  

Summary statistics for stock returns   25 

Model ARIMA Summary (nine stock markets) 29 

BDS statistics   30 

Accuracy results from the four neural networks in the nine stock markets 32 

Model Performance 41 

 
 

 
 
 
 



Linear and 	on-Linear Time Series Analysis 

 

ix 

 

Acknowledgements  

   I would like to take to my supervisor Professor Drª Diana Aldea Mendes for all the valuable 

comments and dedication.  I wish to acknowledge her support and guidance. 

   Special thanks to my dear friends and coworkers for their support and helpful suggestions. 

   I would also like to express thanks to my family and my parents, Aida and Francisco, 

without whose support none of this would have been possible. 

   To Marco Alexandre, for providing patience, support and laughter through it all.  

  And finally, to my grandfather, Manuel Mestre, for giving me the encouragement and 

confidence to keep dreaming. 

 
 
 
 
 
 
 
 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Linear and 	on-Linear Time Series Analysis 

 

x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

“The battlefield is a scene of constant chaos. The winner will be 

the one who controls that chaos, both his own and the enemies.” 

 

	apoleon Bonaparte  

 

 

Dedicated to my grandfather  

Manuel Mestre. 

 

 

 



Linear and 	on-Linear Time Series Analysis 

1 

 

 

Introduction 

 

   Time series an analysis in financial area has been attract some special attention in the recent 

years.  The stock markets are examples of systems with a complex behaviour and, sometimes, 

forecasting a financial time series can be a hard task.  

  The study concerning the values from stock markets has been increasing in the last decades.  

For instance, in 1965, Fama launched the idea that stock markets had a stochastic behavior 

and from that period forward many studies follow this approach.  

   This thesis intends to contribute to a better understanding of the problem related to the stock 

market prediction. To accomplish this goal we will try to compare linear models (for instance, 

ARIMA models) with non-linear models (for instance, Artificial Neural Networks), namely, if 

the forecast and prediction power improves from one technique to other. Therefore, we will 

compare two kinds of forecasting time series analysis (a more conventional technique based 

on seasonal and trends models with a non-linear methodology) and check which of the 

methods is the most effective and under what conditions. Specially, when such model is 

applied to series that aren’t well behaved. 

  Empirical results show that Artificial Neural Networks (ANNs) can be more effectively used 

to make better forecasts than the traditional methods since stock markets have a complex 

structure are nonlinear, dynamic and even chaotic. Due to these reasons, ANNs can increase 

the forecast performance due to a learning process of the underlying relationship between de 

input and output variables and their ability to discover nonlinear relationships. Despite of all, 

ANNs also have some limitations, for instance, error functions of ANNs are usually complex, 

cumulative, and commonly they have many local minima, unlike the traditional methods. So, 

each time the network run with different weights and biases it arrives at a different solution.  

 Many studies were been focused on the debate in the sense that the traditional approach in 

time series forecasting when applied in series with a well-behaviour can be more efficient but 

when applied in series that presents some noise and complexity (see, Enke, 2005, Ho et al., 

2002) non-linear modelling techniques may overcome these problems. Enke (2005) refers that 

there is no evidence to support the assumption that the relationship between the stock returns 

and the financial variables is perfectly linear, due to the significant residual variance of the 
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stock return from the prediction of the regression equation. And, therefore, it is possible that 

nonlinear models (for instance, ANNs) are able to explain this residual variance and produce 

more reliable predictions.  

Despite of all, the choice between one method and other is not an easy task. A literature 

review point out that the increasing complexity does not necessary increase the accuracy. 

Sometimes, the traditional statistics can be applied and present a higher performance. Gooijer 

and Hyndman (2006) refers that some authors stress the importance that future research needs 

to be done in order to define the frontiers were ANNs and the traditional methods can be more 

effective with a greater accuracy in relation to each other. For some tasks, neural networks 

will never replace traditional methods; but for a growing list of applications, the neural 

architecture will provide either an alternative or a complement to these other techniques.  

  Our database consists in diary records from nine stock markets from different countries 

(Portugal, Spain, France, Germany, Italy, Greece, United Kingdom, Japan and United States 

of America) collected from the DataStream database. And it’s our main goal to study each of 

the techniques mentioned above for forecasting the same data and try to compare 

methodologies and verify in each situation which of them can be more efficient.  

  In terms of the structure of thesis, the Chapter 1 provides an introduction to the principal 

concepts of ARIMA and ANNs Models. This chapter gives an overview of the modelling 

techniques. Chapter 2 deals with the results and the modelling problem in these techniques. 

Finally, we will draw some conclusions about these two approaches, comparing the two 

methods and their results in our data. The software which we use was Clementine version 

12.0.2 and Eviews version 6.  
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Chapter 1 
 

1.1 Literature Review 

 

1.1.1 Financial Time Series Analysis 
 
   Financial markets are complex dynamic systems with a high volatility and a great amount of 

noise. Due to these and other reasons we might say that forecasting financial time series can 

be a challenging task. In the past decades, strongest assumptions on financial time-series 

(namely the Random Walk Hypothesis) have been partially discharged.   

   Forecasting stock indexes involves an assumption that a primary source of information is 

available in the past and it has some predictive relationships to the future stock returns (Enke 

et al, 2005).  

   A time series is a sequence of variables whose values represent equally spaced observations 

of a phenomenon over time.  We can write a time series as 

 

{ }1 2, ,..., tx x x  or  { }tx , t = 1, 2,..., T      (1.1)  

 

where, we will treat tx  as a random variable.  

   The main objective of time series prediction can be stated as Ho et al. (2002) describes: 

“given a finite sequence x1, x2, x3 ,..., xt, find the continuation xt+1, xt+2”. The ability to predict 

time or at least the range within a specific confidence interval it is important in many 

knowledge areas for planning, decision making, etc, and time series analysis in financial area 

isn’t an exception.   

   A financial time series is said to be normal if its distribution is approximately similar to the 

bell-shaped theoretical distribution and linear if a model involving only first power on all the 

predictor variables can explain its underlying structure. Contrary to the established normality 

and linearity assumptions, research on stock prices finds the distribution is leptokurtotic 

(Brorsen and Yang 1994). Higher peaks relative to the normal distribution and fat tails 

characterize a leptokurtotic distribution. 

  Due to the fact that most of the current modeling techniques are based on linear assumptions 

there are emerging some authors that think that a non linear analysis of financial markets 
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needs to be considered. A technique that is emerging in this field is the use of neural 

networks, declared to be a universal approximator for nonlinear models.  

 
 
 
1.1.2 Linear Time Series Analysis (ARIMA) 
 
   The classical linear regression model is the conventional starting point for time series and 

econometric methods. Peter Kennedy, in A Guide to Econometrics (1985), provides a 

convenient statement of the model in terms of five assumptions: (1) the dependent variable 

can be expressed as a linear function of a specific set of independent variables plus a 

disturbance term (error); (2) the expected value of the disturbance term is zero; (3) the 

disturbances have a constant variance and are uncorrelated; (4) the observations on the 

independent variable(s) can be considered fixed in repeated samples; and, (5)  the number of 

observations exceeds the number of independent variables and there are no exact linear 

relationships between the independent variables. 

   While regression can serve as a point of departure for both time series and econometric 

models, it is incumbent on the analyst to generate the plots and statistics which will give some 

indication of whether the assumptions are being met in a particular context. 

    A time series model is a tool used to predict future values of a series by analyzing the 

relationship between the values observed in the series and the time of their occurrence. Time 

series models can be developed using a variety of time series statistical techniques. If there 

has been any trend and/or seasonal variation present in the data in the past then time series 

models can detect this variation, use this information in order to fit the historical data as 

closely as possible, and in doing so improve the precision of future forecasts.  

  There are many traditional techniques used in time series analysis. Some of these include: 

■ Exponential Smoothing 

■ Linear Time Series Regression and Curvefit 

■ Autoregression 

■ ARIMA (Autoregressive Integrated Moving Average) 

■ Intervention Analysis 

■ Seasonal Decomposition 

  In this thesis we’ll focus our analysis on ARIMA models.  Until de 19th century, the study of 

time series was characterized by the idea of a deterministic world. Here, we can find the 

contribution of Yule (1927) which launched the notion of stochastic process in time series 
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analysis by postulating that every time series can be regarded as a realization of a stochastic 

process. Box and Jenkins in the 1970’s developed a coherent, versatile three-stage iterative 

cycle for time series identification, estimation and verification. Many of the ideas that have 

been incorporated into ARIMA models were by these authors (see Box et al, 1994), and for 

this reason ARIMA modelling is sometimes called Box-Jenkins modelling. ARIMA stands 

for AutoRegressive Integrated Moving Average, and the assumption of these models is that 

the variation accounted for in the series variable can be divided into three components: 

■ Autoregressive (AR) 

■ Integrated (I) or Difference 

■ Moving Average (MA) 

An ARIMA model can have any component, or combination of components, at both the 

nonseasonal and seasonal levels. There are many different types of ARIMA models and the 

general form of an ARIMA model is ARIMA(p,d,q)(P,D,Q), where: 

■ p refers to the order of the nonseasonal autoregressive process incorporated into the 

ARIMA model (and P the order of the seasonal autoregressive process) 

■ d refers to the order of nonseasonal integration or differencing (and D the order of the 

seasonal integration or differencing) 

■ q refers to the order of the nonseasonal moving average process incorporated in the 

model (and Q the order of the seasonal moving average process). 

So for example an ARIMA(2,1,1) would be a nonseasonal ARIMA model where the order of 

the autoregressive component is 2, the order of integration or differencing is 1, and the order 

of the moving average component is also 1. ARIMA models need not have all three 

components. For example, an ARIMA(1,0,0) has an autoregressive component of order 1 but 

no difference or moving average component. Similarly, an ARIMA(0,0,2) has only a moving 

average component of order 2. 

Autoregressive Models 

  In a similar way to regression, ARIMA models use independent variables to predict a 

dependent variable (the series variable). The name autoregressive implies that the series 

values from the past are used to predict the current series value. In other words, the 

autoregressive component of an ARIMA model uses the lagged values of the series variable, 

that is, values from previous time points, as predictors of the current value of the series 
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variable. For example, it might be the case that a good predictor of current monthly sales is 

the sales value from the previous month. 

  The order of autoregression refers to the time difference between the series variable and the 

lagged series variable used as a predictor. An AR(1) component of the ARIMA model is 

saying that the value of series variable in the previous period (t-1) is a good indictor and 

predictor of what the series will be now (at time period t). This pattern continues for higher-

order processes.  

  The equation representation of a simple autoregressive model (AR(1)) is: 

 

aeyy ttt ++Φ= − )()1(1)(      (1.2) 

 

   Thus, the series value at the current time point (y(t)) is equal to the sum of: (1) the previous 

series value (y(t-1)) multiplied by a weight coefficient (Φ1); (2) a constant a (representing the 

series mean); and (3) an error component at the current time point (e(t)). 

Moving Average Models 

   The autoregressive component of an ARIMA model uses lagged values of the series values 

as predictors. In contrast to this, the moving average component of the model uses lagged 

values of the model error as predictors. 

   Some analysts interpret moving average components as outside events or shocks to the 

system. That is, an unpredicted change in the environment occurs, which influences the 

current value in the series as well as future values. Thus the error component for the current 

time period relates to the series’ values in the future. 

   The order of the moving average component refers to the lag length between the error and 

the series variable. For example, if the series variable is influenced by the model’s error 

lagged one period, then this is a moving average process of order one and is sometimes called 

an MA(1) process, which can be expressed as: 

aeey ttt ++Φ= − )()1(1)( *     (1.3) 

  Thus the series value at the current time point (y(t)) is equal to the sum of several 

components: (1) the previous time point’s model error (e(t-1)) multiplied by a weight 

coefficient (here Φ1); (2) a constant (representing the series mean); and (3) an error 

component at the current time point (e(t)). 
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Integration 

   The Integration (or Differencing) component of an ARIMA model provides a mean of 

accounting for trend within a time series model. Creating a differenced series involves 

subtracting the values of adjacent series values in order to evaluate the remaining component 

of the model. The trend removed by differencing is later built back into the forecasts by 

Integration (reversing the differencing operation). Differencing can be applied at the 

nonseasonal or seasonal level, and successive differencing, although relatively rare, can be 

applied. The form of a differenced series (nonseasonal) would be: 

 

)1()()( −−= ttt yyx       (1.4) 

 

  where the differenced series values (x(t)) is equal to the current series value (y(t)) minus the 

previous series value (y(t-1)). 

Stationarity 

  In time series analysis the term stationarity is often used to describe how a particular time 

series variable changes over time. Stationarity has three components. First, the series has a 

constant mean, which implies that there is no tendency for the mean of the series to increase 

or decrease over time. Second, the variance of the series is assumed constant over time. 

Finally, any autocorrelation pattern is assumed constant throughout the series. For example, if 

there is an AR (2) pattern in the series; it is assumed to be present throughout the entire series. 

  Any violation of stationarity creates estimation problems for ARIMA models. It is difficult 

to detect the true variations in the dependent variable if it is non-stationary. Because the mean 

of the series is changing over time, correlations and relationships between the variables in the 

ARIMA model will be exaggerated or distorted. Only if the mean of the dependent variable is 

stationary will true relationships and correlations be identified.  

The Integration component of ARIMA is typically associated with removing trend from the 

series, which would violate the constant mean component of stationarity. It is often the case in 

time series analysis that the mean of a variable increases or decreases over time.  

In order to make a series containing trend stationary, we can create a new series that is the 

difference of the original series. A first order difference creates a value for the new series 

which is the difference between the series value in the current period minus the series value in 

the previous period. Often the differenced series will have a stationary mean. If the 
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differenced series does not have a stationary mean then it might be necessary to take first 

differences of the differenced series. This transformation is known as second order 

differencing as the original series has now been differenced twice. The number of times a 

series needs to be differenced is known as the order of integration. Differencing can be 

performed at the seasonal (current time period value minus the value from one season ago) or 

non-seasonal (current time period minus the value from the previous time period) component. 

In short,  

■ If a series is stationary then there is no need to difference the series and the order of 

integration is zero. In all ARIMA models the dependent variable should be left in its 

original values. ARIMA models will be of the form ARIMA (p,0,q) where p is the 

order of the autoregressive process and q is the order of the moving average process in 

the model. 

■ If a series is non-stationary then usually first differencing the series will make it 

stationary. If first differencing makes the series stationary then the order of integration 

is one. ARIMA models will be in the form of ARIMA (p,1,q). 

■ Very occasionally it might be necessary to difference a series twice to make it 

stationary in which case the order of integration is two. It is however nearly always the 

case that first differences will make a non-stationary series stationary. 

 

The Basic ARIMA Equation 

Let Y* be the dependent series transformed to stationarity. Then the general form of the 

model is:  

Y*t = φ1 Y*t-1 + φ2 Y*t-2 + … + φp Y*t-p + εt - θ1 * εt-1 – θ2 * εt-2 - … - θq *ε t-q  (1.5) 
 

That is, Y* is predicted by its own past values along with current and past errors. The 

challenge with any dependent series is identifying the order of differencing and seasonal 

differencing, the order of autoregressive parameters, both nonseasonal and seasonal, and the 

order of moving average parameters, both nonseasonal and seasonal.  
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Identifying the Type of ARIMA Model 

There are many different ARIMA models which could be fit to a particular time series of 

interest. The type of ARIMA model depends upon the selected orders of autoregression (p), 

integration (d), and moving average (q). 

As with all times series analysis, we wish to find an ARIMA model that fits our financial 

historic data the closest and will perform the best when used for forecasting. In order to do 

this, it is necessary to select the optimal combination of p, d, and q. In other words, it is 

important to select the “right” combination of autoregressive, integration, and moving average 

orders. Unfortunately, it is often the case that identifying the p, d, and q combination to give 

the “best-fit or forecasting” ARIMA model is a process of trial and error. In many ways the 

identification stage is by far the most subjective in the entire ARIMA modelling process.  

The identification stage involves using exploratory techniques (sequence charts and 

autocorrelation and partial autocorrelation plots) in order to determine the most likely 

combination of p, d, and q that will give the closest fit to the historic data. 

■ The order of integration (d) can usually be identified by looking at sequence charts for 

the dependent variable (or the dependent variable after differencing). 

■ Autocorrelation and partial autocorrelation plots of the dependent variable are used to 

suggest plausible values for p and q, the orders of autoregression and moving average. 

 

Identifying the Autoregressive (p) and Moving Average (q) Orders 

 The exploratory process for identifying the orders of autoregression and moving average is 

the subjective part of model identification. Identification of possible autoregressive (p) and 

moving average (q) orders requires examination of the autocorrelation and partial 

autocorrelation functions for the dependent variable. There are some theoretical guidelines of 

how autocorrelation and partial autocorrelation functions behave for different orders of 

autoregressive and moving average processes. 

  For instance, in  a stationary model the ACF is {ρk : k ≥ 0}, where ρk is the correlation 

coefficient of Xt with Xt −k. Occasionally we will need to use ρ for k < 0. Remembering that ρ 

is an even function, so ρ −k  =  ρk. On the contrary, for a non-stationary model the ACF is 

undefined.  
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  This suggests a technique for identifying a first-order MA, where we can see if the ACF is 

close to 0 except at lag 1. Checking whether a decrease is 'close to geometric' is much harder. 

The partial ACF (PACF) was introduced to combat this: the PACF of an AR(1) is 0 except at 

lag 1; the PACF of a MA(1) decreases geometrically. 

  The PACF is denoted by φk and defined to be the conditional correlation of Xt and Xt −k given 

all the values from t −k +1 to t −1, i.e. the extent of the relationship between Xt and Xt −k which 

is not accounted for by an AR(k −1) model. 

 

To summarize, a pure autoregressive process is characterized by: 

■  An exponentially or sine wave declining autocorrelation function 

■ A number of spikes on the partial autocorrelation function equal to the order of the 

autoregressive process. 
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1.1.3 Non-Linear Time Series Analysis (Artificial Neural Networks) 
 

   Detecting trends and patterns in financial data is of great interest to the business world to 

support the decision-making process. A new generation of methodologies, including neural 

networks, knowledge-based systems and genetic algorithms, has attracted attention for 

analysis of trends and patterns. 

  In particular, neural networks are being used extensively for financial forecasting with stock 

markets, foreign exchange trading, commodity future trading and bond yields. The application 

of neural networks in time series forecasting is based on the ability of neural networks to 

approximate nonlinear functions. In fact, neural networks offer a novel technique that doesn’t 

require a pre-specification during the modelling process because they independently learn the 

relationship inherent in the variables. 

   The term neural network applies to a loosely related family of model, characterized by a 

large parameter space and flexible structure, descending from studies such as the study of the 

brain function (see Figure 1).  Neural nets have gone through two major development periods 

-the early 60’s and the mid 80’s. They were a key development in the field of machine 

learning. Artificial Neural Networks were inspired by biological findings relating to the 

behavior of the brain as a network of units called neurons. The human brain is estimated to 

have around 10 billion neurons each connected on average to 10.000 other neurons. Each 

neuron receives signals through synapses that control the effects of the signal on the neuron. 

These synaptic connections are believed to play a key role in the behaviour of the brain. The 

transmission of a signal from one neuron to another through synapses is a complex chemical 

process in which specific transmitter substances are released from the sending side of the 

junction. The effect is to raise or lower the electrical potential inside the body of the receiving 

cell.  

  McCulloch and Pitts (1943) developed computing machines designed to simulate the 

structure of the biological nervous system that could perform logic functions through 

learning.  The neural networks can be a computer program or a hardwired machine that is 

design to learn in a manner quite similar to the human brain (Kutsurelis, 1998).  Neural 

computing is an alternative to programmed computing which is a mathematical model 

inspired by biological models. This system is made up of a number of artificial neurons and a 

number of interconnections between them. 
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   In a mathematical model a biological neuron is called perceptron. While in actual neurons 

the dendrite receives electrical signals from the axons of other neurons, in the perceptron 

these electrical signals are represented as numerical values. At the synapses between the 

dendrite and axons, electrical signals are modulated in various amounts. This is also modelled 

in the perceptron by multiplying each input value by a value called the weight.  

 

Figure 1. Schematic of a Biological Neuron 

 

 

 However, the definition of a neural network, in fact, has varied as the field in which they are 

used. Due to this fact, we will consider the description given by Haykin (1998) that a neural 

network is a massively parallel distributed processor that has a natural propensity for storing 

experiential knowledge and making it available for use, resembling the human brain in two 

main respects:  

■ The knowledge is acquired by a network through a learning process. 

■ Interneuron connection strengths known as synaptic weights are used to store the 

knowledge. 

  To differentiate a neural network from traditional statistical methods using this definition, 

for example, we may think that the traditional linear regression model can acquire knowledge 

through the least-squares method and store that knowledge in the regression coefficients. In 

this sense, it is a neural network. In fact, you can argue that linear regression is a special case 

of certain neural networks. However, linear regression has a rigid model structure and set of 

assumptions that are imposed before learning from the data. By contrast, the definition above 

makes minimal demands on model structure and assumptions. Thus, a neural network can 
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approximate a wide range of statistical models without requiring that you hypothesize in 

advance certain relationships between the dependent and independent variables. Instead, the 

form of the relationships is determined during the learning process. If a linear relationship 

between the dependent and independent variables is appropriate, the results of the neural 

network should closely approximate those of the linear regression model. If a nonlinear 

relationship is more appropriate, the neural network will automatically approximate the 

“correct” model structure. As Enke (2005) says neural networks offer the flexibility of 

numerous architecture types, learning algoritms and validation procedures.  

 

 The three basic components of the (artificial) neuron are:  

 

1) The synapses or connecting links that provide weights, wj, to the input values, xj for  

 j = 1,...m;  

2) An adder that sums the weighted input values to compute the input to the activation 

function  
1

m

o j j

j

v w w x
=

= +∑  , where w0 is called the bias (not to be confused with 

statistical bias in prediction or estimation) and is a numerical value associated with the 

neuron. It is convenient to think of the bias as the weight for an input x0 whose value 

is always equal to one, so that 
1

m

j j

j

v w x
=

=∑ ; 

3) An activation function g (also called a squashing function) that maps v to g(v) the 

output value of the neuron. This function is a monotone function. 

   

   The activation function dampens or bound's the neuron's output. There are a large number 

of common activation functions in use with neural networks. Activation functions for the 

hidden units are needed to introduce nonlinearity into the network. Without nonlinearity, 

hidden units would not make nets more powerful than just plain perceptrons. The sigmoidal 

functions such as logistic and the Gaussian function (see Figure 2 and 3) are the most 

common choices.  

 

  When exists hidden units, the sigmoidal activation is preferable instead of the threshold 

activation functions. The lasts are difficult to train due do the error function (stepwise 



Linear and 	on-Linear Time Series Analysis 

 

14 

 

constant) and the gradient or doesn’t exist or is equal to zero, making impossible to use 

backpropagation methods or becoming the gradient-based methods more efficient.  

 

 

Figure 2. Logistic Function  

 

 

 

Figure 3. Gaussian Function 

 

 

	eural 	etwork Architecture 

   The simplest form of neural networks has two layers, an input layer and an output layer. 

The input layer consists of X0, X1,…, Xn variables and the output layer is also composed of 

many output variables such as Y0, Y1, …,Yn, where, each input (X) is linearly connected to 

each output (Y), defining a structure of the network (see for instance Figure 4).  
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Figure 4. Representation of a simplest neural network diagram. 

 

 

 

In this Figure each component corresponds to a variable in the linear discriminant expression. 

The bias W0 can be considered as a weight parameter from an extra input whose activation X0 

is permanently set to +1 (unity). We also can see that the Inputs X1, …, Xn are shown as 

circles, which are connected by the weights W1, …, Wn  to the output Y. As in the human 

brain, the signals flow in one direction from the input to the output layer. The information 

flow is either activated or turned off depending on the value of the weights (or connection 

strengths). We can extend this representation to a set of multiple linear discriminant functions 

yk(x) as a neural network having a K output units.  

Figure  5. Representation of neural network diagram with multiple linear discriminant 

functions.  

 

 

 

 

  The circles at the top of the diagram in Figure 5 corresponding to the functions yk(x) are 

sometimes called processing units, and the evaluation of the discriminant functions can be 

viewed as a flow of information from inputs to outputs. Each output yk(x) is associated with a 

weight vector Wk and a bias Wk0. We can express the network outputs in terms of the 

components of the vectors {Wk} and then mathematically, we have:  

0
1

( )
n

k i i

i

Y X wk X wk
=

= +∑     (1.6) 

Output 
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 Then each line connecting an input i to an output k correspond to a weight parameter wki. As 

before, we can also regard the bias parameters as being weights from an extra input x0 = 1, to 

give 

0

( )
n

k i i

i

Y X wk X
=

=∑      (1.7) 

  Once the network is trained, a new vector is classified by applying it to the inputs of the 

network, computing the output unit activations and assigning the vector to the class whose 

output unit has the largest activation.  

 The more complex type of neural networks contains layers between inputs and outputs. This 

extra layer increases the learning capability of the model; and is known as a hidden layer. 

Being a connection between inputs and outputs the hidden layers creates an indirect 

relationship between them the information that is received in the input first is processed in the 

hidden layer and then transmitted to the output layer.  

   The learning technique is called the ‘Generalised Delta Rule’, which is basically error back 

propagation with the use of a momentum term. An example is then shown top the network, 

which is then propagated to the output yielding an answer. The difference between the answer 

and the target answer is the error. This error is fed backwards through the network and the 

weights updated by a factor of the error. This factor is referred to as η. Also a momentum 

term α is taken into account. The weight change is remembered and factored into to the next 

weight change. The control of the two learning parameters, η and α, is important in attempting 

to gain the best network. 

 According to the structure of the connections between the artificial neurons we can identify 

different classes of network architectures.  The most common types of neural networks are the 

feedforward and the recurrent networks.  

Figure 6. Example of a Feedforward Networks Diagram 

 

 

 

 

 

X1 

Inputs - X 
Hidden Layer 

	eurons - n 
Output - X 

X2 

X3 

n1 

n2 

Y 



Linear and 	on-Linear Time Series Analysis 

 

17 

 

  

 Figure 6 illustrates the architecture of a neural network with one hidden layer containing two 

neurons, three input variables {xi.} i = 1, 2, 3, and one output y. In addition to the sequential 

processing of typical linear systems, we can see parallel processing, in which only observed 

inputs are used to predict an observed output by weighting the input neurons, the two neurons 

in the hidden layer process the inputs in parallel fashion to improve predictions.    The 

connectors between the input variables (input neurons) as well as the connectors between the 

hidden layers neurons and the output neuron are also called as synapses (linear activation 

function which connects to the one output layer with a weight on unity). 

 

   This single feedfoward or multiperceptron network with one hidden layer is the most basic 

and commonly used neural network in economic and financial applications (McNelis, 2005). 

Generally, the network represents the way the human brain processes input sensory data, 

received as input neurons into recognition as an output neuron. As the brain develops, more 

and more neurons are interconnected by more synapses, and the signals of the different 

neurons, working with parallel fashion, in more nuanced insight and reaction. In economic 

and financial applications, the combining of the input variables into various neurons in the 

hidden layers has an interesting interpretation, quite often we refer to latent variables, such as 

expectations, as important key drivers.   

 One typical method for training a network is to first partition the data series into three 

disjoint sets: the training set, the validation set and the test set.  The network is trained 

directly on the training set, its generalization ability is monitored on the validation set, and its 

ability to forecast is measured on the test set. 

   A network that produces high forecasting error on unforeseen inputs, but low error on 

training inputs, is said to have overfit the training data.  Overfitting occurs when the network 

is blindly trained to a minimum in the total squared error based on the training set.  A network 

that has overfit the training data is said to have poor generalization ability.   
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Chapter 2 

 

Forecasting Financial Markets 

2.1 Methodology 

  For the current research our main objective was to compare traditional forecasting methods 

with the use of neural networks and then verify if the prediction power improves from one 

technique to other.  

  The following questions allow the research to meet the objectives proposed: 

- What are the similarities and the differences between neural networks and the 

traditional methods such as ARIMA?  

- Can neural networks accurately forecast financial markets? 

- Can neural networks have a greater prediction power than traditional methods? In 

which situations?  

  To create and test our models we used in major the software Clementine version 12.0. The 

choice of the software determined also our methodology or we can say also the key drivers to 

support our research. As with the most business endeavors and in the research field also, the 

data mining process is much more effective if done in a planned systematic way. Even with 

data-mining tools such as Clementine, the majority of work requires the careful eye of a 

knowledgeable business analyst to keep the process on track. And, to stay on track it helps if 

we have an explicitly defined process model. The data mining process model recommend for 

the use with Clementine is the Cross-Industry Standard Process for Data Mining (CRISP – 

DM) this model is designed as a general model that can be applied to a wide variety of 

industries and business problems.  

  The general CRISP-DM process model includes six phases (see Figure 8) that address the 

main issues in data mining. The six phases fit together in a cyclical process. These six phases 
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cover the full data mining process, including how to incorporate data mining into your larger 

business practices. The six phases include: 

• Business understanding. This is perhaps the most important phase of data mining. 

Business understanding includes determining business objectives, assessing the 

situation, determining data mining goals, and producing a project plan. In our case, the 

business understanding corresponds to the gathering of the theoretical framework 

(literature review) 

• Data understanding. Data provides the "raw materials" of data mining. This phase 

addresses the need to understand what your data resources are and the characteristics 

of those resources. It includes collecting initial data, describing data, exploring data, 

and verifying data quality.  

• Data preparation. After cataloguing your data resources, you will need to prepare 

your data for mining. Preparations include selecting, cleaning, constructing, 

integrating, and formatting data.  

• Modeling. This is, of course, the flashy part of data mining, where sophisticated 

analysis methods are used to extract information from the data. This phase involves 

selecting modelling techniques, generating test designs, and building and assessing 

models.  

• Evaluation. Once you have chosen your models, you are ready to evaluate how the 

data mining results can help you to achieve your business objectives. Elements of this 

phase include evaluating results, reviewing the data mining process, and determining 

the next steps. 

• Deployment. Now that you've invested all of this effort, it's time to reap the benefits. 

This phase focuses on integrating your new knowledge into your everyday business 

processes to solve your original business problem. This phase includes plan 

deployment, monitoring and maintenance, producing a final report, and reviewing the 

project. 

 

   There are some key points to this process model. First, while there is a general tendency for 

the process to flow through the steps in the order outlined above, there are also a number of 

places where the phases influence each other in a nonlinear way. For example, data 

preparation usually precedes modelling. However, decisions made and information gathered 
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during the modelling phase can often lead you to rethink parts of the data preparation phase, 

which can then present new modelling issues, and so on.  

   The second key point is the iterative nature of data mining. We will rarely, if ever, simply 

plan a data mining project. The knowledge gained from one cycle of data mining will almost 

invariably lead to new questions, new issues, and new opportunities to identify and meet your 

customers' needs. Those new questions, issues, and opportunities can usually be addressed by 

mining our data once again.  

 

Figure 8.  Stages in CRISP-DM Process (source: SPSS Inc) 
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2.2 Data Understanding and Data Preparation  

    To accomplish our goals the inputs to the models developed was obtained from the 

DataStream (http://www.datastream.com) that consists in diary records from nine stock 

markets from different countries: Portugal  (TOTMKPT(PI)),  Spain (TOTMKES(PI)), France 

(TOTMKFR(PI)),Germany(TOTMKBD(PI)),Italy(TOTMKIT(PI)),Greece (TOTMKGR(PI)), 

United Kingdom (TOTMKUK(PI)), Japan(TOTMKJP(PI)) and United States of America 

(TOTMKUS(PI)). Notice that we didn’t try to adjust our series to the same time frame. For 

instance our longest series is the UK series with 11161 records starting from 01-01-1965; and, 

the shortest is from Portugal series with 4639 records starting from 02-01-1990.  
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   The first step has to perform a preliminary analysis on all the nine stock markets.  For our 

analysis we used the log returns from these markets. The use of this variable has several 

advantages. For instance, it is additive, the return of the entire series is the sum of the returns 

comprising the series; when used in the correlation analysis, the log returns eliminate one 

trivial source of non-stationarity of the correlation functions. The next figures shows the 

original records series Pt and the corresponding logarithmic returns measured in percentage 

terms, denoted yt and computed as 

( )1100.t t ty p p −= −      (2.1) 

 

where ln( )t tp P= .  

 

Figure 9. Daily observations on the upper panel and returns on the lower panel of:  (a) USA 

(b) Italy (c) Greece (d) Spain (e) Portugal (f) France (g) Japan (h) UK (i) Germany.  
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 The summary statistics for the stock returns are given in Table 1 for daily sampling 

frequencies. Theses statistics are used in the discussion of the characteristics features of these 

series.  

One of the assumptions in the finance literature is that the logarithmic returns yt are normally 

distributed variables, with mean µ and variance δ2, that is,  

  

     (2.2) 

 
     

Table 1. Summary statistics for stock returns  

                       

Stock Market Records  Mean Med S.D. Min Max Var Skew Kurt Jarque-Bera Sig.  

Daily returns                       

USA 9073 0.0003 0.0002 0.0097 -0.2071 0.0835 0.0001 -1.1532 26.9002 275254.3 0.000 

Italy 9074 0.0004 0.0001 0.0130 -0.0984 0.0918 0.0002 -0.2902 4.9407 9343.829 0.000 

Greece 5159 0.0006 0.0000 0.0166 -0.1463 0.1531 0.0003 0.0201 8.3338 14896.75 0.000 

Spain 5379 0.0003 0.0003 0.0112 -0.0947 0.0741 0.0001 -0.3997 5.3366 6511.575 0.000 

Portugal 4638 0.0002 0.0000 0.0085 -0.0801 0.0627 0.0001 -0.4558 8.5523 14260.27 0.000 

France 9074 0.0365 0.0161 1.1218 -9.8948 7.9666 1.2584 -0.3575 4.9019 9265.549 0.000 

Japan 9074 0.0002 0.0000 0.0102 -0.1574 0.0939 0.0001 -0.3697 11.7629 52457.25 0.000 

UK 11160 0.0003 0.0000 0.1717 -1.1165 1.1059 0.0295 0.0666 6.9477 22430.54 0.000 

Germany 9074 0.0002 0.0002 0.0098 -0.1214 0.0591 0.0001 -0.6626 8.0390 25066.76 0.000 

 

The kurtosis of yt is defined as  

(i
) 

G
er

m
an

y 
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      (2.3) 

   The kurtosis for normal distributions is equal to three. One of the characteristics that we can 

observe from the Table 1 is that the kurtosis of all the series is much larger than this normal 

value. This reflects that the tails of these series are fatter than the tails of the normal 

distribution. This is also called the fat tail phenomenon (excess kurtosis), time series that 

exhibit a fat tail are often called leptokurtic. USA presents the highest excess of kurtosis 

followed by Japan, where the presence of excess of kurtosis is more notorious.  

    Except in UK and Greece it is possible to observe presence of negative asymmetry, all 

symmetric distributions have skewness equal to zero.  

The skewness of yt is defined as 

( )3
3

t
y

y
SK E

 −µ=  
σ 

     (2.4) 

  As we can see most of the stock return series have negative skewness, implying that the left 

tail of the distribution is fatter that the right. Finally, and given the skewness and kurtosis 

results, the Jarque-Bera test rejects the null hypothesis that the data are from a normal 

distribution for all the series.  

The Jarque-Bera test of yt is defined as 

( )2
2

6 4

n kJB s
 − 3= +  

     (2.5) 

where n is the number of observations (or degrees of freedom in general); S is the sample 

skewness, K is the sample kurtosis.  

  As we can see, these results are consistent with the series distributions in financial time 

series analysis.  

  A frequent problem with economic and financial data is that it is manifestly nonstationary.  

The econometric consequences of nonstationary time series are very severe, in that estimators 

and t-statistics are unreliable. Nonstationary time series do not exhibit constant means and 

variances. As we can see from the Figure 9 above representing the nine stock markets, these     

series varies over time, and it is and indication that the mean and variance are not constant.  

   One reason macroeconomists got interested in unit roots is the question of how to represent 

trends in time series. The unit root test has recently become popular in econometrics as a test 

for stationarity; the presence of a unit root causes the autocorrelations to be varying over time 

and invalidates their use for specification of the appropriate AR order.  
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   In this context, we applied the unit root test, with the goal to determine the integration order 

of a given series (and their stationarity). Dickey and Fuller (1979) and Fuller (1976) 

developed a basic test for unit root and order of integration, testing the statistical relevance of 

yt-1 in the auxiliary regression. The null hypothesis is ρ = 0 and the alternative is ρ < 0, 

resulting in a one-sided test. The distribution is nonstandard because under the null hypothesis 

of a unit root, the yt series is nonstationary.  

  The Augmented DF statistics (see the appendix B) are larger in absolute values than the 

critical values; so we rejected the hypothesis of nonstationarity. We therefore conclude that 

the daily log return of the nine series is stationary.   
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2.3 Modeling 

 

2.3.1 ARIMA - Modeling Results  

After doing some exploratory analysis to the data series, we worked with Clementine Expert 

Modelling – Time Series Analysis in order to determine the best ARIMA model for all the nine 

series.  The ARIMA Expert Model has the following structure:  

 

Figure 10. ARIMA Model Detection 

 

 

  Through this procedure we applied the Box-Jenking methodology and in the step related to the 

pattern detection for initial model (Autocorrelation Function (ACF) and Partial Auto Correlation 

Coefficient (PACF), we determined the adequate ARIMA model (p,d,q)(P,D,Q) incorporating 

both seasonal and nonseasonal levels.  

  The Box Jenkins modelling procedure consists of three stages; identification, estimation and 

diagnostic checking. (1) At the identification stage a set of tools are provided to help identify 

a possible ARIMA model, which may be an adequate description of the data. (2) Estimation is 

simply the process of estimating this model. (3) Diagnostic checking is the process of 
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checking the adequacy of this model against a range of criteria and possibly returning to the 

identification stage to respecify the model. The distinguishing stage of this methodology is 

identification.  

   This approach tries to identify an appropriate ARIMA specification. It is not generally 

possible to specify a high order ARIMA model and then proceed to simplify it as such a 

model will not be identified and so can not be estimated. The first stage of the identification 

process is to determine the order of differencing which is needed to produce a stationary data 

series. The next stage of the identification process is to assess the appropriate ARMA 

specification of the stationary series.  

   For a pure autoregressive process of lag p, the partial autocorrelation function up to lag p 

will be the autoregressive coefficients while beyond that lag we expect them all to be zero. So 

in general there will be a ‘cut of’ at lag p in the partial autocorrelation function. The 

correlogram on the other hand will decline asymptotically towards zero and not exhibit any 

discreet ‘cut of’ point. An MA process of order q, on the other hand, will exhibit the reverse 

property. 
 

Table 2. Model ARIMA Summary (nine stock markets) 

  Model StationaryR2 R2 RMSE MAPE MAE MaxAPE MaxAENorm. BIC Q df Sig. 

USA ARIMA(2,0,1)(1,0,1) 0.007 0.007 0.010 126.639 0.007 17770.006 0.205 -9.263 18.825 13 0.129 

Italy ARIMA(0,0,4)(0,0,0) 0.020 0.020 0.013 196.235 0.009 88233.626 0.094 -8.707 43.794 16 0.000 

Greece ARIMA(0,0,1)(0,0,0) 0.021 0.021 0.016 175.047 0.011 52805.306 0.152 -8.212 29.217 17 0.033 

Spain ARIMA(0,0,1)(0,0,0) 0.008 0.008 0.011 119.294 0.008 19573.918 0.093 -8.988 31.500 17 0.017 

Portugal ARIMA(1,0,4)(0,0,0) 0.022 0.022 0.008 122.881 0.006 6447.939 0.073 -9.569 39.351 16 0.001 

France ARIMA(0,0,1)(0,0,0) 0.010 0.010 1.117 154.641 0.791 58094.263 10.185 0.223 36.766 17 0.004 

Japan ARIMA(0,0,2)(1,0,1) 0.009 0.009 0.010 129.946 0.007 9332.552 0.156 -9.167 37.867 14 0.001 

UK ARIMA(1,1,2)(0,0,0) 0.423 0.376 0.136 7450.358 0.086 6689035.455 1.067 -3.991 28.148 16 0.030 

Germany ARIMA(0,0,4)(1,0,1) 0.006 0.006 0.010 118.894 0.007 10607.999 0.121 -9.250 36.525 14 0.001 

Note: Q is the Ljung-Box Q statistic 

   To compare the linear predictability of the markets for daily observations, we use the 

following procedure. For each one of the markets and at any moment of time we consider the 

last 30 observations, and then we estimate autoregressive linear models. 

  Box and Jenkins (1970) showed that given a model adequacy, the population were 

uncorrelated and the variances were approximately equal to n-1. The Ljung-Box statistics can 

be used for this purpose. Under the null hypothesis of no residual autocorrelation at lag 1 to m 

in the residuals from an ARMA (p,q) model. As observed in Table 2, the USA series is the 

only that do not reject the null hypothesis about residual autocorrelation. As we can see from 

these results, these models have two drawbacks, in first the errors in the model may be 
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autocorrelated and second is that the variance of the error terms may not be constant over 

time. However, some authors refers the importance to investigate the robustness of the Q test 

in situations were the performance of the same may be influenced by the fatness of 

distributional tails (see Jansen and de Vries, 1991; Loretan, 1994). Simulations results showed 

that distributional heavy-tails may distort the asymptotic null distributions of the Q and 

reduce the power of these tests (see also, Franses and Van Dijk, 2000). Further, these tests can 

reject their null hypotheses due to nonlinearity or conditionally heteroskedastic skewness.  

  By consequence, this topic brings us to the discussion about the assumption of linearity. And 

when this assumption is false many the basic results still hold. To test the hypothesis of non-

linearity we used the Brock, Dechert, Scheinkman and LeBaron (1996) test, also called, BDS 

test. This test is unique in its ability to detect nonlinearities independently of linear 

dependencies in data. It rests on the correlation integral, developed to distinguish between 

chaotic deterministic systems and stochastic systems. The procedure consists of taking a 

series of m-dimensional vectors from a time series, at time t = 1, 2,…, T – m, where T is the 

length of the time series. The BDS statistics tests the difference between the correlation 

integral of embedding dimension m, and the integral for embedding dimension 1, raised to the 

power m (Mcnelis, 2005).  

 
Table 3. BDS statistics 

  BDS Statistic Std. Error z-Statistic 

  2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 

USA 0.013 0.028 0.039 0.046 0.05 9E-04 0.001 0.002 0.002 0.002 13.8744 18.862 22.090225.1149 28.334

Italy 0.02 0.041 0.057 0.066 0.07 1E-03 0.002 0.002 0.002 0.002 21.413527.4396 31.71635.1357 38.747

Greece 0.033 0.067 0.09 0.105 0.113 0.001 0.002 0.003 0.003 0.003 23.554629.4441 33.542337.492141.7758

Spain 0.02 0.044 0.064 0.076 0.082 0.001 0.002 0.002 0.002 0.002 16.2971 22.426 27.180530.920134.6973

Portugal 0.028 0.054 0.074 0.086 0.092 0.001 0.002 0.003 0.003 0.003 18.8483 23.265 26.623929.912833.2719

France 0.018 0.036 0.05 0.057 0.06 9E-04 0.001 0.002 0.002 0.002 18.97624.5023 28.561631.569934.4414

Japan 0.021 0.045 0.065 0.078 0.084 0.001 0.002 0.002 0.002 0.002 20.505727.6293 33.239838.133542.8872

UK 0.061 0.117 0.159 0.186 0.203 0.001 0.002 0.002 0.002 0.002 48.896658.8725 66.678574.676284.1214

Germany 0.022 0.047 0.067 0.079 0.085 1E-03 0.002 0.002 0.002 0.002 22.939330.7445 36.588341.514746.3666

*The probability values are all significant for all the nine stock markets at the 0.00 (< 0.05).     

 

  The results of the BDS test shows that in all the nine stock markets returns exists a non-

linear dependence. As a conclusion of this preliminary analysis, we can say that there exists 

statistical evidence in favour of a nonlinear structure in each of the daily series. 
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2.3.2 Artificial Neural Networks - Modeling Results 

   In this case, we employ ANNs to forecast next day returns.  One of the main reasons that 

neural networks were in the past decades increased popularity is due to the fact that these 

models have been shown to be able to approximate almost any nonlinear function. Thus, 

when applied to series which is characterized by nonlinear relationships, neural networks can 

detect these and provide a superior fit compared to linear or even non-linear traditional 

models.  

  The neural networks used in this analysis are feed-forward multi layer perceptrons which 

employ a sigmoid transfer function. We analyzed the results of four feed-forward (known as 

multilayer perceptrons) neural networks:  

 

(1) Quick method:  when the quick method is selected; a single neural network is trained. 

By default, the network has one hidden layer containing max(3( ) / 20i on n+  neurons, 

where ni is the number of input neurons and no is the number of output neurons;  

(2) Dynamic method: the topology of the network changes during training, with neurons 

added to improve performance until the network achieves the desired accuracy. There are 

two stages to dynamic training: finding the topology and training the final network;  

(3) Multiple method: multiple networks are trained in pseudo parallel fashion. Each 

specified network is initialized, and all networks are trained. When the stopping criterion 

is met for all networks, the network with the highest accuracy is returned as the final 

model. That is, at the end of training, the model with the lowest RMS error is presented as 

the final model; 

(4) Prune method: that is, conceptually, the opposite of the dynamic method. Rather than 

starting with a small network and building it up, the prune method starts with a large 

network and gradually prunes it by removing unhelpful neurons from the input and hidden 

layers. Pruning proceeds in two stages: pruning the hidden neurons and pruning the input 

neurons. Pruning is carried out after a while if there is no improvement. Before initially 

pruning, or after any pruning, the network will run for a number of cycles, specified by 

the Persistence.   

    

  As we know, to training a neural network it is important to incorporate input neurons. 

Several studies showed that in econometric application it is common to use the p lagged 

variables directly as linear regressors.  
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  The performance alternative models were evaluated with about 30% of all the data records in 

each series, evaluating how well competing models generalize outside of the data set used for 

estimation. This option was also taken due to the over training. To prevent the over training 

it’s useful to train the network with two sets: training and validation, and accuracy is 

estimated based on the validation set.  

   The performance simulations showed that in the major cases the quick and multiple neural 

networks outperform better than the others as we can see from Table 4.  

Table  4. Accuracy results from the four neural networks in the nine stock markets.  

    Accuracy HL (1) HL (2)     Accuracy HL (1) HL (2) 

USA 

Quick 97.69 3   

France 

Quick 97.16 3   

Dynamic 97.66 2   Dynamic 97.19 2 2 

Multiple 97.68 19   Multiple 97.2 19 10 

Prune 97.67 3   Prune 97.19 2   

Italy 

Quick 95.33 3   

Japan 

Quick 97.27 3   

Dynamic 95.22 2 2 Dynamic 97.25 2 2 

Multiple 95.31 12 2 Multiple 97.31 19   

Prune 95.29 4   Prune 97.31 9   

Greece 

Quick 96.45 3   

UK 

Quick 96.14 3   

Dynamic 96.41 2   Dynamic 96.07 2 2 

Multiple 96.43 . 10 Multiple 96,17 2   

Prune 97.67 3   Prune 96.07 4 2 

Spain 

Quick 95.39 3   

Germany 

Quick 96.27 2 2 

Dynamic 95.36 2 2 Dynamic 96.28 3   

Multiple 95.39 12   Multiple 96.3 4   

Prune 95.31 2   Prune 96.26 5   

Portugal 

Quick 95.95 3             

Dynamic 96.03 2 2         

Multiple 95.95 19           

Prune 96.23 2           
*HL – number of hidden layers 
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  Hornik et all. (1989) have demonstrated that, with a sufficient number of hidden layers, a 

neural network can approximate any given functional form to a desired accuracy level.  In 

future studies it will be important to determine if the number of hidden layers may influence 

the accuracy results in data series and in what level. The hidden layer(s) provide the network 

with its ability to generalize. In practice, neural networks with one and occasionally two 

hidden layers are widely used and have performed very well. Increasing the number of hidden 

layers also increases computation time and the danger of overfitting which leads to poor out-

of-sample forecasting performance. 

 Below we present for each of the nine series the two neural network architectures that 

achieved the best accuracy results.   

Figure 11. The two “best accuracy” neural networks. Test data visualization. Where rt is the 
log return of the series and n-rt is the forecasted data. 

USA (Quick Method) – Testing Data 

 
 
USA (Multiple Method) – Testing  Data 
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Italy (Quick Method) – Testing Data  

 
Italy (Multiple Method) – Testing Data 

 
Greece (Quick Method) – Testing Data 
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Greece (Prune Method) – Testing Data 

 
Spain (Quick Method) – Testing Data 

 
Spain (Multiple Method) – Testing Data 
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Portugal (Quick Method) – Testing Data 

 
Portugal (Multiple Method) – Testing Data 

 
France (Dynamic Method) – Testing Data 
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France (Multiple Method) – Testing Data 

 
Japan (Multiple Method) – Testing Data 

 
Japan (Prune Method) – Testing Data 
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UK (Quick Method) – Testing Data 

 
UK (Multiple Method) – Testing Data 

 
Germany (Dynamic Method) – Testing Data 
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Germany (Multiple Method) – Testing Data 

 
 

  One of the results that we found is that in the overall the four different neural networks 

performs with similar accuracy however the schema and their structure varies between the 

nine stock series. This can be interesting since that sometimes applying one neural network 

can be time consuming and a very complex process. For instance, the prune network that with 

the UK series take about seven hours to be trained didn’t outperformed the others, on the 

contrary.  The prune networks are viewed as a neural net that is time consuming but in terms 

of accuracy outperform in a larger scale the other kind of models such as quick, dynamic and 

multiple and in this case the differences weren’t so evident.  
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2.4 Comparison between Neural Network and ARIMA Results 

 

   To compare the results we followed the approach of analysing the mean errors in the 

models. As we can see in the table 5, first we will look at the minimum error and the 

maximum error between the observed values and the estimated ones; the mean absolute error 

that shows the average of the absolute values of the errors across all records, indicating the 

average magnitude of error, independent of the direction. And finally, we show the linear 

correlation between the predicted and actual values. This statistic varies between –1.0 and 1.0. 

Values close to +1.0 indicate a strong positive association, so that high predicted values are 

associated with high actual values and low predicted values are associated with low actual 

values. Values close to –1.0 indicate a strong negative association, so that high predicted 

values are associated with low actual values, and vice versa. Values close to 0.0 indicate a 

weak association, so that predicted values are more or less independent of actual values. 

   As we can see from the results in the nine stocks neither the Neural Network models varies 

in terms of mean absolute error nor the ARIMA models presents values quite different from 

the neural networks.  

  Despite of the global accuracy that the neural networks presented in the previous section we 

can see that only UK and France series presents high linear correlations where we can see that 

high predicted values are highly associated with the actual high stock returns. This behaviour 

is manifested specially in the Prune neural networks results (0.794, France; 0.713, UK), in 

these two series the mean absolute error also varies between the models unlikely the other 

series where we can see that the mean are quitter the same.   

   The results confirm that the ARIMA models are the least accurate due to the range between 

the estimated forecast errors (see minimum and maximum error) and we can’t forget that 

these models were performed with drawbacks regarding the associated diagnostic measures. 
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Table 5. Model Performance  

Individual Models        
Daily returns   ARIMA Quick Dynamic Multiple Prune 

USA 

Minimum Error -0.205 -0.207 -0.207 -0.205 -0.204 

Maximum Error    0.073 0.077 0.083 0.080 0.081 

Mean Absolute Error 0.007 0.007 0.007 0.007 0.007 
  Linear Correlation  0.082 0.059 -0.011 0.066 0.075 

Italy 
Minimum Error -0.094 -0.096 -0.095 -0.094 -0.095 

Maximum Error    0.094 0.092 0.091 0.093 0.090 

Mean Absolute Error 0.009 0.009 0.009 0.009 0.009 
  Linear Correlation  0.141 0.123 0.142 0.135 0.129 

Greece 
Minimum Error -0.148 -0.147 -0.148 -0.148 -0.148 
Maximum Error    0.152 0.152 0.152 0.152 0.152 

Mean Absolute Error 0.011 0.011 0.011 0.011 0.011 
  Linear Correlation  0.144 0.141 0.149 0.141 0.138 

Spain 

Minimum Error -0.093 -0.094 -0.093 -0.093 -0.094 
Maximum Error    0.074 0.074 0.071 0.067 0.073 

Mean Absolute Error 0.008 0.008 0.008 0.008 0.008 

  Linear Correlation  0.088 0.071 0.093 0.093 0.080 

Portugal 
Minimum Error -0.073 -0.077 -0.076 -0.076 -0.076 

Maximum Error    0.071 0.067 0.068 0.069 0.069 

Mean Absolute Error 0.006 0.006 0.006 0.006 0.006 

  Linear Correlation  0.147 0.133 0.123 0.133 0.131 

France 
Minimum Error -10.185 -4.259 -5.493 -5.477 -5.371 

Maximum Error    7.856 4.792 4.704 4.693 4.776 

Mean Absolute Error 0.790 0.502 0.502 0.501 0.501 

  Linear Correlation  0.100 0.792 0.791 0.793 0.794 

Japan 

Minimum Error -0.156 -0.156 -0.156 -0.156 -0.156 

Maximum Error    0.104 0.099 0.104 0.104 0.101 

Mean Absolute Error 0.007 0.007 0.007 0.007 0.007 
  Linear Correlation  0.097 0.089 0.112 0.089 0.089 

 UK  

Minimum Error -1.067 -1.091 -1.093 -1.089 -1.093 

Maximum Error    0.898 1.112 1.110 1.115 1.110 

Mean Absolute Error 0.085 0.087 0.087 0.087 0.086 
  Linear Correlation  0.615 0.541 0.544 0.544 0.713 

Germany Minimum Error -0.121 -0.121 -0.121 -0.121 -0.121 

Maximum Error    0.059 0.059 0.055 0.056 0.060 

  Mean Absolute Error 0.007 0.007 0.007 0.007 0.007 

  Linear Correlation  0.082 0.035 0.078 0.068 0.060 
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Conclusions 
 

   In this work we tried to compare linear against non-linear methodologies in financial series 

forecasting. Therefore, we tried to compare two kinds of forecasting time series analysis and 

check which of the methods was the most effective and under what conditions.  

   It’s important to notice that an important part of the work was to analyze the specific 

properties that are common to financial time series prediction. In this topic we notice that 

Neural Networks can be more effectively used since we saw that stock market returns are 

complex, nonlinear and dynamic.  

   In despite the need off a deeper investigation in this field, we can demonstrate that linear 

time series models simply do not yield reliable forecasts. Notice that the assumptions in linear 

models must be true and the linearity assumption itself may not in some cases be hold. 

Economic decision makers are not linear and proportionate but asymmetric and non linear.   

  In the nine stock markets that we analysed we saw that the accuracy presented in the stock 

returns were higher in neural network models. However, the neural networks in the financial 

area are sometimes referred as black boxes due to the hidden layers which are disproved of an 

economic meaning.  

   We perform four neural networks and although we cannot conclude anything about what 

kind of neural net are the more efficient, our results indicated that in the major series the 

dynamic and multiple networks were more effective but this conclusion needs more review.  

  However, there is much remaining to be done. For instance it was interesting to study the 

effect of the outliers in the neural networks, experimental findings suggests that large returns 

tend to occur in clusters and this is an area that Franses and Dijk (2000) had explore in their 

book and it was interesting to see how this outliers can be used in the neural networks study to 

improve the effectiveness of the analysis, since, neural networks can be useful not only for 

sample forecast but also in recognizing a variety of patterns in the data. 

  We cannot forget that this was simply an exercise and the goal was to test two approaches in 

nine stock markets and as input variables to our models we only used their own lagged values. 

Future research needs to be done in order to improve the efficiency of this kind of nonlinear 

structures.  
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Appendix B  

 

Augmented Dickey-Fuller test statistic 

 

Null Hypothesis: RT has a unit root 

          t-Statistic   Prob.* 

USA   Augmented Dickey-Fuller test statistic -89.108 0.0001

    Test critical values: 1% level   -3.4309  
      5% level   -2.8617  
      10% level -2.5669  
Italy   Augmented Dickey-Fuller test statistic -44.105 0.0000

    Test critical values: 1% level   -3.4309  
      5% level   -2.8617  
      10% level -2.5669  
Greece   Augmented Dickey-Fuller test statistic -62.426 0.0001

    Test critical values: 1% level   -3.4314  
      5% level   -2.8619  
      10% level -2.567  
Spain   Augmented Dickey-Fuller test statistic -67.174 0.0001

    Test critical values: 1% level   -3.4314  
      5% level   -2.8619  
      10% level -2.567  
Portugal   Augmented Dickey-Fuller test statistic -59.22 0.0001

    Test critical values: 1% level   -3.4316  
      5% level   -2.862  
      10% level -2.567  
France   Augmented Dickey-Fuller test statistic -86.318 0.0001

    Test critical values: 1% level   -3.4309  
      5% level   -2.8617  
      10% level -2.5669  
Japan   Augmented Dickey-Fuller test statistic -66.855 0.0001

    Test critical values: 1% level   -3.4309  
      5% level   -2.8617  
      10% level -2.5669  
UK   Augmented Dickey-Fuller test statistic -32.037 0.0000

    Test critical values: 1% level   -3.4308  
      5% level   -2.8616  
      10% level -2.5668  
Germany Augmented Dickey-Fuller test statistic -88.915 0.0001

    Test critical values: 1% level   -3.4309  
      5% level   -2.8617  

      10% level -2.5669  

*MacKinnon (1996) one-sided p-values.         
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Appendix C 

 

Residuals 

Autocorrelation function (ACF) and partial autocorrelation function (PACF) 

 

USA - ARIMA(2,0,1)(1,0,1) 

 
Italy – ARIMA (0,0,4)(0,0,0) 
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Greece - ARIMA(0,0,1)(0,0,0) 

 
Spain - ARIMA(0,0,1)(0,0,0) 

 
Portugal - ARIMA(1,0,4)(0,0,0) 
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France - ARIMA(0,0,1)(0,0,0) 

 
Japan - ARIMA(0,0,2)(1,0,1) 

 
UK - ARIMA(1,1,2)(0,0,0) 
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Germany- ARIMA (0,0,4)(1,0,1) 
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Appendix D 

 

CRISP-DM Process 
 

Step: Data Preparation – Stream visualization 

 
 

Step: Modeling – Stream vizualization 

 



Linear and 	on-Linear Time Series Analysis 

 

lvi 

 

Step: Evaluation – Stream vizualization 

 


