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EXCEPTIONAL BUNDLES OF HOMOLOGICAL DIMENSION k

ROSA MARÍA MIRÓ-ROIG AND HELENA SOARES

Abstract. We characterize exceptional vector bundles on Pn of arbitrary homo-
logical dimension defined by a linear resolution. Moreover, we determine all Betti
numbers of such resolution.

1. Introduction

Let E be a vector bundle on Pn. A resolution of E is an exact sequence

0→ Fk → Fk−1 → · · · → F1 → F0 → E → 0,

where Fi splits as a direct sum of line bundles. The minimal length of such resolutions
is called the homological dimension of E and it is denoted by hd(E). Besides, it is
well-known that hd(E) ≤ n− 1.

We say that the resolution of E is linear if it is of the form

0→ OPn(d− k)ak αk−→ · · · α2−→ OPn(d− 1)a1
α1−→ OPn(d)a0 → E → 0,

for some d ∈ Z, i.e. the entries of the matrices associated to the morphisms αi are
linear forms. The exponents ai are called the Betti numbers of E.

In the present work we will focus our attention on vector bundles E on the projective
space Pn with hd(E) ≤ k, for some k ∈ {1, . . . , n− 1} a positive integer, and defined
by a linear resolution of type

0 // OPn(−k)ak
αk // OPn(−k + 1)ak−1

αk−1
// · · · α2 // OPn(−1)a1 α1 // Oa0Pn

α0 // E // 0. (1)

Our purpose is to characterize those E which are exceptional, i.e whose only endomor-
phisms are the homotheties and satisfying Extq(E,E) = 0, for all q ≥ 1. Exceptional
bundles are a powerful tool in the study of stable sheaves and the derived category of
coherent sheaves. They first appeared in a paper by Drézet and Le Potier [DLP85],
who used them to describe the possible ranks and Chern classes of semi-stable vec-
tor bundles on P2. Their study was then formulated within the setting of derived
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categories, due to mathematicians such as Gorodentsev and Kuleshov [GK04]. This
gave rise to a technique called Helix Theory whose main idea is to describe the set of
exceptional bundles over a variety and to produce new ones by means of mutations.

The first non-trivial example of vector bundles on Pn of type (1) is the case of
homological dimension 1, that is when E is defined by a resolution

0→ OPn(−1)a1 → Oa0Pn → E → 0.

These bundles were introduced by Dolgachev and Kapranov [DK93] and they are
usually called Steiner bundles. Herein we will call them classical Steiner bundles and
will consider them as a particular case of the more general notion of a Steiner bundle
on algebraic varieties (see Definition 2.2).

The study of classical Steiner bundles is extensive and has been addressed from
very different points of view. With respect to the scope of this paper we refer the
work of Brambilla and Soares ([Bra04], [Bra08] and [Soa08]). The first proved that
any exceptional general classical Steiner bundle E is characterised by χ(EndE) = 1.
In the same spirit, Soares [Soa08] introduced an appropriate generalization of the
concept of a Steiner bundle on an algebraic variety X and showed that an exceptional
Steiner bundle E on X is also characterized by χ(EndE) = 1, provided E is general.
In both cases, a complete description of the resolution of E is provided.

It is a natural step to work towards the characterization of exceptional bundles
E of higher homological dimension (we refer to [MP14], where this problem is also
discussed). So in section 2 we first recall the main concepts and results on vector
bundles on algebraic varieties of homological dimension 1 with a linear resolution,
the so-called Steiner bundles, needed later on.

We address the characterization of exceptional bundles of arbitrary homological
dimension with a resolution of type (1) in section 3. Such resolution splits into k
short exact sequences. Denoting Si = cokerαi+1, i = 1, . . . , k − 1, the farther vector
bundle Sk−1 is a Steiner bundle, so we know exactly when it is exceptional. This fact
will clearly play a role in achieving our goal.

Since any exceptional bundle F satisfies χ(EndF ) = 1 we compute the Euler
characteristic of EndE. We get an iterative formula that interrelates the Euler char-
acteristics χ(EndE) and χ(EndSi) (Proposition 3.3) and we compute χ(EndE) in
terms of the Betti numbers of E (Proposition 3.4). Our first important result (Propo-
sition 3.5) will give sufficient conditions so that χ(EndSi) = 1, for all i = 1, . . . , k−1,
and it will be the main tool to prove our main theorem (Theorem 3.7). We prove
that a vector bundle E defined by (1) is exceptional if and only if χ(EndE) = 1 and
all Si are exceptional, provided we impose a cohomological vanishing condition on E.
Furthermore, if this is the this case, we are able to describe all Betti numbers in (1).
They are completely determined by the exponents that define the resolution of the
exceptional Steiner bundle Sk−1 (see Corollary 3.8).
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In the last section, section 4, we give some examples of exceptional bundles E of
homological dimension k ≥ 2. For instance, a theorem by Ellia and Hirchowitz (see
Theorem 4.1) will help us to explicitly construct a large family of exceptional vector
bundles of homological dimension 2. In the case when hd(E) ≥ 3 we provide several
examples with the help of Macaulay2 [GS] which give support to the conjecture stated
in the end of the paper.

Notation 1.1. Given a smooth algebraic variety X of dimension n and a coherent
sheaf E on X, we denote Hq

∗(X,E) = ⊕m∈ZHq(X,E(m)), Hq(E(m)) = Hq(X,E(m))

and hq(E) = dimHq(E). The Euler characteristic of E is defined by the integer
χ(E) =

∑n
i=0(−1)ihi(E).

Recall furthermore that when E is a locally free sheaf, we have an isomorphism
EndE ∼= E∨ ⊗ E.

Throughout this paper we will consider K a fixed algebraically closed field of char-
acteristic 0.

2. Exceptional vector bundles of homological dimension 1

Let E be a vector bundle on Pn, n ≥ 3, with a linear resolution

0→ OPn(−k)ak → OPn(−k + 1)ak−1 → · · · → OPn(−1)a1 → Oa0Pn → E → 0,

so that hd(E) ≤ k. When hd(E) = 1, E is defined by a short exact sequence

0→ OPn(−1)a1 → Oa0Pn → E → 0,

and we will call E a classical Steiner bundle.
In this section we recall the main results which we will be using throughout the

present paper on vector bundles of homological dimension 1. Although we will only
deal with vector bundles on the projective space, we introduce all concepts and state
their properties in the broadest setting.

Definition 2.1. Let X be a smooth algebraic variety. A coherent sheaf E on X is
called simple if Hom(E,E) ' K. If, furthermore, it satisfies

Extq(E,E) = 0, for all q ≥ 1,

then we say that E is exceptional.
An ordered pair (E,F ) of coherent sheaves on X is strongly exceptional if both E

and F are exceptional and

Extq(F,E) = 0, ∀ q ≥ 0,

Extq(E,F ) = 0, ∀ q 6= 0.

In [Bra08], Brambilla characterized simple and exceptional classical Steiner bun-
dles. Her work was generalised in [Soa08] to vector bundles on smooth irreducible
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algebraic varieties. So, a natural definition of Steiner bundles in this general context
was introduced:

Definition 2.2. A vector bundle E on a smooth irreducible algebraic variety X is
called a Steiner bundle if it is defined by an exact sequence of the form

0→ F s
0 → F t

1 → E → 0, (2)

where s, t ≥ 1 and (F0, F1) is an ordered pair of vector bundles on X satisfying the
following two conditions:

(i) (F0, F1) is strongly exceptional;
(ii) F∨0 ⊗ F1 is generated by its global sections.

It is immediate from Definition 2.1 that any exceptional vector bundle E satisfies
χ(EndE) = 1. If E is a Steiner bundle on X then the Euler characteristic of EndE
has a very simple formula and it is possible to describe all solutions of the equation
χ(EndE) = 1.

Lemma 2.3 ([Soa08], Lemma 2.2.3). Let E be a Steiner bundle on a smooth irre-
ducible algebraic variety X defined by the exact sequence (2) and let λ = h0(F∨0 ⊗F1).
Then

χ(EndE) = t2 + s2 − λst.

Moreover,

χ(EndE) = 1⇔ ∃ k ∈ N s. t. s = uk, t = uk+1,

where {uk}k≥0 is the sequence defined recursively by
u0 = 0

u1 = 1

uk+1 = λuk − uk−1.
(3)

Remark 2.4. We say that a vector bundle E on X fitting in a short exact sequence
of the form

0→ F s
0

m−→ F t
1 → E → 0,

is general if m is general in the affine space Hom(F s
0 , F

t
1) ' Ks ⊗ Kt ⊗ Kλ, where

λ = h0((F0)
∨ ⊗ F1).

As we mentioned above, the Euler characteristic of EndE of any exceptional vector
bundle E is always 1. The converse is not true in general. In spite of that, in the
case of Steiner bundles the equation χ(EndE) = 1 indeed characterizes exceptional
bundles, provided E is general (Remark 2.4).
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Theorem 2.5 ([Soa08], Theorem 2.2.7). Let E be a general Steiner bundle on a
smooth irreducible algebraic variety X defined by an exact sequence of type (2). As-
sume λ = h0(F∨0 ⊗ F1) ≥ 3. Then

E is exceptional if and only if χ(EndE) = 1.

Equivalently, E is exceptional if and only if it is of the form

0→ F uk
0 → F

uk+1

1 → E → 0,

for some k ∈ N, where {uk}k≥1 is the sequence in (3).

3. Exceptional vector bundles of homological dimension k

The main purpose in this section is to study exceptional bundles of arbitrary ho-
mological dimension and to generalize in some way the results of the previous section
on vector bundles of homological dimension 1.

Let E be a vector bundle on Pn, n ≥ 3, with linear resolution

0 // OPn(−k)ak
αk // OPn(−k + 1)ak−1

αk−1
// · · · α2 // OPn(−1)a1 α1 // Oa0Pn

α0 // E // 0. (4)

In particular, hd(E) ≤ k ≤ n − 1. Cut this long exact sequence by setting Si =
cokerαi+1 = kerαi−1, for i = 1, . . . , k − 1, that is

0 // OPn(−k)ak
αk // OPn(−k + 1)ak−1

αk−1
//

((

OPn(−k + 2)ak−2
αk−2
// · · ·

Sk−1

66

))0

55

0

· · · α3 // OPn(−2)a2 α2 //

&&

OPn(−1)a1 α1 //

&&

Oa0Pn

α0 // E // 0.

S2

88

''

S1

<<

##
0

77

0 0

77

0

(5)

We thus get the following k short exact sequences:

0→ OPn(−k)ak → OPn(−k + 1)ak−1 → Sk−1 → 0,

0→ Sk−1 → OPn(−k + 2)ak−2 → Sk−2 → 0,

... (6)

0→ S2 → OPn(−1)a1 → S1 → 0,

0→ S1 → Oa0Pn → E → 0.
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Set S0 = E, so we can write more generally Si = cokerαi+1, i = 0, . . . , k − 1. We
start with two lemmas regarding some cohomological properties of the vector bundles
E and Si that will be useful in the sequel.

Lemma 3.1. Let E be a vector bundle on Pn with linear resolution (4) and let Si =
cokerαi+1, i = 0, . . . , k − 1. Then

Hq
∗ (Si) = 0, ∀ q 6= 0, n− k + i, n.

Proof. First observe that hd(E) = hd(S0) ≤ k and hd(Si) ≤ k − i, for each i =

1, . . . , k − 1. So, recalling Proposition 1.4 in [BS92], we have

Hq
∗(Si) = 0, ∀ q = 1, . . . , n− k + i− 1, (7)

for each i = 0, . . . , k − 1.
Consider the dual resolution of (5):

0 // S∨0 = E∨
α∨0 // Oa0Pn

α∨1 //

""

OPn(1)a1
α∨2 //

%%

OPn(2)a2
α∨3 // · · ·

S∨1

99

&&

S∨2

99

&&
0

;;

0 0

88

0

· · · // OPn(k − 2)ak−2

α∨k−1
//

((

OPn(k − 1)ak−1
α∨k // OPn(k)ak // 0

S∨k−1

66

((0

66

0

From hd
(
S∨k−1

)
≤ n − 1 it follows that hd (S∨i ) ≤ n − k + i. Hence, Proposition 1.4

in [BS92] also gives us

Hq
∗ (S

∨
i ) = 0, ∀ q = 1, . . . , k − i− 1, (8)

for each i = 0, . . . , k − 1.
Applying Serre duality to conditions (8), together with equalities (7), we obtain

Hq
∗ (Si) = 0, ∀ q 6= 0, n− k + i, n.

�

Lemma 3.2. Let E be a vector bundle on Pn with linear resolution (4). Let Si =
cokerαi+1, i = 0, . . . , k − 1. Then, for any m ∈ Z:



EXCEPTIONAL BUNDLES OF HOMOLOGICAL DIMENSION k 7

h0(Sk−1(m)) = ak−1

(
n+m− k + 1

m− k + 1

)
− ak

(
n− k +m

−k +m

)
,

hn−1(Sk−1(m)) = ak

(
−m+ k − 1

−m− n+ k − 1

)
− ak−1

(
−m+ k − 2

−m− n+ k − 2

)
+ hn(Sk−1(m)),

and, for i = 0, . . . , k − 2,

h0(Si(m)) = ai

(
n+m− i
m− i

)
− h0 (Si+1(m)) ,

hn−k+i(Si(m)) = hn−k+i+1(Si+1(m)),

hn(Si(m)) = ai

(
−m+ i− 1

−m− n+ i− 1

)
− hn(Si+1(m)).

Proof. It follows from the previous lemma and from applying cohomology to the short
exact sequences (6). �

Amongst the set of vector bundles with resolution of type (4) we are interested in
studying those which are exceptional. Computing χ(EndE) is thus a natural step.
We present two formulas for the Euler characteristic of EndE. The first is an iterative
formula and it will be especially useful in the proof of Proposition 3.5.

Proposition 3.3. Let E be a vector bundle on Pn with linear resolution (4) and let
Si = cokerαi+1, i = 0, . . . , k − 1. Then, for all i = 0, . . . , k − 2,

χ(EndSi) = χ (EndSi+1) + ai
(
ai − χ

(
S∨i+1(−i)

))
, (9)

and
χ(EndSk−1) = a2k−1 + a2k − (n+ 1)ak−1ak.

In particular,

χ(EndE) = χ (EndSi) + ai−1 (ai−1 − χ (S∨i (−i+ 1))) + ai−2
(
ai−2 − χ

(
S∨i−1(−i+ 2)

))
+ · · ·+ a1 (a1 − χ (S∨2 (−1))) + a0 (a0 − χ (S∨1 )) . (10)

Proof. We first note that according to Definition 2.2 the vector bundle Sk−1 is a
Steiner bundle on Pn, so we know by Lemma 2.3 that

χ(EndSk−1) = a2k−1 + a2k − (n+ 1)ak−1ak.

We need to prove (9), that is,

χ(EndSi) = χ (EndSi+1) + ai
(
ai − χ

(
S∨i+1(−i)

))
,

for every i = 0, . . . , k − 2. This will immediately imply (10). We will prove the
statement by induction on k.

If k = 1 then E = S0 = Sk−1 is a classical Steiner bundle on Pn with resolution

0→ OPn(−1)a1 → Oa0Pn → E → 0
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and we already saw that

χ(EndE) = a20 + a21 − (n+ 1)a0a1.

Now suppose that the statement holds for every vector bundle F on Pn with a
linear resolution of the form

0→ OPn(−k + 1)ak−1 → OPn(−k + 2)ak−2 → · · · → OPn(−1)a1 → Oa0Pn → F → 0,

and let us prove it for any vector bundle E of homological dimension at most k and
linear resolution of type (4). If E is such a vector bundle then S1(1) is defined by the
exact sequence

0→ OPn(−k + 1)ak → OPn(−k + 2)ak−1 → · · · → Oa1Pn → S1(1)→ 0.

Hence hd(S1(1)) ≤ k − 1 and by the induction hypothesis we know that, for any
i = 1, . . . , k − 2,

χ(EndSi(1)) = χ (EndSi+1(1)) + ai (ai − χ (Si+1(1)
∨(−i+ 1)))

= χ (EndSi+1(1)) + ai
(
ai − χ

(
S∨i+1(−i)

))
,

or equivalently,

χ(EndSi) = χ (EndSi+1) + ai
(
ai − χ

(
S∨i+1(−i)

))
.

So the only case left to prove is when i = 0. Dualising and twisting by E the last
short exact sequence in (6) we get

0→ EndE ∼= E∨ ⊗ E → Ea0 → S∨1 ⊗ E → 0

and hence,
χ (EndE) = a0χ(E)− χ (S∨1 ⊗ E) .

On the other hand, from the same sequence in (6) we deduce that

χ(E) = a0χ (OPn)− χ(S1) = a0 − χ(S1),

and also (twisting it by S∨1 )

χ (S∨1 ⊗ E) = a0χ (S
∨
1 )− χ (S∨1 ⊗ S1) = a0χ (S

∨
1 )− χ (EndS1) .

Therefore,
χ (EndE) = a20 − a0χ(S1)− a0χ (S∨1 ) + χ (EndS1) .

Now, applying Lemma 3.1 to S1, we know that

χ(S1) = h0(S1) + (−1)n−k+1hn−k+1(S1) + (−1)nhn(S1).

But from Lemma 3.2 and (6) we compute

h0(S1) = 0, hn(S1) = 0, hn−k+1(S1) = hn−1(Sk−1) = 0.
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So χ(S1) = 0 and

χ(EndE) = χ(End(S1)) + a0 (a0 − χ(S∨1 )) ,

which completes the proof of (9). �

An alternative formula for χ(EndE) can be given depending only on the Betti
numbers of E.

Proposition 3.4. Let E be a vector bundle on Pn with linear resolution (4). Then

χ(EndE) =
k∑
i=0

a2i − (n+ 1)
k−1∑
i=0

aiai+1 +

(
n+ 2

2

) k−2∑
i=0

aiai+2 − · · ·+

+(−1)k−1
(
n+ k − 1

k − 1

)
(a0ak−1 + a1ak) + (−1)k

(
n+ k

k

)
a0ak.

Proof. We will prove the statement by induction on k. If k = 1 then E is a classical
Steiner bundle on Pn and according to Lemma 2.3 we have

χ(EndE) = a20 + a21 − (n+ 1)a0a1.

Suppose that every vector bundle F with a linear resolution of type

0→ OPn(−k + 1)ak−1 → OPn(−k + 2)ak−2 → · · · → OPn(−1)a1 → Oa0Pn → F → 0.

satisfies

χ(EndF ) =
k−1∑
i=0

a2i − (n+ 1)
k−2∑
i=0

aiai+1 +

(
n+ 2

2

) k−3∑
i=0

aiai+2 − · · ·+

+(−1)k−1
(
n+ k − 1

k − 1

)
a0ak−1.

Let E be a vector bundle on Pn defined by (4) and let Si be the vector bundles
obtained by cutting the resolution of E into short exact sequences as in (6). In
particular, S1(1) is a vector bundle defined by

0→ OPn(−k + 1)ak → OPn(−k + 2)ak−1 → · · · → Oa1Pn → S1(1)→ 0.

Applying the induction hypothesis to S1(1) we get

χ(EndS1) = χ(EndS1(1)) =
k∑
i=1

a2i − (n+ 1)
k−1∑
i=1

aiai+1 +

(
n+ 2

2

) k−2∑
i=1

aiai+2 − · · ·+

+(−1)k−1
(
n+ k − 1

k − 1

)
a1ak.

The previous proposition gives us a formula tying χ(EndE) in with χ(EndS1):

χ (EndE) = χ (EndS1) + a20 − a0χ (S∨1 ) .
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So we need to compute χ (S∨1 ) = (−1)nχ (S1(−n− 1)). We have h0(S1(−n− 1)) = 0

and hence, applying both Lemmas 3.1 and 3.2, we obtain

χ(S1(−n− 1)) = (−1)n−k+1hn−k+1(S1(−n− 1)) + (−1)nhn(S1(−n− 1))

= (−1)n
(
a1(n+ 1)− a2

(
n+ 2

2

)
+ · · ·+ (−1)k−1ak

(
n+ k

k

))
.

Therefore,

χ (S1(−n− 1)) = (−1)n−k+1hk−1 (S∨1 ) + (−1)nh0 (S∨1 ) = (−1)nχ (S∨1 )

and thus

χ (S∨1 ) = a1(n+ 1)− a2
(
n+ 2

2

)
+ · · ·+ (−1)k−1ak

(
n+ k

k

)
.

At last, we get

χ (EndE) = χ (EndS1) + a20 − a0χ (S∨1 )

=
k∑
i=1

a2i − (n+ 1)
k−1∑
i=1

aiai+1 +

(
n+ 2

2

) k−2∑
i=1

aiai+2+

+ · · ·+ (−1)k−2
(
n+ k − 2

k − 2

)
(a1ak−1 + a2ak) + (−1)k−1

(
n+ k − 1

k − 1

)
a1ak

+a20 − a0a1(n+ 1) + a0a2

(
n+ 2

2

)
+ · · ·+ (−1)ka0ak

(
n+ k

k

)
=

k∑
i=0

a2i − (n+ 1)
k−1∑
i=0

aiai+1 +

(
n+ 2

2

) k−2∑
i=0

aiai+2 + · · ·+

+(−1)k−1
(
n+ k − 1

k − 1

)
(a0ak−1 + a1ak) + (−1)k

(
n+ k

k

)
a0ak.

�

We now state the main result that will allow us to achieve a characterization of
exceptional bundles which have a linear resolution of length k ≥ 2. Note that the
case of homological dimension 1 was already characterized, as recalled in Theorem
2.5.

Proposition 3.5. Let E be a vector bundle on Pn with linear resolution (4) and let
Si = cokerαi+1, i = 1, . . . , k − 1, with k ≥ 2.

Suppose that E is simple, χ(EndE) = 1 and Hn−k(E(k − 3 − n)) = 0. Then
χ(EndSi) = 1, for all i = 1, . . . , k − 1.

Proof. We claim that the hypothesis

Hn−k(E(k − 3− n)) = Hn−1(Sk−1(k − 3− n)) = H1(S∨k−1(−k + 2)) = 0
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implies that S∨k−1(−k + 3) is 0-regular. In fact, we have

H1(S∨k−1(−k + 2)) = 0,

Hn(S∨k−1(−k + 3− n)) = 0,

where the second vanishing can be obtained from the Serre duality

Hn(S∨k−1(−k + 3− n)) ∼= H0(Sk−1(k − 4))

and the sequence

0→ OPn(−4)ak → OPn(−3)ak−1 → Sk−1(k − 4)→ 0.

The other cohomology groups, Hq(S∨k−1(−k+3− q)), q > 0, all vanish by Lemma 3.1.
Therefore, the vector bundle S∨k−1(−k + 3) is m-regular for every m ≥ 0 and in

particular we have

H1
(
S∨k−1(m− k + 2)

)
= Hn−1 (Sk−1(−m+ k − 3− n)) = 0, ∀m ≥ 0. (11)

By Proposition 3.3, we know that

χ(EndSi−1) = χ(EndSi) + ai−1 (ai−1 − χ (S∨i (−i+ 1))) ,

where i = 1, . . . , k − 1. Our goal is to show that

χ (S∨i (−i+ 1)) = ai−1,

for every i = 1, . . . , k − 1. This will imply

χ(EndSi−1) = χ(EndSi), ∀ i = 1, . . . , k − 1,

and, since we are supposing χ(EndE) = χ(EndS0) = 1, we then may conclude that

χ(EndSi) = 1, ∀ i = 1, . . . , k − 1,

completing the proof of the proposition.
Let us first prove that χ (S∨1 ) = a0. From the sequence

0→ S1 → Oa0Pn → E → 0,

we can easily compute h0(S1(−n−1)) = 0. Moreover, it follows from Lemma 3.2 and
(11), with m = k − 2 ≥ 0, that

hn−k+1(S1(−n− 1)) = hn−1(Sk−1(−n− 1)) = 0.

Now, observe that from the above short exact sequence we also get h0(E) = a0 6= 0,
for H1(S1) = 0 by Lemma 3.1. Due to the hypothesis that E is simple we must have
h0 (E∨) = hn(E(−n − 1)) = 0 (Lemma 4.1.3 in [OSS80]). In particular, this implies
that hn(S1(−n− 1)) = a0. Applying Lemma 3.1, it holds

χ(S1(−n− 1)) = (−1)nhn(S1(−n− 1)) = (−1)nh0 (S∨1 ) = (−1)nχ (S∨1 ) = (−1)na0,

hence χ (S∨1 ) = a0.
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For i ≥ 2, consider the sequence

0→ Si → OPn(−i+ 1)ai−1 → Si−1 → 0. (12)

Clearly, h0(Si(i−n−2)) = 0. On the other hand, applying (11) withm = k−1−i ≥ 0,
we get

Hn−k+i(Si(i− n− 2)) = Hn−1 (Sk−1(i− n− 2))) = 0.

We next compute Hn(Si(i − n − 2)). The cohomology sequence of (12) gives us
hn(Si(i − n − 2)) = ai−1h

n (OPn(−n− 1)) − hn(Si−1(i − n − 2)). But analising the
sequence

0→ S∨i−2(−i+ 1)→ OPn(−1)ai−2 → S∨i−1(−i+ 1)→ 0,

we see that hn(Si−1(i−n−2)) = h0
(
S∨i−1(−i+ 1)

)
= 0. Hence, hn(Si(i−n−2)) = ai−1

and thus
χ (S∨i (−i+ 1)) = χ (Si(−i− n− 2)) = ai−1,

as required.
�

Remark 3.6. Consider the equalities

Hn−k(E(k − 3− n)) = Hn−1(Sk−1(k − 3− n)) = H1
(
S∨k−1(−k + 2)

)
and the sequence

0→ S∨k−1(−k + 2)→ OPn(1)ak−1 → OPn(2)ak → 0.

One gets from cohomology the exact sequence

0→ H0 (OPn(1))ak−1 → H0 (OPn(2))ak → H1
(
S∨k−1(−k + 2)

)
→ 0.

Thus the vanishing hypothesis H1
(
S∨k−1(−k + 2)

)
= Hn−k(E(k − 3 − n)) = 0 in

Proposition 3.5 is equivalent to the surjectivity of H0 (OPn(1))ak−1 → H0 (OPn(2))ak .
It turns out that this condition is not too restrictive due to Ellia and Hirschowitz’s

theorem (see Theorem 4.1 in section 4): given a general morphism

OPn(1)ak−1
φ→ OPn(2)ak ,

its kernel is a globally generated vector bundle with natural cohomology. Especially,
the corresponding morphism H(φ) in cohomology is surjective.

We are now able to state our main theorem which under a certain cohomological
assumption characterizes exceptional vector bundles of any homological dimension.

Theorem 3.7. Let E be a vector bundle on Pn with linear resolution (4) and let
Si = cokerαi+1, i = 1, . . . , k − 1, with k ≥ 2. Suppose that Hn−k(E(k − 3− n)) = 0.
Then:

(a) If E is exceptional then Si is exceptional, for all i = 1, . . . , k − 1.
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(b) If χ(EndE) = 1 and Si is exceptional, for i = 1, . . . , k − 1, then E is excep-
tional.

Proof. We first prove (a), so suppose that Hn−k(E(k−3−n)) = 0 and E is exceptional.
Set S0 = E and consider the sequence

0→ Si → OPn(−i+ 1)ai−1 → Si−1 → 0, (13)

with i = 1, . . . , k − 1. Dualise and twist this sequence by Si, so we get

0→ Si ⊗ S∨i−1 → Si(i− 1)ai−1 → Si ⊗ S∨i → 0. (14)

Lemma 3.2 gives us

h0(Si(i− 1)) = h0(Sk−1(i− 1)) = 0,

hn−k+i(Si(i− 1)) = hn−1(Sk−1(i− 1)) = 0,

hn(Si(i− 1)) = hn(Sk−1(i− 1)) = 0.

Applying cohomology to (14) we thus get

Hq (Si ⊗ S∨i ) = Hq+1
(
Si ⊗ S∨i−1

)
, ∀ q ≥ 0. (15)

Now, consider the sequence obtained after twisting (13) by S∨i−1:

0→ Si ⊗ S∨i−1 → S∨i−1(−i+ 1)ai−1 → Si−1 ⊗ S∨i−1 → 0.

We claim that Hq
(
S∨i−1(−i+ 1)

)
= 0, for all q ≥ 0. In fact, we saw in the proof of

Proposition 3.5 that
h0
(
S∨i−1(−i+ 1)

)
= 0.

Also, using (11) with m = k − 2− i, we obtain

hk−i+1
(
S∨i−1(−i+ 1)

)
= hn−k+i−1 (Si−1(i− n− 2)) = hn−1 (Sk−1(i− n− 2)) = 0.

Finally, it follows also from Lemma 3.2 that

hn
(
S∨i−1(−i+ 1)

)
= h0 (Si−1(i− n− 2)) = h0 (Sk−1(i− n− 2)) = 0.

Therefore, Hq
(
S∨i−1(−i+ 1)

)
= 0, for all q ≥ 0, as claimed, and together with (15),

we get

Hq
(
Si−1 ⊗ S∨i−1

)
= Hq+1

(
Si ⊗ S∨i−1

)
= Hq (Si ⊗ S∨i ) , ∀ q ≥ 0.

Since E is exceptional by hypothesis, we conclude that Si is also exceptional, for each
i = 1, . . . , k − 1.

We next prove (b). Suppose that χ(EndE) = 1 and Si is exceptional, for all
i = 1, . . . , k − 1. We have

χ(EndE) = χ(EndS1) + a0 (a0 − χ (S∨1 ))⇔ 1 = 1 + a0 (a0 − χ (S∨1 )) ,



14 ROSA MARÍA MIRÓ-ROIG AND HELENA SOARES

that is, a0 = χ (S∨1 ). This implies that H0 (E∨) = 0. But Hk (E∨) = Hn (E∨) = 0 and
hence Hq (E∨) = 0, for all q. From the sequence

0→ S1 ⊗ E∨ → (E∨)
a0 → E ⊗ E∨ → 0

we deduce that Hq (E ⊗ E∨) ∼= Hq+1 (S1 ⊗ E∨), for q ≥ 0. Note that the proof of (15)
holds in general and does not depend of the hypothesis in (a), so Hq+1 (S1 ⊗ E∨) ∼=
Hq (S1 ⊗ S∨1 ). Then, Hq (E ⊗ E∨) ∼= Hq (S1 ⊗ S∨1 ). Thus E is exceptional, for we are
supposing S1 is exceptional. �

It now results that under the hypothesis of Theorem 3.7 the Betti numbers of
an exceptional vector bundle E with a linear resolution of type (4) are completely
determined. The pair (ak−1, ak) is a pair of consecutive terms of the sequence (3)
(recall Lemma 2.3) and determines all the other exponents in the resolution of E.

Corollary 3.8. Let E be an exceptional vector bundle on Pn with linear resolution
(4) and Hn−k(E(k − 3 − n)) = 0, with k ≥ 2. Then the Betti numbers of E satisfy
the following relations:

(a) ak and ak−1 are two consecutive terms, us and us+1 respectively, of the sequence
{us}s≥0 defined by 

u0 = 0

u1 = 1

us+1 = (n+ 1)us − us−1,
(16)

(b) ai = ai+1(n+ 1)− ai+2

(
n+2
2

)
+ · · ·+ (−1)k−1−iak

(
n+k−i
k−i

)
, i = 0, . . . , k − 2.

Proof. Suppose that is E is exceptional and Hn−k(E(k−3−n)) = 0. Sk−1 is a Steiner
bundle and by Theorem 3.7 it is exceptional so χ(EndSk−1) = 1. Therefore, it follows
directly from Theorem 2.5 that the pair (ak, ak−1) is of the form (us, us+1), for some
s ≥ 2, where {us}s≥0 is the sequence

u0 = 0

u1 = 1

us+1 = (n+ 1)us − us−1.
In the course of the proof of Proposition 3.5 we saw that

ai = χ(
(
S∨i+1(−i)

)
) = h0

(
S∨i+1(−i)

)
= hn(Si+1(i− n− 1)),

for i = 0, . . . , k − 2. When i = k − 2, we get

ak−2 = hn(Sk−1(k − 3− n)).

Since Hn−k(E(−k − 3− n)) = Hn−1(Sk−1(−k − 3− n)) = 0, Lemma 3.2 (i) allow us
to write ak−2 in terms of ak−1 and ak:

ak−2 = ak−1(n+ 1)− ak
(
n+ 2

2

)
.
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For 1 ≤ i ≤ k − 3, we apply Lemma 3.2 (ii) to obtain a general formula for ai:

ai = hn(Si+1(i− n− 1)) = ai+1(n+ 1)− hn(Si+2(i− n− 1))

= ai+1(n+ 1)− ai+2

(
n+ 2

2

)
+ hn(Si+3(i− n− 1)) = . . .

= ai+1(n+ 1)− ai+2

(
n+ 2

2

)
+ · · ·+ (−1)k−3−iak−2

(
n+ k − 2− i
k − 2− i

)
+(−1)k−2−ihn(Sk−1(i− n− 1)).

To compute hn(Sk−1(i− n− 1)) we note that hn−1(Sk−1(i− n− 1)) = 0 (recall (11))
and use Lemma 3.2 (i) again. We thus obtain

ai = ai+1(n+ 1)− ai+2

(
n+ 2

2

)
+ · · ·+ (−1)k−3−iak−2

(
n+ k − 2− i
k − 2− i

)
+

(−1)k−2−iak−1
(
n+ k − i− 1

k − i− 1

)
+ (−1)k−1−iak

(
n+ k − i
k − i

)
.

�

We would like to point out that the previous corollary would still hold under the
weaker assumptions of Proposition 3.5. However, we think that the statement be-
comes more interesting with the hypotheses of Theorem 3.7.

Remark 3.9. Let E be a vector bundle on Pn with linear resolution (4) and such that
Hn−k(E(k− 3− n)) = 0, with k ≥ 2. If the Betti numbers of E satisfy (a) and (b) in
Corollary 3.8 then E may not be exceptional. Nevertheless, a converse statement of
the referred corollary could be as follows:

Let E be a vector bundle on Pn with linear resolution (4) and Hn−k(E(k−3−n)) =
0, with k ≥ 2. If Sk−1 is exceptional and the Betti numbers of E satisfy

ai = ai+1(n+ 1)− ai+2

(
n+ 2

2

)
+ · · ·+ (−1)k−1−iak

(
n+ k − i
k − i

)
, i = 0, . . . , k − 2,

then E is exceptional (note that the condition that (ak, ak−1) = (us, us+1), where
{us}s≥0 is the sequence (16), is automatically satisfied if Sk−1 is exceptional).

The next example shows that the cohomological vanishing Hn−k(E(k− 3−n)) = 0

is indeed necessary. We construct a vector bundle of homological dimension 2 whose
Betti numbers do not satisfy conditions (a) and (b) in Corollary 3.8, although it is
exceptional.

Example 3.10. Set R = K[x0, x1, x2, x3, x4]. Let A be a homogeneous 3× 7 matrix
with general linear entries and I3(A) the ideal generated by the 3 × 3 minors of A.
Hence, by [MR08], Proposition 1.2.16, R/I3(A) has a minimal free R-resolution of
the following type:

0→ R(−7)15 → R(−6)70 → R(−5)126 → R(−4)105 → R(−3)35 → R→ R/I3(A)→ 0
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Since R/I3(A) is an artinian ring then the sheafification of R/I3(A) is trivial and the
corresponding complex in P4 is as follows:

0→ OP4(−7)15 → OP4(−6)70 → OP4(−5)126 → OP4(−4)105 → OP4(−3)35 → OP4 → 0.

Twist it by OP4(5) and cut it into short exact sequences:

0→ OP4(−2)15 → OP4(−1)70 → S1 → 0,

0→ S1 → O126
P4 → E → 0,

0→ E → OP4(1)105 → F → 0,

0→ F → OP4(2)35 → OP4(5)→ 0.

In particular, the vector bundle E is defined by the linear resolution

0→ OP4(−2)15 → OP4(−1)70 → O126
P4 → E → 0,

and hdE ≤ 2. Observing that F∨ is a general Steiner bundle which is exceptional by
Theorem 2.5, we infer that F is exceptional.

Using Proposition 3.4 we get χ(EndE) = 1. Let us show that E is exceptional.
Consider the sequence

0→ E ⊗ F∨ → E(−1)105 → E ⊗ E∨ → 0.

Applying the cohomology functor to the sequences

0→ S1(−1)→ OP4(−1)126 → E(−1)→ 0,

0→ OP4(−3)15 → OP4(−2)70 → S1(−1)→ 0,

we easily deduce that Hq(E(−1)) = Hq+1(S1(−1)) = 0, for all q ≥ 0. To compute the
cohomology groups of E ⊗ F∨, we look at the cohomology sequence of

0→ E(−5)→ E(−2)35 → E ⊗ F∨ → 0.

To obtain Hq(E(−2)) we proceed similarly as in the computation of Hq(E(−1)) and
get Hq(E(−2)) = Hq+1(S1(−2)) = 0, for every q ≥ 0. Now, consider the dual
sequences

0→ E∨ → O126
P4 → S∨1 → 0,

0→ F∨ → OP4(−1)105 → E∨ → 0,

0→ OP4(−5)→ OP4(−2)35 → F∨ → 0.

We have Hq (F∨) = 0, q 6= 3, and H3 (F∨) = K. So Hq (E∨) ∼= Hq+1 (F∨) = 0, q 6= 2,
and H2 (E∨) ∼= H3 (F∨) = K. This implies that H0 (S∨1 ) = K126, H1 (S∨1 ) = K and
Hq (S∨1 ) = 0, q ≥ 2. We thus have

H2(E(−5)) ∼= H2 (E∨) = K,

Hq(E(−5)) ∼= H4−q (E∨) = 0, q 6= 2.
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Finally, this enables us to conclude that

Hq (E ⊗ E∨) = Hq+1 (E ⊗ F∨) = 0, q 6= 0,

H0 (E ⊗ E∨) = H1 (E ⊗ F∨) = K,

that is, E is exceptional. Note, however, that Hn−k(E(k−3−n)) = H2(E(−5)) = K.
Therefore, E is an exceptional bundle such that H2(E(−5)) 6= 0 and its Betti

numbers do not satisfy Corollary 3.8. Besides, we note that the associated vector
bundle S1 is not exceptional.

4. Examples

After the results of the previous section we would like to ensure that we can provide
examples of exceptional vector bundles of arbitrary homological dimension given by
a linear resolution. In this section we are able to deal with the case k = 2 and we
construct examples of vector bundles on the projective spaces of dimension 4 and 5

of various homological dimensions.
Our first example is a family of vector bundles of homological dimension 2 satisfying

conditions of Theorem 3.7. In order to construct this family we will use as a tool the
following theorem.

Theorem 4.1 ([EH92], Theorem 1). Suppose n ≥ 2, a ≥ 1, and b ≥ (n+ 3)a/2 + 1.
For a ≤ 3, suppose also:

– if a = 1 then b ≥ n+ 1;
– if a = 2 then b ≥ 2n+ 2;
– if a = 3 then b ≥ 2n+ 4 (and b ≥ 9 for n = 2).

Then the kernel Ea,b of a general morphism OPn(1)b → OPn(2)a is a locally free sheaf
with natural cohomology and generated by its global sections.

Remark 4.2. We note that any pair (a, b) = (us, us+1) of consecutive terms of the
sequence (16) satisfy the conditions in [EH92].

If us = 1 then us+1 = n+ 1, so obviously us+1 = n+ 1 ≥ us = 1. The cases us = 2

and us = 3 never occur.
Consider bs ≥ 3 and let us show this by induction on s that 2us+1 ≥ (n+3)us+2.

If s = 1 then 2u2 = 2n+ 2 ≥ n+ 5 = (n+ 3)u1 + 2, for n ≥ 3.
Suppose 2ut+1 ≥ (n + 3)ut + 2, for all t ≤ s − 1. Using the recurrence formula

us+1 = (n+ 1)us − us−1 and the induction hypothesis, we get

2us+1 − (n+ 3)us − 2 = 2(n+ 1)us − 2us−1 − (n+ 3)us − 2

≥ 2nus + (n+ 3)us−1 + 2− 2us−1 − (n+ 3)us − 2

= (n+ 1)us−1 + (n− 3)us ≥ (n+ 1)us−1 ≥ 0.

Hence, 2us+1 ≥ (n+ 3)us + 2.
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Now, we are able to prove the following.

Proposition 4.3. Suppose n ≥ 3, a ≥ 2 and b ≥ (n + 3)a/2 + 1. If a = 1 suppose
also b ≥ n+ 1.

Then there exists an exceptional vector bundle E of homological dimension 2 and
linear resolution

0→ OPn(−2)a → OPn(−1)b → OcPn → E → 0. (17)

In particular, this applies to (a, b) = (us, us+1), for some s ≥ 1, where {us}s≥0 is the
sequence (16), and

c = b(n+ 1)− a
(
n+ 2

2

)
.

Proof. Let φ : OPn(1)b → OPn(2)a be a general morhism. Then, by Theorem 4.1,
the kernel Fb,a of this morphism is a vector bundle with natural cohomology and
generated by its global sections. In particular, this implies both that

c := h0(Fb,a) = b(n+ 1)− a
(
n+ 2

2

)
, h1(Fb,a) = 0,

and that there is an epimorphism ρ : OcPn � Fb,a. Hence, we have a diagram

0

��

ker ρ

��

OcPn

ρ
�� %%

0 // Fb,a //

��

OPn(1)b
φ
// OPn(2)a // 0.

0

Therefore, the vector bundle Eb,a := (ker ρ)∨ has linear resolution of type (17) and
hd(Eb,a) ≤ 2.

Let us check that hd(Eb,a) = 2. If hd(Eb,a) ≤ 1 then by Lemma 3.1 we would
have Hn−2

∗ (Eb,a) = 0. However, from the above diagram we see that Hn−2
∗ (Eb,a) ∼=

Hn−1
∗ (F∨b,a) and we can compute

Hn−2(Eb,a(−n+ 1)) ∼= Hn−1 (F∨b,a(−n+ 1)
) ∼= Hn(OPn(−n− 1)) 6= 0.

Now, take an arbitrary pair (a, b) of the form (us, us+1), for some s ≥ 1, where
{us}s≥0 is the sequence (16). It follows from Remark 4.2 that a = us and b = us+1

satisfy the inequalities a ≥ 2, b ≥ (n+3)a/2+1, and b ≥ n+1 whenever a = 1. Then
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the above construction gives us a vector bundle Eus+1,us of homological dimension 2,
with minimal resolution

0→ OPn(−2)us → OPn(−1)us+1 → Ous+1(n+1)−us(n+2
2 )

Pn → Eus+1,us → 0.

Let us check that E satisfies the hypotheses of Theorem 3.7 (a). The cohomological
condition is

Hn−2 (Eus+1,us(−1− n)
)
= Hn−1 (F∨us+1,us

(−1− n)
)
= H1(Fus+1,us),

and we have seen above that this group vanishes since Fus+1,us is a globally generated
vector bundle with natural cohomology. From Proposition 3.4 we can easily see
that χ(EndEus+1,us) = 1. Also, F∨uus+1 ,us

is a general exceptional Steiner bundle.
Altogether, by Theorem 3.7 (a), we conclude that Eus+1,us is exceptional. �

More generally, we are able to construct several examples in the software system
Macaulay2 ([GS]).

Example 4.4. In P4, we consider the pair (u1, u2) = (5, 24) of two terms of the
sequence (16). The generation of a random 24× 5 matrix M produces the following
two examples of homological dimensions 2 and 3:

0→ OP4(−2)5 M−→ OP4(−1)24 → O45
P4 → E → 0,

0→ OP4(−3)5 M−→ OP4(−2)24 → OP4(−1)45 → O40
P4 → E → 0.

Taking the subsequent pair (u1, u2) = (24, 115), we construct:

0→ OP4(−2)24 M−→ OP4(−1)115 → O215
P4 → E → 0,

0→ OP4(−3)24 M−→ OP4(−2)115 → OP4(−1)215 → O190
P4 → E → 0.

In P5, we proceed in a similar way. The pair (u1, u2) = (6, 35) produces the following
resolutions:

0→ OP5(−2)6 → OP5(−1)35 → O84
P5 → E → 0,

0→ OP5(−3)6 → OP5(−2)35 → OP5(−1)84 → O105
P5 → E → 0,

0→ OP5(−4)6 → OP5(−3)35 → OP5(−2)84 → OP5(−1)105 → O70
P5 → E → 0.

The pair (35, 204) enables us to construct:

0→ OP5(−2)35 → OP5(−1)204 → O489
P5 → E → 0,

0→ OP5(−3)35 → OP5(−2)204 → OP5(−1)489 → O610
P5 → E → 0,

0→ OP5(−4)35 → OP5(−3)204 → OP5(−2)489 → OP5(−1)610 → O405
P5 → E → 0.

In each case, one can check with Macaulay2 that Hn−k(E(k − 3 − n)) = 0 and
E is exceptional. Note, furthermore, that the Betti numbers satisfy (a) and (b) in
Corollary 3.8.
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We would like to generalize the construction in the proof of Proposition 4.3 to any
homological dimension. Therein, Ellia and Hirshowitz’s theorem 4.1 provides us with
a vector bundle E of homological dimension 2. If E∨(1) is generated by its global
sections then there is a surjective morphism OcPn � E∨(1), for some c ≥ 1, which
allows us to produce a new vector bundle of homological dimension 3.

The problem we run into is that we are not able to ensure that the vector bundle
E∨(1) is generated by its global sections. In fact, E∨(1) may not be even 0-regular.
According to our notation, this vector bundle corresponds to S∨k−2(1) in the examples
obtained in 4.4. We observe that S∨k−2(1) is always globally generated (but it is not
0-regular). This leads us to propose the following conjecture:

Conjecture 4.5. Let φ : OPn(1)b → OPn(2)a be a general morphism and S :=

cokerφ∨. If a and b satisfy the hypotheses in Proposition 4.3 there is a diagram

0 // OPn(−2)a
φ∨
// OPn(−1)b //

%%

OcPn
// E // 0,

S

==

""
0

88

0

and E∨(1) is generated by its global sections.
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