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Abstract
In this paper, we investigate the evolution of the energy spread and the divergence of electron beams
while they interact with different laser pulses at intensities where quantumeffects and radiation
reaction are of relevance. The interaction ismodelledwith a quantum electrodynamic (QED)-PIC
code and the results are comparedwith those obtained using a standard PIC codewith a classical
radiation reactionmodule. In addition, an analyticalmodel is presented that estimates the value of the
final electron energy spread after the interactionwith the laser hasfinished.While classical radiation
reaction is a continuous process, inQED, radiation emission is stochastic. The two pictures reconcile
in the limitwhen the emitted photons energy is small compared to the energy of the emitting electrons.
The energy spread of the electron distribution function always tends to decrease with classical
radiation reaction, whereas the stochasticQED emission can also enlarge it. These two tendencies
compete in theQED-dominated regime.Our analysis, supported by theQEDmodule, reveals an
upper limit to themaximal attainable energy spread due to stochasticity that depends on laser intensity
and the electron beam average energy. Beyond this limit, the energy spread decreases. Thesefindings
are verified for different laser pulse lengths ranging from short∼30 fs pulses presently available to the
long∼150 fs pulses expected in the near-future laser facilities, and comparedwith a theoreticalmodel.
Our results also show that near future experiments will be able to probe this transition and to
demonstrate the competition between enhancedQED induced energy spread and energy spectrum
narrowing from classical radiation reaction.

1. Introduction

Near future facilities [1–3]will provide extreme laser intensities ( > -I 10 W cm22 2), where quantum effects
such as electron–positron pair production and discrete photon emissionmight play a central role in laser-matter
interaction [4–12]. Previously, electron–positron pairs have been produced in experiments using amoderately-
intense laser of intensity ~ -I 10 W cm18 2 counter-propagating with the ultra-relativistic (46 GeV) SLAC
electron beam [13–15]. This setup takes advantage of the ultra-relativistic energy of the particles to observe
certain nonlinear quantum effects in electromagnetic fields whose amplitude remains several orders of
magnitude below the critical Schwinger field [16], which constitutes usually the threshold to observe pairs
spontaneously created in vacuum.As detailed in [17], thefieldmagnitude in the rest frame of the particles will
then be of the order of the criticalfield and the probability of the process becomes optimal. By leveraging on the
tremendous progress accomplished in laser technology in the last decades, one can also envisage nowadays to
decrease the energy of the relativistic particles and increase proportionally themagnitude of thefield of the laser.
This explains the recent growing interest [8, 18–23] on configurationswhere a relativistic electron beam
interacts with laser pulses of significantly higher intensity than in the SLAC experiment. The typical electron
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energy sufficient to diagnose nonlinear quantum effects is around a fewGeV and such electron beams can now
be generated from an all-optical source in an efficientmanner: the current experimental record for self-injected
electrons obtained in a laser wakefield accelerator is 4 GeV [24]. This shows that the near future laser facilities
can be used to explore this nonlinear Compton scattering configurationwithout the aid of conventional
accelerators.

In our previous work [25]wehave studied the radiation reaction for an electron beam in a laser fieldwith the
use of the Landau–Lifshitz equation [26]which has been recognised as the best candidate to describe classically
the effect of radiation reaction on charged particle orbits [27–32]. In the Landau–Lifshitz equation framework,
charged particles emit radiation continuously and the direct effect of this emission can be represented as a
continuous drag force in the particlemotion equation. As shown in [25], when aGeV electron beam collides
head-onwith an intense laser (  -I 10 W cm21 2), one of the key effects of classical radiation reaction is to
reduce thewidth of the electron energy distribution function during the interaction [8, 33]. The tendency of
classical radiation reaction to shrink the electron energy distribution function has been studied also in fusion
plasmas [34], and in ion accelerationwith solid targets [35]. If the laser intensity is raised such that the classical
description of radiation reaction becomes inapplicable, the quantum effects in radiation reaction induce the
opposite behaviour, leading to an increase of the energy spread of the beam spectra [36].With the advent of
quantum electrodynamics (QED)modules incorporated in the traditional particle-in-cell (PIC) algorithm, we
are now able to simulate from first principles quantum radiation reaction in laser-plasma interaction and
therefore to validate some of the recent theoretical predictions. This paper thus deals with differences between
the classical and theQEDdescription in the transition regimewhere the probabilities for pair creation are still
negligible, but quantum effects in the photon emission can already be significant (‘moderately quantum regime’
defined in [37]). This is of particular relevance since upcoming experiments at several facilities will be able to
operate in this regime.We carry out PIC-QED simulations that allow us to evaluate the influence of quantum
emission on the electron energy spread and the divergence of the electron beam.Maximumattainable energy
spread due to quantum stochasticity as a function ofmean electron energy and the laser intensity is computed.
This result further allows us to obtain a semi-classical analytical prediction for the electron energy spread after
the shutdownof the laser as a function of the initial beam and laser parameters. The prediction is in agreement
with fully quantumMonte-Carlo PIC simulations.

This paper is structured as follows. In section 2, we introduce theQED framework to describe photon
emission.We then analyse, in section 3, the evolution of the electron energy spectra, predicted analytically, and
we compare the analytical results withQED-PIC simulations. In section 4, we study the evolution of the electron
beamdivergence, anothermeasurable quantity in these scenarios, and in section 5we state the conclusions of
this work.

2.QEDphoton emission

InQED, radiation is a discrete stochastic process and this impacts the particle trajectory in a distinctmanner
from the continuous emission associatedwith the classical radiation processes. The probabilities of the various
processes in an electromagnetic planewave are based onVolkov states [38]where the quantum-transition
probability is evaluated taking into account the interaction between the particle and the backgroundwave. In the
event of emission, there is a transfer of energy from the electron to the emitted photon; otherwise, the electron
momentum and energy remain unaltered. The classical limit corresponds to the case where a large number of
photons, whose energy remains small compared to the electron energy, is radiated: the high frequency of the
emission events allows the approximation of the trajectory as a classical trajectory with a continuous drag. The
main difference between the classical and theQED approach is thatQED accounts for the possibility of emitting
high-energy photons even in a setupwhere the cross-section for Compton scattering is small (i.e. the average
energy loss of the particle is negligible). In the quantum regime, the stochastic nature of emission becomes
noticeable and onemay expect a diffusion in energy around themean value of the energy loss, as it was first
reported in [5, 36].

The total probability of radiation emission by a single particle is relativistically invariant and depends on the
normalised vector potential ( )w=a eE mc0 0 and the quantum invariant parameterχ (ce for electrons and cg
for photons) defined as:

( ) ( )
( )


c c= =

m
mn

g
m

mnp F

E mc

k F

E mc
, , 1e

s s

2 2

where pμ is the particle 4-momentum, kμ is the photonwave 4-vector, mnF the electromagnetic tensor,
=E m c cs

2 3 the Schwinger criticalfield [16],m is the electronmass, e is the elementary charge, c is the speed of
light and w0 is the frequency of the electromagnetic wave. The differential probability rate of photon emission by
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nonlinear Compton scattering is then given [17, 39–43] by
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where ˜ ( ( ))c x c x= -2 3 1e , x c c= g e and ( )a = e c2 is thefine-structure constant.
In order to simulate the emission of photons (and electron–positron pairs), we have added aQEDmodule

[44, 45] toOSIRIS [46]which allows real photon emission from an electron or a positron and decay of the
photons into pairs (Breit–Wheeler process). TheOSIRIS-QED framework accounts for the differential emission
probability rate (2) in a similar fashion as otherQED-PICmodules [9–11, 47]. TheQEDalgorithm can be
summarised as follows: at particle push-time, the probability of radiating a photon is evaluated, and if the event
occurs, the radiated photon quantumparameter is selected to obey the distribution given by equation (2); the
particlemomentum is then updated to account for themomentumof the emitted photon (assumed to be
radiated in the direction of the particlemotion). For Breit–Wheeler pair production, the procedure is similar but
instead of emission, we evaluate the probabilities of photon decay into an electron–positron pair. If the event
occurs, we then remove the photon and initialise the newparticles. TheOSIRIS-QED framework is also
equippedwith an advancedmacroparticlemerging algorithm [48].

3. The evolution of the electron energy spectra

Wefirst examine the temporal evolution of the energy spectrumof an electron beamas it collides head-onwith
an intense laser. In particular, wewill focus on how the electron beam energy spread is affected by theQED
photon emission. To facilitate this analysis, we define the beamwidth at a time t as the standard deviation in
energy over all the particles

( ) ( ( ) ( )) ( )ås g g= -
=

t t t , 3
N

i

N

i
1

1

2

whereN is the total number of particles, ( )g t is themean energy of the electron beamat time t, asmeasured in
the laboratory frame, and ( )g ti is the energy of the particle i at the same time t. The stochastic effects in quantum
radiation reaction that are responsible for the spreading of the distribution have been analytically studied in a
similar setup in [36]where the Fokker–Planck equation is used to describe the evolution of the electron
distribution function in time. This approach is valid for cg 1. The Fokker–Planck equation [49–51] is usually
used in laser plasma interaction, for instance, tomodel kinetically the collisions between species. One can
however see the quantumphoton emission as a virtual inelastic collisionwith an electron; as long as the
momentum exchange remains small comparedwith the emitting particlemomentum, the Fokker–Planck
equation proves to be adequate.
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represent the drift and diffusion coefficients respectively, and indexes l and k denote different spatial
components. Under the assumption that the electron beam is relativistic, and that the photons are radiated in the
direction ofmotion, the problem is reduced to one-dimension.

Since the emission probability is given by equation (2) as a function of cg, we proceed to a change of
variables using c c g»g k mce which is a consequence of the collinearity of the electrons and the emitted
photons.We then get
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After integration, the drift coefficient and the diffusion coefficient become respectively
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whichwerefirst calculated in [36]. The Fokker–Planck equation (4), which is a special case of themaster
equation in the continuous limit, is valid for q p. In our scenario, this validity condition can be expressed as
c cg e which is only conceivable for c 1e .
If there is no diffusion (B= 0), the equation of the characteristic in equation (4) is
 g = -p t mcd t Ad d d . For electrons counter-propagating with a linearly polarised wave ce is given by

c g w= a mc2e 0 0
2, while in a circularly polarisedwave c g w= a mc2e 0 0

2. This allows us to retrieve the
classical result where the photon emission results in the electron relativistic factor γ decrease. The rate of this
decrease in a linearly polarisedwave is given [20, 25] by

( )g
a g a
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= - =
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where arr is a constant with units of frequency. For a circularly polarisedwave arr needs to bemultiplied by a
factor of two. By integrating equation (8)with g0 for initial Lorentz factor, we obtain ( )g g a g= + t10 rr 0 in a
linearly polarisedwave and ( )g g a g= + t1 20 rr 0 in a circularly polarisedwave, in agreement with [30]. By
neglecting diffusion and assuming an initial Gaussian distribution for the electronswith initial standard
deviation s0 and initialmean energy g0 , the authors in [36] have shown that if s g0 0 , the distribution remains
approximatively Gaussianwith an effective standard deviation
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which is expressed for a quasi-monoenergetic relativistic electron beamas ( )dg dg g g=0 0
2 [25]. It is not

straightforward to rigorously expand this result to account for the diffusion term contribution.However, if now
we assume that the drift is negligible (i.e. the average energy remains constant over a period of time g g0 ), we
obtain the usual diffusion equation, wherewe have performed the change of variables  gp mc :
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In the case of aGaussian distribution, the standard deviation evolves as
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It is therefore clear from equations (9) and (11) that there is a competition between the drift-like term that tends
to compress the distributionwidthwhereas the diffusion-like term tends to increase it. For an infinitesimally
short period of time dt, the change of the distributionwidth at a time t due to the drift is given by differentiating
equation (9) yielding

( ) ( ) ( )s s a g= - t t td 4 d 121 rr

and the change due to the diffusion is obtained in a similarmanner by differentiating equation (11)
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Wecan then compute the total change of the electron distributionwidthwithin an interval dt:
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Adirect integration of the equation (14) is not possible because the variables cannot be separated. The expression
from [36] can be retrieved by approximating ( )s s=t 0 in the termwithin the squared brackets in equation (14)
and then integrating in time. The authors in [36]have shown that their expression is valid for relatively short
laser interaction times τ such that ( ) a g s c twa 1e0 0 0

2 2
0 .

Considering that thewidth of the distribution can change significantly throughout the interaction, it turns
out impossible to simplify equation (14) and obtain an explicit form for the energy spread evolution.
Nevertheless, equation (14) can still provide an insight into the changing features of the electron distribution
function. Depending on the specific values of the initial parameters of the beam sd can be positive (the diffusion
wins over the drift) or negative (the drift wins over the diffusion). If we start from anarrowmomentum spread
like in our simulations, the distributionwidth first tends to increase, and later shrink. The ‘turning point’, when
classical-like drift starts winning over theQED-induced diffusion can be defined by solving s =td d 0. For a
circularly polarised laser, we obtain
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and for a linearly polarised laser
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where gT and sT represent the electron average energy and energy spread at the ‘turning point’, s gT T is the
relative energy spread and l0 is the laserwavelength. For a given gT and a0, if s s< T the energy spread increases,
but if s s> T , thewidth of the energy distribution function decreases. In otherwords, equations (15) and (16),
allowus to estimatewhat is themaximumattainable energy spread through diffusion depending on the laser
vector potential and the average energy of the electron beam. The evolution of the electron energy distribution
function can be also interpreted in terms of entropy. Neitz andDi Piazza have shown that the entropy of the
electron beam increases when the quantum stochasticity dominates, and decreases when the energy spread is
decreasing [36].

Wewill now compare the above findings with simulation results obtained using theOSIRIS-QED
framework. The simulation setup is depicted in figure 1where an electron bunch is colliding head-onwith a
circularly polarised laser and emitting photons. The electrons are presented in their transversemomentum space
as a function of the longitudinal spatial coordinate. Themain characteristic of the quantum radiation emission is
already visible in this figure: even though there is an average trend to emit and to losemore energy further into
the laser pulse, the energy of an individual electron is subject tofluctuations due to stochastic nature of the
quantumphoton emission.

To illustrate these features, wefirst present a set of simulations using two different electron bunches with
mean energies of 0.5 and 0.85 GeV. The bunches are initialisedwith a very small thermalmomentum spread,
equal in all transverse directions (the initial beamdivergence is  ~p̂ p 0.2mrad). The laser ismodelled as a

transverse planewavewith a temporal envelope function f (t). The laser rise and fall sections have the same shape
and duration t t w= = -50.0rise fall 0

1, while the duration of the flat part tflat is varied between 0.0 and 300.0 w-
0

1

with a step of 50.0 w-
0

1 (seven different total pulse durations ( )t t t t= + + 2flat rise fall ). The slope of the
envelope function for t<t rise is defined as ( ) ( ) ( ) ( )t t t= - +f t t t t10 15 6rise

3
rise

4
rise

5, where
t w= =-50.0 26.6 fsrise 0

1 and w = ´1.88 100
15. The variable lengthmiddle section of the pulse had the laser

vector potential always at themaximumvalue ( =a 270 ).We shall stress that the interaction between the
particles of the beam is negligible and since the laser field amplitude is uniform in the transverse directions, all
the particles are subject to the same conditions. This corresponds to the approximation of beam transverse size
much smaller than the laser spot size. Therefore, the large amount of PIC particles (about 1million) provides us
with a good statistical sample to study the evolution of the energy spectra of the electrons. The simulations are
performed in 2D,where the box size was w´ c500 20 2

0
2, resolvedwith 5000×200 cells and the timestep

w= -td 0.04 0
1using 16 particles per cell. The simulation timestep is chosen such that  -t Wd rad

1, whereWrad is
the photon emission rate.

The results of thefirst set of simulations are summarised infigure 2which shows the electron energy spectra
after the interactionwith the laser. All the spectra, as expected, arewider than the quasi-monoenergetic initial
distribution. The striking fact is that after interactionwith longer lasers, the final energy spread of the electron
beam is narrower than after interactingwith shorter lasers. This hints that in case of longer interaction, a
‘turning point’ predicted by the theorywith properties given by equation (15)must exist. After the initial

Figure 1.QED radiation reaction and photon detection. The electron beamdepicted is interactingwith a counter-propagating laser
during the rise-time of the temporal laser envelope function. Individual events of photon emission cause non-continuous energy loss,
which is illustrated by the different colours (particle energies) for electrons experiencing the samefield.
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increase of thewidth of the spectrumdue to the quantumnature of the radiation process, the ‘turning point’
indicates the time at which thewidth reduces anew as predicted by classical radiation reaction [25].

To investigate this further, the evolution of the beam energywith the spread ( ) ( )g st t 2 as a function of
time for several examples is shown infigure 3.Without quantum stochasticity or radiation reaction, both the
electron energy and ( )s t would remain the same throughout thewhole interaction.With only classical radiation
reaction, both the average energy and ( )s t would reducewith time. The analysis of the beam spectral width
evolution during the time of the interaction confirms that the first quantum effect is to broaden the spectrum
due to quantum stochasticity. If the laser is short enough, the spectrum stays broad (this is in agreement with
[36]). However, if the laser is longer, then there is a specific point in timewhere the spread starts decreasing due
to the classical drift of the electron energy distribution function.

A second set of simulations is performed by varying the electron beam initial energy, using a laser pulse
similar to the ones described previously ( =a 270 , t t w= = -50rise fall 0

1, t w= -600flat 0
1), with the same

simulation box and resolution.Wewould like to compare the predictions of equation (14)with the simulation
results in a regimewith c 1e , in a wavewith a constant amplitude that allows for direct integration of
equation (14). The black line infigure 4(a) shows the evolution of the energy spread froma simulationwith

Figure 2. Final electron energy spectra: (a) starting from the 0.5 GeV electron beam; (b) starting from0.85 GeV electron beam.

Figure 3.Electron average energy evolution versus timewith standard deviation as ameasure of the energy spread. The electron initial
energy is (a) 0.5 and (b) 0.85 GeV.Different colours denote different laser durations.

6
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g = 100, where c 0.01e .We are interested only in the constant amplitude section, sowe select w= -t 27 0
1 as

the new ‘initial time’ (t t+2rise beam, where t w= -2beam 0
1 is the electron beam ‘duration’). Therefore,

( )s s w= = -t 270 0
1 and ( )g g w= = -t 270 0

1 . The numerical integration of equation (14) is computed from
this new ‘initial time’ in order to compare with the simulation results. The panel (a) offigure 4 shows that
equation (14) gives a result in good agreementwith the simulation. Even in the case of a higher g = 17000 , which
corresponds to c 0.2e , the integration of equation (14) provides a reasonable agreement (figure 4(b)).

Infigure 4(c)we show sT
2 as a function of gT

3 at the ‘turning point’ for several simulations starting at different
average electron energies. All the simulations are performedwith =a 270 and the ‘turning point’ is located
within the constant amplitude section of the pulse. For particles with lower energies (and therefore with lower
ce), the ‘turning point’ is well identified by equation (15). For higher energies, the ce parameter is close to one
and the electron energy spread is high, whichmakes the simulation results depart from the prediction of
equation (15). However, the value obtained in the simulations is always lower than the predicted value. This
confirms that the upper limit on the electron energy spread increase through diffusion as a function of a0 and γ
can be estimated using equations (15) and (16). The predictions of equation (15) are shown infigure 4(d) for a
range of different values of the laser intensities and electron energies.

Let us comment on the underlying physics involved in this behaviour. The differential probability rate of
photon emission given by equation (2) depends on the ce parameter in suchmanner that electronswith higher
ce emit on average a larger fraction of their energy than the electronswith low ce. This is what leads to the
classical-like shrinking of the electron beam energy distribution in addition to the average energy drift towards a
lower value.Moreover, the photons in the nonlinear Compton regime are emitted according to a distribution,
such that electrons in identical conditions can radiate photons of different energy; this leads to a diffusion in the
electron distribution function. These two tendencies compete, and the drift effect becomes dominant if the
energy spread is wide enough ( s sT). On the contrary, if the initial electron energy spread is very low, the
diffusion process dominates. This is illustrated infigure 5 that shows the temporal evolution of electron energy
spectra in aGaussian laser pulsewith duration t = 150 fs and peak vector potential =a 270 (a pulse like this

Figure 4.Electron beam energy spread. (a)Evolution versus time for an electron beam starting at g = 1000 . The black line represents
the data from the simulation, and the red line comes fromnumerical integration of equation (14) (b) Same as in (a) but for an electron
beamwith initial energy g = 17000 . (c) Standard deviation of the distribution at the ‘turning point’ as a function of gT

3 . The line is
determined by equation (15) for =a 270 , while the points are the simulation data corresponding to the time at which the energy
spread reaches itsmaximum ( s =td d 0). (d)Maximumattainable energy spread through diffusion depending on the energy of the
particle and the normalised vector potential of thewave (in percentages).
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will be available, for instance, in ELI Beamlines [1]). An electron beam is initialisedwith g = 17000 , andwe
varied the value of s0. Thefirst value s = 20 (figure 5(a)) corresponds to an electron beam energy spread of 0.1%
that is still a challenge for experiments. The second s = 1000 infigure 5(b) corresponds to a 6%energy spread,
that has already been achievedwithGeV-class electron beams in state-of-the-art laser facilities [24]. Third value
s = 2000 infigure 5(c) corresponds to 12%energy spread, and this is routinely achievable with laser wakefield
acceleration in the present day laboratory conditions.

It is clear from figure 5 that starting froma very narrow distribution, the diffusion appears to be faster than
for an initial wider one. All the three examples finally converge to the same electron energy distribution function.
We can take advantage of this to calculate the expected electron energy spread at the end of the interaction.We
perform the numerical integration of equation (14) assuming that the initial energy spread s0 is equal to the
maximumattainable energy spread through diffusion sT determined by equation (15) for a given a0 and g0 . The
result obtained in this way is valid for all s s< T0 , as long as the total time of interaction ismuch longer than the
typical emission time  -T Wtotal rad

1. The expected final energy spread obtained through numerical integration
of equation (14) is comparedwith the simulation results infigures 6(a) and (b) for all the different laser pulse
durations considered in thefirst set of simulations. As expected, the agreement is better for longer laser pulses
and lower average electron energies, but the order of the expected energy spread is well predicted in all cases
(maximum error is about 30%).

For guiding future experiments, it would be beneficial to have an explicit expressionwhere one could insert
the initial electron and laser parameters, and estimate the final energy spread of the electron beam that could be
measured directly on a spectrometer. It is possible to attain such an approximate expression for laser pulses with
a symmetrical, Gaussian-like temporal profile.We assume that the balance point s =d 0 has been reached
before the centre of the pulse. This assumption is reasonable for beamswith s s~ T0 , and for beamswith
s sT0 provided that there is enough time for the diffusion to act and increase s0 to the same order as sT . This

is verifiedwhen the pulse duration satisfies ( )t g a> 1 8fwhm 0 rr . If the pulse is shorter, the stochastic effects
dominate over the drift, and the final energy spread sF can be directly estimated using equation (11). Similarly,
for s sT0 , the drift dominates andwe can approximate sF through equation (9). Themost difficult case is,
therefore, when s s~ T0 , as all the terms in equation (14) are of the same order, which renders the equation
unintegrable. However, we can estimate an upper boundary for sF by assuming that at the central point of the
laser (at the point of peak intensity) the electron beam is close to the balance between the drift and diffusion, i.e.

( [ ])s l m g» ´ - a2.4 m 10M M
2 6 3

0, where gM is the average Lorentz factor of the electron beam in the central
laser point. As gM is easy to calculate (see [20, 25, 52–54]), we can retrieve an explicit expression for sM as a
function of laser intensity and duration, and initial electron energy. Beyond this point, the energy spread slowly
decreases, and thefinal electron energy spread sF is smaller than sM . This yields

( [ ])
( )s

g
g t

´
+ ´

-
-

I
I

1.455 10
1 6.12 10 fs

, 17F
2 4

22
0
3

5
0 22 0

3

where [ ]= -I I 10 W cm22
22 2 and [ ] [ ]l m= -a I0.855 10 W cm m0

18 2 for linear polarisation and

[ ] [ ]l m= -a I0.855 10 W cm m 20
18 2 for circular polarisation. It is worth noting that the result presented in

equation (17) does not depend on the laser polarisation, but solely on intensity and duration.
Figures 6(a) and (b) shows the estimate given by equation (17) comparedwith the simulation results. Even

though the lasers in our simulations are notGaussian, we obtain a satisfactory agreement for the same tfwhm.
Panels (c) and (d) show the predictions for thefinal energy spread according to equation (17) for electron beams
starting at different initial energies after interacting with a 30 and a 100 fs laser of ´ -2 10 W cm21 2 intensity.

Figure 5.Electron beam energy spectrum evolution in time in a 150 fs laser pulse. Average initial energy of the electron beam is
g = 17000 , with the initial energy spread of (a) s = 20 , (b) s = 1000 and (c) s = 2000 . The lineouts represent the electron spectra at
times w= -t 35 0

1 (blue), w= -t 80 0
1 (red) and w= -t 215 0

1 (black). After the shutdown of the laser, s = 67.2 for (a)–(c).
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These laser durations are to be available in the near-future laser facilities such as ELI [1], so there is a possibility to
verify thismodel in the next few years.

4. Electron beamdivergence

In addition to the electron energy spread, we can also evaluate the impact of the laser interaction on the electron
beamdivergence.We define theweighted average of the deflection angle from themain propagation direction as

( )


å

å
q =

=
^

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q

p

p

q
tan , 18

i

N
i

i

i

N
i

1

1

whereN is the total number of simulation particles, qi is the chargeweight of the ith particle, and ( )p̂ p i is the
ratio of the transverse to the longitudinalmomentumwith respect to the direction of laser propagation. For
small angles, q qtan , and the average divergence shown infigure 7 is determinedwith this approximation
(the error is less than 1mrad).

Figure 7 shows the evolution of the electron bunch divergence as time progresses. Classically, the radiation
reaction leads tomomentumphasespace contraction proportionally in transverse and longitudinal direction.
According to the analytical solution for trajectory of a relativistic electron in an intense planewave [30], on
average, allmomentum components and electron energy are reduced by a same factor due to radiation reaction.
The angle between the particlemomentum and the laser propagation direction is therefore approximately the
same before and after the interaction, provided that the laser has a slowly varying temporal envelope compared
to the laser period.However, during the interactionwith the laser, the electron has an additional oscillatory
component of the transversemomentum,whose amplitude depends only on the laser intensity ( *̂p a mc0 ). It
is worth noting that the oscillatory component of the p̂ given by the laser is the samewith andwithout radiation
reaction, as it depends only on the normalised vector potential of thewave a0 (see supplementarymaterial [55]).

Figure 6. (a) and (b) Final electron energy spread for different laser durations and initial electron energy of (a) 0.5 and (b) 0.85 GeV.
Red dashed line represents the numerical integration of equation (14), blue line is given by equation (17), while points are obtained
directly from the simulations. (c) and (d)Predictions for thefinal electron energy spread after interactingwith a laser pulse at
= ´ -I 2 10 W cm21 2 as a function of initial electron energy. Two typical intense laser durations of 30 fs and 100 fs are considered.
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In our case, the particles are counter-propagating with the laser, so the initial =p̂ 00 . The only transverse

momentumof such a particle is therefore *̂p . In thefield of a circularly polarisedwave, the transverse
momentumvector rotates in the plane perpendicular to the laser propagation direction, while itsmagnitude
remains constant *=^ ^p p a mc0 .

As the initial electron energy is on the order of a 0.5–1.0 GeV,we take g a0 0 and the parallelmomentum

becomes  g g= - -p mc a mc12
0
2 . As a result, the average angle that a single electronmakeswith the

direction of laser propagation is approximately q ga0 .Without radiation reaction, this angle would stay the
same during the constant amplitude section of the laser, as therewould be no change in γ. However, equation (8)
shows that with radiation reaction the electron Lorentz factor decreases through ( )g g a g= + t1 20 rr 0 and the
angle is then expected to increase linearly as a function of time:

( ) ( )q
g

a g+
a

t1 2 . 190

0
rr 0

The dashed lines infigure 7 show the average expected angle ga0 during the constant amplitude part of the
pulse, where γ is taken as the average relativistic factor of the electron bunch and =a 270 .We observe a similar
trendwith the simulation data, which indicates that the average divergence increase due to radiation emission in
the constant amplitude region of the laser envelope is well explained by the semi-classical approach.However,
there is a slight difference between the simulation data and the expected ga0 which increases over time.

After the interaction hasfinished, the electron beamhas a residual divergence on the order of q ~ 10 mradF

which is larger than the initial divergence on the 0.2mrad level. Semi-classical radiation reaction predicts the
final divergence to be approximately equal to its initial value. InQED,we expect the final =p̂ 0, but the
divergence defined by equation (18) can have a larger value than initial if there is awider particle distribution
function in transversemomentum space.

To ascertain the origin of this effect, we have examined the transversemomentum space at different times
(see figure 8). Initially the electron beamhas a narrowmomentum spread. During the planewave stage the
average transversemomentum is indeed around the predicted value p̂ a mc0 . Howbeit, theQED simulations
show the existence of amomentum spread around the average value that increases with time. This is consistent
with the transversemomentum spreading previously reported in [56]. The variation around the average angle as
defined in equation (18) during the interactionwith the constant-amplitude section of the laser can be
approximately related to the variation in energy:

( )q
g

gD D
a

. 200
2

This variation persists and finally becomes the net beamdivergence when the laser shuts down:
( )q p g sa2F 0 F

2
F. As gF converges to a lower value for a longer interaction time, andσ is fromequation (15)

approximately proportional to g3 2, we can then conclude that thewidth of the final angular spread increases
slowlywith the length of the interaction (as seen infigure 7).

Figure 7.Electron beamdivergence versus time. (a)Electron beam initial energy is 0.5 GeV. (b)Electron beam initial energy is
0.85 GeV.
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5. Conclusions

In classical radiation reaction, the energy loss of a single electron depends on its initial energy. For an electron
beam, themain effects are the decrease in itsmean energy and reduction of the energy distributionwidth.When
QEDeffects are taken into account, the intrinsic stochastic nature of photon emission leads to diffusion in the
energy distribution around themean valuewhichwould translate into the increase of the energy spread of the
beam. Therefore, in the general scenario, there is a competition between these two tendencies. If we allow a long
enough interaction time, there is a point when the diffusion inmomentum, intrinsically quantum, is balanced
by the energy width reduction, associatedwith the classical regime. Beyond this point, the energy spread only
decreases. This allows for estimating themaximal attainable energy spread through diffusion for a set of initial
parameters g0 and s0.We have estimated this limit (and confirmed it with numerical simulations), which has
further allowed us to predict analytically the final electron energy spread, which is the relevant quantity to be
measured in experiments.

The average divergence of the electron beamduring the laser interaction is well-described by the classical
radiation reaction.However, we have observed that the electron distribution function inmomentum space has a
certain spread around the average value that increases with the interaction time. This spread persists after the
interaction is shut down and leads to a residual divergence of the electron beam that can be estimated analytically
through its connectionwith the electron energy distribution function.

The control of beamproperties is of relevance for all near future laser facilities that will operate at high
intensities, regardless if they are aimed at optimising particle acceleration, radiation sources or fundamental
research. As the quantum spreadingmight discriminate between themeasurable effects and thosewhose
signatures are too small to be observed due to thewidth of the final distribution function, our findings are vital
for the design of upcoming experiments. They are also valuable for numerous applications with specific beam
quality requirements.
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