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Abstract

In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for
the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numeri-
cal Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically
drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction
of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference
operator for the spatial derivative along the direction of the drift (1̂ direction). We show that this
eliminates the main NCI modes with moderate |k1|, while keeps additional main NCI modes well
outside the range of physical interest with higher |k1|. These main NCI modes can be easily fil-
tered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental
Brillouin zone. The customized solver has the possible advantage of improved parallel scalability
because it can be easily partitioned along 1̂ which typically has many more cells than other direc-
tions for the problems of interest. We show that FFTs can be performed locally to current on each
partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so
that it satisfies the continuity equation for the customized spatial derivative. This ensures that
Gauss’ Law is satisfied. We present simulation examples of one relativistically drifting plasmas, of
two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA)
in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this
customized Maxwell solver together with its NCI elimination scheme.
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instability, Lorentz boosted frame
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1. Introduction

When modeling physics problems involving relativistically drifting plasmas or particle beams
using the electromagnetic (EM) particle-in-cell (PIC) algorithm, a violent numerical instability,
called the numerical Cerenkov instability (NCI) [1, 2, 3, 4, 5], arises due to the unphysical cou-
pling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the
drifting plasma in the numerical system [6]. Such scenarios arise in laser wakefield acceleration
[7] simulations in the Lorentz boosted frame [8, 9] in which a laser pulse is colliding head-on with
a relativistically drifting plasma (henceforth moving in the 1̂ direction), and in relativistic colli-
sionless shock simulations in which two counter-propagating relativistically drifting plasmas collide
head-on with each other [10, 11, 12, 13]. The NCI creates unphysical energy exchange between the
kinetic energy of the drifting plasma, and EM field fluctuations. The growth of the fastest growing
modes drive fluctuations that can quickly dwarf the physical processes being studied, while slower
growing modes can effect the physics in subtle ways. Thus, it is essential to eliminate all NCI
modes for the accurate modeling of physics problems.

Recently, several studies have focused on the understanding and elimination of this instability [3,
4, 5, 6, 14, 15, 16, 17]. This includes the use of a multi-dimensional spectral solver [6, 18, 19, 20], or a
hybrid Yee-FFT solver that uses a FFT in the direction of the drifting plasma [16]. Applying these
solvers together with current correction and filtering strategies, one can systematically eliminate
the NCI modes. The key idea is that by changing the EM dispersion relation of the solver it is
possible to eliminate NCI modes at moderate |~k| leaving all the remaining NCI modes of interest
at high |~k| in the fundamental Brillouin zone. These high |~k| modes can be filtered without altering
the physics of interest. However, each of these solvers is FFT-based, either in all directions for
the pure spectral solver, or only in the drifting direction of the plasma. The use of FFTs in the
Maxwell solver can limit the parallel scalability of the algorithm when there are many more cells
along a given direction. Typically, in parallel PIC codes based on FFT solvers, one uses a domain
decomposition one order lower than the physical dimension because there are currently no effective
parallel 1D FFTs. In the hybrid Yee-FFT solver, there is only a 1D FFT, so the problem can only
be decomposed in the two transverse directions.

In this paper, we take advantage of the previous progress described in [6, 16], and develop a
method to design a finite-difference-time-domain (FDTD) solver that has similar (yet different)
NCI properties to the FFT-based solver described in [6, 16]. Although it was based on the use
of FFTs, when examined more carefully the previous progress showed that the key to essentially
eliminate the NCI is to first isolate the range of unstable ~k’s for what we refer to as the main NCI
mode. This is accomplished by using a solver that has sufficiently small numerical errors in the
spatial derivatives (and thus small dispersion errors for light waves) for moderate |k1|. Even with
perfect dispersion for light waves in vacuum, there will always be an intersection from the first
spatial aliased beam modes at high |k1| that needs to be filtered out, and coupling between the
EM mode and the main Langmuir mode at moderate |k1|. We note that for this reason the use
of the PSATD solver described in Ref. [14] does not appear to have advantages with respect to
eliminating the NCI. As we have recently shown [6], when the main mode is isolated to a small
range of ~ks then a small modification to the dispersion for the range of unstable modes can remove
the coupling between the EM (purely transverse in the lab frame) modes and Langmuir (purely
longitudinal in the lab frame) modes.

Recognizing how the NCI is being controlled and eliminated by the use of an FFT along the
plasma drifting direction (1̂ direction) leads us to consider the possibility to design a customized
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and higher order finite difference operator for the spatial derivatives that provides sufficiently
accurate dispersion for moderate |~k|. This finite difference operator for the spatial derivative can
be implemented into a FDTD solver which is purely local and should thus scale well on massively
parallel computers using domain decomposition. While this new solver can eliminate unstable
modes at moderate |k1|, it cannot eliminate modes at high |k1| near the edge of the first Brillouin
zone. In addition, such a solver will not conserve charge i.e., Gauss’s law will not be satisfied.
Nonetheless, both of these issues can be resolved by performing local FFTs for the current which
do not use any global communication.

Similar to the hybrid Yee-FFT solver, to ensure the Gauss’ Law is satisfied for the customized
solver, we correct the component of the current in the 1̂ direction in k1 space. This is done locally
on each parallel partition along 1̂ and because the current is already in k1 space, we can also use a
low pass filter and eliminate the unstable high k1 NCI modes. This filter can also be included into
the current correction. We will show that overall this method is effective at eliminating the NCI
while allowing good parallel scalability when domain decomposition is required along 1̂.

We note that in Ref. [21] a PIC algorithm based on using a “local” FFT Maxwell solver was
proposed. Their work was motivated for maintaining high parallel efficiency and was not focused on
eliminating the NCI. They did show results from LWFA simulations in a boosted frame, however,
no analysis for the NCI for FFT based algorithms was presented. We note that there are distinct
differences between their approaches to ours. In our case, FFTs are performed only on current.
This is done to ensure that the continuity equation is satisfied, and also to filter the current for
NCI elimination. Because the current from a single particle is not global this can lead to a current
that satisfies the continuity equation at every location and it can eliminate the NCI. The EM fields
remain in real space and are advanced using Faraday’s and Ampere’s law. So long as the solution
for the current satisfies the continuity equation locally for the finite difference operators used in
Ampere’s Law, then Gauss’s law will be maintained. If the longitudinal components of the fields
are also solved using local FFTs in each partition (as is proposed in Ref. [21]), there will be errors
in the longitudinal components of ~E and ~B due to the enforcement of periodicity.

The remainder of this paper is organized as follows. In section 2 we first present a method to
construct a customized FDTD Maxwell solver that has preferable NCI properties. The correspond-
ing current correction and filtering strategies are discussed in section 3. We show that the use of
local FFTs can provide a current that satisfies the continuity equation for a customized solver. We
then present sample simulations in section 4 showing that good accuracy and scalability can be
obtained. Finally, in section 5 a summary is given.

2. Customized Maxwell solver

The Numerical Cerenkov Instability (NCI) occurs when a plasma drifts relativistically on a
grid in a PIC code due to the unphysical coupling between the Langmuir modes (both main and
aliasing) and electromagnetic (EM) modes [6]. Categorizing the NCI modes with their temporal
aliasing mode number µ, and spatial aliasing mode number ν1, it is found that usually the most
violently growing NCI modes are those at (µ, ν1) = (0,±1) (we call them first spatial aliasing NCI
modes), and (µ, ν1) = (0, 0) (main NCI modes) [6]. The first spatial NCI modes usually reside
near the edges of the fundamental Brillouin zone, making them relatively easy to eliminate with a
sharp low-pass filter to the current. On the other hand, the main NCI modes are usually located
within the inner half of the ~k modes, where modes of physical interest are located. It was shown
for typical FDTD solvers that these modes were contained in a broad spectrum such that they
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cannot be eliminated through a low pass or mask filter. On the other hand, as shown in [6, 16], for
FFT-based solvers (and cell sizes ∆x1 ≤ ∆x2), the main NCI modes are very localized in ~k space
and they move to large |~k| as the time step is reduced.

Therefore, as discussed in [6, 16], to eliminate the NCI modes in FFT-based solvers, the first
step is to find a reduced time step which moves the main NCI modes away from the physical modes.
After these modes are far enough from the physical modes, one can then apply a highly localized
modulation to the EM dispersion relation in ~k space where the (µ, ν1) = (0, 0) modes reside in order
to completely eliminate them. For a multi-dimensional spectral solver, the modification of the EM
dispersion is accomplished by directly modifying the finite difference operator [~k] in that localized
area in ~k space [6]. For the hybrid Yee-FFT solver, only the operator [k1] is modified in the k1

range where the main NCI modes are located [16]. The modification of the operator usually creates
a bump in the dispersion curve in the range where the main NCI modes are located, which removes
the coupling between the EM modes and the Langmuir modes in that area, thereby eliminating
the main NCI modes in that range completely.

When solving the Maxwell’s equation using the FFT-based solvers, the differential operators in
~k space are explicitly used in the equations, therefore it is straightforward to modify the operators
in ~k space. However, as mentioned in introduction, the use of a 1D FFT when there are many cells
along that direction affects the scalability of the solver (or a multi-dimensional FFT solver when
there are “many” more cells along one direction). Therefore, a question that naturally follows is
whether it is possible to design an FDTD solver to imitate the characteristics of the EM dispersion
curves of a FFT-based solver that make it possible to effectively eliminate the NCI. In the following
sections, we describe a “recipe” for designing a finite difference derivative that when written in ~k
space leads to the proper characteristics for the EM dispersion.

In [16] it is found that by replacing the finite difference spatial derivative in the direction of
the plasma drift from a stencil that is second order accurate in cell size with a spectral solver
(which is greater than N -th order accurate), one can restrict the (µ, ν1) = (0, 0) NCI modes to a
highly localized area in the fundamental Brillouin zone [16]. Meanwhile, the spatial derivatives in
the other direction(s) can be kept as second order accurate. Therefore, when we design an FDTD
solver for the purpose of NCI elimination, it is natural to start with a “hybrid” FDTD solver that
resembles the hybrid Yee-FFT solver. We use a higher order FDTD finite difference stencil [23, 24]
in the direction of the drift while keeping them second order accurate in the other direction(s).
Examination of the NCI growth rate where [k1] is replaced with the expression for a higher order
stencil reveals that indeed the NCI is localized. In addition, we find that new (µ, ν1) = (0, 0) modes
arise at large k1 where the EM dispersion curve rolls over, i.e., the phase velocity drops. We then
show how to modify the expression [k1] for the higher order finite difference operator such that the
EM dispersion curve has a slight bump at moderate |k1| in order to precisely avoid the coupling
between the EM modes and main Langmuir modes for the main, (µ, ν1) = (0, 0), NCI modes of
moderate |k1|. To accomplish that, we expand the number of terms in the stencil [see Eq. (3)]
to add extra degrees of freedom which can create the bump in the k1 range where the main NCI
modes reside, as we will explain in the following sections. In addition the new (µ, ν1) = (0, 0)
modes at high k1 can be filtered out since they are outside the range of physically relevant modes.

2.1. NCI for high order finite difference solvers

Without loss of generality, we describe the method outlined above in the 2D Cartesian geometry.
In a Maxwell solver, the electromagnetic fields ~E and ~B are advanced by solving Faraday’s law
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and Ampere’s law,

~Bn+ 1
2 = ~Bn− 1

2 − c∆t∇+
p × ~En (1)

~En+1 = ~En + c∆t∇−p × ~Bn+ 1
2 − 4π∆t ~Jn+ 1

2 (2)

where the EM fields ~E and ~B, and current ~J are defined on the staggered Yee grid [22], and ∇±p =(
∂±p,x1 , ∂

±
2,x2

)
is the discrete finite difference operator for the staggered scheme. Note according to

[16] the NCI can be eliminated if the operator [k1] = k1 is used along the plasma drifting direction.
We now show that for a FDTD solver, a similar dispersion curve can be obtained by using high
order finite difference operator in this direction. We apply a p-th order operator in the 1̂ direction
and a standard second order Yee solver in the 2̂ direction. The p-th order operator is defined as

∂+
p,x1fi1,i2 =

1

∆x1

p/2∑
l=1

Cpl (fi1+l,i2 − fi1−l+1,i2)

∂−p,x1fi1,i2 =
1

∆x1

p/2∑
l=1

Cpl (fi1+l−1,i2 − fi1−l,i2) (3)

where f is an arbitrary quantity and the coefficients of the finite difference operator Cpl can be
expressed as [23, 24]:

Cpl =
(−1)l+1161− p

2 (p− 1)!2

(2l − 1)2(p2 + l − 1)!(p2 − l)!(
p
2 − 1)!2

(4)

If we perform a Fourier transform to Eqs. (1) and (2) in both time and space, Maxwell’s equations
become

[ω] ~B = −[~k]× ~E (5)

[ω] ~E = [~k]× ~B + 4πi ~J (6)

where the operators in operators in frequency and wavenumber space are

[ω] =
sin(ω∆t/2)

∆t/2

[~k] =

 p/2∑
l=1

Cpl
sin[(2l − 1)k1∆x1/2]

∆x1/2
,
sin(k2∆x2/2)

∆x2/2

 (7)

where ω and k1,2 are the frequency and wave numbers, and ∆t and ∆x1,2 are the time step and

grid sizes of the PIC system, respectively. Note that when the current vanishes, ~J = ~0, in Eq (6),
we obtain the numerical dispersion relation for EM waves in vacuum, i.e.,

[ω]2 = c2
(
[k1]2p + [k2]22

)
(8)

where [k1]p and [k2]2 are the components of [~k], and the order of accuracy is denoted by the
subscripts outside the square brackets.

We plot the numerical dispersion relation ω v.s. k1 (assuming k2 = 0) in Fig. 1. We can
see from Fig. 1 that, when the order p of [k1] increases, the dispersion curve is converging to
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(but never approaches) that of the spectral solver (black solid line). To quantify the locations
and growth rates of the NCI modes for high order solvers, in Fig. 2, we plot the patterns of the
(µ, ν1) = (0, 0) and (0, 1) NCI modes over the (k1, k2) space in the fundamental Brillouin zone. The
plot is generated by applying the p-th order finite difference operator in k1 and second order finite
difference operator in x2 into the theoretical framework developed in Ref. [5, 6]. For completeness
we write out the dispersion relation in Appendix A. From Fig. 2 (a) we can see that the main
NCI modes of a high order solver split into two parts: a highly localized part, i.e., a “dot”, near
k1/kg1 = 0.2 (that has a lower growth rate), and another “strip” component that is very close to
the edge of the fundamental Brillouin zone (that has a higher growth rate). To make both visible
on the same scale we multiply the growth rate of the “dot” modes by ten. It is interesting to note
that the highly localized “dot” part of the main NCI modes is located at almost the same place
as for the hybrid Yee-FFT solver [shown in Fig. 2 (c)]. Meanwhile, the “strip” component has
a growth rate on the same order of magnitude as the main NCI modes of the Yee solver, which
are comparable to the (µ, ν1) = (0, 1) modes for either FFT or finite difference solvers [see Fig. 2
(b) and (d)]. This can be explained by the fact that in the low k1 range the dispersion curve of
the higher order solver almost overlaps that of the hybrid solver, while for the high k1 range the
curve bends down, resulting in a similar NCI pattern to that of the Yee solver (which rolled over
for lower k1 values). In the meantime, the (µ, ν1) = (0,±1) modes of the higher order solver reside
very close to the edge of the fundamental Brillouin zone [shown in Fig. 2 (b)], which is similar
to the case of the hybrid Yee-FFT solver [Fig. 2 (d)]. This enables us to readily eliminate these
modes by applying a low-pass filter to the current in k1-space.

Figure 1: 1D numerical dispersion relations of different finite difference solver and spectral solver. ∆x1 = 0.2k−1
0

and ∆t = 0.05ω−1
0 are used to generate this plot.

Just as was the case for the hybrid Yee-FFT solver, the location of the “dot” part of the main
NCI modes also changes for the higher order solver as one reduces the time step. In Fig. 3, we
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Figure 2: The NCI patterns of 16th order solver and hybrid Yee-FFT solver. (a) and (b) show the (µ, ν1) = (0, 0)
and (µ, ν1) = (0, 1) NCI mode of the high order (16th order) solver. The values in the dashed line box in (a) is
multiplied by 10 for better visualization. (c) and (d) show the (µ, ν1) = (0, 0) and (µ, ν1) = (0, 1) NCI mode of the
hybrid solver. ∆x1,2 = 0.2, ∆t = 0.05 and np = 30n0 are used to generate the plots.

scan the location of the “dot” part of the main NCI modes with different time steps for various
solvers. We can see that the main NCI modes at moderate |~k| move towards higher |~k| for both
the hybrid Yee-FFT solver, 16th order solver, and 24th order solver. Therefore, it is possible to
apply the strategies used for the hybrid Yee-FFT solver to effectively eliminate the NCI for the
hybrid higher order-Yee solver. In addition, as ∆t/∆x1 decreases, so do the growth rates for the
“dot” part of the main NCI modes.

For given simulation parameters, we first calculate the locations of the main NCI modes for
the 16th order solver (16th order in 1̂ direction, and 2nd order in other directions). If they are too
close to the physical modes, we reduce the time step to move them away from the center towards
the edge of the fundamental Brillouin zone. In the next section, we describe how to modify the
higher order stencil such that its k1 v.s. [k1]p curve has a bump to eliminate the “dot” part of the
main NCI modes.

2.2. Customization of [k]1

In this subsection, we explain how we customize a higher order finite difference first derivative
that also has a slight modification near the location of the NCI modes in wave number space.
For the FFT-based solvers described in [6, 16] this modification to the EM dispersion relation in
the k1 range where the main NCI modes are located can be easily implemented. Specifically, this
is accomplished by changing the definition of k1 inside the field solver to [k1](k1) in the range
k1 ∈ [k1l, k1u], where the (µ, ν1) = (0, 0) NCI modes reside to [k1] = k1 + ∆kmod(k1) where
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Figure 3: The position of the splitted “dot” in (µ, ν1) = (0, 0) NCI mode at different time step for 16th order, 24th
order solver and Yee-FFT hybrid solver. We scan the position using ∆x1,2 = k−1

0 and np = n0, from ∆t = 0.1∆tCFL

to ∆t = 0.9∆tCFL.

∆kmod(k1) is a small localized perturbation(see Fig. 3(a) in [16]). It usually takes the form of

∆kmod(k1) =

∆kmod,max sin
(
π k1−k1l
k1u−k1l

)2
, k1l ≤ k1 ≤ k1u

0, otherwise
(9)

where k1l, k1u are the lower and upper bounds of the region that is modified, and ∆kmod,max is the
maximum of ∆kmod. In an FFT-based solver this modification is straightforward to implement,
while in a high order FDTD solver, one has to find a stencil that has both higher order accuracy
for the derivative over a wide range of wave number space as well as a modification in a local
region of wave number space. For a regular pth order solver (where p is an even number), there are
p/2 coefficients, Cpl , for the stencil and the numerical dispersion relation is uniquely determined.
It naturally follows that if we want to customize the dispersion relation based on the high order
solver, we will need to add more degrees of freedom, i.e., more coefficients, into the operator. This
means the stencil will be broader. The coefficients will still need to be constrained so that the
operator has higher-order accuracy, while at the same time it has the desired modification in a
local region of k1 space.

We denote the high order solver as ∇±p∗ =
(
∂±p∗,x1 , ∂

±
2,x2

,
)

. The first component has the form

∂+
p∗,x1fi1,i2 =

1

∆x1

M∑
l=1

C̃pl (fi1+l,i2 − fi1−l+1,i2) (10)

∂−p∗,x1fi1,i2 =
1

∆x1

M∑
l=1

C̃pl (fi1+l−1,i2 − fi1−l,i2) (11)
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while the second component is still the standard second order accurate operator. The modified
solver has M coefficients, C̃pl , where M > p/2. The corresponding finite difference operator in
k-space becomes

[k1]p∗ =
M∑
l=1

C̃pl
sin[(2l − 1)k1∆x1/2]

∆x1/2
(12)

In order to construct the “bump” in the dispersion curve for the proposed solver, we need to find an
“optimized” set of C̃pl such that [k1]p∗ will best approximate the modified [k1] = [k1]p+∆k described
in Eq. (9). For the purpose of simplifying the notation, in the following we normalize [k1]p∗, [k1]p,
∆kmod, k1l, k1u and k1, with kg1 = 2π/∆x1. In the spirit of the least square approximation, we
construct a function F1

F1 =

∫ 1/2

0
([k1]p∗ − [k1]p −∆kmod)2 dk1 (13)

which we will minimize to find an optimum set of C̃pj . We note that a weight function w(k1) can
be employed and this is an area for future work. In addition, the high order solver should also
meet the requirement of pth order accuracy and satisfy the condition ∂±p∗,x1 → ∂x1 as ∆x1 → 0.
Therefore, the coefficients should be subject to the linear equations below

M ~̃Cp = ~̂e1 (14)

where ~̃Cp = (C̃p1 , ..., C̃
p
M )T , ~̂e1 = (1, 0, ..., 0)T and the elements of the matrix M are Mij = (2j −

1)2i−1/(2i− 1)! (i = 1, ..., p/2) and (j = 1, ...,M). This is a constrained least-square minimization
problem so we can use the Lagrange multipliers to solve it.

The Lagrangian is defined by L = F1 + F2 where F2 = ~λT (M ~̃Cp − ~̂e1) and ~λ = (λ1, ..., λp/2)T .
Solving the constrained least-square minimization problem is equivalent to solving,

∂L/∂C̃pj = 0 (j = 1, ...,M) and ∂L/∂λi = 0 (i = 1, ..., p/2) (15)

It can be straightforward to show that this results in the following set of equations,

∂F1

∂C̃pj
=

{
1

2π2 (C̃pj − C
p
j −Aj), 1 ≤ j ≤ p

2
1

2π2 (C̃pj −Aj),
p
2 + 1 ≤ j ≤M

(16)

∂F2

∂C̃pj
=

∑
i

λiMij (17)

∂F2

∂λj
=

∑
i

MjiAi − ej (18)

where

Aj =
8∆kmod,max(cos[(2j − 1)πk1u]− cos[(2j − 1)πk1l])

(2j − 1)[(2j − 1)2(k1u − k1l)2 − 4]
(19)

Combing Eqs. (16)-(18), we can reformat Eq. (15) into a matrix equation(
1

2π2
~I MT

M ~0

)(
~̃Cp

~λ

)
=

(
1

2π2 ( ~A+ ~Cp)

~̂e1

)
(20)
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(a)

(b)

(c)

(d)

(e)

x10

Figure 4: In (a) the perturbation (red line) introduced by the modified 16th order solver is shown. The blue
line denotes the [k1]-k1 relation of the regular 16th order solver. The lower and upper limits of perturbation are
k1l/kg1 = 0.18 and k1u/kg1 = 0.33. The perturbation magnitude ∆kmod,max = 0.01. (b) and (c) are (µ, ν1) = (0, 0)
and (µ, ν1) = (0, 1) NCI mode patterns of the regular 16th order solver respectively. The values in the dashed line
box in (b) is multiplied by 10 for better visualization. (d) and (e) are the patterns of the modified 16th order solver.
When generating these plots we use ∆x1,2 = 0.2k−1

0 , ∆t = 0.05ω−1
0 and np = 50n0

where ~I is the M ×M unit matrix and ~Cp = (Cp1 , ..., C
p
p/2, 0, ..., 0)T . For given “bump” parameters

∆kmod,max, k1l and k1u, Eq. (20) can be solved numerically. Henceforth, in this paper we use
M = p.

In Fig. 4 we show the comparison of the[k1] operator and the NCI mode patterns between
the regular and customized high order solver. We use a 16th order solver as an example. In Fig.
4(a), we show that a perturbation (red line) can be introduced to the [k1]16 operator within the
bump region, while the operators [k1]16 and [k1]16∗ are almost overlapped outside the region. Fig.
4(b)(c) show the NCI mode patterns for the regular 16th order solver. We can see the dot of
(µ, ν1) = (0, 0) modes presented in the middle of the fundamental Brillouin zone, for which we aim
to eliminate through the use of the modified solver. In Fig. 4(d), the dot has been eliminated and
(µ, ν1) = (0, 1) modes and the remaining of (µ, ν1) = (0, 0) modes are almost identical to what was
seen for the regular high order solver.

2.3. Courant condition

The derivation of the Courant condition for the proposed high order solver is straightforward.
From the numerical dispersion relation

[ω]2 = c2
(
[k1]2p∗ + [k2]22

)
, (21)

10



it can be shown that to keep ω a real number, the corresponding constraint on the time step must
be satisfied, i.e.

∆t

2

√√√√( M∑
l=1

C̃pl
sin[(2l − 1)k1∆x1/2]

∆x1/2

)2

+

(
sin(k2∆x2/2)

∆x2/2

)2

≤ 1. (22)

Note that |k1| ≤ π/∆x1 and |k2| ≤ π/∆x2, we obtain the Courant condition of the proposed high
order solver

∆t ≤ 1/

√√√√(∑M
l=1 C̃

p
l

)2

∆x2
1

+
1

∆x2
2

(23)

For the standard high order solver, given the cell sizes, the Courant limit only depends on
cell sizes and the order solver’s accuracy. For instance, the Courant limit of a 16th order solver
(16th order in x1, while second order in x2) is ∆tCL = 0.6575∆x1 with ∆x1 = ∆x2. As for
the customized solver, although the specified solver coefficients C̃pl depend on the modification
of numerical dispersion we introduce, the Courant limit on the time step varies little as we alter
the “bumps” in the numerical dispersion curve. Taking the 16th order customized solver with 16
coefficients and ∆x1 = ∆x2 for example, the Courant condition reduces to ∆tCL = 0.6550∆x1 for
kl = 0.1, ku = 0.3, ∆kmod = 0.01, and ∆tCL = 0.6562∆x1 for kl = 0.15, ku = 0.3,∆kmod = 0.005.
As we can see, the Courant condition changes little when switching from the standard high order
solver to the customized solver.

2.4. Cartesian 3D and quasi-3D scenarios

As can be seen from previous sections, this FDTD solver only modifies the finite difference
operator in the plasma drifting direction. As a result, although not presented in this paper, the
method described above can be extended to Cartesian 3D and quasi-3D geometry [25, 26] in a
straightforward way.

3. Charge conservation and parallelization of the solver

Similar to the case in hybrid Yee-FFT solver, when the [k1] of the solver is different from the
second order accurate [k1]2, one needs to apply a correction to the current in order to satisfy Gauss’
Law. This is due to the fact that in a typical FDTD EM-PIC code, the EM fields are advanced
by the Faraday’s law and Ampere’s law, while the Gauss’ Law is satisfied by applying a charge
conserving current deposit [27]. The charge conserving current deposition is second order accurate
in all directions, which matches exactly to the standard Yee solver. As a result, when the finite
difference operator for the derivative along a particular direction changes in a solver, Gauss’ Law
is no longer satisfied if the current is not corrected correspondingly.

More specifically, the charge conserving current deposition ensures the second-order-accurate
finite difference representation of the continuity equation,

∂

∂t
ρn +∇−2 · ~J

n+ 1
2 = 0 (24)

where ∂
∂tG

n = Gn+1−Gn

∆t for an arbitrary scalar quantity Gn. For the Yee solver, Gauss’s law is
rigorously satisfied every time step if it is satisfied at the beginning. However, when combining

11



the high order solver and the second-order-accurate current deposition scheme, we need to apply
a correction to the current in the drifting direction in order that Gauss’s law remains satisfied
throughout the whole simulation. After the current has been calculated locally, we then “correct”
them by performing an FFT along the x1 direction,

J̃
n+ 1

2
1 =

[k1]2
[k1]p∗

J
n+ 1

2
1 (25)

where J̃1 is the corrected current, in a similar manner to what was employed for the hybrid Yee-
FFT solver. Performing Fourier transform in the x1 direction and applying the correction scheme
in Eq. (25), we guarantee

∂

∂t
ρn(k1, x2) + i[k1]p∗J̃

n+ 1
2

1 (k1, x2) + ∂−2,x2J
n+ 1

2
2 (k1, x2) = 0 (26)

Combining Eq. (26) with Ampere’s law, Eq. (2), (replacing ∇−p with ∇−p∗ to be consistent with
the modified high order solver), we obtain

∂

∂t

(
−4πρn + i[k1]p∗E

n
1 + ∂−2,x2E

n
2

)
= 0 (27)

We carry out inverse Fourier transform to retrieve the equation in real space,

∂

∂t

(
−4πρn +∇−p∗ ~En

)
= 0 (28)

which indicates that Gauss’s law is satisfied if it is satisfied initially.
It is important to note that one effect that arises from the current correction is that the current

from one particle extends to more cells. Therefore, an originally localized current distribution
would be spread out over more cells after we correct the current in the k-space and transform back
to real space. This results from the use of a less local operator for the derivative. Nevertheless, the
current still rigorously satisfies the continuity equation for the desired particle shape. We point
out that this effect can be neglected and the current correction is still a nearly error-free scheme
in some sense, as will be discussed below.

Assuming we have a point current initially in the real space, located at the grid index i1 = 0,
i.e. J1,i1 = δ(i1). After performing the discrete Fourier transform, the current in the k-space
becomes unity for all k1, i.e. J1,κ1 = 1, where κ1 = −N/2, ..., N/2 − 1 is the mode number,
and k1 = 2πκ1/N∆x1 with N the number of cells in x1 direction. The corrected current J̃1,κ1 is
therefore the correction factor (

[k1]2
[k1]p∗

)
κ1

=
sin
(
π
N κ1

)∑
l C̃

p
l sin

[
(2l−1)π
N κ1

] (29)

It can be asserted that the inverse discrete Fourier transform (IDFT) of the correction factor
extends over all space. This can be easily proved by contradiction. Suppose the IDFT of the
corrected point current was confined to a region of space, e.g., it is non zero only in the interval
[−W,W ] and the expanded current distribution in the real space is symmetric, i.e. J1,i1 = J1,−i1 .
The corresponding Fourier coefficients after a DFT would therefore be a finite summation of cosine
functions, i.e. J1,κ1 = J1,i1=0 + 2

∑W
i1=1 J1,i1 cos(2πi1κ1/N). By inspection, it is clear that, Eq.
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(29) cannot be rewritten in such way. Therefore, we have proven that the IDFT of the current
correction for a delta function cannot be localized in space and therefore, must exist within the
entire space over which the FFT is performed.

However, as we show next the values of the corrected current for an initial delta function
(at the origin) fall off rapidly for cells away from the origin. In fact, the values fall below double
precision accuracy effectively making the corrected current effectively only non-zero in finite region.
We illustrate this through 1D numerical calculations. We initialize the current as a Dirac-delta
distribution in the center of the grid, i.e. J1 = δ(x0). Then we perform a 1D FFT to the current,
then use the correction according to Eq. (25) for solvers with different orders in the k-space, and
finally perform an IFFT to transform the current back into real space. Fig. 5 shows the spatial
distribution of the corrected current. It can be seen that the extent of the current is widened by
the correction process and the width increase as the order of the solver is increased. Nonetheless,
the expansion remains in a localized region in real space and beyond this region the amplitude is
on the order of 10−16, which corresponds to double precision roundoff. The fact that the current is
localized indicates that the current correction can be done on a local domain so long as a sufficient
number of guard cells are used. The permits of using domain decomposition along the 1̂ direction
and the use of a local FFT on each domain. For example, we have decreased the size of the
domain from 256 grids in Fig. 5 (a) to 128 grids in Fig. 5 (b). The current distribution, the
width expansion, and noise level are almost the same. Therefore, we can see that the size of a
parallel partition makes little impact on the simulation results. Although the current expansion
is mathematically infinite as mentioned before, in the sense of considering the precision of the
numerical algorithm, the current expansion can be viewed as localized. When a sufficient number
of guard cells for each simulation partition is used, this current correction scheme will be nearly
free of any error brought by the current expansion.

⠀愀⤀

⠀戀⤀

砀㄀

砀㄀
Figure 5: Effect of the current expansion tested by point current. Numerical calculations are carried out on 256
cells (a) and 128 cells (b), to model the cases using different partition sizes. Current with Dirac-delta distribution is
initialized and the current corrections of different orders of solver are applied in the k-space. (a) and (b) show the
current distributions in real space with different correction schemes. We set ∆x1 = 1 for the calculations.
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4. Sample simulations

In this section we present sample simulations using the customized solver and its corresponding
NCI elimination schemes. In these simulations, we used the low-pass filtering for current in the
form of

F (k1) =


1, |k1| < flkg1

sin2
(

k1−fukg1
flkg1−fukg1

π
2

)
, flkg1 ≤ k1 ≤ fukg1

0, |k1| > fukg1

(30)

The filter retains the k1 modes smaller than flkg1 and cuts off the modes larger than fukg1. A sin2

function is used between flkg1 and fukg1 for smooth connection between unity and zero.

4.1. Drifting plasma

In this subsection we demonstrate the NCI elimination capability of the customized FDTD
Maxwell solver with a 2D Cartesian OSIRIS simulation of drifting plasma. We fill the simulation
box with a plasma drifting relativistically at γ = 20 along 1̂ direction. The plasma has a very
small but finite temperature to seed the NCI. Periodic boundary conditions are used for both the
1̂ and 2̂ directions. We performed simulations using both the 16th order solver, the customized
solver, and the hybrid Yee-FFT solver, with and without the low-pass filters. Other simulation
parameters are presented in Table 1, and the corresponding coefficients for the customized solver
are listed in Table 2.

Parameters Values

grid size (∆x1,∆x2) (0.5k−1
0 , 0.5k−1

0 )
time step ∆t 0.25∆x1

number of grid 512× 512
particle shape quadratic, cubic
electron drifting momentum p10 19.975 mec
plasma density 2.0 n0

Table 1: Simulation parameters for the 2D drifting plasma simulation. np is the plasma density, and ω2
0 = 4πq2n0/me,

k0 = ω0 (c is normalized to 1).

Coefficients Values Coefficients Values

C̃16
1 1.237042976225048 C̃16

2 -0.102548201854464

C̃16
3 0.022015354460742 C̃16

4 -0.009258452621442

C̃16
5 0.000410036656959 C̃16

6 0.002572239519500

C̃16
7 0.001482836071727 C̃16

8 -0.001392055950412

C̃16
9 -0.001472515326959 C̃16

10 0.000478783514362

C̃16
11 0.001200462462019 C̃16

12 -0.000187062256742

C̃16
13 -0.001059471474041 C̃16

14 0.000873314953435

C̃16
15 -0.000281855449164 C̃16

16 0.000034281167855

Table 2: Coefficients C̃16
i in Eq. (12) for the customized solver based on the 16th order solver, for the single plasma

drift simulation discussed in section 4.1.
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Figure 6: Evolutions of the E2 energies in the numerical systems for various setups in drifting plasma 2D Cartesian
PIC simulations, as discussed in section 4.1.

We can see from Fig. 6 that, by comparing the red line (16th order solver without any filters)
and the orange line (16th order solver plus low-pass filter), that applying the low-pass filter to a
16th order solver significantly reduces the growth of the E2 energy. This is because the fastest
growing (µ, ν1) = (0,±1) NCI modes are eliminated by the low-pass filter. Besides using the low-
pass filter, when we add the bump to the 16th order solver (thus making it a customized solver),
the growth rate is further reduced since the main NCI modes are completely eliminated (see the
blue line). Even higher order NCI modes [6] are attributed to the slight growth in energy for this
case (blue line in Fig. 6), and when the cubic particle shape is applied, the corresponding energy
growth is effectively suppressed (green line in Fig. 6). We can see that when the low-pass filter,
bump, and higher order particles are applied to the cases of both customized solver (green line)
and hybrid Yee-FFT solver (black dotted line), both the hybrid Yee-FFT solver and customized
solver schemes effectively eliminate the NCI.

4.2. Relativistic shock

We next present an example where two plasmas are collided against each other which is relevant
for relativistic shock simulations. The two plasmas drift towards each other with a Lorentz factor of
γ = 20.0. The simulation has a box size of 131072×2048, for which the number of cells in 1̂ direction
is much larger than that of the 2̂ direction. Since the plasmas are drifting in the 1̂ direction, the
total number of cores that can be used in such a simulation would be significantly limited if we use
FFT-based solvers, which requires one partition along the 1̂ direction. With the customized solver
and corresponding elimination scheme, we are able to partition in the 1̂ direction. We used a 2D
domain decomposition with 256 × 16 partitions along the 1̂ and 2̂ directions respectively. Other
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simulation parameters are listed in Table 3, and the corresponding coefficients for the customized
solver are listed in Table 4.

In Fig. 7 we plot the 2D color isosurface plots of the ion density, and line outs of the x2 averaged
ion density for the Yee solver, and customized solver. For the Yee solver case, we used the optimal
time step of ∆t = 0.5∆x1 at which the NCI is minimized, plus a 5-pass current smoothing and
compensation for the current, and the EM fields are also filtered every two time steps. For the
case with the customized solver, we used the same NCI elimination scheme as is used for the single
drifting plasma case, but with slightly different coefficients (different density and time step) for the
solver. We can see from Fig. 7 that there are noticeable differences. For example, the transverse
size of the filaments in the density are larger for the Yee case than for the customized case. From
our NCI theory we know that the Yee solver with the optimized time step does not eliminate the
main (µ, ν1) = (0, 0) modes. The growth rate for these modes is reduced, but they are not localized
in space; instead they reside within the range of physics. It is not obvious when, and how these
modes are altering the physics. On the other hand, the customized solver together with our filters
completely removes the (µ, ν1) = (0,±1) and (µ, ν1) = (0, 0) modes; and the use of the higher order
particle shapes reduces the growth rate for the next highest growing modes.

Figure 7: The ion densities and their line outs for a relativistic shock simulation, as discussed in section 4.2. The
corresponding simulation parameters are listed in Table 3.

4.3. LWFA boosted frame simulation

In this subsection, we present 3D Cartesian LWFA boosted frame PIC simulations using the
customized FDTD Maxwell solver in OSIRIS. For comparison, we carried out simulations using
the hybrid Yee-FFT solver and customized FDTD Maxwell solver respectively. The corresponding
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Parameters Values

Plasma
density npe, npi n0

initial Lorentz factor γ0 20.0
initial thermal velocity vth,e,i 8.7× 10−5c
mass ratio mi/me 32

Simulation using customized high order solver

cell size ∆x1,2 0.5k−1
0

time step ∆t/∆x1 0.2
number of cells 217 × 211

particle shape cubic
particle per cell (1, 2)
[k1] modification (k1l, k1u,∆kmod,max) (0.1, 0.35, 0.01)
lowpass filter (fl, fu) (0.275,0.3)

Simulation using standard Yee solver

cell size ∆x1,2 0.5k−1
0

time step ∆t/∆x1 0.5
number of cells 217 × 211

particle shape cubic
particle per cell (1, 2)

Table 3: Parameters for 2D relativistic collisionless plasma simulations in lab frame using the modified high order
solver and Yee solver. The plasma density n0 and corresponding wave number k0 are used to normalize the simulation
parameters. The parameters of [k1] modification are normalized to kg1 ≡ 2π/∆x1.

Coefficients Values Coefficients Values

C̃16
1 1.243205632406442 C̃16

2 -0.096527073844747

C̃16
3 0.017018941335700 C̃16

4 -0.013839950216042

C̃16
5 0.003588768352855 C̃16

6 0.005153133591937

C̃16
7 0.000007068893273 C̃16

8 -0.002317133408538

C̃16
9 -0.001166192174494 C̃16

10 0.000552266782136

C̃16
11 0.001508596910066 C̃16

12 -0.000134050410326

C̃16
13 -0.001599956501178 C̃16

14 0.001305552125425

C̃16
15 -0.000423469804615 C̃16

16 0.000051829248350

Table 4: Coefficients C̃16
i in Eq. (12) for the customized solver based on the 16th order solver, for the relativistic

shock simulations, and LWFA simulations in the Lorentz boosted frame, as discussed in section 4.2 and section 4.3.
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lab frame simulation is the 1.3 GeV case discussed in [28], and we have also listed the parameters
in Table 5. Note that although the simulation parameters in this scenario is different from those
of the relativistic shock simulations discussed in section 4.2, the locations of the main NCI modes
for a 16th order solver under these two sets of parameters are very close to each other. Therefore
we used the same coefficients for the customized solver as in section 4.2, as listed in Table 4.

In Fig. 8(a) and (b) we plot the E1 field at t′ = 3746 ω−1
0 for simulations with either a modified

high order solver or a hybrid Yee-FFT solver. Both solvers give nearly identical results and no
evident numerical Cerenkov radiation is observed in either cases. In Fig. 8 (c) and (d) 2D plots of
the electron density in the two cases are given. We also plot the line out of the on-axis E1 fields
for different time points in the boosted frame, as shown in Fig. 8 (e)–(h). As we can see from the
comparisons, very good agreement between the results with these two solvers is obtained.

Parameters Values

Plasma
density np 8.62× 10−4n0γb
length L 8.0× 104k−1

0 /γb
Laser

normalized vector potential a0 4.0

focal waist w0 153.0k−1
0

pulse length τ 86.9k−1
0 γb(1 + βb)

polarization circular
Simulation setups

cell size ∆x1,2,3 0.1k−1
0 γb(1 + βb)

time step ∆t/∆x1 0.125
number of cells 2048× 512× 512
particle shape quadratic
particle per cell (2, 2, 2)

NCI elimination parameters
Customized solver

[k1] modification (k1l, k1u,∆kmod,max) (0.1, 0.35, 0.01)
lowpass filter (fl, fu) (0.3,0.325)

Hybrid Yee-FFT solver
[k1] modification (k1l, k1u,∆kmod,max) (0.141, 0.24, 0.007)
lowpass filter (fl, fu) (0.3,0.35)

Table 5: Parameters for a 3D LWFA simulations in the Lorentz boosted frame using the customized high order solver
and hybrid Yee-FFT solver. The laser frequency ω0, wave number k0 and the critical density n0 = meω

2
0/(4πe

2) in
the lab frame are used to normalize the simulation parameters. The parameters of [k1] modification are normalized
to kg1 ≡ 2π/∆x1.

5. Summary

In this paper, we have presented a new customized high-order FDTD solver combined with a
current correction (such that Gauss’s law remains satisfied) that effectively eliminates the NCI.
The current is corrected and filtered by using a local FFT on each parallel partition when using
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Figure 8: Comparison of simulations in the boosted frame between the customized high order solver and Yee-FFT
hybrid solver. 2D plots of E1 field at t′ = 3746 ω−1

0 for both solvers are shown in (a) and (b). The electron density
profiles are shown in (c) and (d). (e) to (h) plot the on-axis lineouts of E1 fields at different times.
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domain decomposition. The customized higher order solver, and the corresponding current cor-
rection/filtering that is done locally on each partition, permits the systematic elimination of the
Numerical Cerenkov Instability (NCI), while also permitting high parallel scalability in particle-
in-cell codes. Using the theoretical framework we developed previously [5, 6] and illustrative PIC
simulations, it is found that a high-order FDTD solver has similar NCI properties to that of a
fully spectral solver or a hybrid Yee-FFT solver. By reducing the time step, the fastest growing
(µ, ν1) = (0,±1) NCI modes and (µ, ν1) = (0, 0) NCI modes can reside very close to the edge of the
fundamental Brillouin zone. This enables the use of a lowpass filter on the current to effectively
eliminate the NCI. For regular high-order FDTD solvers, a highly localized NCI modes [which are
part of the (µ, ν1) = (0, 0) modes] are seen in analogy to those observed in a spectral or hybrid
Yee-FFT solver. These modes reside close to the physical modes in ~k-space. Elimination of these
modes can be achieved by a combination of applying reduced time step and creating a bump in the
EM dispersion relation in k1 space. This solver can be readily implemented in 2D/3D Cartesian
and quasi-3D geometries contained within the existing framework of OSIRIS without the need to
modify the boundary conditions in the transverse directions. We note that the boundary conditions
in the 1̂ direction do not need to be changed since we can gradually reducing the order of the solver
from 16th to 2nd order in the last 16 cells to match the boundary condition.

When the finite difference operators are modified, then the charge conserving current deposit
must also be appropriately modified. We first deposit the current using the second order accurate
charge conserving current deposit [27] in OSIRIS. The current is then Fourier transformed on each
local partition, and then corrected, and filtered; it is then transformed back to real space for use
in the field solver. The use of a current deposit that satisfies the continuity equation for the higher
order divergence operator is necessary such that Gauss’ Law remains satisfied at each time step.
We show that making such correction to the current will expand the range of cells over which the
current for a particle is increased. Theoretically, a delta function for the current will extend to the
entire simulation domain. However, the current falls below the double precision roundoff within
a finite number of cells. Therefore, the current from a single particle is effectively localized. This
permits using FFTs and the current correction and filtering for only the data on each parallel
partition if the number of guard cells is properly chosen.

We have shown how the customized solver, together with its NCI elimination scheme, can
systematically eliminate the NCI in a single drifting plasma. We have also shown how this scheme
can be applied to relativistic shock simulation, with excellent NCI elimination achieved without
sacrificing the parallel scalability of an FDTD EM-PIC code for problems with disproportionate
number of cells in one direction. We have also shown the usefulness of the proposed high-order
solver combined with local FFTs by conducting full 3D LWFA simulations in a Lorentz boosted
frame.

Acknowledgments

This work was supported by US DOE under grants de-sc0014260, de-sc0008316, de-sc0010064,
and by the US National Science Foundation under grant ACI 1339893, OCI 1036224, 1500630, and
by NSFC 11425521, 11535006, 11175102, 11375006, and Tsinghua University Initiative Scientific
Research Program. Simulations were carried out on the UCLA Hoffman2 and Dawson2 Clusters,
and on Edison Cluster of the National Energy Research Scientific Computing Center, and on Blue
Waters cluster at National Center for Supercomputing Applications at UIUC.

20

http://arxiv.org/abs/de-sc/0014260
http://arxiv.org/abs/de-sc/0008316
http://arxiv.org/abs/de-sc/0010064


Appendix A. 2D Numerical dispersion for relativistically drifting plasma and NCI
analytical expression in customized solver

According to Ref. [5, 6], the numerical dispersion for the hybrid solver can be expressed as(
(ω′ − k′1v0)2 −

ω2
p

γ3
(−1)µ

Sj1SE1ω
′

[ω]

)
×(

[ω]2 − [k]E1[k]B1 − [k]E2[k]B2 −
ω2
p

γ
(−1)µ

Sj2(SE2[ω]− SB3[k]E1v0)

ω′ − k′1v0

)
+ C = 0 (A.1)

where C is a coupling term in the dispersion relation

C =
ω2
p

γ

(−1)µ

[ω]

{
Sj1SE1ω

′[k]E2[k]B2(v2
0 − 1) + Sj2SE2[k]E2[k]B2(ω′ − k′1v0)

+ Sj1[k]E2(SE2[k]B1k2v0 − SB3k2v
2
0[ω])

}
(A.2)

and for the customized solver discussed in this paper, [k]E1 = [k]B1 = [k1]p∗, where [k1]p∗ is defined
in Eq. (12), and

[k]E2 = [k]B2 =
sin(k2∆x2/2)

∆x2/2
(A.3)

We can expand ω′ around the beam resonance ω′ = k′1v0 in Eq. (A.1), and write ω′ = k′1v0+δω′,
where δω′ is a small term. This leads to a cubic equation for δω′ (see [6] for the detailed derivation),

A2δω
′3 +B2δω

′2 + C2δω
′ +D2 = 0 (A.4)

where

A2 =2ξ3
0ξ1

B2 =ξ2
0

{
ξ2

0 − [k]E1[k]B1 − [k]E2[k]B2 −
ω2
p

γ
(−1)µSj2(SE2ξ1 − ζ1S

′
B3[k]E1)

}
C2 =

ω2
p

γ
(−1)µ

{
ξ2

0Sj2(ζ0S
′
B3[k]E1 − SE2ξ0)− ξ1Sj1[k]E2k2SE2[k]B1

+ ξ0[k]E2(Sj2SE2[k]B2 − Sj1k2ζ1S
′
B3ξ0)

}
D2 =

ω2
p

γ
(−1)µξ0[k]E2k2Sj1

(
SE2[k]B1 − ζ0S

′
B3ξ0

)
(A.5)

where

ξ0 =
sin(k̃1∆t/2)

∆t/2
ξ1 = cos(k̃1∆t/2)

ζ0 = cos(k̃1∆t/2) ζ1 = − sin(k̃1∆t/2)∆t/2

k̃1 = k1 + ν1kg1 − µωg (A.6)
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We use

sl,i =

(
sin(ki∆xi/2)

∆xi/2

)l+1

(A.7)

as well as use the corresponding interpolation functions for the EM fields used to push the particles

SE1 = sl,1sl,2sl,3(−1)ν1 SE2 = sl,1sl,2sl,3 SE3 = sl,1sl,2sl,3

SB1 = sl,1sl,2sl,3 SB2 = sl,1sl,2sl,3(−1)ν1 SB3 = sl,1sl,2sl,3(−1)ν1 (A.8)

when using the momentum conserving field interpolation. The (−1)ν1 term is due to the half-grid
offsets of these quantities in the 1̂ direction. With respect to the current interpolation,

Sj1 = sl−1,1sl,2sl,3(−1)ν1 Sj2 = sl,1sl−1,2sl,3 Sj3 = sl,1sl,2sl−1,3 (A.9)

We note that we use expressions for charge conserving current deposition scheme that are strictly
true in the limit of vanishing time step ∆t→ 0. The coefficients A2 to D2 are real, and completely
determined by k1 and k2. By solving Eq. (A.4) one can rapidly scan the NCI modes for a particular
set of (µ, ν1) for the customized solver.
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