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Abstract

When modeling laser wakefield acceleration (LWFA) using the particle-in-cell
(PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativis-
tically at βbc towards the laser, which can lead to a computational speedup
of ∼ γ2b = (1−β2

b )
−1. Meanwhile, when LWFA is modeled in the quasi-3D ge-

ometry in which the electromagnetic fields and current are decomposed into a
limited number of azimuthal harmonics, speedups are achieved by modeling
three dimensional (3D) problems with the computational loads on the order
of two dimensional r−z simulations. Here, we describe a method to combine
the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The
key to the combination is the use of a hybrid Yee-FFT solver in the quasi-
3D geometry that significantly mitigates the Numerical Cerenkov Instability
(NCI) which inevitably arises in a Lorentz boosted frame due to the unphysi-
cal coupling of Langmuir modes and EM modes of the relativistically drifting
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plasma in these simulations. In addition, based on the space-time distribu-
tion of the LWFA data in the lab and boosted frame, we propose to use a
moving window to follow the drifting plasma, instead of following the laser
driver as in the LWFA lab frame simulation, in order to further reduce the
computational loads. We describe the details of how the NCI is mitigated
for the quasi-3D geometry, the setups for simulations which combine the
Lorentz boosted frame, quasi-3D geometry, and the use of a moving window,
and compare the results from these simulations against their corresponding
lab frame cases. Good agreement is obtained among these sample simula-
tions, particularly when there is no self-trapping, which demonstrates it is
possible to combine the Lorentz boosted frame and the quasi-3D algorithms
when modeling LWFA. We also discusse the preliminary speedups achieved
in these sample simulations.

Keywords: PIC simulation, hybrid Maxwell solver, relativistic plasma
drift, numerical Cerenkov instability, quasi-3D algorithm, Lorentz boosted
frame, moving window

1. Introduction

Laser wakefield acceleration (LWFA) [1] offers the potential to construct
compact accelerators that have numerous potential applications, including
the building blocks for a next generation linear collider and the electron
beam source for ultra-compact XFELs. It has thus attracted extensive in-
terest, and the last decade has seen an explosion of experimental results.
Fully nonlinear particle-in-cell (PIC) simulations have been instrumental in
this progress as an aid in designing new experiments, in interpreting experi-
mental results, and in testing new ideas. Furthermore, developing predictive
theoretical models is challenging due to the strong nonlinear effects that are
present in the blowout regime of LWFA [2]; therefore numerical simulations
are also critical in exploring the physics of LWFA. Particle-in-cell simulations
have been extensively applied in LWFA research because the PIC algorithm
follows the self-consistent interactions of particles through the electromag-
netic (EM) fields directly calculated from the full set of Maxwell equations.
When modeling LWFA using the PIC algorithm the laser wavelength needs
to be resolved which is usually on the scale of 1 µm; meanwhile, the length
of the plasma column that the laser propagates through can be on the scale
of 104 to 106 µm. As a result of this disparity in cell size and propagation
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distance, full three-dimensional (3D) PIC simulations of LWFA can be very
CPU-time consuming. To capture the key physics while reducing the compu-
tation time, reduced models are continually being proposed. These include
models that combine the ponderomotive guiding center with full PIC for the
wake [3] or with the quasi-static approach [4, 5]. However, these models can-
not as yet model full pump depletion lengths, and the quasi-static approach
cannot model self-injection.

Recently, two methods have been proposed that can speed up the LWFA
simulation without losing key physics in the modeling of LWFA. One method
is the Lorentz boosted frame technique [6]. In this method the LWFA sim-
ulations are performed in an optimized Lorentz boosted frame with velocity
vb, in which the length of the plasma column is Lorentz contracted, while
the laser wavelength is Lorentz expanded. Assuming the reflection of the
laser light is not important in the lab frame, then in a properly chosen
Lorentz transformed frame the time and space scales to be resolved in a
numerical simulation are minimized, and savings of factors that scales as
γ2b = (1− v2b/c2)−1 can be achieved.

Another method that has been recently proposed is to decompose the EM
fields and current density into a Fourier series in the azimuthal angle φ,

~F (r, z, φ) =Re

{∑
m=0

~Fm(r, z)eimφ
}

=~F 0(r, z) + Re{~F 1} cosφ− Im{~F 1} sinφ

=Re{~F 2} cos(2φ)− Im{~F 2} sin(2φ)

+ . . .

and truncate the expansion at a low m value [7]. This expansion is sub-
stituted into Maxwell’s equations to generate a series of equations for the
complex amplitudes for each harmonic. The harmonics are then summed to
get the total fields. The particles are pushed in 3D Cartesian geometry and
are then used to obtain the complex amplitudes for each harmonic of the
current. This method can reduce the computational costs of modeling 3D
problems with low azimuthal asymmetry to that on the order of 2D r − z
simulations.

It was pointed out in Ref. [9, 10] that it would be intriguing to com-
bine these two methods in order to combine the speedups provided by each.
Similar to full PIC simulations in the Cartesian geometry, it was found that
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in the quasi-3D geometry one of the main obstacles to performing Lorentz
boosted frame simulations is the multi-dimensional Numerical Cerenkov In-
stability (NCI) [11, 12, 13, 14] that inevitably arises due to the unphysical
coupling between Langmuir modes (main and aliasing) and EM modes of
the relativistic drifting plasma in the simulations. The coupling arises in the
Lorentz boosted frame between modes which are purely longitudinal (Lang-
muir modes) and purely transverse (EM modes) in the lab frame. The cou-
pling occurs at specific resonances (ω − 2πµ/∆t) = (kz − 2πνz/∆z)vb where
µ and νz are the time and space aliases and ∆t and ∆z are the time step
and grid size respectively, and ω and kz are the frequency and wave number
in ẑ direction .

While the multi-dimensional NCI theory in Cartesian coordinates has
been well studied (see e.g. [12, 13, 14, 15, 16, 17, 18]), there are currently no
analytical expressions for the numerical dispersion relation of a relativistic
plasma drift in the quasi-3D geometry. However, OSIRIS [22] simulations
have shown that its behavior in the quasi-3D r − z geometry is very similar
to that in the Cartesian geometry. It was therefore recently proposed and
demonstrated that a hybrid Yee-FFT solver could be used to suppress the
NCI in the Cartesian and quasi-3D geometries [18]. In the regular Yee (a
finite difference) solver in a quasi-3D geometry [7, 21], Maxwell equations are
solved in (r, z) space for each azimuthal mode m. In the hybrid Yee-FFT
solver, we perform a (discrete) Fourier transform in the drifting direction of
the plasma (denote as ẑ direction), and solve Maxwell equations in kz space
for each azimuthal mode m; meanwhile, in the r̂ direction the derivatives
are represented as second order finite difference operators on a Yee grid.
The current is corrected to maintain the correctness of Gauss’ Law. When
Maxwell’s equations are solved in this way, the corresponding NCI modes can
be systematically eliminated by applying similar strategies used for a multi-
dimensional spectral Maxwell solver [14, 17]. The fastest growing modes of
the NCI at (µ, ν1) = (0,±1) can be conveniently suppressed by applying a
low-pass filter in the current, the highly localized (µ, νz) = (0, 0) NCI modes
can be moved away from physical modes by reducing the time step, and can
be subsequently eliminated by modifying the EM dispersion at the kz range
where the (µ, νz) = (0, 0) NCI modes are located. Furthermore, higher order
spatial aliasing NCI modes can be mitigated by applying higher order particle
shapes. In this paper, we present OSIRIS simulation results which show that
Lorentz boosted simulations of LWFA can be performed in this geometry
with no evidence of NCI. It is worth noting that recently a PIC algorithm
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based on a fully spectral solver in quasi-3D geometry has been proposed by
Lehe et. al. [23] and was demonstrated with a single-node algorithm.

In addition, according to how the lab frame information is located in the
(z′, t′) space, we show that the computational loads can be further reduced by
applying a moving window in the boosted frame simulation. In the boosted
frame the window follows the plasma as opposed to the laser, which is the
case when using a moving window in the lab frame.

The remainder of this paper is organized as follows: in section 2.1 we
briefly discuss the hybrid Yee-FFT solver in quasi-3D geometry, and the cor-
responding NCI mitigation strategies. In section 3, we discuss the simulation
setups for modeling LWFA in the Lorentz boosted frame. We discuss the dis-
tribution of the data needed for the reconstruction of lab frame information
with an emphasis on showing that using a moving window in the direction of
the plasma drift can further reduce the computational load. We then show
sample quasi-3D simulations of LWFA in the Lorentz boosted frame in sec-
tion 4, and compare the results with the corresponding 3D boosted frame
and lab frame data. In particular, we concentrate on the study of the laser
driver evolution as it propagates through the plasma. Good agreement is
obtained when comparing the driver evolution in lab frame against that ob-
tained from the boosted frame simulation. This demonstrates the feasibility
of combining Lorentz boosted frame technique, quasi-3D algorithm, and a
moving window. We also discuss the preliminary speedups achieved in these
sample simulations. The results are summarized in section 5.

2. NCI elimination scheme in quasi-3D geometry

2.1. Quasi-3D hybrid Yee-FFT solver

A key issue that needs to be addressed when performing LWFA simu-
lations in a Lorentz boosted frame is the existence of a violent numerical
instability, called the Numerical Cerenkov Instability (NCI). The NCI arises
when a plasma drifts relativistically on the grid. There has been much recent
progress in identifying the NCI as the source of the instability, in deriving the
numerical dispersion relations and determining growth rates, and in identify-
ing mitigation strategies [11, 12, 13, 14, 15, 16, 17, 18]. In Ref. [18] a hybrid
Yee-FFT solver was proposed for the elimination of the NCI in the Carte-
sian geometry. In this solver, Maxwell equations are Fourier transformed in
the drifting direction of the plasma (denoted as the ẑ direction). The fields
are solved in the corresponding (kz, x, y) space, where conventional second
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order finite difference operators on a Yee mesh are used in (x, y). When
Maxwell equations are solved in this way, the corresponding EM dispersion
of the solver leads to NCI patterns that are very similar to those from a
fully spectral Maxwell solver in which Maxwell equations are solved in multi-
dimensional ~k-space. Therefore one can systematically eliminate the main
and first spatial aliasing NCI using approximately the same strategies de-
veloped for a fully spectral solver. More importantly, the hybrid Yee-FFT
solver works for both Cartesian geometry (z, x, y), and quasi-3D geometry
(z, r, φ). Although at present there is no rigorous theory on the NCI in the
quasi-3D geometry, it has been found through OSIRIS simulations that the
NCI patterns and growth rates are very similar to its counterpart in Carte-
sian 2D geometry [9]. Therefore, the idea of hybrid Yee-FFT solver can be
readily applied to the quasi-3D geometry.

When the Maxwell solver is modified from a standard Yee solver to a
hybrid Yee-FFT solver, essentially the spatial finite difference operator in
the ẑ direction is modified from second-order accuracy (derived from its finite
difference form) into a greater than N -th order accuracy. However, in OSIRIS

(and most of the modern PIC codes) the ~E and ~B fields are advanced using
Faraday’s Law and Ampere’s Law, while Gauss’s Law is satisfied by applying
a charge conserving current deposition scheme [8, 24, 25]. This scheme begins
by calculating the current using the charge conserving current deposit scheme
of [24, 25] for a purely r − z code. It then uses this as a common factor in
the amplitude for each azimuthal harmonic of Jz and Jr together with a
factor that depends on the particle position in φ at the half time step; and it
uses this together with the particle motion in φ to get Jφ for each harmonic
(see section 3.2 of Ref. [8] for more details). If the continuity equation
is rigorously satisfied at each time step then by taking the finite difference
version of the divergence of Ampere’s law, Gauss’ Law is seen to be satisfied
if it is satisfied at t = 0.

However, the rigorous charge conserving current deposit is known only for
second order finite difference operators in the ẑ direction. Therefore, when
we use a FFT for the differential operator along ẑ direction in Faraday’s and
Ampere’s Law, we need to modify the current appropriately so the continuity
equation is still true for the modified differential operator. To accomplish
this, for each azimuthal mode of current ~Jm(z, r) obtained from the charge
conserving current deposition scheme described in [8], we Fourier transform
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it along ẑ-direction, and then apply a correction with the form,

J̃mz (kz, r) =
[k]z
kz

Jmz (kz, r) (1)

where

[k]z =
sin kz∆z/2

∆z/2
(2)

is the second order first spatial finite difference operator. This correction
ensures the satisfaction of Gauss’ Law throughout the simulation, as will be
discussed shortly afterwards.

Each azimuthal mode of the EM fields are initially stored in the memory
in (z, r) space, and are advanced in (kz, r) space. We Fourier transform ~E

and ~B along ẑ-direction, and solve Faraday’s Law and Ampere’s Law for each
azimuthal mode m, and each Fourier mode kz, using the corrected current
as the source term,

∂tB
m
r = −im

r
Em
z − ikzEm

φ (3)

∂tB
m
φ = ikzE

m
r + ∂rE

m
z (4)

∂tB
m
z = −1

r
∂r(rE

m
φ ) +

im

r
Em
r (5)

∂tE
m
r =

im

r
Bm
z + ikzB

m
φ − Jmr (6)

∂tE
m
φ = −ikzBm

r − ∂rBm
z − Jmφ (7)

∂tE
m
z = −1

r
∂r(rB

m
φ )− im

r
Bm
r − J̃mz (8)

Here ~Em, ~Bm, and ~Jm are all in (kz, r) space. Note that ∂t and ∂r adopt the
conventional finite difference form as in the Yee solver. The code is gridless
in φ so ∂φ is replaced with im. The fields are then transformed back to (z, r)
space, summed over m modes, and gathered for the particle pushing.

The reasoning behind the current correction Eq. (1) is that the charge
conserving current deposition scheme described in [8] ensures that

∂tρ
m(kz, r) + i[k]zJ

m
z (kz, r) +∇r · Jmr (kz, r) = 0 (9)
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where [k]z is given in Eq. (2)Therefore this correction ensures that Gauss’s
Law in the hybrid solver

ikzE
m
z (kz) +∇r ·Em

r (z) = 4πρm(kz, r) (10)

is satisfied throughout the simulation if it is satisfied at t = 0.

2.2. Elimination of Numerical Cerenkov instability

We have found previously that the NCI pattern for the quasi-3D hybrid
Yee-FFT solver is similar to its counterpart in the Cartesian 3D geometry [9,
18]. As a result, we can apply approximately the same mitigation strategies
used for the fully spectral solver in Cartesian geometry to systematically
eliminate the NCI modes for this solver [14, 17].

We first eliminate the fastest growing (µ, νz) = (0,±1) modes (νz is the
spatial aliasing in ẑ direction) by applying a low-pass filter in the current.
The filter covers the entire kz range in which the (µ, νz) = (0,±1) NCI modes
reside to prevent an unphysical exponential energy growth in these kz modes.
This can be efficiently accomplished since the current density is already in
kz space after the Fourier transform. For instance, in the sample simulation
in section 4.2 we are using a low pass filter that has the following expression:

F (kz) =


1, |kz| < flkgz

sin2

(
kz − fukgz
flkgz − fukgz

π

2

)
, flkgz ≤ |kz| ≤ fukgz

0, fukgz < |kz|

(11)

where kgz = 2π/∆z. This filter cuts off all the kz modes larger than fukgz,
while allowing modes smaller than flkgz to go through the filter. A sine square
function connects the two regions to ensure a smooth filtering function. The
filter parameters fl and fu are listed in Table 1 and 2.

The second fastest growing NCI modes (µ, νz) = (0, 0) can be eliminated
by reducing the time step, and then slightly modifying the kz operator to cre-
ate a small bump in the dispersion relation to precisely avoid intersections
between the main EM modes and main Langmuir modes that are highly
localized in kz [17]. When determining the simulation time step, we first
choose a time step such that the (µ, νz) = (0, 0) NCI modes are significantly
far away from the physical modes. The time step we used for the simula-
tions presented in this paper are ∆t = ∆z/4. After that, we apply the [k]z
modification in the highly localized |kz| range. This modification makes the
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growth rate of the (µ, νz) = (0, 0) NCI modes to be zero in theory. The
[k]zmodification is straightforward in a hybrid Yee-FFT solver since we are
essentially solving the Maxwell equation in kz space. In the sample simula-
tion presented in section 4.2 we applied the following correction to the [k]z
operator

[k]z =

 kz + ∆kmax cos2
(
kz − kzm
kzl − kzm

π

2

)
, kzl < |kz| < kzu

kz, otherwise
(12)

where kzu = 2kzm − kzl, and kzm, kzl, ∆kmax are listed in Table 1 and 2.
As for higher order NCI modes, their growth rates can be reduced if

needed by applying higher order particle shapes. However, for the parameter
space explored in this paper, the higher order NCI modes have growth rates
several orders of magnitude smaller than the fastest growing modes, and are
not seen in the simulations even when the modes with higher growth rates
are suppressed. Therefore, for the simulations presented here we used the
quadratic particle shapes.

Applying the strategies described above, we can systematically mitigate
the NCI modes in the quasi-3D geometry. Note the Fourier transform of the
current into kz space is not only important for the efficient filtering of the
NCI modes, but also required to accurately correct (compensate) the current
in kz space to exactly match the modified Maxwell solver. It is worth noting
that it is now a common practice to modify either the Maxwell solver or the
field interpolation to change the EM dispersion relation in order to obtain a
more desirable dispersion relation [12, 13, 14, 15, 16, 17, 18, 19]. Within these
schemes, Gauss’ Law is satisfied by either directly solving it (as is the case in
UPIC [26, 27, 28]), or by using a current that satisfies the continuity equation
through a correction (compensation) to match the current deposition scheme
with the Maxwell solver (as is the case in here and in [18]).

3. Simulation setups in the boosted frame

The setup of a quasi-3D LWFA simulation in a Lorentz boosted frame
is almost identical to its counterpart in Cartesian 2D/3D geometry. In a
boosted frame with Lorentz factor γb that moves in the propagation direction
of the laser, the laser pulse is colliding with a counter-propagating relativisti-
cally drifting plasma [29, 30, 31]. Due to the Lorentz transform, the plasma
density increases by γb while the total plasma column length contracts by
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γb. The laser wavelength and pulse length stretch by γb(1 + βb), while its
Rayleigh length contracts by γb. To avoid initializing a laser with very wide
transverse size due to the contracted Rayleigh length and stretched pulse
length, a moving antenna is placed at the edge of the plasma boundary to
inject a laser pulse into the plasma [32, 33].

3.1. Relationship between lab and boosted frame data

In LWFA simulations in the lab frame (i.e., a stationary plasma) the use of
a moving window [34], which only follows the physical domain near the laser,
significantly reduces the computational load. The moving window essentially
drops plasma sufficiently far behind the laser and adds fresh plasma in front
of the laser. This is illustrated in Fig. 1 (a) where we plot the range of
space time data from a lab frame simulation. The solid box shows the total
space time area while the dashed box shows the reduced area through the
use of a moving window. The moving window has a length 800 [k−10 ], and
the simulation duration is tmax = 100000 [ω−10 ] (where ω0 and k0 are the
frequency and wave number of the laser in the lab frame). We also show
the simulation data that is dumped as colored lines. The data is dumped
every 20000 [ω−10 ]. The red ends of the data lines indicate the starting end of
the moving window, while the blue ends indicate the rear end. Connecting
the red ends of the data lines, we obtain the z − t relation for the head of
the moving windows, t = z (the speed of light c is normalized to 1). The
data obtained in the lab frame (assuming the code dumps data at a constant
time interval) rotates in space-time in the boosted frame since the Lorentz
transform is essentially a hyperbolic rotation of coordinates in Minkowski
space [31, 35]. Therefore lines of data in ẑ taken at fixed time from a Lorentz
boosted frame are rotated by the Lorentz transform, i.e, t′ = t/γb−βbz′. The
slope of each data line now becomes −βb, where βb = (1− γ−2b )−1/2 and each
data line in the lab frame which belongs to the same point in time in lab
frame is now spread over a range of t′ and z′. Interestingly, when we connect
the red end of each data line in the boosted frame it still has a slope of c,
i.e. t′ = z′. The range of data in the boosted frame is shown in Figs. 1 (b),
(c) and (d). The data in Fig. 1 (b), (d) corresponds to γb = 20 while that
in Fig. 1 (c) corresponds to γb = 5. In Figs. 1 (b) and (c) we also show the
smallest area (domain enclosed by dashed lines) in t′, z′ space that includes
the area needed to reconstruct the lab frame data for the two different values
of γb. This illustrates that the space-time area in the boosted frame can
be minimized by using a moving window in this frame. In Fig. 1 (b) it is
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seen that this window moves to the left (backwards); while in Fig. 1 (c) the
window moves to the right (forwards). We use such a moving window in
the boosted frame OSIRIS simulations. Currently, in UPIC-EMMA boosted
frame simulations in Cartesian 2D/3D geometry a stationary window is used
[see Fig. 1 (d)] [20].

⠀愀⤀ ⠀戀⤀

⠀挀⤀ ⠀搀⤀

Figure 1: Range of important data in lab and boosted frame simulations. (a) Range of
data in lab frame (stationary plasma) simulation with a moving window, (b) range of data
in a boosted frame simulation at γb = 20 with a moving window following the drifting
plasma, (c) range of data in a boosted frame simulation at γb = 5 with a moving window
following the laser driver, and (d) range of data in a boosted frame simulation at γb = 20
without a moving window.

From Fig. 1 it is evident that in lab frame simulations we usually dump
data sparsely in time (large time intervals between time outputs), but the
data at each grid is dumped at each time output. On the other hand, in order
to recover the equivalent lab frame data in a boosted frame simulation, we
need to sample boosted frame data at a much higher rate in time, but only
need a small number of spatial locations. This can be seen by plotting a line
across z′ for a fixed t′. This line only intersects the equivalent lab frame data
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at the same number of spatial locations as the number of time outputs. We
typically dump the boosted frame data in a standard form (all grid points
at small number of time steps) as well as the data needed to transform the
results back to the lab frame (a small number of interpolated grid points
at a large number of time steps). We then post-process the later data by
performing the inverse rotation back into lab frame for comparison with the
lab frame data. When running in the lab frame we also plot the necessary
data needed to reconstruct the data into a boosted frame. This inverse
construction method is useful during the development of a boosted frame
code, as one can transform the lab frame data that has been extensively
cross checked with theory, to the boosted frame, and compare the results
against the results obtained by the boosted frame code.

3.2. Basic setup

In Fig. 2, we present a typical setup for a boosted frame simulation.
The moving window moves from right to left following the drifting plasma.
The moving antenna is also moving from right to left and injects the laser
pulse from the left plasma boundary into the plasma. We place a damping
section at the rear (right) end of the moving window (there is a gap between
the plasma and the damping region) to damp the EM field to zero in this
region. This is done because periodic boundary conditions are applied in the
ẑ direction when using the hybrid Yee-FFT solver, which requires that the
EM fields need to be zero at the rear end of the simulation window to match
the fields at the opposite side; otherwise the EM field at the rear end will
reappear at the starting end. We note that there will be a low level of EM
reflection from the damping section. In the hybrid Yee-FFT solver, the group
velocity of light propagating in ẑ direction in vacuum is greater than the
speed of light, however, the drifting plasma is drifting ultra-relativistically in
the same direction, the reflected wave does not have enough time to catch up
with the drifting plasma for the cases of interest. Hence the physics inside the
plasma will not be affected by the reflecting EM waves. We have compared
cases with the moving window plus the damping regions against cases without
the moving window to confirm that the moving window plus damping region
works [10]. We also note that for high γb boosted frame simulations, we find
that the modified pusher described in Ref. [36] is required in order to get
the evolution of the bubble correct. As pointed out in Ref. [36] the usual
leap frog staggering leads to issues for the Lorentz force when there is near
cancellation of the electric and magnetic forces for relativistically moving
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particles. Determining at what γb the modified pusher in [36] is needed is an
area of future work.

Figure 2: Simulation setup for a typical LWFA simulation in the boosted frame. The
moving window follows the drifting plasma moving from right to left. A moving antenna
injects laser pulse that propagates from left to right, and a damping region is located at
the rear end of the moving window.

4. Sample simulations

In this section, we present two sets of sample simulations. We begin
by comparing results from two boosted frame simulations where in one case
we use full 3D OSIRIS and in the second case we use quasi-3D OSIRIS, in
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order to justify the truncation of higher azimuthal modes m in the quasi-
3D boosted frame simulations. In both cases hybrid Yee-FFT solvers and
the corresponding NCI mitigation schemes are used. The parameters match
those in Ref. [2] whereby a 200 TW laser is focused to a spot size of 19.5 µm
at the entrance of a 1.5 × 1018 cm−3 density plasma. The FWHM pulse
length of the laser was 35 fs and the normalized vector was a0 = 4.0 for a
linearly polarized laser or a0 = 4.0/

√
2 for a circularly polarized laser. This

corresponds to a 1.3 GeV output electron energy according to the scaling
laws in Ref. [2]. The numerical parameters are shown in Table 1. We
then compare the output in the boosted frame for various azimuthal mode
numbers. This comparison requires the use of a post-processing algorithm
which decomposes the full 3D data into azimuthal modes [39].

We then compare the data of a LWFA boosted frame simulation in quasi-
3D lab with the corresponding quasi-3D boosted frame simulation. For these
simulations we explore parameters for which a full 3D lab frame simulation is
not feasible due to the large CPU hours required. The parameters correspond
to a 1.8 PW laser focused to a spot size of 45 µm at the entrance of a
2.5 × 1017 cm−3 density plasma. The FWHM pulse length of the laser was
130 fs and the normalized vector was a0 = 4.44 for a linearly polarized laser
or a0 = 4.44/

√
2 for a circularly polarized laser. This corresponds to a 10.4

GeV output electron energy according to the scaling laws in Ref. [2]. The
numerical parameters are shown in Table 2. The data from the boosted frame
simulation is transformed back to the lab frame and it is compared against
the data from the lab frame simulation.

4.1. Comparison of 3D v.s. quasi-3D boosted frame data with a 1.3 GeV case

When modeling LWFA in quasi-3D geometry, whether it is in the lab
frame or boosted frame, the accelerating (Ez) and focusing fields (Er and
Bφ) in the bubble are mainly in the m = 0 modes of the EM fields. On the
other hand, the fields associated with the laser are associated with the |m| = 1
mode of fields. Therefore, by keeping at least the |m| ≤ 1 modes the self-
consistent evolution of the laser and wake fields can be examined when there
is nearly azimuthal symmetry. For this comparison we truncate the azimuthal
harmonics keeping only the |m| ≤ 1 modes [7, 8]. More modes can be kept in
principle to study laser hosing and asymmetric spot size effects as well as to
test the convergence of the results. In addition, the results and the needed
truncation can be verified by comparing LWFA boosted frame simulation
results from the full 3D and quasi-3D geometries. To verify the azimuthal
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Plasma
density np 8.62× 10−4n0γb
length L 8.0× 104k−10 /γb

Laser
pulse length τ 86.9k−10 γb(1 + βb)
pulse waist W 153.0k−10

polarization circular
normalized vector potential a0 4.0

Quasi-3D boosted frame simulation (γb = 15.0)
grid size ∆z = ∆r 0.1k−10 γb(1 + βb)
time step ∆t/∆xz 0.125
number of grid (moving window) 2048×256
particle shape quadratic

particle per cell (ẑ, r̂, φ̂) (2,2,16)
[k]z modification ([k]zl, kzm,∆kmax)/kgz (0.141,0.240,0.007)
low pass filter (fl, fu) (0.3,0.35)

Full 3D boosted frame simulation (γb = 15.0)
grid size ∆z = ∆r = ∆y 0.1k−10 γb(1 + βb)
time step ∆t/∆z 0.125
number of grid (moving window) 2048× 512× 512
particle shape quadratic
particle per cell (ẑ, x̂, ŷ) (2,2,2)
[k]z modification ([k]zl, kzm,∆kmax)/kgz (0.141,0.240,0.007)
low pass filter (fl, fu) (0.3,0.35)

Table 1: Parameters for the 3D and quasi-3D LWFA simulations in the Lorentz boosted
frame (discussed in section 4.1). The laser frequency ω0 and number k0 in the lab frame
are used to normalize simulation parameters. The density is normalized to the critical
density in the lab frame, n0 = meω

2
0/(4πe

2). The normalized vector potential a0 for the
laser corresponds to linear polarization.
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mode truncation, we decompose the data from the full 3D OSIRIS simulation
into azimuthal harmonics and compare it against the corresponding quasi-
3D simulation using the parameters listed in Table 1. In Fig. 3, we plot the
azimuthal decomposition of the 3D data for Ez and Er at t′ = 4494.99 [ω−10 ],
and compare it against the corresponding quasi-3D data at the same time.
For the |m| ≤ 1 modes, very good agreement is observed. In addition, we
plot the higher order m = 2, 3 modes from the 3D data in Fig. 4. We can
see that the higher order modes are at least one order of magnitude smaller
than those of the m = 0, 1 modes, which verifies the truncation of azimuthal
harmonics at |m| ≤ 1 in the quasi-3D simulations when the laser is nearly
symmetric.

The main purpose of this section is to justify the truncation of higher
azimuthal modes in quasi-3D boosted frame simulations. However, in Ap-
pendix A we show comparison of the final self-injected electron spectra in
the lab frame transformed from the two boosted frame simulations, as well
as from a 3D lab frame simulation [2]. Reasonable agreement is obtained but
this is an area for future work.

4.2. Comparison of quasi-3D lab frame v.s. boosted frame data with a 10.4
GeV case

Next, we compare data from a quasi-3D LWFA simulation in the lab frame
against data Lorentz transformed back to the lab frame from a quasi-3D
simulation. A laser with normalized vector potential of a0 = 4.44 (converted
to linear polarization) with pulse length of 130 fs, and spot size of 45 µm
propagates into a plasma column 20.8 cm long (in the lab frame). We use a
boosted frame with γb = 26.88, and use a moving window as described earlier
that follows the relativistically drifting plasma. A moving antenna injects the
laser pulse into the plasma, and a damping region absorbs the EM field at the
rear end of the moving window. In the upper r̂ boundary of the simulation
box we applied the Perfectly-Matched-Layer boundary condition (see Ref.
[10] for more details). The plasma density is uniform along the ẑ direction.
It is uniform in r̂ direction from 0 ≤ r ≤ 7000 [k−10 ] (where k0 is the wave
number of the laser in the lab frame), and then the density linearly ramps
to zero at r = 8000 [k−10 ] near the r̂ upper boundary (an additional gap of
500 [k−10 ] is left between the r̂ upper plasma boundary and simulation box
boundary). The linear plasma density ramp is used to prevent reflection
when the laser cross the upper r̂ plasma boundary into vacuum. Detailed
simulation parameters are listed in Table 2.
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Figure 3: Comparison of simulation results in 3D and quasi-3D geometries for the a0 = 4.0
(converted to linear polarization) 1.3 GeV LWFA stage run (as discussed in section 4.1).
All results are from boosted frame simulations. On the left are the m = 0 modes of Ez

and Er. On the right are the real part of Em=1
z and Em=1

r . Results from a full 3D boosted
frame case are compared against a quasi-3D OSIRIS case where only |m| ≤ 1 modes were
kept. Simulation parameters are listed in Table 1.
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Figure 4: Higher order m modes of Re(Ez) and Re(Er) obtained from a full 3D LWFA
boosted frame data (as discussed in section 4.1). On the left are Re(Ez) and Re(Er) for
mode m = 2, while on the right are Re(Ez) and Re(Er) for mode m = 3. The simulation
parameters used are listed in Table 1.
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Plasma
density np 1.433× 10−4n0γb
length L 1.63× 106k−10 /γb

Laser
pulse length τ 296.4k−10 γb(1 + βb)
pulse waist W 351.9k−10

polarization circular
normalized vector potential a0 4.44

Lab frame simulation (γb = 1)
grid size in (ẑ, r̂) (0.2k−10 , 4.74k−10 )
time step ∆t/∆xz 0.9974
number of grid (moving window) 7920× 1248
particle shape quadratic

particle per cell (ẑ, r̂, φ̂) (2,1,8)
Boosted frame simulation (γb = 26.88)

grid size (square cell) 0.2k−10 γb(1 + βb)
time step ∆t/∆xz 0.25
number of grid (moving window) 8192×792
particle shape quadratic

particle per cell (ẑ, r̂, φ̂) (2,2,16)
[k]z modification ([k]zl, kzm,∆kmax)/kgz (0.135,0.231,0.005)
low pass filter (fl, fu) (0.3,0.35)

Table 2: Parameters for the quasi-3D LWFA simulations in the lab frame and Lorentz
boosted frame (discussed in section 4.2). The laser frequency ω0 and number k0 in the
lab frame are used to normalize simulation parameters. The density is normalized to the
critical density in the lab frame, n0 = meω

2
0/(4πe

2). The normalized vector potential a0
for the laser corresponds to linear polarization.
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As mentioned in section 3, in the boosted frame each azimuthal mode of
the EM field is dumped frequently in time, and sparsely in space. The results
can be transformed back to the lab frame for post-processing. In Fig. 5 (a)
we present 2D envelope plots of the real part of Em=1

r fields. The upper plot
in Fig 5 (a) is the boosted frame simulation results (transferred back to lab
frame), while the lower plot is the lab frame data. The 2D envelope of Em=0

z

fields for the two simulations are presented in Fig 5 (b). In Figs. 5 (c)–(h) we
present the corresponding line out datas from the two simulations. As we can
see from Fig. 5 the data from the two simulations agree well with each other,
except for the area around the rear of the first bubble, which indicates that
the two simulations give different self-injection results. On the other hand,
the laser profiles from the two cases agree extremely well [Fig. 5 (e)–(h)]. In
Fig. 5 (e) line outs of Em=0

z at various time steps are plotted, and they show
that in the transformed boosted frame data there is stronger beam loading,
which indicates that more charge is self-injected into the bubble. This is
likely due to the difference in statistics between the lab frame simulation and
boosted frame simulation. In the boosted frame a macro-particle represents
∼ 2γ2b more charge than in the lab frame, while particles in the boosted frame
are ∼ 2γb times “fatter” since the grid size in the boosted frame is ∼ 2γb
times larger, and this could affect the self-injection process.

To confirm the differences are related to the self-injection process, we
repeated the lab frame and boosted frame simulations in regimes with no
self-injection, at a0 = 3.0 (converted to linear polarization), while keeping
the other parameters as listed in Table 2. In Fig. 6 (a) and (b) we show the
line out of the wakefield Em=0

z at two different times in the lab frame, and
in Figs. 6 (c) and (d) we show the corresponding amplitude envelope line
outs of the laser profiles Re(Em=1

r ). We see from Fig. 6 that for this case
where there is no self-injection in the lab frame simulation, the wake field
results from the lab frame and boosted frame simulations agree very well. It
is challenging to accurately modeling the self-injection process in the LWFA
blowout regime. Determining the best practices for using the boosted frame
technique to study self-injection at high γb is an area for future work.

We plot the laser envelope and spot size obtained from the two cases in
Figs. 5 (e)–(h). Excellent agreement can be seen for the two times presented
in Fig. 5. Excellent agreement is also seen for the evolution of the spot size,
and laser amplitude of the laser driver as it propagates through the plasma
column. In Fig. 7 we show a detailed time history of the laser spot size and
amplitude at the position of the laser where its amplitude is largest. Fig. 7
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Figure 5: Simulation results for a a0 = 4.44 (converted to linear polarization) 10.4 GeV
LWFA stage run (as discussed in section 4.2). (a) shows the comparison of 2D envelope
of Re(Em=1

r ) field, which shows the evolution of laser driver as it propagates through the
plasma; (b) shows the corresponding comparison of the amplitude of Em=0

z , which shows
how the wakefield of the bubble varies in the two frames due to the different self-injection
results; (c), (e), and (g) are comparisons of the Em=0

z lineout, laser envelope Re(Em=1
r )

lineout, and laser spot size respectively at lab frame time t = 101802.7 ω−1
0 , while (d), (f),

(h) are the corresponding plots at t = 570095.3 ω−1
0 . The simulation parameters used are

listed in Table 2.
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Figure 6: Line outs of wakefield Em=0
z and line outs laser field envelope of Re(Em=1

r ) at
various lab frame time for a a0 = 3.0 case (as discussed in section 4.2). Since there are no
self-injection in the lab frame for this case, much better agreements are obtained for the
wakefield part. The simulation parameters used are listed in Table 2.

clearly shows that very accurate results can be obtained when using Lorentz
boosted frame technique in quasi-3D geometry to study the evolution of laser
driver in the plasma.

We have not yet attempted to optimize choices of parameters or the
algorithm itself. However, it is still useful to compare the total CPU hours for
the limited set of lab and boosted frame simulations presented in the paper.
The quasi-3D lab frame simulations presented in section 4.2 used around 1.6
million CPU hours. Load balancing significantly reduced the performance,
and a corresponding full 3D simulation (using 8 particles per cell) would
take around 300 million CPU hours in theory. Meanwhile the corresponding
quasi-3D boosted frame simulation takes 2000 CPU hours. The speedup from
the quasi-3D lab frame is around 800. Note when calculating the speedup we
take into account the fact that the transverse resolution, and particle per cell
are different in the two simulations. Correspondingly the speedup achieved
from the full 3D lab frame simulation to quasi-3D boosted frame is on the
order of 100,000. Note if the full 3D simulation was run on large number
of processors then load balancing issues can sometimes increase the CPU
hours by a factor of between 5 and 10. We note the theoretical speed up for
boosted frame simulations is actually not straightforward to calculate as it
depends on γb, the plasma length, and the laser pulse length. In addition,
load imbalance is another factor that would greatly affect the speed up.
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Figure 7: Evolution of the laser spot size and peak amplitude (discussed in section 4.2).
(a) shows the comparison of laser spot size evolution as the laser propagates into the
plasma for the two frames. The laser spot size are defined at the location where the laser
has the maximum amplitude. The corresponding maximum laser amplitude evolution is
shown in (b). The simulation parameters used are listed in Table 2.

5. Summary

In this paper, we described how it is possible to perform LWFA simula-
tions in Lorentz boosted frames using the quasi-3D algorithm. In order to
carry out high fidelity Lorentz boosted frame simulations in this geometry is
the use of a hybrid Yee-FFT solver that solves the Maxwell equation in kz
space in the direction that the plasma drifts, while keeping the second order
finite-difference operators in the transverse directions as in a conventional
Yee solver. Using this Maxwell solver we can then use the same strategies
for eliminating main and first spatial NCI in Cartesian geometry to signifi-
cantly mitigate them in the quasi-3D geometry. For the parameters that we
have simulated this appears to have practically eliminated the NCI. At the
same time all other features of OSIRIS are also available including single core
optimization and high parallel scalability (along the non-drifting direction).
Future work is planned to improve the parallel scalability in the drifting
direction. A current correction is applied to ensure the code rigorously con-
serves charge. In addition, we analyzed the space-time area of the lab and
boosted frame simulation data. We showed how using a moving window
which follows the drifting plasma in the boosted frame the further reduce
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the computational load. We were able to combine Lorentz boosted frame
technique with quasi-3D algorithm, together with moving window technique,
leading to significant speed up and potential unprecedented speed up for the
modeling of LWFA.

We presented comparisons of lab frame against boosted frame simulation
results for a 10.4 GeV LWFA example that operates in the blowout regime.
It was shown that the evolution of the laser driver in the plasma can be
very well reproduced by the boosted frame simulation. We also found that
the self-injection process is different in the boosted frame. This is probably
due to the difference in statistics between the simulations in the two frames
since in the boosted frame each macro-particle represent many more real
particles then in the corresponding lab frame simulation. We found excellent
agreement between the lab and boosted frame results for the wake fields
when a0 was reduced to avoid self-injection. An area of future work is to
systematically explore methods to accurately model self-injection process in
the Lorentz boosted frame simulation. Another area is the integration of this
algorithm into our GPU and Intel-Phi enabled version of OSIRIS.
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Appendix A. Comparison of final spectrum of injected particles
of 1.3 GeV case

In this Appendix, we present the comparison of the final spectrum in the
lab frame of the injected particles for the 1.3 GeV simulation in the 3D lab
frame, 3D boosted frame, and quasi-3D boosted frame that are previously
discussed in section 4.1. The parameters for the 3D/quasi-3D boosted frame
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Plasma
density np 8.62× 10−4n0

length L 8.0× 104k−10

Laser
pulse length τ 86.9k−10

pulse waist W 153.0k−10

polarization circular
normalized vector potential a0 4.0

Simulation parameters
grid size (∆x1,∆x2,3) (0.2k−10 , 3.4k−10 )
time step ∆t/∆x1 0.995
number of grid (moving window) 4000× 512× 512
particle shape quadratic

Table A.3: Parameters for the 3D lab frame LWFA simulation (discussed in section 4.1
and Appendix A). The laser frequency ω0 and number k0 in the lab frame are used
to normalize simulation parameters. The density is normalized to the critical density
in the lab frame, n0 = meω

2
0/(4πe

2). The normalized vector potential a0 for the laser
corresponds to linear polarization.

simulations are listed in Table 1, and the corresponding lab frame simulation
parameters are listed in Table A.3 below.

We can see that the final particle energy spectrum for the three cases
agree relatively well. The two boosted frame simulation almost overlap each
other, while the lab frame data is shifted to higher energy. We note that
determining how the Lorentz boosted frame factor γb, cell sizes, time step,
particle per cell, and other simulation parameters affect the modeling of
LWFA in the Lorentz boosted frame remains an open question, and will be
part of our future work.
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