ISCTE De Business School Instituto Universitário de Lisboa

PAYBACK PERIOD ANALYSIS of USING GREEN ENERGY Within the Scope of SMART URBAN REGENERATION and SELECTION of GREEN VEHICLES in TURKEY

Baturay Yenilmez

Dissertation submitted as partial requirement for the conferral of

Master of Science in Business Administration

Supervisor:

Assoc. Prof. Dr. Joao Carlos Rosmaninho de Menezes, ISCTE Business School, Department of Marketing, Operation and Management

October 2016

Abstract

In today's world, number of people who live in cities allocate almost 50% of the world population and it is expected to be reached 80% in the following years. Therefore, smart urban regeneration pursuant to use of green energy and green mobility gain critical role for sustainable environment.

The study documented in this paper has been carried out in order to change people's perception on expensiveness and immaturity of using green energy and green vehicles by giving quantitative results for Turkey case. Importance and benefits of using green energy and green vehicles within the scope of urban regeneration will be highlighted.

Consumption comparison between current and energy efficiently retrofitted house is analyzed with the help of software such as Hourly Analyze Program by Carrier. In addition, electric generation via photovoltaics is observed with PV*Sol.

Greening the vehicles offer wide range of benefits including reduction of fuel consumption that plays very important role on both household economy and environment. In order to highlight economic benefits, diesel-gasoline vs. hybrid-electrical vehicle comparison is made.

After benefits are shown and consumption analysis are done, initial aim has been achieved through the payback period analysis of retrofitting the building that designed as elementary family house and greening the personal vehicles regarding to initial investments and savings in Turkey.

Keywords: Smart Urban Regeneration, Green Energy, Green Vehicles, Payback Period

JEL Classification: M21 and O33

Resumo

O número de pessoas que vivem em cidades aproxima-se dos 50% da população mundial, sendo que é esperado que se alcance os 80% nos próximos anos. Desta forma, uma regeneração urbana inteligente baseada na utilização de energia e mobilidade verde têm vindo a ganhar destaque para a criação de um ambiente sustentável.

Este estudo foi realizado com o objetivo de mudar a perceção das pessoas sobre o custo e a maturidade do uso de energia verde e de veículos mais sustentáveis, disponibilizando um conjunto de resultados no contexto da Turquia. A importância e os benefícios do uso de energia verde e veículos ecológicos no âmbito da regeneração urbana será destacado.

A comparação entre consumos gerados pelo uso de eletricidade gerada tradicionalmente e aquele que deriva do uso de eletricidade proveniente de uma casa reequipada de forma eficiente e sustentável é analisado com a ajuda de softwares como o Hourly Analyze Program da Carrier. A geração elétrica através de células fotovoltaicas é analisada com o programa PV * Sol.

A utilização de veículos sustentáveis oferece inúmeros beneficios, incluindo a redução do consumo de combustível que desempenha um papel muito importante quer para a economia familiar, quer para o meio ambiente. A fim de destacar os beneficios económicos, a comparação veículo diesel-gasolina vs. híbrido- elétrico é feita.

Após a identificação dos beneficios suportada pela análise de consumo, desenvolveu-se uma análise ao *payback period* relativa à adaptação ecológica quer do edifício concebido como casa de família elementar, quer dos veículos pessoais considerados, tendo em conta os investimentos iniciais e a realidade económica na Turquia.

Palavras-chave: Smart Regeneração Urbana, Energia Verde, Veículos Verdes, Período de Retorno

Classificação JEL: M21 e O33

Table of Contents

1	Introduc	tion	1
1.1	Defin	ition of the Problem Context	1
1.2	Resea	rch Problem Addressed	1
1.3	Brief	Statement About the Research Methodology Used	2
1.4	Value	e of the Thesis	3
1.5	Thesi	s Structure	3
2	Literatu	re Review	4
2.1	Build	ing Retrofitting	5
2.	1.1 I	nsulation	6
2.	1.2 0	Hazing	7
2.	1.3 L	ED Lighting	7
2.	1.4 P	Photovoltaics	7
2.2	Mobi	lity	8
3	Methode	ology	
3.1	Green	n Building Design	10
3.	1.1 I	Demo House Audit	10
	3.1.1.1	Current Status of the Demo House	
	3.1.1.2	Energy Consumption Analysis of the Current House	16
	3.1.1.3	Energy Expense of the Current House	
3.	1.2 F	Retrofitted House Audit	
	3.1.2.1	Insulation	
	3.1.2.2	Glazing	
	3.1.2.3	Lighting	
	3.1.2.4	Photo-Voltaic	
	3.1.2.5	Energy Consumption Analysis of the Retrofitted House	
	3.1.2.6	Energy Expense of the Retrofitted House	

3.2 Mobility	
3.2.1 Technical Specifications of Vehicles	
3.2.2 Mobility Expenses	
4 Findings	
4.1 Building Retrofitting	
4.2 Mobility	
4.2.1 Payback Period Analysis of Mobility Decisions	
4.2.1.1 Base Case	
4.2.1.2 Best Case	
4.2.1.3 Worst Case	
5 Conclusions	
5.1 Implications	
5.2 Limitations and Barriers in front of Smart Urban Regeneration	
6 Bibliography	
APPENDIX A: Simulation Results of Building Retrofitting	
APPENDIX B: Simulation Results of Electric Generation from PVs	
APPENDIX C: Price Offers	65

List of Figures

11
11
14
14
15
16
20
21
22
23
25
26
27
34
35

List of Tables

Table 1: Demo House Element Description	12
Table 2: Performance Evaluation of Current Window System	13
Table 3: Energy Consumption Analysis of the Current House	17
Table 4: Detailed Monthly Energy Consumption of the Current House	17
Table 5: Energy Expense Analysis of the Current House	
Table 6: Energy Expense of the Current House (Monthly-Detailed)	19
Table 7: Thermal Insulation description	21
Table 8: Roof insulation Layers	
Table 9: Cost of the Insulation Retrofitting	
Table 10: Comparison of two different triple glazing unit	24
Table 11: Cost of Glazing Retrofitting	25
Table 12: Cost of LED Lighting Retrofitting	
Table 13: Solar Energy Contribution	
Table 14: Cost of the Photo-Voltaic Application	
Table 15: Energy Consumption Analysis of the Retrofitted House	29
Table 16: Monthly Consumption Analysis of the Retrofitted House	
Table 17: Energy Expense Analysis of the Retrofitted House	
Table 18: Energy Expense of the Retrofitted House	
Table 19: Technical Specifications of Hybrid and Gasoline Yaris	
Table 20: Technical Specification of BMW i3 and 2.16d	
Table 21: Consumption Assumptions of Vehicles	
Table 22: Tax and Maintenance Assumptions	
Table 23: Cost of Building Retrofitting	
Table 24: Annual Retrofitting Savings	
Table 25: Economic Analysis of Building Retrofitting	
Table 26: Summary of the U-Value of building elements	
Table 27: Price of Vehicles	
Table 28: Initial Investment	40
Table 29: Oil Prices	40
Table 30: Energy Prices Considered	41
Table 31: Savings Assumption (Base Case)	41
Table 32: Payback Period (Base Case)	

Table 33: Savings Assumption (Best Case)	42
Table 34: Payback Period (Best Case)	43
Table 35: Savings Assumption (Worst Case)	43
Table 36: Payback Period (Worst Case)	44

Abbreviations and Acronyms

Acronym	Description		
НАР	Hourly Analyze Program		
m ²	Square Meter		
XPS	Extruded Polystyrene		
cm	Centimeter		
U	Thermal Transmittance Coefficient		
PVC	Polyvinyl Chloride		
DHW	Domestic Hot Water		
HVAC	Heating, Ventilating, & Air Conditioning		
€	Euro		
m ³	Cubic Meter		
EPS	Expanded Polystyrene		
LED	Lighting Emitting Diode		
W	Watt		
PV	Photovoltaic		
BIPV	Building Integrated Photovoltaic		
kW	Kilowatt		
kWh	Kilowatt Hour		
EV	Electric Vehicle		
EU	European Union		
EC	European Commission		
CO ₂	Carbon Dioxide		
lt	Liter		
gr	Gram		
km	Kilometer		
Km/h	Kilometers Per Hour		

BMW	Bayerische Motoren Werke
yr	Year
BEC	Building Energy Certificate
e.g.	Exempli Gratia (Latin)
PC	Personal Computer
SCC	Smart Cities and Communities

ACKNOWLEDGEMENT

After a very tough and intensive period of twelve months, today is the day: writing this note of thanks is the finishing touch on my thesis. It has been a period of being strong in the face of what happened in Turkey and intense learning in the scientific area for me at the same time. Writing this thesis has had a numerous positive impact on me. I would like to reflect on the people who have supported and helped me so much throughout this period. For that I want to start thanking with ISCTE Business School Business Administration Committee who made it possible for student like us.

I must offer my profoundest gratitude to my master thesis advisor Dr. Joao Carlos Rosmaninho de Menezes. From finding an appropriate starting point in the begging of the project, Mr. Menezes offers his unreserved helped and guidance and lead me to finish my thesis step by step. Without his kind and patient instruction at the troublesome period that I had, it is impossible for me to finish my master thesis on time.

I am highly indebted to my mentor Mr. Murat Aksu. His words not only inspire me but also bring me to higher level of thinking. What I learnt from him is not just how to manage and solve the problems in business life, but how to view this business world from a new perspective. I am very thankful to him for giving the right advice at the right time and for being a source of motivation to me.

Last and foremost I am thoroughly grateful to my parents for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Baturay Yenilmez

1 Introduction

This paper has been prepared in order to communicate the master dissertation thesis that has been undertaken within the scope of the Instituto Superior de Ciências do Trabalho e da Empresa 2nd year Business Administration course.

1.1 Definition of the Problem Context

According to Environment Protection Agency (2012), atmosphere is overloaded with carbon dioxide and other hazardous emissions by human activities. As a result, those gases trap the heat at the atmosphere and causes steady temperature increase on the planet that create harmful and significant impact on climate, environment and health. Furthermore, fossil fuels are spent in a non-sustainable manner although fossil fuels are finite and reserves cannot be replenished naturally. In addition, concentration of fossil fuels is getting more technically challenging and expensive since it is available only in a certain region

As the world population increased, the number of buildings to live in and vehicles to travel is increased. Even tough and environmental and economic benefits of using green energy is started to prove by authorities, citizens still have prejudice on green energy systems due to small number of accomplished examples and objective quantitative results. (Aksu & Yenilmez, 2016)

In addition, Erdal (2008) states that Turkey is a country whose energy resources rely heavily on outside. Therefore, cost of energy is highly expensive (Demirbaş, 2001). Also, environment policies are one of the essential titles pursuant to cohesion policy of EU that Turkey should fallow to meet the membership requirement as a candidate country.

1.2 Research Problem Addressed

Increasing environmental problems on earth, excessive population growth and industrialization are the basis of the problems faced in the new century of environmental planners and designers (Kırzıoğlu, 2000). Özbalta (2003) claimed that it is necessary to develop an energy system that is disturbing the ecological balance in urban

regeneration. Thus, people must be more aware about importance of using green energy and green vehicles due to global warming effects in the last decade.

Research problem will address the following question: How long is the payback period for green energy systems? Is it match with people's negative thoughts and discouragement about green energy systems or is it just the opposite.

1.3 Brief Statement About the Research Methodology Used

Cost/Benefit or Cost/Saving analysis provides simple and very useful set of tools for citizens to make rational investment decisions about which green energy actions are the most cost-effective to implement. From simple to complex there are many levels of this type of analysis (Sitarz, 2008).

According to Mear (2011), simple cost payback method is used in order to ensure readers to make rational decisions on building retrofitting within the scope of urban regeneration. In this method, total investment cost of the retrofitting is divided by the annual energy cost saving occurred by the retrofitting. The result of the division gives the number of years that is required to pay retrofitting's initial cost.

Reliable simulation programs such as Hourly Analyze Program (HAP) for current and retrofitted building energy consumption and PV*Sol for electric generation by photovoltaic, have been used for analyzing the savings and contributions.

Cost is calculated from price offers from corporate firms for building interventions and price lists from official websites of vehicle companies. It should be noted that current prices are considered to have objective results.

Payback period methodology including three different cases which are best, worse and base, is used to enlighten the reader about purchase decision of green vehicles instead of conventional vehicles.

1.4 Value of the Thesis

This paper is intended as a resource for any citizen who seeks to participate green energy system users. Its mission is to enlighten citizens against their prejudice and change their perception on expensiveness and immaturity of green energy and green vehicle usage within the scope of urban regeneration. In addition, savings and benefits of these systems will be highlighted during this paper.

1.5 Thesis Structure

The dissertation is structured into 5 main sections, namely:

Chapter 1 of the report, successively define the content and format of the thesis. Chapter 2 express previous studies on smart building interventions and green mobility.

Chapter 3 summarizes the demo house audit and simulation result of the current situation versus the expected results as a function of boundary conditions, which then serve as a basis to evaluate feasibility of the suggested retrofitting actions. Additionally, it indicates comparison between environment friendly green vehicles and conventional vehicles.

Chapter 4 summarizes the results of building retrofitting action in terms of economical and thermal transmittance (U Value). In addition, economic analysis of mobility interventions including base, best and worst case can be found in this section.

Chapter 5 briefly explains the barriers in front of smart urban regeneration model that create prejudice on people to put into practice. Also, it remarks the outcomes of the smart urban regeneration model and economic analysis of interventions.

2 Literature Review

In field of existence, brain power of human race trumps over any physical strength of animals so far. Creatively modifying the environment and building stable houses allowed humans to secure safety goals thanks to this ability. In fact, without safe and comfortable living zone crafting of dishes and weapons, which are vital elements for early humankind, would not be possible to done. More than for paintings and writings, most of the civilizations are mentioned and known for the buildings they left behind (Smart Cities and Communities, 2013).

According to Mega's (2005) study, buildings are responsible for 45% of the total energy consumption in the European Union that is caused by heating, cooling, ventilation, lighting, appliances and equipment's demand. Higher levels of indoor comfort, growing use of complex electronic systems and equipment at homes and offices and increasing living space per capita cause more energy consumption. It is estimated that European people spend their 90% of time indoors, thus the impact of energy consumption in buildings is pervasive.

As the population of the World increase, the number of construction on the planet increase. Due to recent atmospheric & environment pollution reports building design gain vital importance. Thankfully, potential new house buyers looking for not only a comfortable but also smart and environment friendly houses nowadays. Therefore, new buildings are started to be registered to third-party green building certification institutions by construction companies. This trend can be seen as sale and marketing strategy; however, it is also effective way of increasing the number of smart houses (Kibert, 2016). In addition, people should have been showing same sensitivity when it comes to urban regeneration and renovation of houses.

In addition, a directive has published by the European Union that indicates all Member States shall ensure not only all new buildings are nearly zero-energy buildings by 31 December 2020 but also new buildings occupied and owned by public authorities are nearly zero-energy buildings after 31 December 2018. (European Parliament and the Council of the European Union, 19 May 2010) Therefore, building retrofitting

interventions are very essential to reduce not only energy demand but also carbon emission.

Green energy and transportation technologies are key to obtain societal and economic benefits and improve citizens' quality of life. Majority of the interrelations between technology and people can be represented by green technologies. When energy production, distribution and use, mobility and transportation are related and go hand in hand, a big task offering new interdisciplinary opportunities to turn cities smarter. Is already open in the common area (REMOURBAN, 2015).

Furthermore, internal combustion engines have been dominating personal transportation since approximately last century. In fact, in urban areas almost half of the total pollution occurred by the use of fossil fuels in transportation which generates harmful emissions (Kikuchi, 2009). In order to achieve cleaner urban mobility, specific efforts on new fuels and technological innovations are started to dedicated by local authorities. Pyke & Brown (2010) stated that electric vehicles are about to experience rapid growth in both developed and developing vehicle markets. If broad adaption of the electric vehicle satisfied, environmental footprint of transportation and dependency on the petroleum will be decreased dramatically.

2.1 Building Retrofitting

The use of renewable energy sources and ecological planning in urban regeneration is quite a new issue. After the major earthquake occurred in 1999, this issue become even more important. Thanks to urban regeneration, renewable energy usage has been increased in smart buildings. Renewable energy sources are geothermal, solar, wind, sea-based, biomass and hydraulic energy (Duygu, 2002).

Researches and articles about urban transformation and renewable energy sources are available in literature. One of them was made by Şenlier in 1994. He defined the definition of ecological restrictions, content and method in cities.

In the first case, it should be noted that citizens have no problem to resort to the financing for televisions, mobile phones, PC and appliances, that is, equipment that

often have costs in the order of magnitude of the investments related to smart cities and energy efficiency, but possess the advantage of generating cash flows and have returns comparable or better than typical investment opportunities available in the bank for the same subjects (Aksu & Yenilmez, 2016).

According to US General Services Administration (2009), numerical analysis of the green buildings are the followings: green buildings have 7.5% higher value, 8.5% lower operational cost and 3.5% greater occupancy ratio than traditional buildings. Additionally, they provide a 6.6% total return on investment according to the 2008 McGraw-Hill Construction Smart Market Report. Consequently, green buildings on average generate greater investment returns than those that are not. In other words, life cycle cost of green buildings is lower than newly built conventional buildings.

In addition, Re-use of existing structures enables the preservation of resources as well as the cultural and architectural characteristics pertaining to one's country. Attention to detail regarding the siting of buildings can also contribute to occupants' quality of life. Thus adopting a holistic approach to construction is critical in deciding to build green.

2.1.1 Insulation

In low-energy buildings, where heating demand is high, the whole building envelope should be insulated very well. Building elements which distinguish outside from the inside accepted as building envelope. Objective of the thermal insulation is ensuring comfortable indoor climate irrespective of outside climate and temperature that is determined by the weather (Yenilmez, 2015).

The passive house resource (2016) has stated if the insulation is insufficient to prevent heat transfer, heat is lost through the building envelope and vis-à-vis for hot periods. Therefore, heat flow is needed to be restricted regardless of the climate.

2.1.2 Glazing

Windows are one of the most essential components of buildings as they provide natural daylighting, ventilation and visual interface between interior and exterior spaces. Window types may have a direct effect on energy efficiency for buildings both in positive and negative ways in accordance with its properties. Double or triple glazing, inert gas filling or low-e coating applications for windows are the main solutions that increase window efficiency (Strong, 2012)

2.1.3 LED Lighting

Fluorescent lamps are replaced with LED panels due to their low energy consumption and high hour of lifespan while comparing to the others. Also, there is no need any maintenance for LED panels. In addition, LEDs retain their luminous flux and color temperature until the end of their life cycle. Besides, LEDs offer decorative solutions (U.S. Department of Energy, n.d). In addition to LED panel retrofitting, applique lamps are used in bedroom, bathrooms and at the stairs in order to offer comfort zone.

2.1.4 Photovoltaics

The studies on how to benefit from solar energy has gained momentum especially after 1970s. Later on, thanks to technological advances in solar energy, the cost of using solar energy has decreased. In addition, after some analysis and tests conducted by experts, solar energy has been classified as a clean energy source (Administration, General Directorate of Electrical Power Resources Survey and Development, n.d). Türe (2011) stated that countries who have limited fossil fuels should adopt solar energy as one of their primary energy sources. Since Turkey doesn't have enough fossil fuel reserves, it is wise to adopt solar energy.

Integration of the photovoltaic (PV) into the building envelope is called Building Integrated Photovoltaic (BIPV). According to Oliver & Jackson (2001), BIPV can serve dual function which are building skin replacing conventional building envelope materials and power generator. Since BIPV serving as building envelope material and power generator, it can not only provide savings in electricity costs and

materials, reduce use of fossil fuels and emission of ozone depleting gases but also add architectural value to the construction.

In today's market, a wide variety of BIPV systems are available. Façade systems and roofing systems are main categories of them. Façade system includes glazing, curtain wall products and spandrel panels whereas roofing system includes tiles, shingles, standing seam products, and skylights (Strong, 2011)

2.2 Mobility

Nowadays, hybrid and fully-electric vehicles are becoming a mainstream reality. Hybrid vehicle has gasoline engine and electric motor at the same time. Hybrid vehicle uses electric motor at low speed, for short distance and while waiting at the red light (Graham,2001). On the other hand, hybrid vehicle uses gasoline engine for performance drive, high speeds and long drive. Differently, fully-electric vehicle only consumes stored electric at the batteries. According to Simpson (2006), Gallagher (2011) and Erjavec & Arias (2007), green vehicles offer many benefits as following;

Fuel cost: As World population increase, the number of vehicle and therefore the amount of oil consumption increase. As a result, the number of oil reserves decrease, the number of oil price increase according to supply-demand relation. Fuel cost benefits of the green vehicles probably the most obvious benefit. Hybrid vehicle saves approximately 40% fuel in the urban and 20% on the highway. The only fuel cost for electric vehicle is electric consumption while charging the battery.

Energy security: Oil is a finite energy source, in other words oil reserves will be finished one day. Electric on the other hand, can be generated from renewables such as solar and wind energy. Therefore, electric as a source of energy is much more secure and available comparing to oil.

Tax benefits: Government implies tax deduction incentive on green vehicles in order to encourage more people while buying their next vehicle. Electric vehicle owners do not pay motor vehicle tax while hybrid owners pay lower than gasoline or diesel engine vehicle owners due to tax benefits of green vehicles. Not only tax benefit, but also grant is given by some governments.

Lower greenhouse gas emissions: Clean air and healthy environment is possible with reducing toxic emissions. Using hybrid vehicle reduce carbon and sulfur emissions significantly whereas electric vehicle eliminates greenhouse gas emission at all. For example, hybrid vehicle can reduce toxic emission 97% by using ethanol or biodiesel in place of gasoline.

Faster commuting times: In order to encourage more people for purchasing green vehicles, major highways are starting to add lanes that can be only used by these vehicles. In addition, free parking spaces are available for green vehicles at some carpark, parking garage and roadside park.

Power efficiency: Since, weight of the materials that are used in green vehicles are less than traditional vehicles, they can not only maneuver and handle easier but also consume less energy. Furthermore, EVs do not need transmission at any speed and any type of road. In reality, frictions are occurred while transmitting generated power from engine to the tires. Thus, green vehicles use power more efficiently than traditional vehicles.

Furthermore, European Commission set their mobility aims as green mobility and release directives often. For instance, commission announce comprehensive new strategy to reduce CO_2 emissions from new cars and vans sold in EU. According to new strategy, average emission is limited to 120 grams per kilometer for passenger cars. All manufacturer's newly registered vehicles must comply emission target by 2015. EC take this step forward and aims 95 grams of emission per kilometer for 2020. In addition, EC released proposal stating that information relating to fuel economy and CO_2 emission of new passenger cars must be available for consumer in order to enable them to make an informed choice. Additionally, commission offers super credit to the carmakers whose vehicles emit less than 50 grams of CO_2 gas per kilometer.

European Commission Research & Innovation (2012) declared another important milestone that address the needs to green vehicles are Energy for a changing world package which signed by EU leaders to cut greenhouse gas emission of their countries by 20% until 2020.

3 Methodology

3.1 Green Building Design

3.1.1 Demo House Audit

Demo House was built before the Turkish National Energy Efficiency Regulation was published in 2008. Therefore, the comfort conditions are extremely low and heating costs are quite high. There are other problems in practice regarding the aesthetic and improper practices during construction.

Building audit is aiming to analyze current situation of the buildings in terms of energy use and comfort. Below information was included for the buildings;

- Building Envelope
- Openings and shading elements
- Thermal bridges and airtightness

To determine the baseline energy, use of the district, below methodology have been used:

- Occupancy schedules, heating/cooling systems and equipment were collected from demo house,
- Thermal inspection conducted to determine heat loss/gains, bridges, air-tightness.
- Blower door test conducted to determine airtightness of the demo house.
- HAP (Carrier) energy simulation software used for energy modeling.

3.1.1.1 Current Status of the Demo House

Demo house has general architecture of two-story family house with 148 m^2 conditioned area that consists of 3 bedrooms, living room, 2 bathrooms and WC, kitchen and 2 verandas.

Figure 1 and 2, which are given below, represent overview and floor plans of the demo house respectively. Note that, figure 1 created via 3DS Max software while figure 2 created via AutoCAD software.

Figure 1: Demo House Overview

Figure 2: Floor Plans

3.1.1.1 Building Envelope

Demo House was built with carcass system. Load-bearing system is composed of reinforced concrete columns and beams that are sitting on a concrete foundation. In addition, Demo House has 19 cm brick wall, 3 cm Extrude Polistren (XPS) insulation and American siding coating.

Element description	Detail (section's sketch from inner face to outer face)	Picture
External wall 1. Internal Paint 2. Internal Plaster (2 cm) 3. Brick Wall (19 cm) 4. XPS (3 cm) 5. Siding (0,5 cm) U-value = 0,617 W/(m ² K)	1 2 3 4 5	
Internal wall 1. Internal Plaster (2 cm) 2. Brick Wall (15 cm) 3. External Plaster (2 cm) 4. Paint (0,2 mm) U-value = 0,45 W/(m ² K)		
Roof 3. Tile 2. Membrane (Waterproofing-3mm) 1. Pitched roof U-value = 0,356 W/(m ² K)		
Ground floor 3. Tile finish 2. Cement finish 1. Concrete U-value = 0,542 W/(m ² K)	2	

Table 1: Demo House Element Description

Table 1 prepared according to <u>Turkish Standards 825</u> and it indicates detailed description of the demo house elements such as internal and external wall, glazing and window, ground floor and roof. For instance, external wall has 5 layers including internal paint, 2 cm internal plaster, 19 cm brick wall, 3 cm XPS insulation and 0,5 cm siding. In addition to layers of the building elements, thermal transmittance value of the building elements is given in the table. For example, by looking at the first row it can be understood that external wall has 0,617 thermal transmittance value regarding to layers and thickness it has.

3.1.1.1.2 Openings & Shading Elements

Demo House's window units have polyvinyl chloride (PVC) frame with doubleglazing. High infiltration heat losses are occurred due to poor condition of the PVC frame units. Blower test with rate of 4 air changes per hour confirms the heat losses through openings. (Kuban, 2015)

Type of Window	U-Value (W/m K)	Daylight Permeability %	Solar Energy Transmission %	Shading Coefficient
Double Glazed (4+12+4)	3,2	80	75	0,86

 Table 2: Performance Evaluation of Current Window System

(Retrieved from:

http://www.trakyacam.com.tr/Content/Pdf/Upload/isicam_performans.pdf)

Table 2 represents performance values of current window system. Current window system has high thermal transmittance with 3,2 (W/m K) that explains the reason of low performance. Furthermore, high daylight permeability and solar energy transmission occurs heat transfer through windows that causes inadequate air quality

especially in summer. In addition, there are no shading elements in any of the windows. Demo House only have curtains and stores in order to prevent brightness of the sunlight, therefore shading coefficient of the window gains important role.

3.1.1.1.3 Thermal Bridges

Exterior parts of the reinforced concrete structure are insulated with 3cm XPS. However, insulation does not meet the required level of building code. Below, thermal bridges, heat losses and condensation on façade and interior wall are shown by thermal camera. Besides, heat losses have also been identified on roof cladding.

Figure 3: Thermal Bridges

Figure 3 is taken via thermal camera and express thermal bridges of the external wall. Colors indicates the amount of the heat loss, brighter the color more the heat loss.

Figure 4: Heat Losses at Openings

Figure 4 states heat losses at openings. It can be interpreted that edges of the window cause heat losses since they are shown in reddish color. It explains that outside temperature is about 4 whereas window edges are 18, thus window edges causes heat losses and act as thermal bridge.

3.1.1.1.4 Airtightness

Blower door test was conducted on demo house in order to evaluate airtightness of the building. Test result calculated according to EN 13829, Method A. The result, which is 4.2 1/h, proves that demo house has very high infiltration losses through window units, doors and frames (Kuban, 2015). Sherman (1995) stated that high rate of air change per hour results significant energy losses at the building. Thus, conditions of the demo house are far from the global standards.

Figure 5: Blower Door Test

3.1.1.1.5 HVAC Systems and Domestic Hot Water

Demo House has individual gas fired boiler with 24 kW capacity to provide heating and DHW for the users. The heating distribution system consists of several horizontal pipes connected to a radiator in each room in each floor. Usually radiators are not equipped with thermostat to adjust individual room to desired comfort conditions; this results discomfort and inefficient energy use in the buildings.

Figure 6: Gas fired boiler and radiator within dwelling

Since there is not proper HVAC system available, fresh air is provided by opening windows and doors most of the time. Air leaks are also a way of natural ventilation but causing significant energy losses. The domestic hot water is supplied by individual boiler equipment which is also provides hot water for heating as described above.

3.1.1.2 Energy Consumption Analysis of the Current House

In this section, energy consumption of the demo house will be analyzed via HAP software. Significant percent of the electric consumption is made by lighting and appliances in the kitchen, living room, bedrooms and bathrooms. In fact, basic appliances' and lighting's electric consumption corresponds to 91% of the total electric consumption. HVAC only consumes electric in order to supply energy for the pumps that enables hot water circulation inside the dwelling. On the other hand, natural gas only consumed in order to heat the dwelling and domestic water. Therefore, HVAC is the only responsible action that consumes natural gas.

In total, 925 m3 natural gas and 4.119 kWh electric is consumed annually to meet the house energy demand in the current situation, in other words before retrofitting.

Type of Energy Use	Annual Natural Gas Consumption [m3]	Annual Electric Consumption [kWh]
HVAC	925	367
Basic Appliances & Lighting	Х	3.752
TOTAL	925	4.119

Table 3: Energy Consumption Analysis of the Current House

Table 4: Detailed Monthly Energy Consumption of the Current House

HVAC Monthly Energy Use	Natural Gas (m3)	Electric (kWh)	Basic Appliances & Lighting Monthly Energy Use	Natural Gas (m3)	Electric (kWh)
January	266	62	January	Х	296
February	190	55	February	Х	268
March	106	60	March	Х	296
April	22	53	April	Х	330
May	Х	Х	May	Х	341
June	Х	Х	June	Х	330
July	Х	Х	July	Х	341
August	Х	Х	August	Х	341
September	Х	Х	September	Х	330
October	4	17	October	Х	296
November	109	58	November	Х	287
December	229	61	December	Х	296

Table 4 indicates monthly electric and natural gas consumption with purpose of use. The results are taken from HAP energy simulation software that calculate the energy consumption of the buildings regarding to schedule scenarios. Predictably, natural gas consumption increase in winter and reach the maximum in January. The top three months are January, December and February in terms of gas consumption. In March and November, which are known as mid-session months, gas consumption is at medium level. There isn't any gas consumption from May until September. On the other hand, electric consumption shows more stable behavior and it's change range is very small when compared to natural gas consumption.

3.1.1.3 Energy Expense of the Current House

In the previous section, energy consumption analysis of the current house was investigated. By using section 3.1.1.2 consumption values, this section will help us to understand energy expenses of the current house. It should be noted that expenses are calculated according to energy prices in Turkey. Heating the dwelling cost $265 \in$ of natural gas and $38 \in$ of electric consumption. One could query why electric is used while natural gas is the energy source of heating. Electric is needed to run the boiler pump which enables hot water circulation inside the radiator. On the other side, basic appliances and lighting costs $394 \in$ annually. In total $265 \in$ of natural gas and $432 \in$ of electric is consumed annually to meet the current house energy demand for a comfortable living zone.

Type of Energy Use	Annual Natural Gas Expense [€]	Annual Electric Expense [€]
HVAC	265	38
Basic Appliances & Lighting	Х	394
TOTAL	265	432

Table 5: Energy Expense Analysis of the Current House

HVAC Monthly Energy Use	Natural Gas [€]	Electric [€]	Basic Appliances & Lighting Monthly Energy Use	Natural Gas [€]	Electric [€]
January	76	7	January	Х	31
February	54	6	February	Х	28
March	30	6	March	Х	31
April	6	6	April	Х	35
May	Х	Х	May	Х	36
June	Х	Х	June	Х	35
July	Х	Х	July	Х	36
August	Х	Х	August	Х	36
September	Х	Х	September	Х	35
October	1	2	October	Х	31
November	31	6	November	Х	30
December	65	6	December	Х	31

Table 6: Energy Expense of the Current House (Monthly-Detailed)

Table 6 states natural gas and electric expense with purpose of use. As it is expected, natural gas bill is higher in winter than in summer and mid-session. Highest bill costs $76 \in$ in January. On the other part, electric expenses are much more stable but in total slightly higher than natural gas expense. In other words, electric consumption does not show difference between seasons as natural gas consumption shows. Current house electric expense is around $30 \in$ per month.

3.1.2 Retrofitted House Audit

3.1.2.1 Insulation

3.1.2.1.1 Insulation of the Façade

The objective of thermal insulation in buildings is to sustain a comfortable and hygienic indoor climate throughout the year, decreasing the heating and cooling demands (Thermal Insulation, n.d). Strategies to reach these targets are the use of innovative or standard low cost techniques or a combination of them. In this case, EPS, XPS and Rockwool and options, which are widely available at the market, are evaluated.

These solutions include the use of standard thermo-hygrometric materials, innovative high-performance products (thermal insulating paint or/and panel, or/and waterproofing membrane) and colors to optimize the solar absorption and reflection of the external envelope (Yenilmez, 2015). It is decided to implement Rockwool to reach the desired U value for the external wall which is 0.2 W/m²K. Rock wool has many advantages, such as high thermal resistance, fire and sound-proofing, availability as a local and natural material; widely available implementation, capability. Facades at demo house will be coated with 150 mm rockwool.

A Rockwool material is based on basalt as the main raw material. Through melting at high temperature, the material becomes a bio-fiber and is manufactured using high-speed centrifugal equipment. After additions of special adhibitor and dustprevention oil it is formed. (Dahl, Clausen & Hansen, 2011)

Figure 7: External Thermal Insulation Layers

Table 7: Thermal Insulation description

	Thickness (mm)	Conductivity (W/m K)
Cement mortar	6	0.35
Rockwool insulation	150	0.037
Brick	190	0.39
Cement mortar	15	1.60
Lime mortar	5	0.70
	U-Value	0.204

Figure 8: Rockwool insulation material

Table 7 states outside wall layers and corresponding conductivity of materials. Values are calculated from <u>TS - 825</u>. According to above table, after insulation is implemented to the outside wall, the U value changes from 0.617 to 0.204 W/m2K.

3.1.2.1.2 Insulation of the Attics

Easiest and cost effective way of roof insulation is to use mineral wool materials which also show high thermal performance and fire resistance (Energy Saving Trust, n.d). Glass wool, locally produced and installed is well-known insulation material which can be easily installed on existing insulation material, in this case 8-10 cm glass wool.

Isover (n.d) expressed the glass wool production as following: "Glasswool is made from natural sand to which recycled glass (cullet) and fluxing agents are added. The material is melted at 1100°C in an electric furnace, and then forced through precision drilled holes in high speed spinning disks, to form fibers. Binding products and other additives required to give specific characteristics to different products are then added as fibers that fall onto moving collection belts. The glasswool mat is then polymerized, heated and passed through compression rollers where it is cured to provide a product of the required thickness and density". In total 300 mm glass wool will be implemented as a blanket application at the garret of the building.

	Thickness (mm)	Conductivity (W/m K)
Additional Mineral wool insulation	200	0.035
Existing Mineral wool insulation	100	0.040
Reinforced concrete slab	120	2.5
Lime mortar	5	0.70
	U-Value	0.128

Table 8: Roof insulation Layers

Table 8 indicate roof layers property and corresponding conductivity of the layer materials. By applying roof insulation, U value of the attic changes from 0.350 to $0.128 \text{ W/m}^2\text{K}$ according to Turkish Standard 825.

3.1.2.1.3 Cost of the Insulation Retrofitting

Table 9: Cost of the Insulation Retrofitting

Insulation Retrofitting	Price [€/m2]	Application Area [m2]	Total Cost [€]
Façade Insulation	35	145	5.075
Attic Insulation	10	80	800

Table 9 express façade (outside wall) and attic (roof) insulation cost details. Labor cost is taken into consideration while preparing above table. Before starting to analyze insulation costs, it should be noted that labor costs are cheaper in Turkey when comparing to European countries. Table express that unit price of façade insulation is higher than attic insulation. It is simply because, cost of materials and application to insulate outside wall is more expensive than attic insulation. Even tough application area of the façade insulation is less than attic, cost of insulating outside wall is more expensive than attic cost. According to price offer that is received from world-wide known insulation company, cost of façade insulation is 5.075 whereas cost of attic insulation is 800 in this case.

3.1.2.2 Glazing

Comparison of properties for the two different triple glazing are provided under Table 10 below. Triple glazing insulating glass units designed to improve the thermal efficiency of residential properties; reduce the amount of heat loss through the windows and can also allow more heat/energy from the sun through the glass. Cross section of a triple glazing window is shown in figure 10 which is given below.

Figure 10: Triple glazing sections

		Heat Retaining Glazing	Non – Heat Retaining Glazing
Thickness &Air Space Information (mm)		4*+9+4+9+*4	4*+9+4+9+*4
		4*+12+4+12+*4	4*12+4+12+*4
		4*+16+4+16+*4	4*+16+4+16+*4
		30	30
Nominal Thickness (mm)		36	36
		44	44
Daylight (EN 410)	Transmittance %	69	63
	Reflectance Outdoor %	14	13
Solar Energy (EN 410)	Reflectance Outdoor %	28	30
	Absorption %	34	38
	Direct Transmittance %	39	32
	Solar Factor	0,48	0,39
	Shading Coefficient	0,55	0,45
Thermal conductivity (U value) W/m²K (FN 673)		1,2	0,9
	Dry Air	0,9	0,7
		0,7	0,6
		1,2	0,9
(1211075)	**Argon	0,9	0,7
		0,6	0,6

Table 10: Comparison of two different triple glazing unit

(Retrieved from: <u>www.sisecamduzcam.com.tr</u>)

After careful inspection of above table, it is decided that existing conventional window units will be replaced with PVC framed triple glazed windows (heat retaining) with a U-value of $1,2 \text{ W/m}^2\text{K}$ in order to minimize heat losses and increase thermal efficiency.

3.1.2.2.1 Cost of Glazing Retrofitting

Glazing Retrofitting	Price	Application	Total Cost
	[€/m2]	Area [m2]	[€]
Triple Glazing	120	45	5.400

Table 11: Cost of Glazing Retrofitting

Table 11 shows triple glazing retrofitting cost details. First of all, cost of glazing retrofitting table prepared in accordance with received price offer from from one of the best national producer that is given in <u>APPENDIX C</u>. Total cost is calculated as turnkey price; therefore, unit price includes labor cost as well. Cost of replacing standard double glazing windows with argon filled triple glazing is 5.400€.

3.1.2.3 Lighting

Below figure 11 represents lighting retrofitting plan for each floor and figure 12 shows LED panels configuration after implementation.

Figure 11: Lighting Retrofitting Plan

Figure 12: LED lights

3.1.2.3.1 Cost of Lighting Retrofitting

Lighting Retrofitting	Price [€/Unit]	Application Quantity [Unit]	Total Cost [€]
30x60 cm 18/20W LED Panel	35	25	875
12W Downlight LED Armature	15	5	75
12W Surface Mounted Etange LED Armature	15	8	120
5W Surface Mounted Applique	30	12	360

Table 12: Cost of LED Lighting Retrofitting

Table 12 indicates cost details of LED lighting retrofitting. Current bulbs are replaced with twenty-five 30x60 cm 18/20W LED panels, five 12W downlight LED armatures, eight 12W surface mounted etange LED armatures and twelve 5W surface mounted appliques. In total, lighting retrofitting costs 1.430€.

3.1.2.4 Photo-Voltaic

Solar energy is tried to use at the maximum level. 8 kW power is to be integrated on the roof of demo house as Building Integrated Photovoltaic (BIPV) system. Six strings and five arrays configuration will be implemented (6x5). In this system, photovoltaic panels are mounted on the roof after removing the tiles. Since

weight of panels and tiles are almost equal, static of the building will not be affected. Therefore, BIPV systems not only produce electricity but also act as a roof element.

Figure 13: BIPV and Carport System

Additionally, a 7 kW solar energy system will be established on the carport canopy. Six strings and four arrays configuration will be implemented (6x4). Carport canopy system will satisfy two different benefits, which are production of electricity and preserve car from the direct sunlight. In total these two on-grid systems will provide 15 kW.

Table 13 prepared by using PV*Sol simulation program. Location is selected as Anadolu University Airport, which is 4 km far from demo house, since it was the nearest location that is available at simulation program in Eskisehir. Furthermore, panels are selected from AXITEC Gmbh and inverter is selected from SMA for both systems. (See <u>APPENDIX B</u>)

Intervention	Annual Electricity Generation (kWh)
Building Integrated Photo-Voltaic (8kWp)	10.129,20
Carport Application (7kWp)	7.959,40

Table 13: Solar Energy Contribution

Table 13, indicates the annual electricity generation by PV systems, in other words annual solar energy contribution on demo house electricity demand. 8 kW BIPV generates 10.129,20 kWh while 7kW carport application does 7.959,40 kWh annually. In total, 18.088,6 kWh electricity generated by implemented Photo Voltaic systems.

If the systems are improved, more solar contribution can be gained. With today's technology only 13-14% of the available irradiation can be transferred into electricity generation with mass produced cells (Honsberg & Bowden, n.d).

3.1.2.4.1 Cost of Photo-Voltaic Retrofitting

Photo- Voltaic Retrofitting	Price [€/kW]	Application Power [kW]	Total Cost [€]
BIPV	1.150	8	9.200
Carport PV Application	1.250	7	8.750

Table 14: Cost of the Photo-Voltaic Application

Table 14 represents photo-voltaic application cost. Carport PV application unit cost is more expensive than BIPV because it contains cost of the carport construction. All unit costs include labor cost, therefore total cost is calculated as turnkey price. BIPV system costs 9.200€ for 8 kW installed power while Carport PV system costs 8.750€ for 7 kW installed power. In total PV systems cost 17.950€ for 15 kW installed power.

3.1.2.5 Energy Consumption Analysis of the Retrofitted House

In this section, energy consumption of the retrofitted house is analyzed. (See <u>APPENDIX A</u>) According to table 15, lighting and appliances in the kitchen, living room, bedrooms and bathrooms are main responsible of the electric consumption. Indeed, lighting's and basic appliances' electric consumption account for 95% of the total electric consumption. HVAC action consumes electric in order to supply energy for the pumps that enables hot water circulation inside the dwelling. On the other side, natural gas only consumed in order to heat the dwelling and hot domestic water. Thus, HVAC is the only responsible action that consumes natural gas.

In total, 235 m3 natural gas and 2.908 kWh electric is consumed annually to meet the house energy demand after retrofitting.

Type of Energy Use	Annual Natural Gas Consumption [m3]	Annual Electric Consumption [kWh]
HVAC	235	146
Basic Appliances & Lighting	Х	2.762
TOTAL	235	2.908

Table 15: Energy Consumption Analysis of the Retrofitted House

HVAC Monthly Energy Use	Natural Gas (m3)	Electric (kWh)	Basic Appliances & Lighting Monthly Energy Use	Natural Gas (m3)	Electric (kWh)
January	77	24	January	Х	226
February	50	22	February	Х	204
March	18	24	March	Х	226
April	Х	17	April	Х	236
May	Х	Х	May	Х	244
June	Х	Х	June	Х	236
July	Х	Х	July	Х	244
August	Х	Х	August	Х	244
September	Х	Х	September	Х	236
October	Х	4	October	X	226
November	24	23	November	X	218
December	65	24	December	X	226

Table 16: Monthly Consumption Analysis of the Retrofitted House

Table 16 states monthly electric and natural gas consumption with intended use. As mentioned before, results of HAP energy simulation software, which calculates the energy consumption of the buildings regarding to schedule scenarios, is used to prepare above table. As expected in the northern hemisphere, natural gas consumption increase in winter reach the maximum in January and decrease in spring and reach zero in April until November- January, December and February are the three months that has highest natural gas consumption. Natural gas is consumed at medium level in March and November, which are known as mid-session months. From May until September natural gas is not consumed. On the other hand, electric consumption shows more stable

behavior and it's change range is very small when compared to natural gas consumption.

3.1.2.6 Energy Expense of the Retrofitted House

In <u>section 3.1.2.5</u>, energy consumption analysis after retrofitting was investigated. Using consumption values expenses are calculated. (See <u>APPENDIX A</u>) Note that expenses are calculated according to energy prices in Turkey and converted into Euro. This section will help us to see how much energy is used for each action.

According to table 17, in order to heat the dwelling $67 \in$ of natural gas and $15 \in$ of electric is consumed. On the other hand, basic appliances and lighting costs $288 \in$ annually. In total $67 \in$ of natural gas and $303 \in$ of electric is consumed annually to meet the retrofitted house energy demand for a comfortable living zone.

Type of Energy Use	Annual Natural Gas Expense [€]	Annual Electric Expense [€]
HVAC	67	15
Basic Appliances & Lighting	Х	288
TOTAL	67	303

Table 17: Energy Expense Analysis of the Retrofitted House

HVAC Monthly Energy Use	Natural Gas [€]	Electric [€]	Basic Appliances & Lighting Monthly Energy Use	Natural Gas [€]	Electric [€]
January	22	7	January	Х	24
February	14	6	February	Х	21
March	5	6	March	Х	24
April	6	6	April	Х	25
May	Х	Х	May	Х	26
June	Х	Х	June	Х	25
July	Х	Х	July	Х	26
August	Х	Х	August	Х	26
September	Х	Х	September	Х	24
October	Х	2	October	Х	23
November	7	6	November	Х	24
December	19	6	December	X	31

Table 18: Energy Expense of the Retrofitted House

Table 18 tells us monthly electric and natural gas consumption with intended use. Above table created via HAP energy simulation software regarding to determined schedule scenario inputs. Most expensive natural gas bill come out in January as it is expected. Not only January but also December and February has high natural gas consumption. Mid-sessions have medium consumption therefore medium expense. After retrofitting natural gas is not consumed from May until September. It can be seen that natural gas is consumed more in winter. On the contrary, electric expense shows more stable behavior when compared to natural gas expense. Also its expense change rate is much more stable.

3.2 Mobility

3.2.1 Technical Specifications of Vehicles

Diesel, Gasoline, Hybrid and Electrical Vehicle comparison is shown below. It should be noted that Turkish citizens are paying one of the most expensive taxes on vehicles ranging from %60 to %200, depending on engine volume (İstanbul Vergi Dairesi Başkanlığı, 2016).

Assume that household decide to change vehicles that they have. He or she have a tendency to buy environment friendly vehicle since people are talking about latest developments on hybrid and electrical vehicles. Therefore, one of the household is oscillating between diesel and electrical vehicle while other person is thinking to purchase whether gasoline small segment vehicle or a hybrid one. However, he or she is uncertain whether this investment worth or not. In order to solve this uncertainty, comparison between vehicles' consumption and payback period analysis of the investment have been made in the section 4.2.1.

Vehicle	Fuel Consumption (lt/100km)	C0 ₂ Emission (gr/100km)
1.5 Yaris Hybrid Cool	3,3	82
1.33 Yaris Style Multidrive S (Gasoline)	5,1	119

Table 19: Technical Specifications of Hybrid and Gasoline Yaris

(*Retrieved from: <u>https://www.toyota.com.tr/new-</u> cars/yaris/index.json#/publish/compare_engines/selection=1NZ-FXE-15H--77ECVT*)

Table 19 states fuel consumption and CO_2 emission of the hybrid and gasoline vehicles. Hybrid vehicle not only has lower fuel consumption but also lower CO_2 emission. In fact, most of the time catalog consumption values don't meet the real cases mostly because urban traffic. However, one can trust hybrid vehicle consumption and emission catalog values since electrical engine covers all the demand between 0 and 40 km/h, which causes main consumption and emission at start. Therefore, in real life it is

expected hybrid vehicle consumes approximately 2 liters of fuel and 40 gr of emission less than gasoline vehicle per 100 km.

Figure 14: Yaris Hybrid and Yaris Style Multi-drive S

Above figure represents hybrid Yaris (electric-gasoline engine) and Yaris style multi-drive S (gasoline engine) vehicles.

Vehicle	Fuel Consumption (lt/100km)	Fuel Consumption (kWh/100km)	C02 Emission (gr/100km)
BMW i3	Х	12,9	0
BMW 2.16d Active Tourer	4,0	Х	105

Table 20: Technical Specification of BMW i3 and 2.16d

(*Retrieved from: <u>http://www.bmw.com.tr/tr/all-models/bmw-</u> i/i3/2013/technicaldata.html#tab-0)*

Table 20 states fuel consumption for diesel and electricity for electrical vehicles and CO_2 emission for both vehicles. Diesel vehicle consumes around 4 liters while electrical vehicle consumes 12.9 kWh per 100 km. It should be noted that, electrical vehicle doesn't have any CO_2 emission.

Figure 15: BMW 2.16d Active Tourer and BMW i3

Above figure shows BMW 2.16d Active Tourer (diesel engine) and BMW i3 (electric engine) vehicles.

3.2.2 Mobility Expenses

Vehicle	Fuel Consumption (lt/100Km)	Energy Consumption (kWh/100Km)	Annual Diesel Consumption (€/15.000Km)	Annual Gasoline Consumption (€/15.000Km)	Annual Electricity Consumption (€/15.000Km)
BMW i3	х	12,9	Х	Х	193,5
BMW 2.16d Active Tourer	4,0	х	675	х	х
1.5 Yaris Hybrid Cool	3,3	Х	Х	673,2	Х
1.33 Gasoline Style Multidrive S	5,1	х	X	1040,4	х

Table 21: Consumption Assumptions of Vehicles

Table 21 indicates, annual energy consumption and its monetary equivalent for 15.000 Km annual driven distance. As expected, electrical vehicle has the lowest fee by far for charging the vehicle for specified distance. Moreover, Hybrid and diesel vehicle have almost the same fee for filling the tank to cover specified distance. Hybrid and diesel vehicle's oil consumption fee is lower than gasoline vehicle but higher than electrical vehicle. Furthermore, gasoline vehicle has the highest oil consumption fee to

cover specified distance even though it has small engine volume comparing to the others.

Vehicle	Annual Motor Vehicle Taxes (€)	Annual Maintenance Cost(€)	Total operating expenditures
BMW i3	Х	50	50
BMW 2.16d Active Tourer	550	300	850
1.5 Yaris Hybrid Cool	312	140	452
1.33 Gasoline Style Multidrive S	312	140	452

Table 22: Tax and Maintenance Assumptions

Table 22, indicates annual motor vehicle taxes in Turkey in 2016 and annual maintenance cost which are taken from Toyota and BMW service. Turkish government is collecting annual motor vehicle tax related to engine volume and age of the vehicle. Therefore, the newer car and higher engine volume, the higher tax. In terms of maintenance cost, Diesel BMW has the highest expense due to expensive spare parts and heavy maintenance of diesel vehicles. Toyota models maintenance costs are slightly lower than diesel BMW, however higher than BMW's electrical vehicle. According to Toyota authorized service, there is no maintenance cost difference between hybrid and gasoline model. On the other hand, electrical vehicle has the lowest maintenance cost due to EV working principle's simplicity.

Insurance cost is neglected since decision will be made depending on the engine of the vehicle and comparison is made between same brand.

4 Findings

4.1 Building Retrofitting

This section will inform us about the results of building retrofitting. In addition, by looking carefully at this chapter one can make decision to invest on green energy system easier than before. Cost of building retrofitting, annual retrofitting saving and payback period analysis of the intervention is investigated respectively.

Building Retrofitting	Unit Price [€/Unit]	Quantity [Unit]	Cost [€]
Façade Insulation	35	145	5075
Attic Insulation	10	80	800
Triple Glazing	120	45	5400
30x60 cm 18/20W LED Panel	35	25	875
12W Downlight LED Armature	15	5	75
12W Surface Mounted Etange LED Armature	15	8	120
5W Surface Mounted Applique	30	12	360
BIPV	1150	8	9200
Carport PV Application	1250	7	8750

Table 23: Cost of Building Retrofitting

Cost of building retrofitting summary is given in Table 23 with type of retrofitting action. It also shows unit price and applied quantity of regarding retrofitting action. Photo-voltaic retrofitting is more expensive than other building retrofitting since their unit prices are the highest. Lighting retrofitting cost 1.430 while new insulation cost 5.875 in total. Due to façade insulation's high unit price and quantity façade

insulation cost much than attic insulation. Replacing double glazing with triple glazing cost $5.400 \in$. All in all, building retrofitting actions cost $30.655 \in$.

Type of Energy	Building Envelope Saving [€]	Photo-Voltaic Implementation Saving [€]
Natural Gas	198	Х
Electric	129	2171

Table 24: Annual Retrofitting Savings

Table 24 express result of retrofitting actions in terms of savings annually. Note that in Turkey government guarantee to buy electric generation which derives from renewable energy for 10 years with price of 0.12 Euro cent. In this case it is assumed that all generated electricity is sold to the national grid since system was installed as ongrid system. Therefore, biggest contribution comes from photo-voltaic implementation which saves 2.171 annually. Photo-Voltaic does not have any effects on natural gas saving. On the other hand, building envelope contributes 198 of natural gas and 129€ of electric savings annually. In total, building envelope retrofitting saves 327 of energy annually. All in all, as a result of building retrofitting actions 2.498€ can be saved annually.

Table 25: Economic Analysis of Building Retrofitting

Total Retrofitting	Annual Retrofitting	Payback Period
Cost [€]	Saving [€/yr]	[yr]
30.655	2.498	12,3

Table 25 states economic analysis of building retrofitting including total cost, annual saving and payback period. In previous sections total retrofitting cost and annual retrofitting savings are analyzed. In this section as the main objective of the thesis payback period is calculated. Payback period can be calculated as total retrofitting cost divided by annual retrofitting saving. As a result, all building interventions amortize itself in 12 years and 4 months.

Building Elements	Before Retrofitting (W/m ² K)	After Retrofitting (W/m ² K)	
External Wall	0,617	0,204	
Internal Wall	0,45	0,45	
Roof	0,356	0,128	
Ground Floor	0,542	0,542	
Internal Floor	1,83	1,83	
Window	3,2	1,2	

Table 26: Summary of the U-Value of building elements

Table 26 indicates thermal transmittance rate of building elements in case of before and after retrofitting condition. According to table that is calculated via <u>Turkish</u> <u>Standards 825</u>, biggest thermal transmittance decrease seen for glazing alteration. 15 cm rock wool insulation also has significant effect on external wall thermal transmittance that decrease from 0,617 to 0,204. Also, rate of attic thermal transmittance decreased after intervention. Since there is not applied interventions on internal wall, ground floor and internal floor, thermal transmittance rate of this elements remain same.

4.2 Mobility

4.2.1 Payback Period Analysis of Mobility Decisions

Vehicle	Price (€)
BMW i3	48.000
BMW 2.16d Active Tourer	39.920
1.5 Yaris Hybrid Cool	20.560
1.33 Gasoline Style Multidrive S	19.220

Table 27: Price of Vehicles

Table 27 represents brand new vehicle prices in Turkey. Electrical vehicle has the highest price since market did not reach maturity level yet. Furthermore, another

BMW vehicle, which is 2.16d Active Tourer, has the second highest price due to its brand, luxury and comfort.

On the other hand, gap between hybrid and gasoline hybrid is much closer comparing to BMW's electrical and diesel vehicle. In fact, before making economic analysis, which includes payback period, the difference between initial investments should take into account because it is assumed purchasing decision will be made eventually.

Intervention	Price Difference (€)
Purchasing EV vehicle instead of Diesel vehicle	8080
Purchasing Hybrid vehicle instead of Diesel vehicle	1340

Table 28: Initial Investment

Table 28 represents the price difference of possible decisions. If a person decided to purchase EV instead of diesel vehicle, he or she should invest additional $8080 \in$. When it comes to hybrid or diesel vehicle decision, price difference is $1340 \in$ which is slightly lower than abovementioned decision.

Table 29: Oil Prices

OIL	Gasoline 95 Octane Shell V-Power	Diesel Shell V-Power
COST (€/lt)	1,36	1,125

(*Retrieved from: <u>www.shell.com.tr/products-services/on-the-road/fuels/fuel-pricing.html</u>)*

Table 29 shows oil prices in Turkey on 25.03.2016. Gasoline price per liter is almost 25 cents higher than diesel.

Prices	Unit price (€/kwh)
Electricity Combined	0,1
Electricity Afternoon	0,18
Electricity Night	0,06
Natural Gas	0,03
1.6 1.4 //	

Table 30: Energy Prices Considered

(*Retrieved from: <u>http://www.emra.org.tr/en/home</u>)*

4.2.1.1 Base Case

Base case is prepared according to 15.000 annual driven distance, current tax application and maintenance expenses in the market. Furthermore, it is assumed that vehicle is charged mixed periods of the day. Therefore, electricity price for charging is $0,1 \in kWh$.

Table 31: Savings Assumption (Base Case)

Intervention	Fuel Saving (€)	Tax Saving (€)	Maintenance Cost Saving (€)	Total Saving (€)
Purchasing Electric Vehicle instead of Diesel vehicle	482	550	250	1282
Purchasing Hybrid vehicle instead of Gasoline vehicle	367	0	0	367

Table 31 express saving assumption of the base case which can be also considered as a normal case. If a decision is made on purchasing EV instead of diesel vehicle, person can make 482 fuel saving, 550 tax saving and 250 maintenance cost saving. In total, EV ensure 1282 saving while comparing with diesel vehicle when considering all savings. On the other hand, purchasing hybrid vehicle rather than gasoline vehicle provide 367 fuel saving. There is no cost difference between hybrid and gasoline vehicle on tax and maintenance. Therefore, fuel saving is equal to total saving.

Intervention	Payback Period of Initial Investment (yr)	
Purchasing Electric Vehicle instead of Diesel vehicle	6,3	
Purchasing Hybrid vehicle instead of Gasoline vehicle	3,65	

Table 32: Payback Period (Base Case)

Table 32 express time period of return on investment of the base case. Payback period analysis is considered as initial investment difference divided by total savings. The initial cost difference between EV and diesel vehicle, recover itself in 6 years and 4 months with the help of electric vehicle's savings. Decision whether to purchase hybrid or gasoline vehicle cover itself in 3 years and 8 months.

4.2.1.2 Best Case

Best case is assumed according to 20.000 annual driven distance and current tax and maintenance expenses in the market. Moreover, Electrical Vehicle is charged only during the night. As a result, electricity price for charging is 0,06125 €/kWh due to night tariff rates in Turkey. Additionally, Maintenance cost difference assumed same because if price increase for a spare equipment or parity of Turkish Lira lose value against Euro, then all prices will increase. Therefore, difference will remain same.

Intervention	Fuel Saving (€)	Tax Saving (€)	Maintenance Cost Saving (€)	Total Saving (€)
Purchasing EV vehicle instead of Diesel vehicle	742	550	250	1542
Purchasing Hybrid vehicle instead of Gasoline vehicle	490	0	0	490

Table 33: Savings Assumption (Best Case)

Table 33 refers saving assumption of the best case, which is explained above. If a decision is given in favor of purchasing EV, one can make $742 \in$ fuel saving, $550 \in$ tax saving and $250 \in$ maintenance cost saving. Totally, EV supply $1542 \in$ saving while comparing with diesel vehicle when considering all savings. Otherwise, purchasing hybrid vehicle rather than gasoline vehicle provide $490 \in$ fuel saving. There is no cost

difference between hybrid and gasoline vehicle on tax and maintenance. Therefore, fuel saving is equal to total saving.

Intervention	Payback Period of Initial Investment (yr)
Purchasing EV vehicle instead of Diesel vehicle	5,2
Purchasing Hybrid vehicle instead of Gasoline vehicle	2,7

Table 34: Payback Period (Best Case)

Table 34 indicates payback period of best case. Payback period analysis is considered as initial investment difference divided by total savings. The initial cost difference between EV and diesel vehicle, recover itself in 5 years and 3 months with the help of electric vehicle's savings. Decision whether to purchase hybrid or gasoline vehicle reimburse itself in 2 years and 9 months.

4.2.1.3 Worst Case

Worst case is prepared according to 10.000 annual driven distance and current tax and maintenance expenses in the market. Moreover, Electrical Vehicle is charged only during the afternoon, which is between 17:00 and 22:00. As a result, electricity price for charging is 0,18 €/kwh due to night tariff rates in Turkey. Additionally, Maintenance cost difference assumed same because if price increase for a spare equipment or parity of Turkish Lira lose value against Euro, then all prices will increase. Therefore, difference will remain same.

Intervention	Fuel Saving (€)	Tax Saving (€)	Maintenance Cost Saving (€)	Total Saving (€)
Purchasing EV vehicle instead of Diesel vehicle	217	550	250	1017
Purchasing Hybrid vehicle instead of Gasoline vehicle	245	0	0	245

Table 35: Savings Assumption (Worst Case)

Table 35 explains saving assumption of the worst case, which is explained above. If a decision is given in favor of purchasing EV, person save $217 \in$ of fuel, $550 \in$ of tax saving and $250 \in$ of maintenance costs. In total, EV supply $1017 \in$ saving while comparing with diesel vehicle when considering all savings. On the other hand, purchasing hybrid vehicle instead of gasoline vehicle provide $245 \in$ fuel saving. There is no cost difference between hybrid and gasoline vehicle on tax and maintenance. Therefore, fuel saving is equal to total saving.

Intervention	Payback Period of Initial Investment (yr)		
Purchasing EV vehicle instead of Diesel vehicle	7,9		
Purchasing Hybrid vehicle instead of Gasoline vehicle	5,5		

Table 36: Payback Period (Worst Case)

Table 36 indicates payback period of worst case. Payback period analysis is considered as initial investment difference divided by total savings. The initial cost difference between EV and diesel vehicle, reimburse itself in 7 years and 11 months with the help of electric vehicle's savings. Decision whether to purchase hybrid or gasoline vehicle reimburse itself in 5 years and 6 months.

5 Conclusions

5.1 Implications

Economic analysis of building retrofitting including total cost, annual saving and payback period is observed within this paper in the previous sections. All retrofitting interventions regarding to green building costs $30.655 \notin$. In return of initial investment, retrofitted building save $2.498 \notin$ annually. As a result, all building interventions amortize itself only in 12 years and 4 months. If an arbitrary building's life is estimated as 50 years, 12 years and 4 months to have green building is an encouraging result.

Economic analysis of green mobility is investigated in base, best and worst case regarding to different assumptions and scenarios. The initial cost difference between EV and diesel vehicle, recover itself with the help of electric vehicle's savings in 6 years and 4 months, 5 years and 3 months and 7 years and 11 months in order of base, best and worst case. Decision whether to purchase hybrid or gasoline vehicle cover itself in 3 years and 8 months, 2 years and 9 months and 5 years and 6 months respectively to base, best and worst case. Once again, payback periods are not too much as people afraid of.

To sum up, analyzed results and researches mentioned in this paper can help to change people's perception on expensiveness and immaturity of using green energy and green vehicles by presenting quantitative and objective results.

5.2 Limitations and Barriers in front of Smart Urban Regeneration

Although many cities and houses have been involved in smart urban regeneration, neither single way of regeneration nor authoritative source of prescription is available. Thus, smart regeneration using green technology is already experienced yet little understood phenomenon despite numerous of organizations, private and financial institutions and companies have participated in such interventions before (Aksu & Yenilmez, 2016).

The Governance is an important issue involving different aspects of green mobility and energy. In this sense, considerable number of items concerning the Governance that must be considered as crosscutting barriers that limiting a proper implementation on low energy districts and mobility is highlighted as below; (Demir & Yenilmez, 2016)

- ✓ Low Awareness about Environment: There is very little awareness about how decreasing energy consumption can relate to environment and CO₂ emissions. Most of the investors are taking into account the financial aspect of the projects and seeing the relatively high initial costs the investors usually waive the investment decisions waiting for the prices to drop. Low environmental awareness is also an ethical issue arising from the perspective of humans seeing the world as a resource for their well-being. Environmental awareness is needed to be built with three approach that are systematic approach for education, sustainable and integrated approach for increasing local knowledge.
- ✓ No Incentives or Subsidies from Public, Unclear Regulations: Although there have been many efforts to promote energy efficiency and regulations, there are no clear control mechanisms, which undermines the efforts. By 2017 all existing buildings are supposed to have a Building Energy Certificate (BEC) in Turkey, however there is widespread consensus that date will be extended.
- ✓ Knowledge and know-how: Public organizations have drawbacks about new innovative actions since they are lacking in knowledge on how to set them up and what the benefits are.
- ✓ Lack of Best Practices: Best practices of renewable energy technologies are a good way to encourage people to take action by explaining the benefits of energy efficiency. There might be some doubts in citizens' minds about the benefits and initial investment cost of insulation, green vehicles and solar energy. Best practices can easily answer these questions and therefore accelerate the investments. The government and some public bodies have started projects in public buildings as showcases.
- ✓ Low municipal awareness on innovative funding schemes: Municipalities and other public organizations are too much focused on politics and show very little attention on new funding schemes.

- Lack of communication within the Local Authority departments: There is not a cross vision in the context of greening policy (E.g.: Planning / energy / work / mobility). A holistic approach is needed because crosscutting interventions require more than the usual level of interdepartmental collaboration and sharing of expertise.
- Slow decision process: There are too many hierarchical levels in governmental and public organizations.
- ✓ Nervousness about new technology: Public organizations fear of taking a wrong decision because of bad communication and the use of public money.

Financial issues, as in previous cases, sometimes are critical matters to have a correct performance. There are several aspects to bear in mind: (Rogers & Hunt, 2005)

- Economic crisis: Observed by the lack in financial means and no knowledge on how to access to funds.
- ✓ Lack of funding: No knowledge of mechanisms and funding sources.
- ✓ Cuts in subsidies and financial incentives: Governments of many Countries (both federal and regional) have cut in subsidies related to energy efficiency (e.g.: Solar panel incentives for citizen in Germany)
- Costs of infrastructures and heavy procedures of procurement: Costs of infrastructure and heavy procedures of procurement in many Countries is an important barrier in front of green technology.
- ✓ High initial costs: The building owners tend to focus on shorter-term cash flows as opposed to longer term running costs. Although there is a high Net Present Value of the project according to financial analysis, most of the time the decision is negative due to the high initial costs.

Public Procurement processes for Smart Cities have been identified as another critical cross-cutting issue. According to Smart Cities and Communities (2013), the points that weaken a suitable implementation of sustainable solutions are:

✓ Heavy procurement procedures: The procedures, in many countries, are very heavy and complex (involve too many stakeholders, at federal, regional and local level).

- ✓ "Lowest price" against "best offer": It is difficult to identify the best value for money.
- ✓ Delays in the public procurement process: Changing anything in the public procurement process takes a lot of time as it requires so many level of validation at federal/regional and local levels.

In conclusion, it can be highlighted that cities are vitiated by a lack of adaptation and flexibility to changes, growth and new challenges. The convergence of multiple stakeholders' interests is crucial in order to achieve a more sustainable future.

6 Bibliography

Administration, General Directorate of Electrical Power Resources Survey and Development. (n.d). *Solar energy.* Retrieved September 2016, from General Directorate of Renewable Energy: <u>http://www.eie.gov.tr/eie web/english/solar/gunes_index_e.html</u>

Aksu, M., & Yenilmez, B. (2016). *Model for replication potential*. Paper presented at the periodical meeting of the EU funded REMOURBAN project, Madrid.

Dahl, T. W., Clausen, A. U., & Hansen, P. B. (2011). The human impact on natural rock reserves using basalt, anorthosite, and carbonates as raw materials in insulation products. *International Geology Review*, *53*(8), 894-904.

Demir, C., & Yenilmez, B. (2016). *Report on non-technical barrier and legal and normative issues.* Paper presented at the periodical meeting of the REMOURBAN project, Brussels.

Demirbaş, A. (2001). Energy balance, energy sources, energy policy, future developments and energy investments in Turkey. *Energy Conversion and Management*, 42(10), 1239 - 1258

Duygu, E. (2002). Bir Elimizde Fosil Yakıt, Bir Elimizde Ayna, Umrumuzda mı Dünya veya Biyokütle Enerjisi. *T.M.M.O.B. Elektrik Mühendisleri Odası, 41*(412).

Energy Saving Trust. (n.d). *Roof and loft insulation*. Retrieved from http://www.energysavingtrust.org.uk/home-insulation/roof-and-loft

Environment Protection Agency. (2012). *Inventory of U.S. greenhouse gas emissions and sinks: 1990-2012*. Washington DC: E.P.A.

Erdal, G., Erdal, H., & Esengün, K. (2008). The causality between energy consumption and economic growth in Turkey. *Energy Policy*, 36(10), 3838-3842.

Erjavec, J., & Arias, J. (2007). *Hybrid, electric and fuel-cell vehicles.* Clifton Park, NJ: Thomson Delmar Learning.

European Comission Research & Innovation. (2012). *Green cars initiative*. Retrieved August 2016, from European Comission: http://ec.europa.eu/research/transport/road/green cars/index en.htm

European Parliament and the Council of the European Union. (19 May 2010). *Directive* 2010/31/EU on the energy performance of buildings. Recast of the energy performance of buildings directive (pp. 13-35). Brussels: Offical Journal of the EU.

Gallagher, K. S. (2011, January). Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. *Journal of Environmental Economics and Management, 61*(1), 1-15.

Graham, R. (2001). *Comparing the benefits and impacts of hybrid electric vehicle options.* Retrieved from <u>http://www.ourenergypolicy.org/wp-</u> <u>content/uploads/2011/11/2001_07_EPRI_ComparingHybridElectricVehicleOptions.pdf,</u> <u>2011</u>

Honsberg, C., & Bowden, S. (n.d). *Efficiency and solar cell cost.* Retrieved September 24, 2016, from PV Education: <u>http://www.pveducation.org/pvcdrom/design/efficiency-and-cost</u>

Isover Saint - Gobain. (n.d). *Glasswool*. Retrieved from Isover Technical Insulation: <u>http://www.isover-technical-insulation.com/about-us/our-materials/glasswool</u>

İstanbul Vergi Dairesi Başkanlığı. (2016). *Motorlu taşıtlar vergisi tarifeleri*. Retrieved September 21, 2016, from <u>http://www.ivdb.gov.tr/pratik/oranlar/mtvtarife.htm</u>

Kırzıoğlu, I. M. (2000). Yeni yüzyılda çevre plancıları ve tasarımcılarının sorunları ve olası etkinlikleri. Ankara: T.M.M.O.B. Peyzaj Mimarları Odası.

Kibert, C. J. (May 2016). *Sustainable construction: Green building design and delivery* (4 ed.). Florida: John Wiley & Sons.

Kikuchi, S. (October 2009). *Artificial intelligence in transportation analysis: approaches, methods, and applications.* Elsevier.

Kuban, B. (2015). *Report of the audits in Tepebaşı demo site.* Paper presented at the periodical meeting of the EU funded REMOURBAN project, Nottingham.

Mear, R. S. (2011). *Green building: project planning and cost estimating*. Kingston: John Wiley & Sons, Inc.

Mega, V. (2005). *Sustainable development, energy and the city: A civilizitation of visions and actions.* New York: Springer.

Oliver, M. & Jackson, T. (2001). Energy and economic evaluation of buildingintegrated photovoltaics. *Energy*, 26(4), 431-439

Özbalta, T. G. (2003). Sürdürülebilir Mimarlık Bağlamında Güneş Pili Uygulamaları. *II. Yenilenebilir Enerji Kaynakları Sempozyumu*. İzmir: YEKSEM.

Pyke, D., & Brown, S. (July 2010). Electric Vehicles: The role and importance of standards in an emerging market. *Energy Policy*, *38*(7), 3797-3806.

REMOURBAN. (n.d). *About the project.* Retrieved October 2016, from <u>http://www.remourban.eu/The-</u> Project/ABOUT.kl

Rogers, C. D., & Hunt, D. V. (2005). Barriers to sustainable infrastructure in urban regeneration. *Engineering Sustainability*, 158(2), 67-81.

Sherman, M. (1995, September). The use of blower-door data. *International Journal of Indoor Environment and Health*, *5*(3), 215-224.

Simpson, A. (2006). *Cost-benefit analysis of plug-in hybrid electric vehicle technology.* Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.491.7761&rep=rep1&type=p df, November 2016.

Sitarz, D. (2008). *Greening your business: A hands-on guide to creating a succesful and sustainable business* (1. ed.). Carbondale, IL, United States: Earthpress.

Smart Cities and Communities. (2013). *Public procurement for smart cities.* Smart Cities Stakeholder Platform.

Strong, D. (2012). *The distinctive benefits of glazing: The social and economic contributions of glazed areas to sustainability in the built environment.* U.K: David Strong Consulting.

Strong, S. (2011). *Building integrated photovoltaics*. (National Institute of Building Sciences) Retrieved from Whole Building Design Guide: http://www.wbdg.org/resources/bipv.php

Şenlier, N. (1994). Sürdürülebilir Kent Gelişimi İçin Tasarımda Mikroklimatik Etmenler. *Kentsel Tasarım ve Ekoloji, Tasarıma Ekolojik Yaklaşım, 5.Kentsel Tasarım ve Uygulamalar Sempozyumu* (pp. 196-2016). İstanbul: M.S.Ü Matbaası.

Türe, E. (2001). Hydrogen energy. Ankara: TUBITAK Press.

The passive house resource. (2016). *Thermal insulation*. Retrieved from Passipedia : http://www.passipedia.org/planning/thermal protection/integrated thermal protection

Siegen University. (n.d). *Thermal insulation*. Retrieved from: http://nesa1.uni-siegen.de/www.extern/idea/keytopic/6.htm

U.S. Department of Energy. (n.d). *LED lighting*. (Government) Retrieved September 2016, from Energy: <u>http://energy.gov/energysaver/led-lighting</u>

US General Services Administration. (2009). *Benefits of green buildings on costs, the environment and jobs*. Retrieved from GSA: <u>http://www.gsa.gov/portal/content/103662</u>

Yenilmez, B. (2015). *Technical definition of the Tepebaşı demo site*. Unpublished EU funded project report, Eskişehir.

APPENDIX A: Simulation Results of Building Retrofitting

i. Retrofitted Situation

Table 1. Annual Costs

	RETROFITTED SITUATION
Component	(TL)
Air System Fans	0
Cooling	0
Heating	201
Pumps	108
Heat Rejection Fans	0
HVAC Sub-Total	310
Lights	208
Electric Equipment	661
Misc. Electric	0
Misc. Fuel Use	0
Non-HVAC Sub-Total	869
Grand Total	1.179

Table 2. Annual Cost per Unit Floor Area

	RETROFITTED SITUATION
Component	(TL/m²)
Air System Fans	0,000
Cooling	0,000
Heating	1,549
Pumps	0,835
Heat Rejection Fans	0,000
HVAC Sub-Total	2,384
Lights	1,597
Electric Equipment	5,088
Misc. Electric	0,000
Misc. Fuel Use	0,000
Non-HVAC Sub-Total	6,686
Grand Total	9,070
Gross Floor Area (m ²)	130,0
Conditioned Floor Area (m ²)	130,0
Note Male and the label and the label of the Original Flore	A

Note: Values in this table are calculated using the Gross Floor Area.

Table 3. Component Cost as a Percentage of Total Cost

	RETROFITTED SITUATION
Component	(%)
Air System Fans	0,0
Cooling	0,0
Heating	17,1
Pumps	9,2
Heat Rejection Fans	0,0
HVAC Sub-Total	26,3
Lights	17,6
Electric Equipment	56,1
Misc. Electric	0,0
Misc. Fuel Use	0,0
Non-HVAC Sub-Total	73,7
Grand Total	100,0

Table 1. Annual Costs

	RETROFITTED SITUATION
Component	(TL)
HVAC Components	
Electric	108
Natural Gas	201
Fuel Oil	0
Propane	0
Remote HW	0
Remote Steam	0
Remote CW	0

HVAC Sub-Total	310
Non-HVAC Components	
Electric	869
Natural Gas	0
Fuel Oil	0
Propane	0
Remote HW	0
Remote Steam	0
Non-HVAC Sub-Total	869
Grand Total	1.179

Table 2. Annual Energy Consumption

	RETROFITTED SITUATION
Component	
HVAC Components	
Electric (kWh)	345
Natural Gas (M3)	235
Fuel Oil (na)	0
Propane (na)	0
Remote HW (na)	0
Remote Steam (na)	0
Remote CW (na)	0
Non-HVAC Components	
Electric (kWh)	2.762
Natural Gas (M3)	0
Fuel Oil (na)	0
Propane (na)	0
Remote HW (na)	0
Remote Steam (na)	0
Totals	
Electric (kWh)	3.107
Natural Gas (M3)	235
Fuel Oil (na)	0
Propane (na)	0
Remote HW (na)	0
Remote Steam (na)	0
Remote CW (na)	0

Table 3. Annual Emissions

	RETROFITTED SITUATION
Component	
CO2 Equivalent (kg)	459

Table 4. Annual Cost per Unit Floor Area	
	RETROFITTED SITUATION
Component	(TL/m²)
HVAC Components	
Electric	0,835
Natural Gas	1,549
Fuel Oil	0,000
Propane	0,000
Remote HW	0,000
Remote Steam	0,000
Remote CW	0,000
HVAC Sub-Total	2,384
Non-HVAC Components	
Electric	6,686
Natural Gas	0,000
Fuel Oil	0,000
Propane	0,000
Remote HW	0,000
Remote Steam	0,000
Non-HVAC Sub-Total	6,686
Grand Total	9,069
Gross Floor Area (m ²)	130,0
Conditioned Floor Area (m ²)	130,0

Note: Values in this table are calculated using the Gross Floor Area.

Table 5. Component Cost as a Percentage of Total Cost

	RETROFITTED SITUATION
Component	(%)
HVAC Components	
Electric	9,2
Natural Gas	17,1
Fuel Oil	0,0
Propane	0,0
Remote HW	0,0
Remote Steam	0,0
Remote CW	0,0
HVAC Sub-Total	26,3
Non-HVAC Components	
Electric	73,7
Natural Gas	0,0
Fuel Oil	0,0
Propane	0,0
Remote HW	0,0
Remote Steam	0,0
Non-HVAC Sub-Total	73,7
Grand Total	100,0

1. Annual Costs

	Annual Cost		Percent of Total
Component	(TL/yr)	(TL/m²)	(%)
HVAC Components			
Electric	108	0,835	9,2
Natural Gas	201	1,549	17,1
Fuel Oil	0	0,000	0,0
Propane	0	0,000	0,0
Remote Hot Water	0	0,000	0,0
Remote Steam	0	0,000	0,0
Remote Chilled Water	0	0,000	0,0
HVAC Sub-Total	310	2,384	26,3
Non-HVAC Components			
Electric	869	6,686	73,7
Natural Gas	0	0,000	0,0
Fuel Oil	0	0,000	0,0
Propane	0	0,000	0,0
Remote Hot Water	0	0,000	0,0
Remote Steam	0	0,000	0,0
Non-HVAC Sub-Total	869	6,686	73,7
Grand Total	1.179	9,069	100,0

Note: Cost per unit floor area is based on the gross building floor area.

Gross Floor Area Conditioned Floor Area 130,0 m² 130,0 m²

1. HVAC Costs

Month	Electric (TL)	Natural Gas (TL)	Fuel Oil (TL)	Propane (TL)	Remote Hot Water (TL)	Remote Steam (TL)	Remote Chilled Water (TL)
January	19	66	0	0	0	0	0
February	17	43	0	0	0	0	0
March	19	16	0	0	0	0	0
April	13	0	0	0	0	0	0
Мау	0	0	0	0	0	0	0
June	0	0	0	0	0	0	0
July	0	0	0	0	0	0	0
August	0	0	0	0	0	0	0
September	0	0	0	0	0	0	0
October	3	0	0	0	0	0	0
November	18	21	0	0	0	0	0
December	19	56	0	0	0	0	0
Total	108	201	0	0	0	0	0

2. Non-HVAC Costs

	Electric	Natural Gas	Fuel Oil	Propane	Remote Hot Water	Remote Steam
Month	(TL)	(TL)	(TL)	(TL)	(TL)	(TL)
January	71	0	0	0	0	0
February	64	0	0	0	0	0
March	71	0	0	0	0	0
April	74	0	0	0	0	0
May	77	0	0	0	0	0
June	74	0	0	0	0	0
July	77	0	0	0	0	0
August	77	0	0	0	0	0
September	74	0	0	0	0	0
October	71	0	0	0	0	0
November	69	0	0	0	0	0
December	71	0	0	0	0	0
Total	869	0	0	0	0	0

1. HVAC Energy Use

	Electric	Natural Gas	Fuel Oil	Propane	Remote HW	Remote Steam	Remote CW
Month	(kWh)	(M3)	(na)	(na)	(na)	(na)	(na)
Jan	61	77	0	0	0	0	0
Feb	54	50	0	0	0	0	0
Mar	60	18	0	0	0	0	0
Apr	42	0	0	0	0	0	0
Мау	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0
Oct	10	0	0	0	0	0	0
Nov	58	24	0	0	0	0	0
Dec	60	65	0	0	0	0	0
Totals	345	235	0	0	0	0	0

2. Non-HVAC Energy Use

	Electric	Natural Gas	Eucl Oil	Propage	Remote HW	Remote
Month	(kWh)	(M3)	(na)	(na)	(na)	(na)
Jan	226	0	0	0	0	0
Feb	204	0	0	0	0	0
Mar	226	0	0	0	0	0
Apr	236	0	0	0	0	0
May	244	0	0	0	0	0
Jun	236	0	0	0	0	0
Jul	244	0	0	0	0	0
Aug	244	0	0	0	0	0
Sep	236	0	0	0	0	0
Oct	226	0	0	0	0	0
Nov	218	0	0	0	0	0
Dec	226	0	0	0	0	0
Totals	2.762	0	0	0	0	0

ii. Current Situation

Table 1. Annual Costs

	CURRENT SITUATION
Component	(TL)
Air System Fans	0
Cooling	0
Heating	794
Pumps	115
Heat Rejection Fans	0
HVACS	Sub-Total 910
Lights	519
Electric Equipment	661
Misc. Electric	0
Misc. Fuel Use	0
Non-HVAC S	Sub-Total 1.181
Gr	and Total 2.090

Table 2. Annual Cost per Unit Floor Area	
	CURRENT SITUATION
Component	(TL/m²)
Air System Fans	0,000
Cooling	0,000
Heating	6,111
Pumps	0,888
Heat Rejection Fans	0,000
HVAC Sub-Total	6,999
Lights	3,994
Electric Equipment	5,088
Misc. Electric	0,000
Misc. Fuel Use	0,000
Non-HVAC Sub-Total	9,082
Grand Total	16,081
Gross Floor Area (m ²)	130,0
Conditioned Floor Area (m ²)	130,0

Note: Values in this table are calculated using the Gross Floor Area.

Table 3. Component Cost as a Percentage of Total Cost

		CURRENT SITUATION
Component		(%)
Air System Fans		0,0
Cooling		0,0
Heating		38,0
Pumps		5,5
Heat Rejection Fans		0,0
	HVAC Sub-Total	43,5
Lights		24,8
Electric Equipment		31,6
Misc. Electric		0,0
Misc. Fuel Use		0,0
Non-I	HVAC Sub-Total	56,5
	Grand Total	100,0

Table 1. Annual Costs

	CURRENT SITUATION
Component	(TL)
HVAC Components	
Electric	115
Natural Gas	794
Fuel Oil	0
Propane	0
Remote HW	0
Remote Steam	0
Remote CW	0
HVAC Sub-Total	910
Non-HVAC Components	
Electric	1.181

Natural Gas	0
Fuel Oil	0
Propane	0
Remote HW	0
Remote Steam	0
Non-HVA	C Sub-Total 1.181
	Grand Total 2.090

Table 2. Annual Energy Consumption	
	CURRENT SITUATION
Component	
HVAC Components	
Electric (kWh)	367
Natural Gas (M3)	925
Fuel Oil (na)	0
Propane (na)	0
Remote HW (na)	0
Remote Steam (na)	0
Remote CW (na)	0
Non-HVAC Components	
Electric (kWh)	3.752
Natural Gas (M3)	0
Fuel Oil (na)	0
Propane (na)	0
Remote HW (na)	0
Remote Steam (na)	0
Totals	
Electric (kWh)	4.119
Natural Gas (M3)	925
Fuel Oil (na)	0
Propane (na)	0
Remote HW (na)	0
Remote Steam (na)	0
Remote CW (na)	0

Table 3. Annual Emissions

	CURRENT SITUATION
Component	
CO2 Equivalent (kg)	1.808

Table 4. Annual Cost per Unit Floor Area

	CURRENT SITUATION
Component	(TL/m²)
HVAC Components	
Electric	0,888
Natural Gas	6,111
Fuel Oil	0,000
Propane	0,000
Remote HW	0,000
Remote Steam	0,000
Remote CW	0,000
HVAC Sub-Total	6,999
Non-HVAC Components	
Electric	9,082
Natural Gas	0,000
Fuel Oil	0,000
Propane	0,000
Remote HW	0,000
Remote Steam	0,000
Non-HVAC Sub-Total	9,082
Grand Total	16,080
Gross Floor Area (m ²)	130,0
Conditioned Floor Area (m ²)	130,0

Note: Values in this table are calculated using the Gross Floor Area.

Table 5. Component Cost as a Percentage of Total Cost

	CURRENT SITUATION
Component	(%)
HVAC Components	
Electric	5,5
Natural Gas	38,0
Fuel Oil	0,0
Propane	0,0
Remote HW	0,0
Remote Steam	0,0
Remote CW	0,0
HVAC Sub-Total	43,5
Non-HVAC Components	
Electric	56,5
Natural Gas	0,0
Fuel Oil	0,0
Propane	0,0
Remote HW	0,0
Remote Steam	0,0
Non-HVAC Sub-Total	56,5
Grand Total	100,0

1. Annual Costs

	Annual Cost		Percent of Total
Component	(TL/yr)	(TL/m²)	(%)
HVAC Components			
Electric	115	0,888	5,5
Natural Gas	794	6,111	38,0
Fuel Oil	0	0,000	0,0
Propane	0	0,000	0,0
Remote Hot Water	0	0,000	0,0
Remote Steam	0	0,000	0,0
Remote Chilled Water	0	0,000	0,0
HVAC Sub-Total	910	6,999	43,5
Non-HVAC Components			
Electric	1.181	9,082	56,5
Natural Gas	0	0,000	0,0
Fuel Oil	0	0,000	0,0
Propane	0	0,000	0,0
Remote Hot Water	0	0,000	0,0
Remote Steam	0	0,000	0,0
Non-HVAC Sub-Total	1.181	9,082	56,5
Grand Total	2.090	16,080	100,0

Note: Cost per unit floor area is based on the gross building floor area.

Gross Floor Area	
Conditioned Floor Area	

130,0 m² **130,0** m²

1. HVAC Costs

Month	Electric (TL)	Natural Gas (TL)	Fuel Oil (TL)	Propane (TL)	Remote Hot Water (TL)	Remote Steam (TL)	Remote Chilled Water (TL)
January	20	228	0	0	0	0	0
February	17	163	0	0	0	0	0
March	19	91	0	0	0	0	0
April	17	18	0	0	0	0	0
Мау	0	0	0	0	0	0	0
June	0	0	0	0	0	0	0
July	0	0	0	0	0	0	0
August	0	0	0	0	0	0	0
September	0	0	0	0	0	0	0
October	5	3	0	0	0	0	0
November	18	94	0	0	0	0	0
December	19	196	0	0	0	0	0
Total	115	794	0	0	0	0	0

2. Non-HVAC Costs

	Electric	Natural Gas	Fuel Oil	Propane	Remote Hot Water	Remote Steam
Month	(TL)	(TL)	(TL)	(TL)	(TL)	(TL)
January	93	0	0	0	0	0
February	84	0	0	0	0	0
March	93	0	0	0	0	0
April	104	0	0	0	0	0
May	107	0	0	0	0	0
June	104	0	0	0	0	0
July	107	0	0	0	0	0
August	107	0	0	0	0	0
September	104	0	0	0	0	0
October	93	0	0	0	0	0
November	90	0	0	0	0	0
December	93	0	0	0	0	0
Total	1.181	0	0	0	0	0

1. HVAC Energy Use

	Electric	Natural Gas	Fuel Oil	Propane	Remote HW	Remote Steam	Remote CW
Month	(kWh)	(M3)	(na)	(na)	(na)	(na)	(na)
Jan	62	266	0	0	0	0	0
Feb	55	190	0	0	0	0	0
Mar	60	106	0	0	0	0	0
Apr	53	22	0	0	0	0	0
Мау	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0
Sep	0	0	0	0	0	0	0
Oct	17	4	0	0	0	0	0
Nov	58	109	0	0	0	0	0
Dec	61	229	0	0	0	0	0
Totals	367	925	0	0	0	0	0

2. Non-HVAC Energy Use

Marsh	Electric	Natural Gas	Fuel Oil	Propane	Remote HW	Remote Steam
Month	(KVVN)	(NI3)	(na)	(na)	(na)	(na)
Jan	296	0	0	0	0	0
Feb	268	0	0	0	0	0
Mar	296	0	0	0	0	0
Apr	330	0	0	0	0	0
May	341	0	0	0	0	0
Jun	330	0	0	0	0	0
Jul	341	0	0	0	0	0
Aug	341	0	0	0	0	0
Sep	330	0	0	0	0	0
Oct	296	0	0	0	0	0
Nov	287	0	0	0	0	0
Dec	296	0	0	0	0	0
Totals	3.752	0	0	0	0	0

APPENDIX B: Simulation Results of Electric Generation from PVs

BIPV System Configuration

BIPV System Variant

roject Name: 'anant Reference:	Solar System Design System Variant		01.04.201
2 2	E x AVITEL Groot AVITEL Groot X 14" AVITEL GROOT X	10-2	
	Location:	Eskişehir Anadolu Airport	
		(1986-2005)	
	PV Output:	7,80	kWp
	Gross/Active PV Surface Area:	48,81 / 49,11	m 2
	PV Array Irradiation:	76,545	kWh
Energ	PV Array Irradiation: y Produced by PV Array (AC):	76.545	kWh kWh
Energ	PV Array Irradiation: y Produced by PV Array (AC): Grid Feed-in:	76.545 10.129 10.129	kWh kWh kWh
Energ	PV Array Irradiation: ay Produced by PV Array (AC): Grid Feed-in: System Efficiency:	76.545 10.129 10.129 13.2	kWh kWh kWh
Energ	PV Array Irradiation: ay Produced by PV Array (AC): Grid Feed-in: System Efficiency: Performance Ratio:	76.545 10.129 10.129 13,2 83,2	kWh kWh kWh
Energ	PV Array Irradiation: ay Produced by PV Array (AC): Grid Feed-in: System Efficiency: Performance Ratio: Inverter Efficiency:	76.545 10.129 10.129 13,2 83,2 95,7	kWh kWh kWh
Energ	PV Array Irradiation: ay Produced by PV Array (AC): Grid Feed-in: System Efficiency: Performance Ratio: Inverter Efficiency: PV Array Efficiency:	76.545 10.129 10.129 13,2 83,2 95,7 13,8	kWh kWh kWh
Energ	PV Array Irradiation: ay Produced by PV Array (AC): Grid Feed-in: System Efficiency: Performance Ratio: Inverter Efficiency: PV Array Efficiency: Specific Annual Yield:	76.545 10.129 10.129 10.129 13,2 83,2 95,7 13,8 1.297	kWh kWh kWh % % % kWh/kWp

BIPV System Output

Array Gross Surface:	48,81 m ²	Array Output:	7,80 kW
Array Solar Surface:	49,11 m²		
PV Array Irradiation		76.545,2 kWh	
Energy Produced by PV Array (A	(C)	10.129,2 kWh	
Grid, Feed-in		10.129,2 kWh	
Energy from Grid		13,9 kWh	
System Efficiency		13,2 %	
Performance Rabo		83,2 %	
Specific Annual Yield		1.296,8 kWh,kWp	
PV Array Efficiency		13,8 %	
Inverter Efficiency		95,7 %	
			4.1

BIPV System Generation Graph

Carport System Inputs

Technical Data: Array	
	- ຈັກແບບບັນບັນນາ

Carport System Variant

Project Name: Variant Reference:	Solar System Design System Variant	01.04.2016
ocation († Eskişenir Record: Eskişenir	Anadolu Airport (Anadolu Airport	Clim ate D
Putrut Patawa Mayo	(1986-2005) 5-24 kWo	
Energy	Produced by PV array (AC) Crid Peed-in	7.959,4 kWh
		en See 74 Dr
Efficiency: nual Yield: s Avoided:	13,8 % 1.275, kwh/kwp 2.045, kg/s	PV Arr Speatic CO2 Emiss

Carport System Output

Carport System Generation Graph

APPENDIX C: Price Offers

Triple Glazing

Insulation

State -		Terrere Vieg	, Э⊶ Ваµт	it 🔼
SUDER	_, meusim 🔒	2 Polsen		
St. Yartmakin Soned		Uluönder Mah	Baksan Sanayi Sitesi	119/22 ESKİŞEHİR-TÜF
1.72/2010/10/2010 10:00		Tel	+ 90 222 234 42 72 Fa	ax +90 222 234 79 76
and a constraint and the	ing and the second second second second second second second second second second second second second second s In the second second second second second second second second second second second second second second second	New Market A. C. Market and Array C. C.	annan agaa gaalaan ay ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan	د ار ډا لدالې چاد <mark>پاپ</mark> الېمې د
		IIII		i mustamini e se s
				views in a state of the state o
Section Sector Sector	and the second second		and the second second	
			and the second second	1999 - Angeler Angeler (* 1997) 1997 - Angeler Angeler (* 1997) 1997 - Angeler Angeler (* 1997)
an distant of the		, kana mana mana kaj		en an an an an an an an an an an an an an

Photovoltaic

Alaattinbey Mh. 622.Sokak Sera Plaza A-6 Nilüfer Bursa Türkiye	www.sur	www.sunvital.com.tr / info@sunvital.com.tr			
Tel : +90 224 888 08 80 Fax : +90 224 888 08 81					
Çekirge V.D. 784 030 02 29					
			TE	KLİF FORMU	
TEPEBAŞI BELEDİYESİ					
ESKİŞEHİR					
Proje: Çatı-Otopark Güneş Enerji Santrali Projesi					
			Tarih: 07.09.20	<u>16</u>	
Açıklama	Miktar	Fiy	/at	Tutar	
8 kW BIPV	1	9	200€	9.200,00€	
7 kW Carport Canopy PV	1	8	750€	8.750,00€	
Teklif geçerlilik süresi 15 gündür	u	TOPLAM		17.950,00 \$	
		KDV	18%	3.231,00 €	
		GENEL TOP	LAM	21.181,00€	

Lighting

AYDINLATMA CETVELİ													
	ALANIN	1											
ADI	EN (m)	BOY (m)	ALAN (m²)	Yükseklik (m)	Askı Boyu (m)	h1 (m)	Oda İndeksi (k)	E (lüx)	Armatür Tipi	Armatür Işık Akısı (İm)	Aydın. Verimi ()	Gerekli Aydınlatma Seviyesi (lm)	Lamba Sayısı
MUTFAK	2,5	4,6	11,5	2,9	-		0,55852	150	TBS	1500	0,24	8984	6
MUTFAK 2	3,1	3,4	10,54	2,9			0,55915	150	TBS	3000	0,24	8234	3
SALON	3,3	6,8	22,44	2,9	-		0,76613	150	TBS	3000	0,31	13573	5
GİRİŞ HOL	1,2	5,8	6,96	2,9	-		0,34286	100	TBS	1500	0,24	3625	2
Y. ODASI 1	3,1	4,4	13,64	2,9	-		0,62713	50	TBS	1500	0,24	3552	2
Y. ODASI 2	3,2	4,4	14,08	2,9	-		0,63884	50	TBS	1500	0,24	3667	2
E. Y. ODASI	3	6,4	19,2	2,9	-		0,70433	50	TBS	1500	0,24	5000	3
BANYO	2,6	2,8	7,28	2,9	-		0,46488	100	TBS	1500	0,24	3792	3
E. BANYO	2,3	3,2	7,36	2,9	-		0,46144	100	TBS	1500	0,24	3833	3
GECE HOLÜ 1	1,5	2,7	4,05	2,9	-		0,33251	100	TBS	1500	0,24	2109	1
GECE HOLÜ 2	2,4	3,3	7,92	2,9	-		0,47913	100	TBS	1500	0,24	4125	3

	Renk Sıcaklığı	Lümen Değeri	Adet	Güç (W)	Fiyat (\$)	
30 cm x 60 cm 18/20 W LED Panel	3000 K /4000 K	1500	25	500	1000	
12 W Downlight LED Armatür IP 44	3000 K /4000 K	840	5	60	100	
12 W S/Ü Etanj LED Armatür IP65	3000 K /4000 K	840	8	96	140	
5 W S/Ü LED Aplik IP 20	3000 K /4000 K	300	12	60	360	
Toplam Maliyet (Dolar)						

BMW 216d Active Tourer

Model	Donanım Paketi	Şanzıman	Yakıt Tipi	cc	BG	Yakıt Tüketimi lt/100 km ⁽⁵⁾	Anahtar Teslim Satış Fiyatı (TL)
BMW 218i Active Tourer (2)	Joy	Otomatik	Benzin	1499	136	5,2	119.500
	Prestige	Otomatik	Benzin	1499	136	5,2	122.600
	Sport Line	Otomatik	Benzin	1499	136	5,2	126.500
	Luxury Line	Otomatik	Benzin	1499	136	5,2	131.000
	M Sport	Otomatik	Benzin	1499	136	5,2	134.900
BMW 216d Active Tourer	Joy	Otomatik	Dizel	1496	116	4,0	128.000
	Prestige	Otomatik	Dizel	1496	116	4,0	131.100
	Sport Line	Otomatik	Dizel	1496	116	4,0	135.000
	Luxury Line	Otomatik	Dizel	1496	116	4,0	139.500
	M Sport	Otomatik	Dizel	1496	116	4,0	143.400

BMW i3

		ш.,	

Model	Donanım Paketi	Şanzıman	Yakıt Tipi	CC	BG/kW	Yakıt Tüketimi It/100 km ⁽⁵⁾	Anahtar Teslim Satış Fiyatı (TL)
BMW i3	Pure	Otomatik	Elektrik	0	170	-	149.500
	Premium Techno	Otomatik	Elektrik	0	170		156.500

10yota 1 alis liyolid & 1.55 Style Multidily
--

Gövde Tipi	Model	Tavsiye Edilen Liste Fiyatları (TL)
Yaris	1.0 Life	45,750
Yaris	1.33 Fun	53,250
Yaris	1.33 Fun Multidrive S	58,650
Yaris	1.33 Fun Skypack Multidrive S	60,550
Yaris	1.33 Fun Special	54,300
Yaris	1.33 Fun Special Multidrive S	59,700
Yaris	1.33 Fun Special Skypack Multidrive S	61,600
Yaris	1.33 Style	59,400
Yaris	1.33 Style Multidrive S	64,800
Yaris	1.33 Style Skypack Multidrive S	66,700
Yaris	1.33 Style Red	59,400
Yaris	1.33 Style Red Multidrive S	64,800
Yaris	1.33 Style Red Skypack Multidrive S	66,700
Yenilenen Yaris Hybrid Hybrid	1.5 Yaris Hybrid Cool	68,150
Yenilenen Yaris Hybrid Hybrid	1.5 Yaris Hybrid Spirit	76,150
Yenilenen Yaris Hybrid Hybrid	1.5 Yaris Hybrid X-Trend İnci Beyazı	77,450
Yenilenen Yaris Hybrid Hybrid	1.5 Yaris Hybrid X-Trend Barselona Kırmızısı	77,450
Yenilenen Yaris Hybrid Hybrid	1.5 Yaris Hybrid X-Trend Platinyum Metalik	77,450