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Abstract Cognition in animals is produced by the self-

organized activity of mutually entrained body and brain.

Given that stigmergy plays a major role in self-org-

anization of societies, we identify stigmergic behavior

in cognitive systems, as a common mechanism ranging

from brain activity to social systems. We analyse natu-

ral societies and artificial systems exploiting stigmergy

to produce cognition. Several authors have identified

the importance of stigmergy in the behavior and cogni-

tion of social systems. However, the perspective of stig-

mergy playing a central role in brain activity is novel, to

the best of our knowledge. We present several evidences

of such processes in the brain and discuss their impor-

tance in the formation of cognition. With this we try

to motivate further research on stigmergy as a relevant

component for intelligent systems.
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1 Introduction

Swarm models are one of the most recent approaches

to cognition. They naturally map the cognitive capabil-

ities of animal collectives such as termites as studied by

Turner (2011b), and they can also support individual

cognition, as shown in a realisation on mobile robots by

Santana and Correia (2010). In the former case we are

in presence of cognition of the colony, which is situated

at a larger scale, when compared to that of each indi-

vidual. In the latter case the swarm model forms the

perception of cognitive concepts by a single agent, the

robot controller, which is external to the swarm.

Common to both cases above is the collective im-

pinging on the individuals’ behavior and a strong em-

bodiment in the sense of the interaction of the individ-
uals with their environment. In fact, this bidirectional

influence is such an important feature that it is associ-

ated to the definition of cognition in general by Bitbol

and Luisi (2004).

Swarm models of cognition based on a particular

form of interaction with the environment that allows in-

direct communication between individuals is also com-

mon. It is denominated stigmergy (Theraulaz and Bo-

nabeau, 1999). In short, each action of an individual,

as a result of his perception of the environment, will

change that environment, which will result in a differ-

ent subsequent perception, in a process that repeats for

each and every individual.

The work of Trianni et al (2011) presents a clear case

for swarm cognition as a unifying model ranging from

the formation of individual cognition to the cognitive

capabilities of human and other animal societies. How-

ever the concept of stigmergy is not even mentioned in

such article. In this paper we focus on the generality

of stigmergy for cognition, ranging from social systems
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to the brain activity. While the former are usually as-

sociated to and given as examples of stigmergy, brain

activity has not been analysed in such a perspective.

Doing so we believe it may provide new insights to the

cognitive processes and we motivate further research on

this subject.

The next section presents a working definition of

stigmergy and a brief analysis of its properties. In sec-

tion 3 we review a variety of natural collective systems

and the way they use stigmergy to support their so-

cial cognitive capabilities. Section 4 presents significant

work using this concept to produce cognitive knowledge

in artificial devices, namely robots. In section 5 we anal-

yse expressions of stigmergy within an individual, with

special concern to the neuronal system. A concluding

section follows stressing the key points of this work.

2 The ubiquitousness of stigmergy

The term stigmergy was coined by Grassé (1959) while

studying the nest building behavior of termites. Cur-

rently, the concept extends to a variety of human soci-

ety activities, from those as involuntary as trail forma-

tion to the ones as goal directed as scientific research

(Parunak, 2005). According to Heylighen (2016a), its

definition can be expressed as follows:

stigmergy is an indirect, mediated mechanism of

coordination between actions, in which the trace

of an action left on a medium stimulates the per-

formance of a subsequent action.

The understanding is that any action is not a func-

tional entity but rather something produced by an agent.

In this case, agent is a term we use as a generic desig-

nation for the different types of active individuals that

form some collective (cells, ants, humans, ...).

A couple of notes are relevant at this point. To avoid

blurring definitions we may not consider direct interac-

tions to contribute to the stigmergic quality of a system.

The second aspect is related to the type of medium.

The usual assumption is that the medium is passive,

meaning that it does not modify the traces. However

this has to be taken in a loose way, meaning that the

changes in the traces when left to themselves are at a

slower scale than that of the changes made by the in-

dividuals leaving the traces. But once we consider that

the medium has some effect over the traces the door

is open for dynamic media, which in the extreme may

be constituted by a population of other type of agents1.

Without going to extremes we consider the medium and

1 Werfel (2006) uses the term extended stigmergy to desig-
nate such cases.

the traces to be minimally active in the sense that the

traces dissipate with time if not renewed. Actually this

is enough to produce the dynamics that stigmergy nec-

essarily carries.

In a series of two articles Heylighen (2016a) and

(Heylighen, 2016b) reviews a variety of cases and anal-

yses this mechanism in detail. It is ubiquitous with ma-

terializations ranging from physics and chemical reac-

tions to human organizations. A relevant aspect is the

self-organized quality of the systems where stigmergy

exists. Not all self-organized systems need stigmergy.

However, all stigmergic systems are self-organized.

Although stigmergy may be exploited by single in-

dividuals, it is mostly considered in collective systems,

with many individuals. The traces left in the medium

may be interpreted as a form of collective memory,

with varying persistence. In computer science terms,

traces can be considered as global variables, that can

be read and updated (in small changes) by each indi-

vidual2. Such memory, external to the individuals, can

support from simple decisions as in slime mould nav-

igation (Reid et al, 2012), to more complex forms of

human organizations (Marsden, 2013).

Surprisingly we do not find any reference to the di-

verse stigmergic processes in the brain that ultimately

support cognitive capabilities. Heylighen (2007) asso-

ciates quantitative stigmergy to the Hebbian type of

learning (Haykin, 2007) that models synaptic connec-

tions strength in the brain, and qualitative stigmergy3

to working memory and external traces. However, these

are not the only stigmergic processes in the brain, and

are possibly not the most representative ones. In our

opinion these are not typical stigmergic processes since

the communication involved in the learning process is

direct among the cells and not through a medium. As

we have previously noted, direct communication may

not qualify a system as stigmergic.

In all the reviewed literature about stigmergy the

focus is on the social interaction of autonomous indi-

viduals, be them unicellular organisms or humans. The

way individuals communicate, self-regulate, and pro-

duce new knowledge by means of an external medium

is the common object of study. However, stigmergic pro-

cesses exist also internally among the cells of any sin-

gle individual. According to Theraulaz and Bonabeau

(1999), Herbert Spencer in the 19th century considered

that any society is an organism. Here we are defend-

2 Traces left on their own are subject to environmental
degradation and will eventually fade out.
3 “Quantitative” describes changes in existing representa-

tions and “qualitative” describes creation of new representa-
tions.
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ing its converse: any organism is a society4. In doing

so we look at some of the stigmergic processes going on

within an individual contributing to the homeostasis of

the subject. We are particularly interested in this type

of interaction within the brain, namely in the contribu-

tion for the cognitive capabilities of the individual. In

fact, we argue that stigmergic processes are fundamen-

tal to form the cognitive capabilities of an intelligent

individual.

3 Swarm Cognition in Nature

Stigmergy is ubiquitous in insect societies, often re-

alised via pheromone-based interactions. For instance,

by exploiting pheromone-based local interactions, army

ants are able to forage large areas around their nest in

a parallel and robust way (Deneubourg et al, 1989).

The coordinated operation of the ant colony as a whole

and its ability to robustly cope with the environmen-

tal context have lead researchers to consider the colony

as exhibiting a sort of collective intelligence (Franks,

1989), as if the whole colony was a superorganism. Re-

cently, this connection between swarm behaviour and

cognition has been studied more deeply under the to-

ken of swarm cognition (please refer to Trianni et al

(2011) for a survey).

When foraging, ants deposit pheromones along sev-

eral concurrent trails with the purpose of recruiting

more ants towards the most promising foraging sites.

The competition that emerges between pheromone trails

resembles the lateral inhibition that one can easily find

between neural circuits, key for spatially selective visual

attention tasks (Couzin, 2009). Ants maintain several
trails as a way of concurrently explore/exploit differ-

ent regions of their environment, which mapped to hu-

man cognition should suggest that humans could main-

tain concurrent attention between competing stimuli.

As pointed out by Santana and Correia (2010), this

is in accordance to the multiple covert attention hy-

pothesis in humans (Pylyshyn and Storm, 1988) and

(Doran et al, 2009), which states that we are able to

perform concurrent search for multiple objects in our

visual field.

The decision between which trail to follow requires

ant-level decision-making. Colony-level decision-making

emerges as a result of these local decisions (positive

feedback) and pheromone evaporation (negative feed-

back). The interplay between these two major factors

imposes a speed-accuracy trade-off (Couzin, 2009), whose

4 Minsky (1988) proposed the idea of the mind as result-
ing from a set of agents working together in a kind of soci-
ety, although without taking into account self-organization or
stigmergy.

neural basis in humans have been already studied by

van Veen et al (2008). Selecting among several options

under noisy observations and considerable time pres-

sure is what ants and honeybees often face when picking

a new location for their nests, amongst several candi-

date locations. In short, scouts search the environment

for putative new locations for their nests, whose locally

assessed quality is used to recruit more or less scouts

to each location. As a result, more promising locations

are visited more often by more individuals than less

promising locations. In a way, the swarm is deploying

its ”attention” selectively across the swarm’s ”field of

view” while maintaining a short-term group memory

(Passino et al, 2008). Eventually a threshold is reached

and the colony migrates to the selected location, imple-

menting a winner-take-all process resembling the ones

found in neural systems (Passino et al, 2008). Interest-

ingly, there is evidence that this is a statistically opti-

mal collective decision-making process, very similar to

what happens in primate brains, via direct competition

between evidence-accumulating populations (Marshall

et al, 2009).

Although not always obvious, but there is a continu-

ous effort for mapping the physical elements of swarms

and neural structures found in human brain. The pher-

omone deployed by ants during their foraging activities

can be though as a distributed memory. As pointed out

by Couzin (2009), short-term and long-term memories

are implemented by ant colonies via the use of multiple

pheromones with different evaporation rates. Couzin

(2009) also maps the strengthening of frequently used

trails to Hebbian reinforcement of active neuronal path-

ways through long-term potentiation and highlights sev-

eral striking similarities between ant colonies and neu-

ral networks as parallel information-processing systems.

In a similar context, although not involving stigmergic

behaviour, Passino et al (2008) go a step further and

refer to neurons as the analogous of bees in swarm cog-

nition and to action potential as the analogous of the

bee’s dancing strength when recruiting other bees in

the nest.

Until now we have discussed stigmergy as the means

for self-organised information processing in a cognitive

system. Stigmery allows swarm individuals to coordi-

nate their activity to create a sort of collective mental

representations of the environment. The pattern of for-

aging pheromone trails deposited by an colony can be

thought as representing the distribution of food sources

and their relative quality. This distributed representa-

tion is then used by the colony individuals to deter-

mine their actions, the same way humans reason on

top of world representations built from sensory feed-

back. However, a truly cognitive system is not only
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able to produce environment representations through

self-organised information processing of sensory input,

it must also be able to develop these information pro-

cessing structures from the bottom-up. Interestingly, as

we will see, there is evidence that social insects are able

to produce such structures, meaning that they can also

help us understanding how developmental processes can

be self-organised in a cognitive system. In particular,

Turner (2011a) describes the mounds built and main-

tained by termites through stigmergic processes as so-

phisticated filtering devices, whose function is similar

to the one of the optical structures of the eye. How-

ever, rather than producing two-dimensional images as

an eye would, a kind of three-dimensional map of tur-

bulent air perturbations is produced by these mounds.

This filtering process enables respiratory gas exchange

in the termite colony and drives the mound construc-

tion and repair processes. In this case, stigmergy works

as the engine for self-organised development of percep-

tual structures key for the cognitive system to be able

to interact with the environment.

As we have seen, social insects, greatly thanks to

stigmergy, are able to robustly entrain their activity

with the one of the environment, thus behaving adap-

tively. However, despite the sheer complexity exhibited

by these social insects, we can hardly state that their

collective cognitive capabilities match the ones of higher

order animals. This is particularly true if the compar-

ison is done against humans, whose presumably open-

ended learning capabilities still far surpass our com-

prehension. Therefore, we must find traces of learn-

ing capabilities in social insects if the analogy between

swarm cognition and human cognition is to endure.

Leadbeater and Chittka (2007) survey several studies

indicating cases of insects, including ants, provided with

a remarkable repertoire of social learning capabilities.

Some of these studies also suggest the presence of min-

imal culture among some social insects, in the sense

that learned knowledge is transferred across genera-

tions. The insights obtained from observing the plas-

ticity present in social insects and how it affects the

global behaviour exhibited at the colony level can help

us understand how we are able to self-organise high-

level concepts from low-level associatively learnt frag-

ments.

4 Artificial Swarm Cognition

Swarm cognition exhibited by social insects has inspired

the development of artificial life systems exploiting such

property (please refer to Trianni et al (2011) for a sur-

vey). Despite their value for practical robotic appli-

cations (e.g., (Santana and Correia, 2010) and (San-

tana and Correia, 2011)), these systems allow the study

of cognition by building it, in line with the synthetic

approach to embodied cognition (Pfeifer and Scheier,

2001) and (Pfeifer and Bongard, 2006) and artificial

life (Bedau, 2003).

Swarm intelligence (Bonabeau et al, 1999) is a field

of artificial intelligence that exploits the remarkable

heuristics exploited by social insects to develop power-

ful general-purpose optimisation and search meta-heuris-

tics. Swarm robotics (Brambilla et al, 2013) is a re-

lated field that borrows the self-organising properties

exhibited by the social insects to build robust multi-

robot coordination strategies. Swarm intelligence meta-

heuristics, most often related to the stigmeric behaviour

exhibited by army ants, have been employed for the de-

velopment of computer vision systems (Poli and Valli,

1993; Owechko and Medasani, 2005; Mobahi et al, 2006;

Broggi and Cattani, 2006; Zhang et al, 2008; Santana

et al, 2013). These systems are, to a large extent, stand-

alone engineered parallel perceptual solutions, lacking

an interaction with action selection and mapping pro-

cesses. This deficit undermines the system’s explanation

power regarding the mechanisms actually building up

cognitive behavior.

To close the gap between swarm cognition and indi-

vidual cognitive behaviour, Santana and Correia San-

tana and Correia (2010) and (Santana and Correia,

2011) studied how the stigmergic behaviour displayed

by foraging army ants could be employed to imple-

ment robot behaviour in natural environments. The

study encompassed the development of a control sys-

tem composed of a set of simple virtual agents inhabit-

ing the robot’s visual input, called p-ants. Similarly to

real ants, which need to collectively forage their envi-

ronment for food (Deneubourg et al, 1989), p-ants im-

plement multiple local covert visual attention (Pylyshyn

and Storm, 1988) and (Doran et al, 2009) loops de-

ployed to search the robot’s visual field for obstacles.

Global spatio-temporal coherence of the visual search

task is ensured by the swarm’s self-organized collective

behaviour emerging from stigmergic interactions medi-

ated by virtual pheromones. Experiments showed the

ability of the system to robustly control an off-road

robot equipped with a stereoscopic vision sensor in a

local navigation task with less than 1% of the robot’s

visual input being analysed.

In line with the active vision approach (Bajcsy, 1988),

(Ballard, 1991) and (Sporns and Lungarella, 2006), p-

ants are modulated by the robot’s action selection pro-

cess in order to deploy visual attention in a by-need

basis. Modulation is done by recruiting more p-ants to

the regions of the robot’s visual field where the presence

of obstacles is expected to produce the most impact on
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the action selection process. For instance, if, due to task

constraints or current knowledge about the world state,

the action selection process outputs a right turn, visual

attention increases preference for the right-hand side

of the robot’s visual field. This preference is set under

the rational that an obstacle detected on the left-hand

side would have lesser impact on the unfolding of both

action selection process and actual robot motion. With

the goal of better covering and tracking obstacles, p-

ants are also recruited when new obstacles are found.

Hence, the number of recruited of recruited p-ants is a

function of the action selection (task) needs and com-

plexity of the environment (obstacles distribution).

The swarm-based visual attention system is in fact

performing a biased parallel stochastic sampling of the

environment. The biases come in the form of a mod-

ulatory signal provided by the action selection process

and of virtual pheromone laid down by p-ants for their

coordination. This parallel stochastic sampling proce-

dure enables a progressive parallel allocation of compu-

tational resources whose distribution density approxi-

mates the obstacles distribution in the visual field and

action selection demands. The speed-accuracy trade-off

is naturally handled by controlling the rate of p-ants

being recruited into the robot’s visual field and virtual

pheromone properties (e.g., evaporation rate). As the

analysis is progressively improved in parallel, the sys-

tem is able to deliver good-enough results upon request,

which is key to handle dynamic environments and tasks.

The system maintains spatial memories that can

be said to be simultaneously implicit, active, paral-

lel, and sparse. Short-term memory is implicitly rep-

resented by the virtual pheromone deployed by p-ants

when searching for obstacles in a coordinated way. As

the robot moves, p-ants actively track obstacles to re-

duce re-detection time. Eventually, p-ants move outside

the robot’s field of view, being their position updated

according to robot’s ego-motion estimates. In the lat-

ter case, p-ants become long-term sparse active spatial

memories of the local environment. When the same en-

vironment is revisited, these p-ants (memory elements)

become active in the robot’s visual field of view, resum-

ing their usual operation.

Control systems inspired by the swarm cognition ex-

hibited by social insects imply the use of agent-based

design. Each agent is modelled according to the known

rules of their natural counterparts and adapted to meet

a set of engineering requirements. Neuro-evolution (Flo-

reano et al, 2008) can be employed to aid the system

designer in this process, in particular when it is not

obvious how to implement agents that, when put to-

gether, should produce the desired global behaviour.

In this case, neuro-evolution operates on a small pa-

rameter space, the one of the agent. The small size of

the parameter space owes to the fact that the system’s

global behaviour is an emergent property, requiring no

explicit coding. Conversely, if neuro-evolution would to

operate on a monolithic system, then both local and

global behavior would have to be taken care simultane-

ously and explicitly, resulting on a much larger param-

eter space. Hence, we argue that an agent-based design,

promoted by the swarm cognition framework, tends to

foster tractability and scalability of the control sys-

tem. Moreover, the computational models being already

parallel by design, match directly with computational

parallel architectures (e.g., GPU). Remarkable results

along this line of work have been recently obtained in

the application of Particle Swarm Optimisation (PSO)

(Kennedy, 2011), a well known meta-heuristic inspired

by animal collective behaviour, with GPU-based pose

estimation and tracking of human hands using the Kinect

sensor (Oikonomidis et al, 2011).

Santana and Correia (2010) proposed that, rather

than static structures, as neurons are, these swarm indi-

viduals (agents) are better viewed as active information

particles that flow through the cognitive system. This

agent-based abstraction allows us to map swarm cogni-

tion concepts to human cognition by focusing more on

the cognitive processes than on their supporting sub-

strate. In line with research in active perception (Ba-

jcsy, 1988), (Ballard, 1991) and (Sporns and Lungarella,

2006), being sensorimotor coordinated units, these in-

formation particles can use their sensorimotor history

to induce long-range influences on other information

particles, actively select and shape their sensory input

to increase pose invariance, signal-to-noise ratio, and

discriminative power. When together, these modular

units can exploit the synergy of self-organisation and

emergent properties, in line with the dynamical systems

approach to human cognition (Beer, 1995) and (Thelen

and Smith, 1996). Bearing these properties in mind,

Santana et al (2013) proposed an hybrid neural-swarm

perceptual cognitive model, in which neural-based lay-

ers are exploited to realise low-level processing of the

agent’s sensory input, as it demands mostly for mas-

sively parallel, dense, local, and isotropic spatio-temporal

processing, whereas a stigmergic swarm-based layer is

exploited for higher-level perceptual reasoning, as it de-

mands for sparse, global, and anisotropic spatio-temporal

processing. We think that an agent-based modelling

of human cognition (Minsky, 1988), (Chialvo and Mil-

lonas, 1995) and (Santana and Correia, 2010) facilitates

the cross-fertilisation between the study of collective

and individual cognition through a common currency:

stigmergy.
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5 Stigmergy within the living organism

In this section we look into studies highlighting stig-

mergic processes that occur internally to living organ-

isms. As previously mentioned a living organism may be

considered as a self-organized society of systems, which

are themselves self-organized collectives of cells, not to

mention that the cell itself may be analysed in that per-

spective as Tabony (2006) does regarding microtubules.

Besides this reference the term stigmergy is not used

in any publication to qualify intra-organism coordina-

tion, although it was once used by Merks (2013) in

a seminar presentation. Heylighen (2015) briefly men-

tions communication of internal organs through hor-

mones in the bloodstream, however this is presented

as the possibility of an individual using an internal

medium in addition to the external medium in a stig-

mergic process of social organization.

In that work, the organism of a living being is not

considered as a collective of agents that self-organize

using stigmergy as one of the resources. However, we

find different cases of self-organization internal to an

organism where stigmergy plays an important role. For

instance, stem cells reside in a specific environment

denominated niche in which the extracellular matrix

(ECM) both influences stem cell behavior and is influ-

enced by it (Gattazzo et al, 2014) and (Merks, 2015).

This is clearly a form of stigmergy. The interaction

of cell membranes with other cells through the chemi-

cal media is another example (Schmick and Bastiaens,

2014).

In this work our main focus is to show the impor-

tance of stigmergy in the brain and neural cells in gen-

eral, and the way it may play a fundamental role in

the formation of cognition. The remaining of this sec-

tion describes the main neuronal chemical and electrical

stigmergic processes.

5.1 Stigmergy in the brain

Neurotransmitters and Neuromodulators

Stigmergy being a coordination mechanism, in which

an action left in a medium stimulates the performance

of a subsequent action, it becomes evident that it en-

compasses the mechanisms of neuronal control. Thus, if

the process of neuronal activity is taken as the action,

the coordinated mechanism through which this action

is controlled by substances (traces) that are released to

the extracellular space (medium) to control subsequent

neuronal activity (subsequent action), is tantamount to

stigmergy.

Neuronal firing leads to the release of neurotrans-

mitters, which are the molecules that are engaged in the

transfer of information from one neuron to the next one

in the network. Neuromodulators are molecules that are

released together with the neurotransmitters, or as a

consequence of neurotransmitter action. The function

of the neuromodulators is to control the release of the

neurotransmitters or their action, and in such a way,

fine-tune neuronal activity. Neuromodulators can be re-

leased from the neurons or from nearby cells, as glial

cells. There are several types of glial cells, with differ-

ent functions in the nervous system, but all of them

control neuronal activity and do so through the action

of substances released into the extracellular space, this

release being influenced by neuronal activity (Araque

et al, 2014) and (Bezzi and Volterra, 2001). The differ-

ent subtypes of glial cells include astrocytes, oligoden-

drocytes and microglia.

The understanding that a process from an astrocyte

can wrap the nerve terminal and the postsynaptic zone

to control synaptic activity gave rise, by the turn of the

millennium (Araque et al, 1999) to the concept of tri-

partite synapse. Astrocytes respond to the neurotrans-

mitters and neuromodulators released from neurons by

releasing other neuromodulators that then act back into

the pre- or the post-synaptic neuron, modulating their

activity. Astrocytes themselves, once activated, change

the activity of nearby astrocytes, which in turn can af-

fect the activity of more distant neurons.

Microglia are another class of glial cells that also re-

spond to neuronal activity and influence it (Erny et al,

2016), (Pierre et al, 2016) and (Ransohoff, 2016). They

have predominantly a neuroimmune role, that is to say

surveillance functions, they send alarm signals in case

of neuronal injury or infection, and react helping to

correct those dysfunctions, though in some cases, by

overreacting may act as an aggravating factor. Dys-

functional neuroinflammation is one of a consequence

of such overreaction.

Oligodendrocytes constitute a third class of glial

cells, which crucially affect neuronal activity. They are

responsible for the formation of myelin, which speeds

the velocity of communication between distant parts

of a neuron, thus speeding up information flow in the

network, which may impact in network synchroniza-

tion and thus into complex information processing tasks

that involve coupling and synchrony among different

brain rhythms (Pajevic et al, 2014). Interestingly, neu-

ronal activity enhances the formation of myelin by oligo-

dendrocytes (Fields, 2015) and does so through molecules

that are released by neurons during neuronal activity,

which act in oligodendrocytes to enhance their ability
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to myelinate specific areas of the neuron. Again, this

can be considered as an example of stigmergy.

All the mechanisms identified above, involve the re-

lease of neuromodulators by neurons or glial cells, which

then act in the neurons (and in glia cells) to modify

their biological activity, including the neuronal firing

properties as well as the amount of neurotransmitter re-

leased, or the efficiency of the action of the neurotrans-

mitter at the postsynaptic neuron, or even the time

the neurotransmitter stays at the synapse, that is to

say, its reuptake by neurons or glial cells. Frequently,

if not always, neuromodulators are released as a func-

tion of neuronal activity. Some neuromodulators act as

negative-feedback traces, contributing to keep the gain

of the network at a relatively constant level, some oth-

ers act as positive feedback traces, reinforcing neuronal

activity under high neuronal output conditions, thus

subserving processes of activity induced synaptic rein-

forcement. A common characteristic of the neuromodu-

lators is that they act at short distances, affecting neu-

rons and synapses located close (i.e., a few cells apart)

to their release sites. Their action occurs within a time

frame of milliseconds to seconds. A well known exam-

ple of neuromodulador is adenosine (Dias et al, 2013),

(Sebastião and Ribeiro, 2015) and (Rombo et al, 2016),

whose membrane receptors are the targets of caffeine

(Ribeiro and Sebastião, 2010). Other well known exam-

ples are endocannabinoids (Katona and Freund, 2012),

whose membrane receptors are the targets of cannabis

(Solymosi and Köfalvi, 2016).

Other group of modulators of neuronal activity are

the neurohormones.5 This is the case of the hormones

released at the level of the hypothalamus that travel a

short distance to affect the activity of the hypophysis,

an endocrine gland that in turn releases other hormones

into the circulation that, by travelling throughout the

body, affect in turn the release of other hormones by

target organs that entering into circulation feedback to

influence neuronal activity. This is the case of sex hor-

mones, stress hormones, among others. In contrast to

neuromodulators, the action of hormones is long lasting

either in space or in time. In common to neuromodu-

lators, they can be regarded as traces that act through

the medium to affect the activity of an agent that con-

tributed to their action, and thus they also operate

stigmergy. This happens also at a macroscopic scale:

“It also has been demonstrated that hormones may af-

fect behavior and in turn may be affected by emotions”

(Emerson, 1968).6

5 see for instance (Garcia-Segura and Nicola, 2011) for a
series of articles on the activity of several hormones in the
brain.
6 a slightly updated version of (Emerson, 1954).

Electrical signals

At a smaller timescale than that of neurotransmitters

and neuromodulators we find stigmergy supported by

electric signals. It is not the direct electrical connection

among neurons that supports it, but a global, at the

space scale of the whole brain, communication through

propagating electrical waves (Schnitzler and Gross, 2005)

and (Buzsáki and Schomburg, 2015). Fries (2005) names

this process as “neuronal communication through neu-

ronal coherence”.

Neuronal groups oscillations influence the instant

of single neuron spike output, and therefore this pro-

cess can be seen as an indirect communication among

neurons. In particular synchronisation seems to benefit

communication among groups of neurons, which is spe-

cially evident in oscillatory signals. This is a clear case

of stigmergy. Individual neuron spikes synchronize in a

group of neurons producing a “global” signal (detected

by EEC) which, in turn, influences other neurons. The

persistence of the signal can be associated with the

duration of the periodic signal (wave). The possibility

of gamma synchrony being correlated to consciousness

(Brancucci, 2012) also substantiates the idea that stig-

mergy at neuronal level is a support for the formation

of cognition.

6 Conclusion

The emergence of collective cognition is ascribed to stig-

mergic processes in a variety of societies. The fact that

this phenomenon is found within individuals, namely

in the neural system, has been highlighted for the first

time in this article. We have described several concur-

rent stigmergic processes in the body and in particular

in the brain, which play a significant role for the for-

mation of cognition of the individual. As a matter of

fact, stigmergy can be seen as a unifying concept of

intra-individual emergence of mental states, and inter-

individual emergence of culture.

In swarm cognition, an agent, either a living being

or a neuron, does not know to the complete state of the

system. It may have access to global variables, repre-

senting part of the state, but it can not get the states

of all other similar agents. Stigmergy seems to be a

very adequate way to bridge local and global spatio-

temporal patterns that form cognitive concepts. Like

cognition, it is a self-organized process. However, stig-

mergy is a particular form of self-organization and there-

fore it provides a simplified process to the cognitive

functions it supports.

In section 4 we have described some of the first

models making use of stigmergy in cognitive functions
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of artificial devices. The main advantages of such ap-

proaches are the implementation of active and sparse

spacial memories, the robustness, specially evident in a

good speed-accuracy trade-off, and a common currency

to study cognition across scales, from the individual to

the society.

With this work we hope to motivate for further re-

search in artificial intelligence exploring the formation

of cognition, inspired in the variety of stimergic pro-

cesses in the brain, described in section 5. Several as-

pects are yet to be studied, such as the extent of cog-

nitive processes that need a significant support by stig-

mergy, or the relation of global variables to specific cog-

nitive concepts, or the articulation between direct and

indirect (stigmergic) communication. Altogether, in the

study of a concept as complex as cognition it seems un-

wise to overlook such an amount of evidence showing

that stigmergy necessarily plays a relevant role in it.
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Kovacs T, Franks NR (2009) On optimal decision-

making in brains and social insect colonies. Journal

of the Royal Society Interface 6(40):1065–1074

Merks R (2013) Stigmergy in blood vessel growth: how

indirect mechanical and chemical signaling, via the

extra-cellular matrix, can coordinate collective cell

behavior, systems Biology Seminar Talk, University

of Stuttgart

Merks RM (2015) Cell-based modeling of cell-matrix

interactions in angiogenesis. In: ITM Web of Confer-

ences, EDP Sciences, vol 5

Minsky M (1988) The society of mind. Simon & Schus-

ter, New York

Mobahi H, Ahmadabadi MN, Araabi BN (2006) Swarm

contours: A fast self-organization approach for snake

initialization. Complexity 12(1):41–52

Oikonomidis I, Kyriazis N, Argyros AA (2011) Efficient

model-based 3d tracking of hand articulations using

kinect. In: Proc. of the British Machine Vision Con-

ference (BMVC), vol 1, pp 1–11

Owechko Y, Medasani S (2005) A swarm-based voli-

tion/attention framework for object recognition. In:

Proceedings of the IEEE Computer Vision and Pat-

tern Recognition Workshop (CVPRW), IEEE, San

Diego, vol 3, pp 91–98

Pajevic S, Basser P, Fields R (2014) Role of myelin

plasticity in oscillations and synchrony of neuronal

activity. Neuroscience 276:135–147

Parunak HVD (2005) A survey of environments and

mechanisms for human-human stigmergy. In: Inter-

national Workshop on Environments for Multi-Agent

Systems, Springer, pp 163–186

Passino KM, Seeley TD, Visscher PK (2008) Swarm

cognition in honey bees. Behavioral Ecology and So-

ciobiology 62(3):401–414

Pfeifer R, Bongard J (2006) How the body shapes the

way we think: a new view of intelligence. MIT press

Pfeifer R, Scheier C (2001) Understanding intelligence.

MIT press

Pierre W, Smith P, I L, Chemtob S, Mallard C, Lody-

gensky G (2016) Neonatal microglia: The cornerstone

of brain fate. Brain Behav Immun Epub Sep 3

Poli R, Valli G (1993) Neural inhabitants of MR and

echo images segment cardiac structures. In: Proceed-

ings of the Computers in Cardiology, IEEE Computer

Science Society, London, pp 193–196

Pylyshyn ZW, Storm RW (1988) Tracking multiple in-

dependent targets: evidence for a parallel tracking

mechanism. Spatial Vision 3(3):179

Ransohoff R (2016) How neuroinflammation con-

tributes to neurodegeneration. Science 353(777–783)

Reid CR, Latty T, Dussutour A, Beekman M (2012)

Slime mold uses an externalized spatial “memory”

to navigate in complex environments. Proceedings of

the National Academy of Sciences 109(43):17,490–

17,494

Ribeiro J, Sebastião A (2010) Caffeine and adenosine.

J Alzheimers Dis 20:S3–S15

Rombo D, Ribeiro J, Sebastião A (2016) Hippocampal

GABAergic transmission: a new target for adenosine

control of excitability. J Neurochem Epub Oct 25

Santana P, Correia L (2010) A swarm cognition realiza-

tion of attention, action selection, and spatial mem-

ory. Adaptive Behavior 18(5):428–447

Santana P, Correia L (2011) Swarm cognition on off-

road autonomous robots. Swarm Intelligence 5(1):45–

72

Santana P, Mendonça R, Correia L, Barata J (2013)

Neural-swarm visual saliency for path following. Ap-

plied Soft Computing 13(6):3021–3032

Schmick M, Bastiaens PI (2014) The interdependence

of membrane shape and cellular signal processing.

Cell 156(6):1132–1138

Schnitzler A, Gross J (2005) Normal and pathological

oscillatory communication in the brain. Nature Re-

views Neuroscience 6:285–296
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