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1. Introduction 

Coordinated planning of logistics activities has been, in the areas of Management Science and Operations 
Research (OR), the subject of extensive investigation since the sixties (see Graves 1993, Thomas 1996 
or Parunak 1998, for instance). In spite of that, only recently production/distribution scheduling has had 
more dedicated attention (see Fox 1993, Tate 1995, Rabelo 1996, Hildum 1997, Arnold 1997, 
Kjenstad 1998, Klen 1998, Rabelo 1998, for instance). Production/distribution scheduling is the 
main theme of this article. 

For a general introduction to the classical scheduling problems, including classical/OR approaches see 
Blazewicz 1994 or Brucker 1998. For Artificial Intelligence (AI) based approaches or modern mixed 
AI/OR approaches see Zweben 1994 or Morton 1993. 

This article describes two aspects of an approach to a scheduling problem, in a specific context of supply 
chain management, usually termed the Extended Enterprise (EE) O'Neill 1996. The EE is usually 
assumed to be a kind of Virtual Organization, or Virtual Enterprise, whether centered around a main 
enterprise, or not, and where the set of participant agents is relatively stable (for concepts, terminology 
and classification see Camarinha-Matos 1999). 

The main features of the scheduling problem in the referred context are: 

a) It is a highly dynamic scheduling problem - The scheduling problem can change and the development 
of a scheduling solution is an on-going process, during which unforeseen events must be 
accommodated (this is probably more important than the classical search of the optimal scheduling 
solution); 

b) It is a Multi-Agent Cooperative Scheduling (MACS) problem - Each participant agent has its own 
(local, and incomplete) perspective of the scheduling problem, and can try to satisfy its scheduling 
preferences, but must be cooperative enough so that it won’t invalidate a feasible scheduling solution, 
if there is one. 

The following sections expose two topics which cover the following two aspects of an approach to the 
scheduling problem referred: 

1. A model for MACS - We adopt the AI Multi-Agent Systems (MAS) paradigm (see, for instance, 
ICMAS 1996 or O'Hare 1996) and propose a group of autonomous agents achieving schedule 
coordination through communication; 

2. A mechanism that allows a group of cooperative scheduling agents to perceive hard global temporal 
constraints of the scheduling problem by locally exchanging and maintaining a specific, and limited, 
piece of information. This mechanism allows the agents to avoid exploring scheduling/rescheduling 
solutions which could appear locally feasible but are not globally feasible. Although it was developed 
for the context of our EE MACS model, this mechanism can be adapted to any MACS system. 

2. A Model of Multi-Agent Cooperative Scheduling 

This section summarizes the essential parts of our model. A suitable example will be used, including for 
the specific aspects to be described. More detail about the model can be found in Reis 1999a or Reis 
1999b, and Reis 1998. 

In Reis 1999a a two-level model for the EE scheduling environment was proposed including: the 
physical level, respecting to the production/distribution network, and the virtual, or agent, level, 
respecting to agents which own and manage the physical resources of the physical level. An EE network, 
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R, can be defined by a pair <RF,RA>, where RF and RA represent the physical and the virtual 
network, respectively. 

2.1. The Physical Level 

The physical network is a multi-product production/distribution network, an acyclical network composed 
of physical renewable resources, referred to by physical nodes. The physical arcs of the network link the 
nodes and point the possible flows of products between pairs of supplier and client nodes. Capacity nodes 
are capable of executing logistic tasks (production, transportation, storing), making available a certain set 
of output products for consumption by other nodes, and consuming a certain set of input products (or 
materials) made available by other nodes in the network. In this model, both the network and the nodes 
are multi-product, in the sense that they can deliver more than one product. There are three types of 
capacity nodes, according to the type of tasks they can execute: the store node (S), the producer (P) and 
the transporter (T) node. Additionally, retail nodes, make available products to the outside, and 
raw-material nodes consume products from the outside of the network. The set of products of the retail 
nodes defines the set of network end products (with demand from the outside). Each capacity node has a 
limited capacity for task execution, and maintains an internal capacity state by recording a schedule of the 
available capacity, and the capacity being used by its tasks, along a certain temporal scheduling horizon. 
The internal capacity state is actually a scheduling state, in the sense that records values of capacity along 
the scheduling horizon, resulting from some scheduling decision. 

A physical network, RF, is defined by a pair: 

<V,E>  (V={V1,...,Vn}, E={...,Ei,j,...}, with i and j denoting nodes ViVj) 

where V is the set of physical nodes and E  is the set of physical arcs. Each arc Ei,j, defines a 
supplier-client relationship, and is defined by a triple <Vi,Vj,Pi,j>, where Vi and Vj are the supplier 
and client node, respectively, and Pi,j is the set of products supplied by Vi and consumed by Vj. To 
keep this explanation simple, the internal details of a physical node, actually complex, won’t be described 
here (this description can be found in Reis 1998). 

It is assumed that, once a physical network is defined, it won’t change. Some additional, and simplifying, 
assumptions adopted are: a) for each capacity node there are is a single supplier for each input product, 
and b) the product structure for any end product at any retail node always forms an in-tree structure.1 

As an example see the physical network represented in Figure 1. This physical network has thirteen 
capacity nodes, with identifiers v1 to v13, and two end products, p1 (delivered at retail nodes v14 and v15) 
and p2 (delivered at retail nodes v15 and v16). Physical arcs are labeled with the identifiers of products 
transferable between the corresponding pair of physical nodes.2 

2.2. The Virtual Level 

The virtual network is a network of agents, or virtual nodes. These are linked by bi-directional 
communication links, the virtual arcs, that connect pairs of agents for the communication necessary to 

                                                           
1 In the near future, the model is to be extended by relaxing assumption a). This will imply, at the virtual level, additional decisions 
about alternative suppliers (and, possibly, inter-agent negotiation based on dates and prices for product orders). Assumption b) 
guarantees having no more than one task per each node involved in any network job (see section 2.4), and allows a simple 
representation of local scheduling problems (see section 2.5) with just one task (and just one request from a client) per global 
scheduling problem. 
2 Note that nodes identified by v14 to v16 and v17 to v20, here called retail nodes and raw-material nodes, respectively, are 
fictitious nodes used just for modeling purposes. These ficticious nodes just represent “ports” to the outside in the model and 
wouldn’t correspond to any site in a real production/distribution network. The “real”, and so-called retail nodes and raw-material 
nodes in the literature (see Williams 1981, for instance), would correspond, in Figure 1, to nodes labelled v1, v2 and v3 (for “real” 
retail nodes) and v8, v11, v12 and v13 (for “real” raw-material nodes). 
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coordination. Each physical node is owned and managed by one agent and each agent owns and manages 
one node, and the client-supplier relationships among nodes are extended to the agents. Depending on the 
node it owns, each agent can be either a capacity agent, a retail agent or a raw-material agent. Each 
capacity agent can receive requests and rescheduling requests from their clients, and send requests and 
rescheduling requests to its suppliers. Requests are orders of a certain amount of a product for a certain 
date, and are limited to the set of output products of the agent node, for the case of the requests received, 
and to the set of input products of the agent node, for the case of the requests sent. A rescheduling request 
refers to a previously accepted request and states the need to agree on an alternative date, motivated by 
temporal or capacity constraints. 

For the satisfaction of a received request, each capacity agent must create and schedule a task in its node. 
Individual agent scheduling decisions are made according to scheduling preferences, which can be, for 
instance, scheduling a task the earliest as possible or the latest as possible. An agent can always revise a 
scheduling decision, if it collides with global (network) temporal limits, when facing a rescheduling 
request from a supplier or a client, and when available capacity allows. 

In the EE framework there is a supervision unit, which corresponds to a team of all members involved and 
has an integration role, including the proposal of plans in a medium/long-term perspective, in face of 
demand forecasts for the end products of the network (see O'Neill 1996). Specifically for the short-term 
activity of scheduling, the supervision unit is maintained, in the model, in the form of a special, and 
unique, virtual node, the supervision agent. This agent has the only role of introducing new scheduling 
problems, has no physical node associated and does not intervene in the activity of the remaining agents 
(apart from introducing new work in the system). This setting cannot be considered strictly hierarchical, 
because agents do not depend on the supervision agent for taking their individual scheduling decisions. In 
the near future we plan to extend the model, to accommodate network planning activity and the influence 
of medium/long-term network planning on the individual agents short-term scheduling activity. 

A virtual network, RA, for a given physical network, RF, is defined by a pair: 

<G0,GV> (GV={...,<Gi,Vi>,...}) 

where G0 is the supervision agent, and GV is a set of agent-node pairs, <Gi,Vi>, defining a one-to-one 
association between each agent Gi, and a node, Vi, of RF. 

For the physical network illustrated in Figure 1, there is the complementary agent network represented in 
Figure 2, with the supervision agent identified by g0, and with agent g1 managing node v1, agent g2 
managing node v2, etc.. 

The following sub-sections focus in structures used in the individual agent activity (both intra-agent and 
inter-agent oriented) for scheduling, which link the two levels of the model. 

2.3. Requests, Events and Tasks 

Coordination is to be achieved through communication between pairs of client-supplier agents. Each agent 
will only interact with suppliers and clients, by sending and receiving certain types of messages in the 
context of agent conversations. For a product local request (i.e., an inter-agent order, from a client agent 
to a supplier agent), a message typically contains product, quantity, time and node information. Product 
global requests (i.e., orders from or to the outside of the EE network) contain the same kind of 
information, but are processed only by the supervision and retail and raw-material agents. 

Events, denoted in general by e, are elementary records of information containing product, quantity, time 
and place information. For the intended multi-agent scheduling purposes, everything in the multi-product 
production/distribution environment can be described through events. For instance, a product request, a 
task start or a task end, have associated product, quantity, time and place information, and they can be 
represented through the event concept. Formally, an event, e, can be defined as a triple of the form: 
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<{...,<pi,qi>,...},t,id>  with piP, idid 

where the first element of the triple is a set of finite product-quantity pairs  pi denotes a product (P is 

the set of all products in the network) and qi the quantity of product pi (any number) , t is a temporal 
instant (an integer) and id is a (physical or virtual) node identifier (id is the corresponding set of 
identifiers). 

Events used to represent product requests have just one product-quantity pair, the quantity is a positive 
number, the time value is the due-date proposed and the node information identifies the supplier agent. 
For instance, in the EE network illustrated in Figure 1 and Figure 2, a request message from g5 to g7, 
ordering qx units of product p2 for due-date tx, would contain an event like <{<p2,qx>},tx,g7>. The 
values in the event convey the essential pieces of information of what (product p2), how much (quantity 
qx), when (time tx), and where in the network (agent g7). Request events are denoted by d. A local 
request from an agent gi to an agent gk, that originated from the irth global request (from the outside of 

the network) to retail agent gr is denoted by d ki,
r,ir

. 

Tasks are also described through the event concept. A task is defined as a pair of events <es,ee>, where 
es is the task start event and ee is the task end event. Tasks are denoted by O. A task to satisfy a local 

request d ki,
r,ir

 of agent gk is denoted by O k
r,ir

 and gives rise to a number of F k
r,ir

 local requests to 

suppliers.3 See illustration in Figure 3, where, over a time line, O k
r,ir

 represents a typical (producer or 

transporter) agent task of an agent gk, d
ki,
r,ir

 the associated request from downstream (received from a 

client agent, gi) and d jk,
r,ir

 one of the associated requests to upstream (sent to supplier agents gj, with 

j=1,...,F k
r,ir

). 

2.4. Network Jobs 

A network job, denoted by RT, is a graph made with the set of all agent tasks that originated from the 
same product global request. Figure 4 represents the network job RT1,14, which would develop from a 

global request, d0,14
1,14 , of product p1 at retail agent g14 of the EE network example. This development 

would occur after the propagation of inter-agent requests upstream the network represented by solid arcs 
in Figure 5 (additional information contained in this figure will be explained later on). 

The arrows in a network job graph mirror the supplier-client relationships among the agent nodes, and 
indicate temporal precedences between pairs of agent tasks. It is important to note that, as tasks are private 
to the agents (and so, each agent doesn’t know about other agents tasks), a network job is an abstraction 
(and so, there is no such thing as a network job, from an individual agent perspective). But, as it will be 
shown in next sub-section, for each agent task, each agent internally retains, in some form, the temporal 
constraints corresponding to the task. 

Temporal slacks inserted in a schedule can be very important for schedule flexibility (see Hildum 1994, 
for instance). Additionally represented in Figure 3 are the temporal slacks inserted in a network schedule 
from the perspective of a capacity agent gk. Internal slacks are inserted locally and by the initiative of the 
agent gk; external slacks result from similar behavior in all agents of the network. The internal 

                                                           
3 Although tasks are private to agents, we must refer to them in the context of the EE network. Also, it will be F k

r,ir
1, for any 

capacity agent, gk, in general. For the particular cases of the store and the transporter agents (i.e., capacity agents managing S or T 

type nodes) it is always F k
r,ir
=1. 
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downstream slack and the internal upstream slacks are denoted by symbols fij and fim, respectively, 
and the external downstream slack and external upstream slacks are denoted by symbols FEJ and FEM, 
respectively. 

The relative positioning of the interval of the task O k
r,ir

 and the intervals h jk,
r,ir

 depends on the 

scheduling preferences exerted by agent gk, and is described by internal slacks fij and fim (which 
should both be non-negative), defined as follows: 

fij k
r,ir
=TIME(d ki,

r,ir
)-TE(O k

r,ir
) and 

fim jk,
r,ir
=TS(O k

r,ir
)-TIME(d jk,

r,ir
) 

where TS and TE return the start and end time of a given task, and TIME returns the time value of a given 
request. 

In the context of a process RTir,r
, an agent gk can reschedule its task, O k

r,ir
, without sending 

rescheduling requests to the client, or to the supplier agents, as long as the task interval falls inside the 

most restrictive h jk,
r,ir

 interval. The intervals H jk,
r,ir

 are similar to the intervals h jk,
r,ir

, but include 

additional (non-negative) duration corresponding to the sum of a pair of values of external slacks. The 

most restrictive H jk,
r,ir

 interval has, however, a more important meaning: its extreme time points are the 

hard limits for scheduling task O k
r,ir

 without violation of two global temporal constraints: the network 

due-date, DDir,r, and the network release date, RDir,r, i.e., they mean the latest finish time and the 

earliest start time for the task. 

2.5. Scheduling Problems 

Whenever a new product request appears, an agent will create a new scheduling problem, which will then 
be joined to the agent list of current scheduling problems (see next sub-section). In particular for a 
capacity agent, the description of an actual scheduling problem accommodates the respective solution and 
is to be dynamically updated by the agent whenever rescheduling occurs. Note that the scheduling 
problem is an elementary scheduling problem. The "real" scheduling problem of the agent is composed of 
these elementary problems, and is described by the list of current scheduling problems. Whenever there is 
a new order, the scheduling problem of the agent changes to accommodate for the new elementary 
problem (a similar approach is frequently applied to dynamic scheduling problems, see Blazewicz 1994, 
chapter 8.). As an EE network is a MAS there can be multiple perspectives of the same scheduling 
problem. 

For the local perspective of a capacity agent gk, a scheduling problem, PE i ,r
k

r
, is described by the tuple: 

<DD k
r,ir
,RD k,

r,ir
,d ki,

r,ir
,d k,

r,ir
,O k

r,ir
> 

where d ki,
r,ir

 is the request from a client, O k
r,ir

 is the associated agent task scheduled, d k,
r,ir

 is the set of 

the associated (d jk,
r,ir

) requests to suppliers, DD k
r,ir

 is the hard due-date and RD k,
r,ir

 is the set of hard 

release dates (both for task O k
r,ir

 of agent gk). Local due-date and release dates, dd k
r,ir

 and rd jk,
r,ir

 (see 

Figure 3), are represented, in PE i ,r
k

r
, through the time values of the request d ki,

r,ir
 and of the requests in 

d k,
r,ir

, respectively. These dates implicitly represent the intervals h jk,
r,ir

. The intervals H jk,
r,ir

 are also 
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implicitly represented, through DD k
r,ir

 and the RD jk,
r,ir

 (RD jk,
r,ir
RD k,

r,ir
). These latter dates play an 

important role in the second topic of this paper and, in a later section, it will be described how an 
individual agent in the network maintains up-to-date information about them. 

For the global perspective of the supervision agent, g0, the description of a scheduling problem includes 

the initial global data of the problem, which is a global request, d r0,
r,ir

, and the global due-date and release 

date, RDir,r and DDir,r. 

2.6. Agent Architecture 

The architecture sketched in Figure 6 groups the important components of a capacity agent. The 
component labeled interface contains input and output mailboxes where messages received from, and 
messages to send to, other agents (clients and suppliers) are temporarily stored. The identifiers of the 
client and the supplier agents, as well as the identifiers of the products consumable (by clients) and the 
products deliverable (by suppliers) in the EE network are also stored (permanently) in this component. 

The component labeled internal state maintains: a) an interaction (or communicational) state, by 
maintaining the inter-agent conversations presently active with other (client or supplier) agents, b) the list 
of current scheduling problems, and c) a capacity state, which includes, for the node managed by the 
agent, the capacity available and the capacity used by the tasks scheduled, for the scheduling temporal 
horizon. The high level protocol for inter-agent communication/cooperation assumes one conversation per 
request exchanged in a supplier-client pair, and allows communication of requests (from the client, and 
respecting to an appearing network job) and communication of rescheduling requests (from the client or 
from the supplier, and respecting to a previously established network job). In particular for rescheduling, 
there can be series of stages where a pair of agents can reach an agreement on a new (inter-agent) 
due-date. This can be considered a limited form of negotiation (however, this is not a contract-net 
protocol, like the one presented in Smith 1988). See Reis 1999a and Reis 1999b, for more details 
about interaction states and the protocol, and Reis 1998 for details about capacity states, including 
capacity management. 

The component labeled scheduling behavior is responsible for the way the agent governs its action. This 
includes taking scheduling decisions attending to individual scheduling preferences and interacting with 
the other agents, based on the temporal constraints and the capacity and interaction states. In its simplest 
form, this component can be a set of dispatch rules used for capacity allocation to tasks, or it can involve a 
more sophisticated scheduling system, with planning and reasoning capabilities. In the first case we will 
have a more reactive agent and, in the latter case, an agent of a more cognitive kind. 

In Reis 1999a internal structures were proposed for describing the interaction state, that allow 
decoupling of the steps of request reception, task scheduling and requests sending to suppliers, for each of 
the scheduling problems. The decoupling can allow the agent to focus its attention on the scheduling 
problems in a more fine-grained and prioritized way, and so, allowing a more micro-opportunistic (see 
Sadeh 1994) kind of scheduling agent. 

3. Getting a Local Perspective of Hard Temporal Global Constraints 

This section describes, first, how each capacity agent, gk, in our MACS system maintains the hard 

temporal limits for each of its tasks, O k
r,ir

 (i.e., the DD k
r,ir

 and the RD jk,
r,ir

 dates in each agent scheduling 

problem, PE i ,r
k

r
). Then it is shown how this information is used to avoid the exploration of inconsistent 

solutions from a temporal scheduling perspective. 
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3.1. Getting and Maintaining Local Hard Temporal Limits 

When a new scheduling problem is launched by the supervision agent, agents propagate requests upstream 
the network, starting in a given retail agent. In the example of Figure 5, this is shown by the solid arcs 
with arrows, labeled with d symbols. First, the supervision agent sends a request to retail agent g14. Then 
requests propagate from g14 to g1, from g1 to g4, from g4 to g7, from g7 to g8 and g9, from g9 to g11 and 
g12, and then from g8, g11 and g12 to raw-material agents g17, g18 and g19, respectively. Finally, the 
supervision agent receives requests from the raw-material agents. 

The retail agent and the raw-material agents receive, additionally, from the supervision agent, the global 
due-date (DDir,r), and the global release date (RDir,r), respectively. Also, each request message4 sent by 

client gi to agent gk, conveying a request d ki,
r,ir

, must accommodate, additionally, the value of the 

external downstream slack for gk, FEJ
k

r,ir
. Similarly, the acceptance message4 sent by each supplier 

agent gj to agent gk, responding to request d jk,
r,ir

 made before by gk, will accommodate the external 

upstream slack (with gj) for gk, FEM
jk,
r,ir

. Agent gk does the following: 

a) Computes the date DD k
r,ir
=TIME(d ki,

r,ir
)+FEJ k

r,ir
; 

b) Computes the dates RD jk,
r,ir
=TIME(d jk,

r,ir
)-FEM jk,

r,ir
. 

Whenever gk is involved in rescheduling,4 the values of the temporal slacks mentioned above can change, 
but the dates computed in a) and b) remain fixed (assuming the global due-date and release date, RDir,r 

and DDir,r, supplied by the supervision agent won’t change). For task O k
r,ir

 of agent gk, DD
k

r,ir
 and 

k
r,ri

j F1,...,
MAX


(RD jk,

r,ir
) are the right and left temporal hard limits, respectively. Every agent involved in 

network job RTir,r
 must be able to compute those limits. So, agent gk itself must also perform 

transmission of temporal slacks to suppliers and to the client. For this reason, the agent must compute and 
send: 

a) The downstream-upstream slack, FJM jk,
r,ir
=FJ k

r,ir
+fim jk,

r,ir
, to supplier gj; 

b) The upstream-downstream slack, FMJ ik,
r,ir
=FM k

r,ir
+fij k

r,ir
, to client gi, 

where FJ k
r,ir

 is the downstream slack, and FM k
r,ir

 is the upstream slack, defined by (see also Figure 3): 

FJ k
r,ir
=FEJ k

r,ir
+fij k

r,ir
 , 

FM k
r,ir
=

k
r,ri

j F1,...,
MIN


(FM jk,

r,ir
) , and 

FM jk,
r,ir
=FEM jk,

r,ir
+fim jk,

r,ir
 . 

Note that the values transmitted by an agent, FJM jk,
r,ir

 and FMJ ik,
r,ir

, correspond to sums of temporal 

slacks inserted in the network schedule by agents downstream and upstream the network. So, although 

                                                           
4 See the supply request conversation in Reis 1999a. 
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they sum private information of the agent and several other agents, those values cannot be considered 
private information of any agent involved, in particular. 

By convention, retail and raw-material agents deal only with global requests from, and to, the outside of 
the network,5 they don’t introduce internal slacks, and they just can perceive FEJ and FEM slacks in a 
network job. For the retail agent gr, the FEJ slack is defined as: 

FEJ r
r,ir
=DDir,r-TIME(d

r0,
r,ir
) 

where d r0,
r,ir

 is the global request from outside. gr will transmit the value of FEJ r
r,ir

 as the value of the 

FJM slack to its supplier. For a raw-material agent involved in the network job RTir,r
, gm, the FEM slack 

is defined as: 

FEM m
r,ir
=TIME(d m,0

r,ir
)-RDir,r 

where d m,0
r,ir

 is the global request to outside. gm will transmit the value of FEM m
r,ir

 as the value of the 

FMJ slack to its client. Figure 5 illustrates, together with requests, the propagation of the slacks FJM 
(solid arcs), as well as the propagation of the slacks FMJ (dashed arcs). 

Additionally, each capacity agent gk can compute the total slack, FT k
r,ir

, through: 

FT k
r,ir
=FJ k

r,ir
+FM k

r,ir
 

The value of FT k
r,ir

, although computed locally, can be used by the agents to estimate the global 

temporal flexibility of the scheduling problem: a higher value of the slack FT k
r,ir

 points a less constrained 

problem, with the possibility of a higher number of feasible solutions,6 and vice-versa. In general, the 

same value of FT k
r,ir

 will show up for several agents involved in the same network job. The tasks of 

those agents will form one or more quasi-critical paths, in the case of FT k
r,ir
>0, or one or more critical 

paths, in the case of FT k
r,ir
=0. These two situations are illustrated for our network job example RT1,14 

(see Figure 4, with interactions amongst network agents in Figure 5), in the results of the spreadsheet 
simulations shown in Figure 7 and Figure 8. 

For the first case (Figure 7), the global scheduling problem has the following initial data: 

TIME(d0,14
1,14 )=22, DD1,14=23 and RD1,14=0 (the dd, DD and RD values of g0, respectively, in the table 

labeled “input”). The resulting schedule is shown for the given values of the internal slacks (fij and 
fim) and durations (d) for each capacity agent tasks. In the area labeled “schedule evaluation”, agents 
g11, g9, g7, g4 and g1 are involved in a quasi critical path, and perceive the same total slack value of 11 
(this can be confirmed in the “network data” below, in the figure). 

In the second case (Figure 8) all temporal slack was removed by imposing zero values for all internal 

slacks, and changing the initial data to TIME(d0,14
1,14 )=22, DD1,14=22 and RD1,14=10. A critical path 

now appears, involving agents g11, g9, g7, g4 and g1 (each one perceiving total slack values of 0). 

                                                           
5 In a in a network job, these global requests can be seen as ficticious tasks with zero duration “assigned” to the retail and 
raw-material agents. 
6 The word “possibility” is used, because the agents must still account, additionally, for their capacity constraints. 
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3.2. Avoiding Inconsistent Solutions 

Any feasible solution to a scheduling problem must respect capacity and temporal constraints. Even if the 
amount of capacity dedicated to each task in a network job is very high, both the temporal precedences 
and the hard temporal limits expressed by the RD and DD dates must be respected. This can be expressed, 
for each capacity agent, by the following constraints: 

a) FT k
r,ir
0 , 

b) FJ k
r,ir
0 , 

c) FM k
r,ir
0 , 

d) fij k
r,ir
0 , and 

e) fim jk,
r,ir
0. 

During a rescheduling activity involving the agent, constraints d) or e) can be violated. However, this will 
be just a temporary situation, as the agent will then reschedule its task for an earlier time, in the first case, 
or for a later time, in the second case (and, if necessary, send rescheduling requests to the "opposite side", 
i.e., to suppliers, or  to the client, respectively). 

By analyzing its local values of FT k
r,ir

, FJ k
r,ir

 and FM k
r,ir

, an agent can conclude the following (and 

should act accordingly): 

1. If FT k
r,ir
<0, the scheduling problem is overconstrained, and has no solution. In face of that, the agent 

must give up finding a feasible solution by canceling the corresponding product request. This avoids 
infinite propagation cycles, with rescheduling requests back and forth through the network, as it will 
lead to the unscheduling of every task of the RTir,r

 network job.7 

2. If either FM k
r,ir
<0 or FJ k

r,ir
<0, but still FT k

r,ir
0, this points to a network schedule shifted to the 

left (too much internal slacks inserted downstream), or to the right (too much internal slacks inserted 
upstream) with respect to its global RDir,r and DDir,r limits.8 It is worth then, for the agents to 

involve themselves in rescheduling activity, and they should do so, since there are still feasible 
solutions.9 

By using these rules the agents of a EE network act cooperatively in scheduling and rescheduling. This is 
so because: 

a) Each agent won’t keep on searching for apparently feasible local solutions that are not part of a global 
feasible solution; furthermore, the agent will try to avoid other agents to do so. 

b) Each agent will try to adjust its current local scheduling solutions (possibly giving up some individual 
scheduling preferences) so that the hard global temporal constraints will be respected. 

                                                           
7 This is an extreme case, since it leads to the cancellation of the global request. In the model, temporal limits with the outside of 
the network are considered non-negotiable. However, the supervision agent can re-introduce the problem, re-defined with less 
constraining DDir,r and RDir,r dates. 

8 The same conditions can appear if the global scheduling problem is ill-formed, like TIME(d
r0,
r,ir
) being too far away from the 

DDir,r date, but this is just an abnormal case. 
9 At least from a purely temporal perspective (additionally, capacity constraints must also be respected). 
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4. Conclusion and Future Work 

A model for a Multi-Agent Cooperative Scheduling (MACS) system for an Extended Enterprise (EE) 
context was described. At the level of the physical facilities the model emphasizes explicit representation 
of the production/distribution network resources, resource capacities and logistics tasks. At the level of the 
agents involved the model emphasizes coordination through inter-agent communication and a simple 
architecture for scheduling agents. The model also proposes an explicit representation of scheduling 
problems (depending on the individual agent perspective) which is suitable for a highly dynamic 
scheduling environment, and integrates scheduling with agent interaction. 

A coordination mechanism was described for governing the action of the agents of a MACS system, in a 
purely temporal scheduling perspective. By exchanging values of specific inter-task temporal slacks, the 
agents are able to compute certain cutoff values, which point the limits of local consistent scheduling 
solutions, and can be used by the agents to act cooperatively. Note that the values exchanged cannot be 
considered private information of any agent involved, in particular. 

The ideas exposed in this paper were tested in partial simulations like the one exposed in Figure 7 and 
Figure 8. A computational MACS system (still under construction, using the object oriented computer 
language CLOS) joins all pieces of our model. Part of this system is being used to test and improve the 
ideas exposed and to proceed with exploratory work in MACS problem solving. 

In the near future, our work will include: 

a) Work on coordination mechanisms, similar to the temporal slack mechanism presented, but 
resource/capacity related and work on individual agent scheduling behavior leading to a more 
fine-grained (and micro-opportunistic) kind of agent mental model; 

b) Reactive scheduling capabilities, to accommodate schedules under execution and deal with real-time 
execution constraints. At present time, the model does not deal with real-time execution; 

c) Introduce medium/long-term planning activities, which will bias the agents short-term scheduling 
activity (e.g., storing products to cover a forecasted demand during a certain period). At present time, 
an EE network is solely driven by orders, as in a make-to-order environment; 

d) Inter-agent negotiation, including multiple clients/suppliers, non-cooperative agents (e.g., that don’t 
give up its scheduling preferences), and negotiable temporal limits with the outside of the network; 

e) Adapt the physical level of the model for just-in-time and repetitive manufacturing contexts; 

f) Comparing the results of our work with others. 
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Figure 1- Physical network example. 
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Figure 2- Agent network example (for simplicity, virtual arcs between the supervision agent and the other 
agents are not represented). 
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Figure 7- Network job example simulation (with quasi critical paths). 
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Figure 8- Network job example simulation (with critical paths) 


