ISCTE £ IUL

Instituto Universitario de Lisboa

Departamento de Ciéncias e Tecnologias de Informacao

Performance Assessment for Mountain Bike based on
WSN and Cloud Technologies

Tiago Miguel Nunes Ribeiro

A Dissertation presented in partial fulfillment of the Requirements for the Degree of Master

Engenharia de Telecomunicacdes e Informatica

Advisor:
Doctor Octavian Postolache, Assistant Professor
ISCTE-IUL

Co-Advisor:

Doctor Pedro Passos, Assistant Professor
FMH-UL

October 2016

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Abstract

The mountain bike is one of the most used equipment’s in outdoor sports activities. The thesis
describes the design and all development and implementation of Performance Assessment for
Mountain Bike based on Wireless Sensor Network (WSN) and Cloud Technologies. The
work presents a distributed sensing system for cycling assessment-providing data for
objective evaluation of the athlete performance during training. Thus a wireless sensor
network attached to the sport equipment provides to the athlete and the coach with
performance values during practice. The sensors placed in biker equipment’s behave as nodes
of a WSN. This is possible with the developing of loT-based systems in sports, the tracking
and monitoring of athletes in their activities has an important role on his formation as bikers
and helps to increase performance, through the analyze of each session. The implemented
system performs acquisition, processing and transmission, of data using a ZigBee wireless
networks that provide also machine-to-machine communication and data storage in a server
located in the cloud. As in many cycling applications use the phone as a module to get the
values, this work will be a little different making use of phone/tablet to consult information.
The information stored on the cloud server is accessed through a mobile application that
analyses and correlates all metrics calculated using the training data obtained during practice.
Additional information regarding the health status may be also considered. Therefore, the
system permits that athletes perform an unlimited number of trainings that can be accessed at
any time through the mobile application by the bikers and coach. Based on capability of the
system to save a history of the evolution of each athlete during training the system permits to
perform appropriate comparisons between different training sessions and different athlete’s

performances.

Keywords: machine-to-machine; bicycle; cloud; wireless sensor network; 10T

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Resumo

A bicicleta de montanha € um dos equipamentos para desportos no exterior mais usada. A tese
descreve todo o desenho, desenvolvimento e implementacdo de Performance Assessment for
Mountain Bike based on WSN and Cloud Technologies. Este apresenta um sistema de dete¢éo
distribuida para o aumento do desempenho, melhorar a metodologia da pratica do ciclismo e
para formacao de atletas. Para tal foi desenvolvida e anexada uma rede de sensores que esta
embutida no equipamento do ciclista, através desta rede de sensores sem fios sdo obtidos os
valores respetivos a interacdo do utilizador e a sua bicicleta, sendo estes apresentados ao
treinador e ao pradprio ciclista. Os sensores colocados comportam-se como nés de uma rede de
sensores sem fios. Isso é possivel com o desenvolvimento de sistemas baseados na Internet
das coisas no desporto, a observacdo da movimentacdo e monitoramento de atletas nas suas
atividades tem um papel importante na sua formacdo como ciclistas e ajuda a aumentar o
desempenho. O sistema é baseado numa rede ZigBee sem fios, que permite a comunicacao
maquina-para-maquina e o armazenamento de dados num servidor localizado na nuvem. Toda
a informacdo na nuvem pode ser acedida através de uma aplicacdo mobile que analisa e
correlaciona todos os valores calculados usando os dados recolhidos durante o treino efetuado
por cada ciclista. Como em muitas aplicacdes de ciclismo estas usam o telefone como um
modulo para obter os valores, neste trabalho o caso é diferente fazendo o uso do
telefone/tablet para apenas consultar as informacdes. Alguma informacdo sobre o ciclista €
fornecida para poder efetuar alguns calculos, relativos a satde do ciclista, neste caso toda a
energia gasta na pratica de um determinado treino. Toda esta informacdo pode ser acedida
através de uma aplicacdo Android e por consequéncia num dispositivo Android. Com a
aplicacdo desenvolvida € possivel observar e processar toda a informacdo recolhida através
dos sensores implementados, a observacdo dos dados recolhidos pode ser efetuada pelo
treinador responsavel, como pelo préprio atleta. Portanto, o sistema permite a realizagdo de
um ilimitado ndmero de sessdes de treino, estes podem ser consultados a qualquer momento
através da aplicacdo movel. Fazendo com que seja possivel manter um historico da evolugdo
de cada atleta, podendo assim observar e comparar cada sessdo de treino, realizada por cada

atleta.

Palavras-chave: maquina para maquina, bicicleta, nuvem, rede de sensores sem fios; Internet
das Coisas;

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Acknowledgments

I would first like to thanks to my advisor and co-advisor for the opportunity they gave me to
do this project “Performance Assessment for Mountain bike based on WSN and Cloud
Technologies”.

Firstly, 1 would like to express my sincere gratitude to my advisor Professor Octavian
Postolache for continuous support and committed on the development of this work.
Throughout the year he was always available to help under any circumstance.

| wish to express my sincere thanks to my co-advisor Professor Pedro Passos for his
contributions to this work, whose opinions were very important.

To both of them | would like to thanks for the continuous support on the development of this
work, for his patience, motivation, immense knowledge, and great ideas.

To Instituto de TelecomunicacBes on ISCTE-IUL, thanks for providing me all the material
and resources | needed to implement this demanding work.

I would like to thank the members of Arduino Forum and StackOverflow communities for
their invaluable assistance in many a late-night coding session.

Last but not least, | must express my very profound gratitude to my family and to my close
friends for providing me with unfailing support, great moments and continuous
encouragement throughout my years of study and through the process of researching and
writing this thesis. This accomplishment would not have been possible without them. Thank
you all.

Figures

Figure 1-1 - Internet of ThiNGS (10T) .oovevieieeierieeees et 2
Figure 1-2 - Cells in a cellular NEtWOIK.........ccooiirieiieeeeeeeeeee e 15
Figure 1-3 - WSN Star tOPOIOGYeeveeverueerieieieieriesie sttt 19
Figure 1-4 - WSN Tree tOPOIOGYeoveeveruieiiiieieieiteste sttt 19
Figure 1-5 - WSN MeSh tOP0I0gYcceeiiriiiieiiiiesieeie et 20
Figure 1-6 - Sensor cloud INFraStrUCTUIEcc.coueeienieieeeeee e 21
Figure 1-7 — Cyclemeter appliCatioNncocveviieriinerineneeeeeee e 22
Figure 1-8 - Bike Gear apliCatioN.........c.ccveveiieiiieiesiecie ettt nae e 23
Figure 1-9 - Stava apPliCAtIONccveeiieecee ettt sttt e naeeneas 24
Figure 1-10 - Map My ride appliCatioNcccveviieieieeie et 25
Figure 1-11 - Endomodo appliCationc.cceevuieieieeiie ettt 26
Figure 1-12 — Safety BiKe SITULUIEcooviieeieeieceese ettt s 27
Figure 2-1 - SYStem ATCNITECIUIEcocveeieceeceee ettt sae s 30
Figure 2-2 - Representation Coordinator & End-node...........ccceeveveeveieeneeieceecece e 31
Figure 2-3 - FlexiForce a201 COMPOSITIONccuiiieiiecieiieseete e 32
Figure 2-4 - Force Versus CONAUCTANCE.........ccuevuieierieeie e steeteeee st esee et er e esaeeneas 33
Figure 2-5 - Conditioning Circuit for fOrce SENSOIS......ccvvveieeiiieeese e 33
Figure 2-6 — Characteristic Of the SENSOFcccuieieieeie et 35
Figure 2-7 - MinIMU-9 v3 Gyro, Accelerometer, and COMPass........cccecveveecreeeerieecveseenreennn. 35
Figure 2-8 - IIMU SCREMALICccuieieciieiecie sttt sttt re et s enaeennas 36
Figure 2-9 - Representation MU aXiS.........c.coveevuieieseeiieiieseeieeee e esae e e eae s ese e e saeeneas 37
Figure 2-10 - SeNSOr RFID-RCB522ccoiiiiiieeeesieee ettt 40
Figure 2-11 - Adafruit Ultimate GPS Logger Shieldccovvrevieiereereceeeeee e 41
Figure 2-12 - GPS module GIobalTop PABHc.cooieiieeereeeceeseee e 41
Figure 2-13 - Arduing FIO SCREMALICccveveeiieieseee e 42
Figure 2-14 - Hand €N0-NOUEccveeieiieieeieseee ettt eae e naeeneas 43
Figure 2-15 - FEEt BNU-NOUEeeivieieeieeieeee sttt e e e sseenaeeneas 43
Figure 2-16 - Body and Bicycle end-NOdeccceveevirierieieeeeseee e 43
Figure 2-17 - Arduino Fio Force Sensors Gloves Schematic representation..............ccccee...... 44
Figure 2-18 - AHRS System designed by POIOIU.........ccooveierieece e, 45
Figure 2-19 - Arduino Fio IMU Schematic representationcoceevevvereeiiesveneenieseeneeennn. 46
Figure 2-20 - Arduino Mega SCREMALIC.........ccuevueeeerieieeiereee e 46
Figure 2-21 - Coordinator schematic repreSentation...........coceeveeeereereseeneeieseeseeee e seeeneas 47
FIQUIE 2-22 - YUN SNIEIG ...ttt sttt s 48
Figure 2-23 - Representation of SPI protoColcccevvverieiieeceeeceeee e 49
Figure 3-1 Vector measured in the frame of reference of the plane to the frame of reference of

L L0 (0]] T S 53
Figure 3-2 - Direct Cosine Matrix Algorithm OVEIVIEWccecceevvevereeneeieeeeseeee e 54
Figure 3-3 - Representation of communication between coordinator and server 57
Figure 3-4 - WSN tOPO0I0gY USEUoocveeiieeierieeieeiesieete ettt e e nae s 58
Figure 3-5 —Principal CONFIQUIAtiONS.........cccvereeiiieieseeie e 58
Figure 4-1 - LAMP ArcChiteCture SYSIEIM.......ccveuieierieieeiesieete ettt see e 60
Figure 4-2 - Database Model DIagram........ccccceevuveiereeiesieseeie et 62

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Figure 5-1 - Configuration ANdroid STUAIO........c.eeierieiiniereeeeeee e 66
Figure 5-2 - Sequence diagram Coach INteractioncceveevieeeereesesieseee e 67
Figure 5-3 - Sequence diagram Biker iNteraCtionccoceeveeeereeieseeseee e 67
FIGUIE 5-4 = LOGIN VIEW .vtieiecieeieeeetee ettt ettt et sttt e aessa e aeesaasnaeseensessnenaeeneas 68
Figure 6-1 - Force sensors gloves initial assemblyccoovevieieiieveceeeecee e, 74
Figure 6-2 - Force sensors gloves finally assemblyccccoeevieieiieveceneeeceeee e, 74
Figure 6-3 - Coordinator aSSEMDIY.........ccuiiieieeiieeiese ettt naeeneas 75
Figure 6-4 - Finnaly Assembly GIOVES SENSOIS.......ccveviiieiieieceeseee e 76
Figure 6-5 - Finally assembly SNOES SENSOIS........cccuevievieiieriieie e 76
Figure 6-6 - Finally assembly COOrdiNatorc.ocveiieiieiiereciee e 76
Figure 6-7 — Application GPS @NalYZe.........c.ccveuieieiieiecesece e 77
Figure 6-8 - Application VElOCIty analyzZe..........ccoccvevieiiiieiieeeeeceee e 78
Figure 6-9 - Application altitude analyze...........ccoccveveeieiieiieeeeseee e 78
Figure 6-10 - Application analyze gloves Sensors (FOICe).......ccuuvvevievereereeciecieceeee e, 79
Figure 6-11 - Application analyze gloves SeNsors (% USA0E)ccvevveevvereverreerieereerieereseeenaeenna 79
Figure 6-12 - Application analyze sh0es Sensors (FOICE)ccevueverererenenieieieieseeseseees 80
Figure 6-13 - Application analyze shoes Sensors (% USAQJE)ccevvererrererereneeeereeneeneeneennes 80
Tables

Table 1 - Arduino COMPAre DOAIA SPECS......ccveruieriereereeeieseerteetesree e eaeseeesseeeesreeseeesesseenseenees 4
Table 2 - BeagleBone compare DOArd SPECScccveveerieerierierieeieneeseeie e sieetesee e eaeseesseeneas 5
Table 3 - Raspberry Pi compare board SPecs (Part. 1)ccoecveveevereeneeiienieeeie e see e 6
Table 4 - Raspberry Pi compare board SPecs (Part. 2)coecveveevuereereeiiesieneeieseesee e seenee s 7
Table 5 - Raspberry Pi compare board SPecs (Part. 3)ceceeeeeererereneneneseeieeeeeeseesee s 8
Table 6 - Raspberry Pi compare board SPecs (Part. 4)ceceevvereerierereneneneneeeeeeeesee e 9

Table 7 - General advantages and disadvantages of different sensor technologies (part.1) 10
Table 8 - General advantages and disadvantages of different sensor technologies (part.2)11

Table 9 - IMU configurations DOF..........cccoeoiiieiieieciese ettt see e sseesesneens 12
Table 10 - LAN Technology SPecCifiCationscccocveiiecieiieiieieceesie et 13
Table 11 - WIreless PrOtOCOISc.cvueeieieieieieesese sttt 14
Table 12 - Cellular Technologies (PArt.1)cc.eceecueeieeeeie ettt s 15
Table 13 - Cellular Technologies (PArt.2)cceecuieieeeeie ettt 16
Table 14 - ZigBee, Bluetooth, and Wi-Fi charaCteristics...........cccevveeeveevierieceee e 18
Table 15 - Frequency bands 0f RFID SYSEM......c.ccviiieiieieceeeceeceete et 39

List of Acronyms

2G

3G

4G
AHRS
AP
API

ATM
CPU
CSMA/CD
DB
DDR2
DDR3
DOF
DSSS
EDGE
EEPROM
FDDI
FFD
FHSS
FSR
FTDI
G
GPIO
GPRS
GPS
GPU
GSM
HDMI
HF
HSPA
HTTP
12C

12S
ICSP
IEEE
IMU
loT
LAMP
LAN
LCD
LET
LF
M2M
MEMS
MET

2"d Generation

3" Generation

4" Generation

Altitude and Heading Reference System
Access Point

Application Programming Interface
Asynchronous Transfer Mode

Central Processing Unit

Carrier sense multiple access with collision detection
Data base

Double Data Rate 2

Double Data Rate 3

Degree Of Freedom

Direct Sequence Spread Spectrum
Enhanced Data Rates for GSM Evolution
Electrically-Erasable Programmable Read-Only Memory
Fiber Distributed Data Interface
Full-function device

Frequency-Hopping Spread Spectrum
Force Sensitive Resistor

Future Technology Devices International
2.5 Generation

General-purpose input/output

General Packet Radio Service

Global Positioning System

Graphics Processing Unit

Global System for Mobile Communications
High-Definition Multimedia Interface
High Frequency

High Speed Packet Access

HyperText Transfer Protocol
Inter-Integrated Circuit

Integrated Interchip Sound

In Circuit Serial Programming

Institute of Electrical and Electronics Engineers
Inertial Measurement Unit

Internet of Things

Linux, Apache, MySQL and PHP

Local Area Network

Liquid-crystal Display

Long-term Evolution

Low Frequency

Machine-to-Machine
Microelectromechanical Systems
Metabolic Equivalent of Task

Vi

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

OFDM
ORD
PCB
PHP

PWM
RAM
RF
RFD
RFID
RMR
SCL

SD card
SDA
SDRAM
SoC
SPI
SQL
SRAM
SSH
TIFF
UART
UHF
UMTS
UsSB
VHF
WAN
WAP
WEP
WLAN
WPAN
WSN

Orthogonal frequency-division multiplexing
Object-relational Database
Printed Circuit Board
Hypertext Preprocessor
Pulse-Width Modulation
Random Access Memory
Radio Frequency
Reduced-function device
Radio-frequency identification
Resting Metabolic Rate

Serial Clock Line

Secure Digital Card

Serial Data Line

Synchronous Dynamic Random Access Memory
System on Chip

Serial Peripheral Interface

Structured Query Language

Static Random Access Memory

Secure Shell

Time-to-First-Fix

Universal Asynchronous Receiver/Transmitter
Ultra High Frequency

Universal Mobile Telecomunications System
Universal Serial Bus

Very High Frequency

Wide Area Network

Wireless Application Protocol

Wired Equivalent Privacy

Wireless Local Area Network

Wireless Personal Area Network

Wireless Sensor Network

vii

Contents

7Y o 23 1 Yo PP i
RESUMIO euiiuiieiieiieniieireitaiieiresresiesiesirestostastessresrastasssssrestassassssstossassassrsssassassasssassassasssnssassas ii
P04 Lo 3T Y] [T P 4 L= 3 PPN iiii
FiBUIES . ceuu ittt irneereneeteaeistansetensssrssserensserenssstanssssassssensssssssssenssssanssssansassnnse iv
LIS 1 <] 1= PP v
(T o] i Yol £01 1 171 1 3OO Vi
070 41 =T o) P viii
Chapter 1 - INtrodUCtiON......ccceuiiieeieieiccreecereneerreneereenerenserenseeresseennsessensessnssesensssssnsessnnsnen 1
1. Motivation and OVEIVIEW.........cceeeuuiiiieinierieiniereeeneereeassierenasssenennsssssennsssssennsssssennssssnennnes 1
1.1. INternet Of THINGS (10T) .uiiciieiie ettt et rare e st e e be e et e e e aee e sabaeennns 2

1.2.] = o) - | U UPR 3
1.2.1. EMDEdded SYSTEIMSviiiiiiiie e ciiie ettt ettt e st e e e tte e e et e e e st te e e eetta e e seaseaeesataeeeenssaeeesnseaeesnsseaeannes 3

1.2.2. The Arduino Family.......oo ittt e e st e e e e tte e e s eabe e e e s abbeeeenstaeesnnbaaeeensaeaeannes 3

1.2.3. The BeagleBone Familycooiuiiiieiiic ettt e et e e e ettr e e e s ta e e e e atee e sabaeeeetaeeeennes 5

1.2.4. The Raspberry Pi FAMIlYcooiiiiiiiiiieeeet ettt et 5

1.2.5. Tactile SeNSING TEChNOIOGIESeiiueiiiiiieiiieiieee ettt st 9

1.2.6. Inertial MeasuremMent UNiT........cccciiiiiiiiieiiiiiieeee ettt e eesette e e e e e e eeatrrreee e e e e e ntnaeeeeeeeeennnnnnes 12

0 R 0o o o 2 01U a1 Tr= 4 Lo o 1= N 12

1.2.8. Machine-to-Maching (M2IM)ccociiieieiiie e ettt e e te e e e ate e e s tbe e e esatae e e ensaeeesaraeaaans 16

1.2.9. Wireless SENSOT NETWOIKccccuvieieiiiieiciiie e citee e ettt e eeite e e stteeeeste e e seaaee e sbbeeeenstaeeeensaaesssraeaans 17

1.2.10. Joining M2M communication, WSN and Cloudcccceeoiiieieiiiiie e e e 20

1.2.11. 1V [o] oY1 [l AY o] o] | or= 1 A [o o 13U UPUN 21

1.2.12. Y T TU T o =TT T =T SR 26

1.3. (0] o T Lot 41V =T TR 28

1.4. REIATEA WOTK ..ttt ettt e e ettt e e tte e e e et te e e e ebteeeeeabteeeeeabteeeeensraeeesassaeaeannes 29

1.5. MELhOAS OFf ANAIYZE ..ot e et e e e tte e e e e bre e e e ebaeeaeeanes 29
Chapter 2 - System DesCriptioncccciiiieeiiiiiiiniiiiiiniiiniieiiieiensiesssssssssenses 30
2. OVEIVIEW .eiieiiieiiiiieiiieeiiteiiienerensistnssstessssensssesssssnssssnssssnsssssnsssenssssnssssnsssensssssnssssnssssnsans 30
2.1. Hardware COMPONENTS........uuiiiiei ittt ee e e e ecccrrrre e e e e e e srtarereeeeeeessnbeareeeeeeesesnnseanneeeeseanas 31
2.0.0. FOFCE SBNSOIS e s s s s s s s s s s s e s e s e s e s e s e s e sasasasasasasasasesnsnsnns 31

2.1.2. Inertial MeasuremMent UNit.......ccccooiiiiiiiieiiieiiiiriee e ccttree e e setrre e e e e e s eaat e e e e e s e sesnneraeeeeeeeenans 35

2.1.3. Radio Frequency [dentificationcccceiiiiiiiiiee ettt et e e et e e e b e eanaeas 37

Nt S 1 = TSP 40

0 S T Y o [U] 1 o TN oo TSR 41

g N ST o T o T V=Y - T o RS 46
Chapter 3 - Embedded SOftWaAre........ccciieeieieniiiieiiieenerenneereeeereneeeeneeresserenseesensessansessnnens 52
3. Arduino Fio IIMIU SENSOF....c..iiiuiiieeiiieniiteirieeistnnestnessienserensersassssnssssnsssssnssssnsessnssssnssssnnssnns 52
3.1. (DY = oY 0'0] 0 10 a1 r=) o L3N 56

3.2. ZIBBEE ... 57

3.3. CoMMUNICALION M2V aasasnsnnnsnsnnnnnnns 58

3.4. LAY T =] 1= SRRt 59

3.5. R o T=T T TPt 59
(00 F=T 0 =T o o [T T 60
L Y - Y = N 60

viii

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

4.1. (DY o= L= 61

4.2. [Lo\ [e Y L] LS 63
Chapter 5 - APPlicationccueiiiiiiieiiiiiiniiiiiiiiiess s resesssstrsssssssssanssssssenses 66
TN |V ToY o T T=102V o T o] [T oF 14 T 4 OO 66
5.1. SEQUENCE DIaBram . i 66
5.1.1. CoaCh SEQUENCE DIABram .cc...eiiueeiiieiieenieeet e st ettt ettt et e st e st e st e sabeesabeesaneesaneeeaneens 67

5.1.2. Biker SEQUENCE Diagram....c.cueiiuiiiiieiiieiiteeiee st et e sttt st s bt e st e st esabeesabeesabeesaneesabeeeanee s 67

5.2. IVTAIN FEATUIMES . .ieveeiiiiiieeeeee ettt e et e e e et e e s eaa e e s et eessataesranaseereraeeraranses 73
Chapter 6 Results and EValUuationccceveeerieireeiiieiiieieteiereerenereesreesreasrenernsereseresesenssennees 74
LT -3V 1 1= 4 ' o T 74
6.1. RESUILS vttt ettt ettt e e e e e ettt e e e e e e e ea b b eeeesesesb b eseeesessaananseseeeesnes 77
Chapter 7 - CONCIUSIONS.....ccucieeiieeireeiireerenerieereeeresererereseraseressresssensseasssnsssnsesasssassssnsesnnees 82
6.2. (000Y 01 (| o101 oY s TR RTPPRT 83

6.3. FUBURE WOTK...eeeeieeiee ettt ettt e e e ettt e e e e e et tat b e s seeeaeasaaaaseseessasssansnnsesssessses 83

=] =] =] 3 =S 84
7Y o] o1 T [NN 92
APPENAIX B...ceeieeiiiiiiiiieiiiiieieiinieieaiitnniertnsistsesertnssessnsssssnssssnssessnsssssssssensssssnssssnnssssnnnns 100
APPENAIX Caoeeiieniiiiiiiieiiieeieiteiereaesteserensistsesertnsserenssssssssssnssssenssssnssssensssssnssssnnssssnnnns 110

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Chapter 1 - Introduction

1. Motivation and Overview

The history of bicycle remote us to the year of 1418 where the engineer Giovanni Fontana
built a four wheeled “bike” with rope connected by gears. Only 400 years later, in response to
the starvation and the slaughtering of horses Baron Von Drais built the first two wheeled bike
that has a cord connected to the back wheel. These velocipedes were made entirely of wood
and needed to be balanced by directing the front wheel a bit. People then did not dare to lift
the feet off safe ground, therefore the velocipedes were propelled by pushing off the feet.
Only in 1890 appeared a bicycle which had the name “Safety Bike” with the same design and
concept that we can see nowadays (same-size wheels, pedals, gears and bike saddle) (Mozer,
2016). The years passed and the innovations were many, as the pedals, brakes, suspension and
the lighter and comfortable materials that we see today in our bikes. Nowadays bicycles can

be classified in four types: urban bike, BMX, road bikes and mountain bikes (Sanches, 2015).

For the conception of this work will be used a mountain bike, these bicycles are typically used
in single tracks where the terrains can be unpaved. Like in many sports the choice is immense
in terms of materials that the bicycles are made and to get the best performance, normally the
athletes choose the best that fits to his needs (considering the tracks and is own physical
performance) ("Bikes | Trek Bikes", 2016). Because on these tracks commonly we could
encounter rocks, loose gravel, roots and step grades inclines and declines. Under these
conditions the biker will need to get a functional interaction with his “machine”, in order to
achieve a balance between speed and safety. The mountain bike is produced to handle with
this type of tracks, normally the material that is widely used is aluminum or carbon fiber
(offers a lighter stiffer and efficient ride) ("Understanding Bike Frame Materials - REI Expert
Advice", 2016). The modern and the most common frame design for an upright bicycle is
based on the “safety bike”, and consists of two triangles, a main triangle and a paired rear
triangle. To control the bicycle along the track the biker needs to use the mechanisms with his
hands (e.g., brakes) and feet (e.g., pedals), and the positioning of his body is also
fundamental. A functional position will permit the biker make rapid changes of direction and
get the desirable speed. The biker position could be essential to deal with some external
factors such as the slope of the track and its obstacles. It is the interactive behavior of the

bicycle and biker which wanted to acquire, dynamic and kinematic data through a WSN was

| Introduction

designed and implemented. These WSN permits to get values to some of the following
variables: 1) braking intensity and frequency (both hands); ii) pedal strength (both feets); iii)
position of bicycle in the three plans of motion (x, y and z); iv) position of biker in the three
plans of motion. With this set of variables, it was possible to calculate some important aspects

to describe the bicycle ~ biker interaction.

For the athletes the training is the most important way to achieve a better performance
whether professional or recreational level. In this era of the Internet of Things (loT), where
vehicles, buildings and a lot of another’s things are characterized by sensors, software and
network connectivity that enable the data collection and data exchange remotely across
existing network. This developed system will allow the users to obtain data from his own
training session. The acquired data with this sensors network, can be analyzed and adapt the

training methods and improve the performance.

1.1.Internet of Things (IoT)

Internet of Things (loT) is an environment in which objects, animals or people are provided
with unique identifiers and the ability to transfer data over a network without requiring human
interaction. 10T evolved through the convergence of wireless technologies, micro-

electromechanical systems (MEMS) and the internet.

In the term Internet of things, a thing can be (fig. 1-1), a person with a heart monitor implant,
an animal in a farm with a biochip transponder (like the same the vet put in our pets), or a
object (sensor) in our car ("What is Internet of Things (1oT) | Engineers Gallery| Technology",
2015), (Stoces, Vanék, Masner, & Pavlik, 2016).

= [l] v¢ek e & mY

Vehicle,asset,person & pet Aeru./hue automation €new consumption Secm{y & 3:44/44@ waxagment
mané/ordnj & confro//éttj

survedllance

Everyday things_t for smarter
Inte n et Of thlngS get connected tomorrow

® b, % Kz
e pa A ° @
MM & wireless
Sensor networt Ever dey Hwth me‘ homes & cities Telemedicine & helthcare

Figure 1-1 - Internet of Things (IoT)

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

1.2.State of art

On the market many applications about cycling are produced and sent to market by companies
or by individual developers, they have in common two aspects they use the phone and all
information about the training it is obtained from the position of the phone. They don’t have
information about the aspects of the biker and his bicycle. So the innovation purposed in this
work is to create WSN to capture some data about the interaction of the biker and his bicycle.
Some work in this research field was performed in time and the prototype with limited

characteristics was developed. (Barreiro, Postolache, & Passos, 2014).

1.2.1. Embedded Systems

An embedded system is an engineering artifact involving computation that is subject to
physical constraints. The physical constraints arise through two kinds of interactions of
computational processes with the physical world: (1) reaction to a physical environment, and
(2) execution on a physical platform. Accordingly, the two types of physical constraints are
reaction constraints and execution constraints (Henzinger & Sifakis, 2006).

So an embedded system is a combination of computer hardware and software, either fixed in
capability or programmable, that is specifically designed for a particular function. In our days

there are a huge number of hardware that support software and can act as embedded system.
Below are presented some examples of embedded systems studied and created:

Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat

(Goncalves, Thomaz, Sa, & Henrique, 2016).
Network camera with FPGA technology (Guedes, Neto, & Véstias, 2007)

Design and construction of an embedded real-time system based on Linux (Campos, Fonseca,
& Lopes, 2011).

1.2.2. The Arduino Family

Arduino makes several different boards, each with different capabilities, is an open-source
platform used for building electronics projects. Arduino consists of both a physical
programmable circuit board referred as microcontroller.

In addition, part of being open source hardware means that others can modify and produce

derivatives of Arduino boards that provide even more form factors and functionality. Arduino

| Introduction

hardware consists of an open hardware design with Atmel AVR processor ("What is an
Arduino? - learn.sparkfun.com", 2016). Boards can be purchased preassembled, but hardware
design information is also available for those willing to build or modify them. Several third-
party makers have produced Shields (add-on boards) that are able to extend the basic
capabilities of an Arduino. Among these shields, it is worth mentioning the XBee shield

allows multiple Arduino boards to communicate wirelessly (Bell, 2013).

Processor

Operating/In
put Voltage

CPU
Speed

Analo

9

In/Ou

t

Digital

M

EEPRO
I0/PW M [kB]

SRA

M
[kB]

101 Intel®Curie 3.3V/7-12V 32MH 6/0 14/4 - 24 196 Regul
Z ar
ATtiny85 33V/4-16V 8MHz 1/0 3/2 0.5 0.5 8 Micro
ATmegalé8V ~ 2.7-55V/ 8MHz 6/0 14/6 0.512 1 16 -
ATmega328P 2.7V-55V
WVEER ATmega328P 27-55V/ 8MHz 4/0 9/4 1 2 32 :
SimpleSn 2.7-55V
ap
ATmega32U4 33V /385 8MHz 4/0 9/4 1 25 32 Micro
USB \Y;
ATmega2560 5V /7-12V 16MH 16/0 54/15 4 8 256 Regul
2560 z ar
ATmega32U4 5V /7-12V 16 12/0 20/7 1 25 32 Micro
MHz
SAMD21 3.3V/5V 48 7 8/4 - 32 256 Micro
0] Cortex-M0+ MHz
Pro ATmegalé8 3.3V /335 8MHz 6/0 14/6 05121 1 16 5
ATmega328P 12V 5V /5- 16 2 32
12V MHz
ATmega328P 33V /335- 8MHz 6/0 14/6 1 1 32 -
12V 5V [7-12 16
\Y; MHz
ATmega328P 5V /7-12V 16 6/0 14/6 1 2 32 Regul
MHz ar
ATSAMD21 33V/7-12V 48 6/1 14/10 - 32 256 2
G18 MHz Micro
“ ATSAM3X8E 3.3V /7-12V 84 12/2 54/12 - 96 521 2
MHz Micro
ATmega328P 5V /2.5-12V 16 6/0 14/6 1 2 32 -
MHz
ATmega328P 5V/7-12V 16 - - 1 2.5 32 Micro
MHz
ATmega328P 5V /7-12V 16 6/0 14/4 1 2 32 Regul
MHZ ar
ATmega328P 33V /377 8MHz 8/0 14/6 1 2 32 Mini
\Y;
ATmega32U4 5V /7-12V 16 12/0 20/7 1 2.5 32 Micro
MHz
ATmega2560 5V /7-12V 16 16/0 54/15 4 8 256 Regul
ADK MHz ar
ATmega328P 5V /7-9V 16 8/0 14/6 1 2 32 -
m ATmegal68 5V/7-9V 16 8/0 14/6 0.512 1 16 Mini
ATmega328P MHz 1 2 32
Yin ATmega32U4 5V 16 12/0 20/7 1 2.5 32 Micro
AR9331 MHz 16M 64M
Linux 400M B B
Hz

Table 1 - Arduino compare board specs

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

1.2.3. The BeagleBone Family

The Beagle boards are open-hardware, open-software computers. The BeagleBone is one of

the best tools to use to discover embedded programming and electronics. It’s a good way to

see and understand more closely how a computer works (Santos & Perestrelo, 2015). The

BeagleBone is a compact, low-cost, open-source Linux computing platform that can be used

to build complex applications that interface high-level software and low-level electronic

circuits. BeagleBone runs the Linux operating system, which means that is possible use many

open-source software libraries and applications directly. This platform is formed by the

integration of a high-performance microprocessor on a printed circuit board (PCB) and an

extensive software ecosystem (Molloy, 2015).

BeagleBoard.org
BeagleBone Black

Processor AM3358 ARM
Cortex-A8
Maximum 1GHz
Processor Speed
Analog Pins 7
Digital Pins 65 (3.3V)
Memory 512MB DDR3

(800MHz x 16), 2GB
(4GB on Rev C)
onboard storage using
eMMC, microSD card
slot
miniUSB 2.0 client
port, USB 2.0 host
port

microHDMI, cape
add-ons
microHDMI, cape
add-ons
4x UART, 8x PWM,
LCD, GPMC, MMC1,
2x SPI, 2x 12C, A/D
Converter, 2xCAN
Bus, 4 Timers

Supported
Interfaces

Sensors n/a

BeagleBoard.org
BeagleBone
original
AM3358 ARM
Cortex-A8
720MHz (1GHz on
latest)

7
65 (3.3V)
256MB DDR2
(400MHz x 16),
microSD card slot

miniUSB 2.0 client
port, USB 2.0 host
port

cape add-ons
Cape add-ons

4x UART, 8x PWM,
LCD, GPMC, MMC1,
2Xx SPI, 2x 12C, A/D
Converter, 2xCAN
Bus, 4 Timers, FTDI
USB to Serial, JTAG
via USB
n/a

SeedStudio
BeagleBone
Green
AM3358 ARM
Cortex-A8
1GHz

7
65 (3.3V)
512MB DDR3
(800MHz x 16), 4GB
on-board storage
using eMMC,
microSD card slot

microUSB 2.0 client
port, USB 2.0 host
port

Cape add-ons
Cape add-ons

4x UART, 8x PWM,
LCD, GPMC,
MMC1, 2x SPI, 2x
I2C, A/D Converter,
2xXCAN Bus, 4
Timers, 2 Grove
(12C, UART)
n/a

Table 2 - BeagleBone compare board specs

1.2.4. The Raspberry Pi Family

SanCloud
BeagleBone
Enhanced
AM3358 ARM
Cortex-A8
1GHz

7
65 (3.3V)
1GB DDR3
(800MHz x 16),
storage using eMMC,
microSD card slot

miniUSB 2.0 client
port, 4 USB 2.0 Ports
(2 A-type connectors,
2 on pin headers)
microHDMI, cape
add-ons
microHDMI, cape
add-ons
4x UART, 8x PWM,
LCD, GPMC,
MMC1, 2x SPI, 2x
12C, A/ID Converter,
2XCAN Bus, 4
Timers

Barometer,
Accelerometer, Gyro,
Temperature

The Raspberry Pi is a credit card sized single-board computer developed in the UK by the

Raspberry Pi Foundation with the intention of stimulating the teaching of basic computer

science in schools (Molloy, 2016). The first Raspberry Pi has a Broadcom BCM2835 system

| Introduction

on chip (SoC), which includes an ARM1176JZF-S 700 MHz processor, VideoCore IV GPU,
and was originally shipped with 256 megabytes of RAM, later upgraded to 512 MB and on
the present the boards already have 1024 MB. It does not include a built-in hard disk or solid-

state drive, but uses an SD card for booting and persistent storage.

Raspberry Pi 1 Raspberry Raspberry Compute Raspberry Pi

Pi 2 Pi 3 Module Zero

Model Model A Model A+ Model B Model Model B Model B N/A PCB PCB
B+ v1.2 v1.3

Architecture ARMV6 (32 bit) ARMvV7 ARMvV8 ARMV6 (32-bit)
(32-hit) (64/32-
bit)
Broadcom BCM2835 Broadcom Broadcom Broadcom BCM2835
BCM2836 BCM2837

SoC
CPU 700 MHz single-core ARM1176JZF-S 900MHz 1.2 GHz 700 MHz 1 GHz
32-bit 64-bit single-core ARM1176JZF-
quad-core quad-core ARM1176JZF- Ssingle-core
ARM ARM S
Cortex- Cortex-
A7 Ab3
GPU Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @ 300MHz, video part of GPU @ 400
MHz)
OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28.8 GFLOPS)

Memory 256MB 512 MB (shared with GPU). 1 GB (shared with 512 MB (shared with GPU)
(SDRAM) Older boards had 256MB (shared GPU)
with GPU)
USB 2.0 1 (direct from 2 (viathe 4 (viathe on-board 5-port USB 1 (direct from 1 Micro-USB
ports BCM2835 chip) on-board hub) BCM2835 (direct from
3-port chip) BCM2835
USB hub) chip)

Table 3 - Raspberry Pi compare board specs (part. 1)

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Raspberry Pi 1 Raspberry Raspberry ~ Compute Raspberry Pi
Pi 2 Pi3 Module Zero
Model Model A Model A+ Model B Model Model B Model B N/A PCB PCB
B + v1.2 v1.3
Video 15-pin MIPI camera interface (CSI) connector, used with the Raspberry Pi 2x MIPI None MIPI
Input camera or Raspberry Pi NoIR camera camera camera
interface interface
(Csn) (Csn)
(rev 1.3)
Video HDMI HDMI (rev HDMI HDMI (rev 1.3), composite HDMI, 2x Mini-HDMI,
Output (rev 1.3) 1.3), (rev 1.3), video (3.5 mm TRRS jack) MIPI 1080p60,
composite composite composite display composite video
video video (3.5 video interface via GP1O
(RCA mm TRRS (RCA (DSlI) for
jack) jack) jack) raw LCD
panels,
composite
video
Audio As of revision 2 boards via I12S
inputs
Audio Analog via 3.5 mm phone jack; digital via HDMI and, as of revision 2 Analog, Mini-HDMI,
outputs boards, 12S HDMI, 12S stereo audio
through PWM
on GPIO
On- SD, MicroSDHC SD, MicroSDHC slot 4GB MicroSDHC
board MMC, slot MMC, eMMC
storage SDIO SDIO flash
card slot card slot memory
3.3V chip
with card
power
only)

Table 4 - Raspberry Pi compare board specs (part. 2)

| Introduction

Raspberry Pi 1 Raspberry Raspberry Compute Raspberry Pi
Pi2 Pi3 Module Zero
Model Model A Model A+ Model B Model Model B Model B N/A PCB PCB
B + v1.2 v1.3
On-board None 10/100 Mbit/s Ethernet (8P8C) 10/100 None
network USB adapter on the USB hub Mbit/s
Ethernet,
802.11n
wireless,
Bluetooth
4.1

SonAEE 8xGPIO - 17x GPIO 8x GPIO 17x GPIO plus the same specific ~ 46x GPIO, 40x GPI1O

peripherals (e[RRI plus the plus the functions, and HAT ID bus some of (“unpopulated
following same following, which can header”)
which specific which can be used
can also functions, also be for
be used and HAT used as specific
as GPIO: ID bus GPIO: functions
UART, UART, I2C including
I2C bus, bus, SPI I2C, SPI,
SPI bus bus with UART,
with two two chip PCM,
chip selects, 12S PWM
selects, audio +3.3
12S audio V, +5V,
+3.3V, ground. An
+5V, additional
ground 4x GPIO
are
available
on the P5
pad if the
user is
willing to
make
solder

connections

Table 5 - Raspberry Pi compare board specs (part. 3)

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Raspberry Pi 1 Raspberry Raspberry Compute Raspberry Pi
Pi 2 Pi3 Module Zero
Model Model A Model A+ Model B Model Model B Model B N/A PCB PCB
B+ v1.2 v1.3
Power 300mA 200 mA (1 700 mA 600 800 mA (4.0 W) 200mA (1 ~160
Ratings 1.5W) W) (3.5W) mA W) mA
(3.0 (0.8
W) W)
Power 5V via MicroUSB or GPIO header
Source

Table 6 - Raspberry Pi compare board specs (part. 4)

1.2.5. Tactile Sensing Technologies

The “sense of touch” in humans comprises two main sub modalities: cutaneous and
kinesthetic (neural inputs). Cutaneous sense receives sensory inputs from the receptors
embedded in the skin and kinesthetic sense receives sensory inputs from the receptors located
in muscles, tendons and joints. Cutaneous system involves physical contact with the
stimulation and provides the awareness of the stimulation of the outer surface of body by
means and receptors in the skin associated somatosensory area of central nervous system. The
kinesthetic system provides humans information about the static and dynamic body posture
on the basis of afferent information originating from the muscles, joints and skin. Human
tactile sensing has generally served as a reference point for tactile sensing in robotics. Even
though human tactile sensing has been a reference point for robotic tactile sensing, the way
tactile sensing is defined in robotics falls short of what it means in humans. Most of the times,
the robotic tactile sensing has been associated with the detection and measurement of forces
in a predetermined area only. The tactile or cutaneous sensing is associated with the detection
and measurement of contact parameters, which can be mechanical stimulation (force, stress,
roughness etc.), temperature, moistness etc. The definition of a pressure sensor by Lee et al.
(Almassri et al., 2014) is a device that measures a physical quantity and converts it into a
signal which can be read by an observer or an instrumented. There are various types of
sensors: thermal sensor, electromagnetic sensor, pressure sensor, mechanical sensor and
others. In the case of pressure is sensed by mechanical elements such as plates, shells, and

tubes that are designed and constructed to deflect when pressure is applied (Fassler, 2010).

| Introduction

Technology

Mechanical

Capacitive

Strain Gauges

Piezoresistive

Piezoelectric

Type

Whisker / Antenna

Mechanical displacement

Pneumatic touch sensor /

Foil switches

Digital tactile sensor array

Metal Strain Gauges

Semiconductor strain gauge

Conductive elastomers

Carbon felt and Carbon

fibers

Advantages

Simple; Robust; Can measure touch
location

Simple; Robust; Inexpensive

Simple; Robust; Can measure touch
location; Inexpensive

No analog to digital conversion

Good sensitivity; Moderate
hysteresis; Wide dynamic range;
Linear response; Robust

More robust than semiconductor
strain gauges

Very linear response; Low
hysteresis; Low creep; Large k-
factor

Shapeable; Good gripping surface

Shapeable; Withstand very high
temperatures; Withstand high
overloads

Wide dynamic range; Durability;
Good mechanical material

properties

Disadvantages

Bad spatial resolution: Can

not measure force

Limited spatial resolution

Can not measure force

Prone to damage

Complex circuitry;
Susceptible to noise; Limited
spatial resolution; some
dielectrics are temperature
sensitive

Temperature dependence;
Small k-factor compared to

semiconductor strain gauges

Vulnerable to overload; Can
not be shaped; Temperature

dependence

Creep; Memory; Hysteresis;
Temperature dependence

Sensor noise at low loads;
Not suited for miniature
Sensors

Fragility of electrical
junctions; Inherently
dynamic; Good solutions are
complex; Difficulty of
separating pyroelectric /
piezoelectric effects

Table 7 - General advantages and disadvantages of different sensor technologies (part.1)

10

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technology

Pyroelectric

Ultrasonic

Electrochemical

Type

Frustrated internal

reflection

Opto-mechanical

Fiber-optic

Photoelasticity

Tracking of optical markers

Hall effect

Magnetoelastic

Advantages

Wide dynamic range; Durability;
Good mechanical material

properties

Shapeable; Very high resolution
tactile images

Good repeatability

Lower noise than the above;
Flexible

Good results in terms of linearity,

Hysteresis, Creep and memory

No interconnects to break

Wide dynamic range; Low
hysteresis; Linear response; Robust

Simpler then hall effect; Measures
field in 2 directions; Wide dynamic
range; Low hysteresis; Linear
response; Robust

Wide dynamic range; Good spatial
resolution

Disadvantages

Inherently dynamic; Good
solutions are complex;
Difficulty of separating

pyroelectric / piezoelectric

effects

Bulky; Complex construction

Creep; Memory; Hysteresis;
Temperature dependence

Complex construction

Complicated optic system;
Not shapeable

Requires PV for computing
applied forces; Hard to

customize

Measure field in only 1
direction

Susceptibility to stray fields
and noise

Can not measure when
touching material has similar
acoustic impedance as skin
material

No steady state response; Bad
spatial resolution; Low
sensitivity

Table 8 - General advantages and disadvantages of different sensor technologies (part.2)

11

| Introduction

1.2.6. Inertial Measurement Unit

An Inertial measurement unit, or IMU, is the main component of inertial guidance systems
used in air space, and watercraft, including guided missiles. An IMU works by sensing
motion including the type, rate, and direction of that motion using a combination of
accelerometers and gyroscopes. Accelerometers are placed such that their measuring axes are
orthogonal to each other. An IMU works by detecting the current rate of acceleration, as well
as it changes in rotational attributes, including pitch, roll and yaw (Hazry, Sofian, & Azfar,
2009), ("A Guide To using IMU (Accelerometer and Gyroscope Devices) in Embedded
Applications. « Starlino Electronics”, 2009), (Woodman, 2007).

IMUs available in the market now are in various types and shape. The IMU can be selected
from its degrees of freedom (DOF). Actually is possible encounter boards with three, six, nine
and ten DOF. For three DOF, sensors configurations are two accelerometers and a gyroscope
that measures yaw. For six DOF, all axes for accelerometer and gyroscope for measurement
are available (pitch and roll). For nine DOF, all axes are measure for accelerometer,
gyroscope and magnetometer (pitch, roll and yaw). For ten DOF, all axes for accelerometer

and gyroscope for measurement are available (pitch, roll and yaw), but the IMU have a

barometer too (Performance, n.d.).

Degrees of Freedom Function

3 DOF Accel/gyro

6 DOF Accel/gyro

9 DOF Accel/gyro/magn

10 DOF Accel/gyro/magn/baro

Table 9 - IMU configurations DOF
1.2.7. Communications

A Computer network is a collection of computers and devices interconnected by
communications channels that facilitate communications and allows sharing of resources and
information among interconnected devices. Networks may be classified according to a wide
variety of characteristics such as medium used to transport data.

Types of Networks

e Local Area Networks (LANS)

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

e Wide Area Networks (WANS)
e Wireless Local Area Networks (WLANS)

Ethernet is the most popular physical layer LAN technology in use today. It defines the
number of conductors that are required for a connection, the performance is an important
point on networks because the data transmission and communication needs to be always
operational. A standard Ethernet network can transmit data at a rate up to 10 Megabits per
second (10 Mbps). Other LAN types include Token Ring, Fast Ethernet, Gigabit Ethernet,
Fiber Distributed Data Interface (FDDI), Asynchronous Transfer Mode (ATM) and
LocalTalk. Ethernet is popular because it strikes a good balance between speed, cost and ease

of installation.

|IEEE
Standard

Ethernet 10 Mbps 10Base-T 100 meters

Data Rate Media Type Maximum Distance

100Base-TX 100 meters
Fast Ethernet/
o 802.3u 100 Mbps
== 100Base-FX 2000 meters
1000Base-T 100 meters
Gigabit Ethernet/
- 802.3z 1000 Mbps 1000Base-SX 275/550 meters
19
1000Base-LX 550/5000 meters
10GBase-SR 300 meters
10 Gigabit \EEE 10GBase-LX4 300m MMF/ 10km SMF
Ethernet 802.3 10 Gbps
S S 10GBase-LR/ER 10km/40km
10GBase-SW/LW/EW 300m/10km/40km

Table 10 - LAN Technology Specifications
Token Ring is another form of network configuration. It differs from Ethernet in that all
messages are transferred in one direction along the ring at all times. Token Ring networks
sequentially pass a “token” to each connected device. When the token arrives at a particular
computer or device, the recipient is allowed to transmit data onto the network. Since only one
device may be transmitting at any given time, no data collisions occur.

13

| Introduction

Wireless LANSs, or WLANSs, use radio frequency (RF) technology to transmit and receive data
over the air. WLANSs give users mobility as they allow connection to a local area network
without having to be physically connected by a cable. With mobility, WLANS give flexibility
and increase productivity, appealing to both entrepreneurs and to home users. The Institute for
Electrical and Electronic Engineers (IEEE) developed the 802.11 ("Performance of Wireless
Networks: WiFi - High Performance Browser Networking (O'Reilly)", 2016) specification for
wireless LAN technology. 802.11 specifies over-the-air interface between a wireless client
and a base station. WLAN 802.11 standards also have security protocols (Wired Equivalent
Privacy - WEP and Wi-Fi Protected Access - WPA) that were developed to provide the same

level of security as that of a wired LAN (“Ethernet Tutorial - Part I: Networking Basics |
Lantronix™, 2016).

Specification Data Rate Modulation Scheme Security

802.11 1 or 2 Mbps in the 2.4 GHz FHSS, DSSS WEP and WPA

band
802.11a 54 Mbps in the 5 GHz band OFDM WEP and WPA
802.11b/High Rate/Wi-Fi 11 Mbps (with a fallback to DSSS with CCK WEP and WPA
5.5, 2, and 1 Mbps) in the
2.4 GHz band
802.11g/Wi-Fi 54 Mbps in the 2.4 GHz OFDM when above WEP and WPA
band 20Mbps, DSSS with CCK

when below 20Mbps

Table 11 - Wireless Protocols

In terms of the cellular networks, the data is transmitted not to a central hub in a small
network of devices (as it is with Wi-Fi) or even directly from device to device (as it with
Bluetooth), but through a global network of transmitters and receivers. A typical cellular
network can be envisioned as a mesh of hexagonal cells, as shown in fig. 1-2, each with its
own base station at the center. The cells slightly overlap at the edges to ensure that users
always remain within range of a base station (Miller, 2013).

14

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Figure 1-2 - Cells in a cellular network
The base station at the center of each group of cells functions as the hub for those cells not of
the entire network, but of that individual piece of the network. RF signals are transmitted by
an individual phone and received by the base station, where they are then re-transmitted from
the base station to another mobile phone. Transmitting and receiving are done over two
slightly frequencies. Base stations are connected to one another via central switching centers
which track calls and transfer them from one base station to another as callers move between
cells; the handover is (ideally) seamless and unnoticeable. Each base station is also connected

to the main telephone network, and can thus relay mobile calls to landline phones (Pearson,
2011), (Pereira & Sousa, 2004), (Akyildiz, Gutierrez-Estevez, & Reyes, 2010), (Jary, 2014).

Symbol Standard Full Name Maximum Maximum Upload

Download Speed Speed (Theoretical)
(Theoretical)

2G GSM Global System for Mobile 14.4 Kbits/s 14.4 Kbits/s
Communications

GPRS General Packet Radio Service 53.6 Kbits/s 28.8 Kbits/s

E EDGE Enhanced Data rates for GSM 271.6 Kbits/s 108.8 Kbits/s
Evolution
3G UMTS Universal Mabile 384 Kbits/s 128 Kbits/s
Telecommunications System

HSPA High-Speed Packet Access 7.2 Mbits/s 3.6 Mbits/s

Table 12 - Cellular Technologies (part.1)

15

| Introduction

Standard Full Name Maximum Maximum Upload
Download Speed Speed (Theoretical)

(Theoretical)

HSPA+ Evolved High-Speed Packet 14.4 Mbits/s 5.76 Mbits/s
Access — Release 6

HSPA+ Evolved High-Speed Packet 21.1 Mbits/s or 28 11.5 Mbits/s
Access — Release 7 Mbits/s

HSPA+ Evolved High-Speed Packet 42.2 Mbits/s 11.5 Mbits/s
Access — Release 8

H+ HSPA+ Evolved High-Speed Packet 84.4 Mbits/s 11.5 Mbits/s
Access — Release 9

HSPA+ Evolved High-Speed Packet 168.8 Mbits/s 23 Mbits/s
Access — Release 10

LTE Long Term Evolution 100 Mbits/s 50 Mbits/s

LTE-A Long Term Evolution - 1 Ghits/s 500 Mbits/s
Advanced

Table 13 - Cellular Technologies (part.2)

1.2.8. Machine-to-Machine (M2M)

The term M2M communication describes devices that are connected to the Internet, using a
variety of fixed and wireless networks and communicate with each other and the wider world.
The term is slightly erroneous through as it seems to assume there is no human in the
equation, which quite often there is in one way or another (Oecd, 2012). So M2M
communications is an emerging technology that envisions the interconnection of machines
without the need of human interventions. The main concept lies in seamlessly connecting an
autonomous and self-organizing network, of M2M-capable devices to a remote client, through
wired or wireless network. The M2M is a combination of various heterogeneous electronic
communication, and software technologies. An software application is usually employed at
the remote client to process the collect data and provide the end user with a set of smart
services and a practical interface. The penetration of M2M solutions for monitoring and
remote control in a wide range of markets, including industrial automation, security and
surveillance, smart metering, energy management, and transportation generates great business

opportunities. The above challenges stress the imperative need for standardization of M2M

16

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

communications (Kartsakli et al., 2014). The ability to connect new devices to the network
lead to the evolution of the IoT. The Internet will be no longer just a network of computers,
but will potentially involve trillions of smart things with embedded systems. 10T will greatly
increase the size and scope of current Internet, providing new design opportunities and
challenges (Zeng, Guo, & Cheng, 2011). In this scenario, Cloud Computing (Zhang, Cheng,
& Boutaba, 2010) can be seen as a scalable infrastructure (Hofer & Karagiannis, 2011) that

supports computing power, storage and software services.

1.2.9. Wireless Sensor Network

With the advances in Wireless Sensor Networks (WSN), the use of these networks for collect
and interpret data in real time was facilitated. In the past they were typically used wired
sensor networks but have always been expensive, due to installation and maintenance costs.
But the large amount of research projects in this area allows for the existence of tiny hardware
(and more accurate) devices with reduced cost/size. In the recent years the WSN are used in

various monitoring applications, such as:

e One of the areas on the rise is the monitoring in automobiles (Tavares, Velez, &
Ferro, 2008).

e Physiological Monitoring — consists of an array of sensors embedded into the fabric
of the wearer to continuously monitor the physiological parameters (Pandian et al.,
2008).

e Military — Sensing intruders on bases, detection of enemy units’ movements on
land/sea, chemical/biological threats and offering logistics in urban warfare
(Mehndiratta & Bedi, 2013).

Wireless sensor networks consist of nodes with sensing, computation, and wireless
communications capabilities. Many routing, power management, and data dissemination
protocols have been specifically designed for WSNs where energy awareness is an essential
design issue. The IEEE standard 802.15.4 and ZigBee protocol ("XBee ZigBee Addressing”,
2016), has as objectives to provide a stable and secure communication, the low energy
consumption, an easy installation, reduced maintenance effort and low cost. The ZigBee
protocol was developed by the ZigBee Alliance, an organization composed by several
companies (including, e.g., Logitech, Intel, LG, Cisco, Sony, Samsung ("Our Members | The
ZigBee Alliance”, 2016). The ZigBee specifications supports inexpensive and robust

17

| Introduction

networking in environments with a very large number of nodes. It should be noted that,
although similar, ZigBee, Bluetooth, and WLAN (Wi-Fi) are designed for different purposes
and different applications (Huang, Hsieh, & Sandnes, 2008).

ZigBee (802.15.4 Bluetooth (802.15.1 Wi-Fi (802.11

20-250 kbps 1 Mbps 11 & 54Mbps

10-100 meters 10 meters 50-100 meters

868 MHz (Europe)
900-928 MHz
(NA), 2.4GHz

(worldwide)

0.5, 1, or 3mw 1, 2.5 or 100mwW 100mwW
Unlimited (Depending
Nodes per Network 256+ 8 on applications))
Ad hoc, peer-to-peer, . Ad hoc, very small
Topology star, mesh Ad hoc, infrastructure networks

Complexity (Device
and application Low High High
impact

Frequency band 2.4GHz 2.4 and 5 GHz

Power Consumption (Very) Low High Medium
Table 14 - ZigBee, Bluetooth, and Wi-Fi characteristics
These advances include the development of communication standards such as IEEE
802.15.4/ZigBee like described above. This sensor network support small power consumption
and node expansion compared to other networks standards for WSN (Garcia-hernandez,

Ibarguiengoytia-gonzélez, Garcia-hernandez, & Pérez-diaz, 2007).

ZigBee networks can have one of three different topologies. These topologies are summarized
below:

Star topology fig. 1-3 is the simplest and most limited topology available. All devices connect

to a single Coordinator node and all communication goes via coordinator.

18

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Figure 1-3 - WSN Star topology

Tree topology fig. 1-4 the coordinator forms the root node of a tree of child nodes. Direct
communication can only occur between a child node and its parent, but all nodes can
communicate together by traversing up the tree to a common ancestor and then down to the
largest node. In this topology routers are able to extend the range of the network, but if a

router fails there is no alternative route and portions of the network can become disconnected.

0 @0

~ s

Figure 1-4 - WSN Tree topology
Mesh topology fig. 1-5 is one of the most flexible offered by ZigBee. It is similar to the tree
topology but without the following the rigid tree structure and a router can communicate
directly with any other router or the coordinator if it is in the range. This means that is

possible to have many different routes through the network to certain node (Hillman, n.d.).

19

| Introduction

Figure 1-5 - WSN Mesh topology

1.2.10. Joining M2M communication, WSN and Cloud

This architecture allows to store and process the sensor data in a more accessible form,
available timely, and cost-effective. This concept can be called “Sensor-Cloud” (Ahmed &
Gregory, 2011), (Yuriyama & Kushida, 2010), that it allows easier integration with new
mobile devices like tablets or smartphones through customized mobile applications that
collect data from cloud and process all sensor data. The sensor-cloud infrastructure fig. 1-6
virtualizes a physical sensor as virtual sensor on the cloud computing. Dynamic grouped
virtual sensors on cloud computing can be automatic provisioned when users need them. With
the development of hardware limitations (in terms of size), and in pursuit of a better
performance and enhancing greater computing capability, people turn to find other techniques
to achieve these goals. Therefore, the concept of “cloud” was born. In fact, as early as the

Internet appeared, the “cloud” has already existed silently providing for us some services

(Chung, Yu, & Huang, 2013).

20

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

wsn
(Time J [pH value)

(Data J (Temp J

Internetﬂ

Response
Internet
Cloud Service

Request

Figure 1-6 - Sensor cloud infrastructure

Like in above image the concept sensor-cloud can be seen, that is, the values/data are sent to
the server and the same data are accessed remotely by clients through computers, smartphones
or tablets, handling sensor data efficiently.

1.2.11. Mobile Applications

The growth of information technology and the easy access to it allowed currently several
thousands of applications are released to the market every day. Mobile communication is so
integrated into our lives that many people feel uncomfortable without a smartphone, a
smartphone is a piece of technology multifunctional device that not only communicates, but
helps to learn, earn, and have fun. This is made possible by the development of mobile
applications. Some of these apps are related with the use of bicycles and cycling, but most
only collect information via mobile phone modules. The difference through this work is the
use WSN that can in real time detect all interactions that a biker has with his bike and through
M2M communications send this data to the cloud, to be analyzed and processed in the mobile

application.

According with the website Cycling Weekly (Wynn & Elton-Walters, 2016) these are the best
applications that a biker could use:

21

| Introduction

Cyclemeter: This application fig. 1-7 uses the GPS functions of Apple devices to create a
host of statistics to help a biker log and improve cycling performance ("Abvio | Cyclemeter”,
2016). This application has the capability to record speed, time, distance and has an extensive

array of workouts to follow, making it a virtual training partner.

Courtesy of Abvio app.

Carrier & 2:57 PM T . oray - e - -

(Calondar

1o v &
4 e

) July 2013
1 oo o PO P ~o et P VT
AEIEIN IR A
7 8 9 10 11 12 13

se:54 1636 ¢ - ¢ "HT”

21 22 23 .23_0o%

S

SN ne
2

A

N —

nn. .-
Easy to use:

| View stats, maps: g
summaries, splits, zones:

: ul.

and powerf

rap‘l')\s, calendar, steps:
& intervals.

Secure and privazte.
No logins or passwor s.
| All data stored on |Pho o

=

Lands End

beon Vincoln Way

56:54

16.36

Figure 1-7 — Cyclemeter application

Bike Gear Calculator: This is a little different application fig. 1-8 in this case the application
is used for every user compare gear ratios on bike to optimize his setup ("Bike Gears, Bike

Gear Calculator application for iPhone and iPod Touch.”, 2016).

22

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Courtesy of Bike Gear Calculator Iphone application.

16:41

Back NEW CHART

Ratio Gain Inches Devel. Speed
TIRES
700 x 23c (23-622) >

TIRE CIRCUMFERENCE

2099

CRANK LENGTH

172.5

20.10 23.06

1842 21.13

17.01 19.51

1474 16.91

13.01 14.92

10.53 12.08

Edit Chart

Figure 1-8 - Bike Gear aplication

Strava: One of the most application used and consequently most popular is Strava fig. 1-9,
this GPS cycling app offer an array of handy ride logging functions which are then uploaded
to our online account profile. The app keeps track of ours ride stats as travels, including
speed, time and distance. At the end of the ride the biker could view further some stats about
calories burned and elevation ridden ("Strava | Run and Cycling Tracking on the Social
Network for Athletes”, 2016).

23

| Introduction

Courtesy of Strava, Inc.

Q Feed (S

FOLLOWING ME

SATURDAY 03/01/2014

Got'er done
Brian Rogers

&b 826mi 5314ft ¥ 32

3 7 ufg 26

SUNDAY 03/02/2014

% Wet & Windy Birthday Run with Welly
Charlotte Winthrop

a 81mi 10:13/mi ¥3

\

P Evelyn Cordner
oL e San Francisco, California

205 212
FOLLOWING FOLLOWERS E

CYCLING RUNNING
THIS WEEK
3 3 . 5 mi
4h3d4m 597 ft 16.5 mi

REMAINING

T

= Recent Activities

Figure 1-9 - Stava application

Map My Ride: Another GPS cycling application fig. 1-10 that records a host of data from our
ride, including distance, speed, elevation and a detailed route. This app has the capability to

upload all data to a site for detailed analysis and sharing with others users ("Bike Maps,

Cycling Workout, Biking Routes | MapMyRide", 2016).

24

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Courtesy of MapMyFitness, Inc.

PS u
GPS il My Routes Bookmarked Nearby

DISTANCE DURATION

2.6 0:08:52

mi i 31.42 mi Road Cycling in Austin on...
31.5 mi .
. mi away

>
:) e P —. Austin, TX Gain +2387
T

2 3 24.90 mi Road Cycling in Austin on...

K & z $; 0.0

S & p
25.0 mi
5y
& 3 St Austin, TX Gain 4597
4

24.96 mi Road Cycling in Austin on...

25.0 mi o
. mi away
$ e Austin, TX Gain +1628

Rollingwood ‘é? -
Gy S The "Hill
() & W .

o A NEE * 20.8 mi va
3 ¢ . mi away
to flarket 2944 @ mi away
> ~ S e Austin, TX Gain +494

2

ge}gd»f"y = iMapMyRide: Mar 4, 2011 11:03 AM

o e 0.1
Y 35.9 mi

S
09&9? Pause Workout S}\QT itenas Austin, TX Gain +666
Gl 2 ¢ , s

_f’ ;\,. . @2014 Google - Map data ©2014 Google ‘f 17.61 mi Road Cycling in Austin on...

Figure 1-10 - Map My ride application
Endomodo: Is an application fig. 1-11 designed to be a personal trainer and as such features
“audio encouragement” to motivate the athletes during the exercise, rather than just tracking

and logging app ("Endomondo™, 2016).

25

| Introduction

Courtesy of UNDER ARMOUR CONNECTEDFITNESS.

L1 PN E_ 3

a1 -
2ndomondo
%) Duration) Distance o
0:36:06 4.67w
';’ ; @
L™ ; C
/; Runr..n'g)
O O V' 3.81 mies / 31:53
L) B, =, Avp. Pace Max. Pace
- T 8:22 mwmie
O - Calones Hyaation
L Yo 288 v 0.0
‘ O = Heart Ras Aot g0
& rv © 100-162 oo 141 tor
= M, Attude A\ Max ARtuce
56 » 333 »
Q O) Total Ascent Yot Oescere
W 222 4 277 »
= O
(i Wear
%) 5
J ul 1_l¢ 04

Figure 1-11 - Endomodo application

1.2.12. Mountain Bike

There are an enormous number of sports that nowadays can practice with a bicycle. For this
reason, many bicycles can be produced with some aspects that the athletes can specify to the
manufactures. Cycling is practice with bicycles normally produced of fiber-carbon and with
tires very thin, to improve his weight, lower rolling resistance and grip while cornering. In the
case of the sports practiced on the mountain bikes the weight is put aside and the concern is
more with the strength and safety of the bikers. The first thing to know is that mountain
biking is a sport or recreational activity that consists of a person riding over a rough terrain,
using a specially adapted mountain bike. The first mountain bike was a cruiser bicycle that
was modified to enable cyclists to freewheel down mountain bike trails (STEYN, VAN
NIEKERK, & JACOBS, 2014). The sport became popular in the 1970s in Marin Country,
California, USA. A bicycle frame is the main part of a bicycle, onto which the wheels and all
other components are attached fig. 1-12. The geometry of a mountain bike varies based on the
angle of the seat post and the head tube measured from the horizontal. Mountain bike frames
are manufactured using materials such as carbon steel, steel alloys, aluminium alloys,
titanium and carbon fiber ("HISTORY | The Marin Museum of Bicycling and Mountain Bike
Hall of Fame", 2016).

26

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

top tube
chain stays 5 \
: 4 R& head tube
seat stays !
p 4 ----------------------- fork
: ~
- :
down tube
¢------ head tube
§ angle
S e S e e i pi
wheelbase

Figure 1-12 — Safety Bike struture

The invention of the Wheel is one of the most significant advances in history. Rolling
resistance between the Wheel and road surface is a major factor in the performance of any
vehicle. The terrain surface has a major impact on the rolling speed of a wheel and the overall
performance of the vehicle (Jackson et al., 2011), (Steyn & Warnich, 2014).

27

| Introduction

1.3. Objectives

The main objective with this work is to build and develop a monitoring system associated
athlete of mountain Bike, using a distributed WSN on his equipment and bicycle. This
equipment should not interfere with his workout, should contribute to achieve a better

performance.

The system included historically information from the athletes, with the objective to each one

achieve better performance.
The following four topics describe the developed system very briefly:

1. Wireless Sensor Network: Creation of wireless sensor network that can capture the

interactions of bicycle and biker. This implies the choice of sensors and his assembly.

2. Developing acquisition, processing application: On the microcontrollers is important
to acquire the information from the sensors, this information needs to be locally

processed and sent to the database.

3. Database: Creation and installation of mountainBikeDB, with the supposed

mechanism to read and write to it.

4. Mobile Application: Developing of an Android application for tablet or smartphone
that could provide the visualization of all metrics calculated using the training data

obtained during practice.

28

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

1.4. Related Work

Cycling it’s a complex physical activity that involves a set of movements. The cycling also
provides a framework to a variety of complex problems in system dynamics and control.
These include multi-body dynamics, nonlinear and linear system descriptions, human control,
system simulation and instrumentation. The bicycle with a human comprises a human vehicle
with dynamic behavior. In contrast with an automobile or aircraft, the pilot of a bicycle
comprises 80%~90% of the overall system mass and thus the motion of the rider is not
negligible. These movements can be analyzed using different techniques, such as
instrumented bicycle or motion capture techniques ("Bicycle dynamics, control and handling
— Sports Biomechanics Lab", 2016). These two techniques highlight the complexity of the
study. The first one it’s related with the use of sensors on the bike or in the biker’s equipment
like pressure sensors and GPS. The second technique could be related with the movement of
the biker related with the bicycle, that is, analyze the influence of the position of the upper
body and the legs while the bicycle is on movement. These two techniques allow the creation
of models that describe the movement, the points of pressure (Lie & Sung, 2010) and speed
that a biker could be doing while training on certain track. These data could be used to

provide a track specific performance report.

1.5. Methods of Analyze

Like in football specially in pre-season many of the athletes of this sport use some
equipment’s to track is own training, this equipment is produced by the GPSports company
("Home - GPS Tracking Systems for Elite Sports”, 2016), this equipment incorporates
advanced GPS tracking with heart rate and accelerometer monitoring. In the case of cycling
the heart-rate monitor is one piece of technology most used to improve speed, fitness and
body composition in the training of bikers (cyclists, 2016). On the University of California,
they are using some instrumented bikes to study the bicycle dynamics, control and handling
("Instrumented Bicycle — Sports Biomechanics Lab", 2016). They are using some sensors on
the bicycle to collect information about some variables related with force and accelerations
produced. This type of study allows the creation of models that describe all the movements
and balance that a biker produce with his bicycle. As well the research related with braking on
a bicycle (Sundstrém, Béackstrom, Carlsson, & Tinnsten, 2015), (Beck, 2009).

29

| System Prototype Description

Chapter 2 - System Description

2. Overview

The architecture of the system has three blocks fig. 2-1. At first block is represented the
bicycle and the biker, so it is easy to assume that wireless sensor network was placed, on the

sports equipment (i.e., gloves, shoes, chest trap and bicycle frame).

Cloud

Y
Y
Y
Y
Y
Y
Y

Mobile Application

Rider & Bicycle

Figure 2-1 - System Architecture

Each of the end-nodes has a microcontroller ATmega328p that will read the behavior and the
interaction of the biker with his bicycle. These nodes will make the acquisition and processing
of primary data and then send it to coordinator ATmega2560, that stores the information on a
local database and send it to the cloud. The second block is the server (cloud), which receives
the information and makes it available to be accessed later. The third block, represents a
mobile application that access the information in the cloud, interprets and correlates all biker
information and allows data visualization with a friendly graphical user interface. In the above
figure is presented some yellow dots and a parallelepiped, this is to illustrate where the end-
nodes and coordinator where placed. They are based on the microcontrollers platform shown

on fig. 2-2.

30

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Power input:

3.35tw12v
Bootloader UCOOA

Rev2.0 (3.3Vv)

Single Cell Li-po
connector

Power Switch

ISP for S
Atmega32s g
—’|
o LED (D13) \
US8 Mini-8 \
for power and

Reset Te———
charge

Charge input: /o E n d N Ode

3.7tV
IUSH tor 10UZ
USB interface

Interrupt 1
interrupt
interrupt 5

Interrupt 4
interrupt 3
interrupt 2

use

ICSP for

ATmega2560 ﬁ

" PWMon
44 4545

e o Coordinator
use for digital
ground

resot

82
-
22
s o
g
E]
c
s

not 12C
not 12C

UNO shields
can cover up

Figure 2-2 - Representation Coordinator & End-node
2.1.Hardware Components

The Hardware involved in the WSN is responsible for the acquisitions, processing and
sending of data to the server. So, in the WSN are the force sensors, inertial measurement
boards, shields to attach to the microcontrollers and the microcontrollers himself.

2.1.1. Force Sensors

Force Sensors from FlexiForce® ("FlexiForce A201 Sensor"”, 2014), act as a force sensing
resistor in an electric circuit, when no pressure is applied to the sensor the resistance is very
high, otherwise the resistance decrease (Manual, 2016). The force sensor is materialized by
A201 FlexiForce® thin film piezoresistor fig. 2-3 included in a voltage divider
implementation.

31

| System Prototype Description

Figure 2-3 - FlexiForce a201 Composition

The FlexiForce® force sensor is an ultra-thin, flexible printed circuit. The standard A201
force sensor is constructed of two layers of substrate (polyester) film. On each layer, a
conductive material (silver) is applied, followed by a layer of (Pressure-Sensitive Ink).
Adhesive is then used to laminate the two layers of substrate together to form the force
sensor. The active sensing area is defined by the (silver) circle on top of the (Pressure-
Sensitive Ink). Silver extends from the sensing area to the connectors at the other end of the
sensor, forming the conductive leads. A201 force sensors are terminated with male square
pins, allowing them to be easily incorporated into a circuit. These sensors are available in
three force ranges Low 4.4N, Medium 111N and High 445N. Foil sensors such as produced
by FlexiForce® are also commonly used in commercial applications. One example are
PlayStation controllers which have buttons that do not only have an on-off function but also a

scaled input according to the applied force on the button.
Performance

e Linearity (Error): <3%

o Repeatability: <+2.5% of Full Scale

e Hysteresis: <4.5% of Full Scale

e Drift: <56% per Logarithmic Time Scale

32

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

e Response Time: <5usec
e Operating Temperature: (-9°C — 60°C)

In this work the sensor used is the Sensor HT201-L (Low: 0-30lb [133N] force range). To
know the real force, applied on sensor it’s needed to execute some calibration. In the fig. 2-4,

the graphs show the resistance curve and the conductance curve (1/R).

Resistance Curve: Conductance Curve:

100Ib Sensor B 0.02

0018

1200 - .

0016 /
0014 /
0012
0.01
600 i

\ 0.008 /

400 0.006

200 \ 0.004 /
M 0.002
f <

1000

800

__,.,———""""'_"

Conductance

Resistance in K-Ohms

Force

Figure 2-4 - Force versus Conductance

In the project these sensors are in the biker shoes and gloves, these ten sensors acquire the

interaction described. The following conditioning circuit fig. 2-5 is used:

LhA3 l>——. Vol
S

“—

Figure 2-5 - Conditioning circuit for force sensors

The equation of the output voltage is represented as follows:

33

| System Prototype Description

Vout = xVref (1)

Rs+R

where the parameters in equation (1) are defined as follows:
Vout: is the output voltage [V];

Rs: is the variable resistance, force sensor [Q];

R: is the reference resistor [€2];

Vref: is the reference voltage [V];

This condition circuit is used because the acquisition module only reads voltage values.

It’s important to say that in our circuit Vref'is 3.3V and the R=1MQ.

For the conversion of the ADC values from the sensors for Newtons (N) in the side of the

application is used the following formulas:

KnowForce 1500g
ADVValue ~ 172

gain = ~ 8.72 (2)

In order to obtain a calibration value is necessary to apply a known force (in this case
1.5Kg) and read the ADC value, after that is divided the force value by the ADC value

read.

(3)
weight (in Newton) = gainX(ADC,qye)*%0.001x9.80665002864

Then the equation (3) is applied to obtain the force applied in each force sensor.

On fig. 2-6 is possible to observe the location if a biker applied a force of approximately

14.53N equivalent to 1482 grams on the pressure sensor.

34

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Characteristic

60
50
40

30

Newton

20

14.53892882
10

0 100 200 300 400 500 600 700
ADC Values

Figure 2-6 — Characteristic of the sensor

2.1.2. Inertial Measurement Unit

IMU, is an inertial measurement unit that packs an L3GD20H 3-axis gyro and an
LSM303D 3-axis accelerometer and 3-axis magnetometer onto a tiny 0.8x0.5 board. This
board fig. 2-7 and fig. 2-8, allows to calculate some angles between the bicycle and the
rider as well as the direction of the movement ("Pololu - MinIMU-9 v3 Gyro,
Accelerometer, and Compass (L3GD20H and LSM303D Carrier)", 2016).

SCL
SDA
GND
VIN , i
VDD s ey

Figure 2-7 - MinIMU-9 v3 Gyro, Accelerometer, and Compass

35

| System Prototype Description

woDo

b) 3.;3:LDO — . 'T'
2 ;g:EFFNC 43 c:—L =—L -2E—L —L caJ—
STT W[S T S S AT

0iuF| DAWF| DA

= N
TscL
EDA VIN
2 VDD VDD
H Rz
T¥T SCL
1 a1
B vDD T¥[SDA
VDD L]
a2

3| ==
F SETP Wod =3 ms RS
v io 1 10k < 10K Ok .

a
1 l
|
Eﬁ k3
fy]
= T
(%3
[5]
Q
%l
1
o -l
o i I £]
§
g
&
-
[=}
z -
=]

o cs
aTuF 0 DROYANTZ |2
2| REs(eNe) i DEM .
= GND INT1 L R cap |14
12 ano 5 " 2 REs(eND)
121 enp INT2 |2 A 1 RES(GND)
GND ® RES(GND) .
12 | s 10 nF
12 | ehp
3 | Gup

Figure 2-8 - IMU schematic

The nine independent rotation, acceleration and magnetic readings (known as 9 Degrees
of Freedom) provides all the data needed to make an altitude and heading reference
system (AHRS). These sensors, combined with a built in processor create an inertial
sensor system fully capable to measure the altitude of objects in 3D space. The
accelerometers measure proper acceleration — the rate at which the velocity of an object is
changing. They measure the static (gravity) or dynamic (motion vibration) acceleration
forces of a given object. The ideal accelerometer in AHRS provides a long term stability,
low vibration error and reliability. Magnetometers are used in AHRS to measure the
direction of the magnetic field at a point in space. In case of gyroscope the AHRS demand
very precise sensors, the gyros are used as the primary source of orientation information.
The quality of these devices has big impacts in overall performance of the inertial sensor
system (Honglong, Liang, Wei, Guangmin, & Weizheng, 2008). This technology provides
good accuracy and reliability, it is not conducive to a MEMS-based AHRS due to its

larger size and greater power requirements.

This sensor is used on the chest of the rider to measure the upper body motion and in the
bicycle frame to record the oscillations on the three plans of motion (Prayudi & Kim,

2012). Each of the three sensors acts as a slave device on the same I2C bus.

36

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies
The orientation of the bicycle/rider fig. 2-9 is often described by three consecutive
rotations, whose order is important. The angular rotations are called the Euler angles. The
orientation of the body frame with respect to the fixed earth frame was determined in the

following manner.

Figure 2-9 - Representation IMU axis

2.1.3. Radio Frequency ldentification

Principle of radio frequency identification (RFID) is based on using of wireless non-contact
radio frequency electromagnetic fields of data transmission for the purpose of automatic
identification and observation of RFID tags which are situated in objects. RFID uses a passive
device (called an RFID tag) to communicate data using radio frequency (RF) through

electromagnetic induction (Dobrnjac, 2016).

RFID tags contain electronically stored information, which is receive on initiative of RFID
readers and aerials from the tag. RFID systems differ in numerous aspects: working frequency
and readings distance, type and capacity of tag memory, target and insurance of data. The tags

can be classified in three type’s passive, active or semi passive.

37

| System Prototype Description

Passive RFID tag not includes own energy source and it is dependent on the power supply of
the aerial sensor. The electromagnetic field serves as the energy source for RFID tag as
communication channel in the line of sensor to RFID tag. The purpose of passive tags is

identification of objects at which the transfer of pulse is realized directly in tag.

Active RFID tag not serves only for identification of objects but also for further functions as
temperature measurement, pressure measurement etc. This tags can be independent on sensor
and it can contain the sensors for measurement of physical quantities. Often, it is able to
visually and acoustically to communicate with user. It means that it receives and emits data at

the same time.

Semi Passive RFID tag use batteries and rely on the RFID reader signal to communicate. This
allows them to provide a very long range of readability, making them an effective way to
tracking costly items over great distances. Since Semi Passive RFID are batteries operated,
they have the ability to monitor inputs from sensors as well, allowing them to control outputs
which results in the ability to activate/deactivate such as alarms and thermostats ("Radio
Frequency Identification Tags - Semi Passive (Battery Assisted Backscatter) - Available
Technologies - PNNL", 2016).

38

ISCTE-IUL
‘ Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Frequency band Frequency range The most common using frequencies

in RFID system

125 kHz, 134.2 kHz

Low frequency (LF) 100 kHz — 500 kHz

High frequency (HF) 10 MHz — 15 MHz 13.56 MHz
Ultra high frequency (UHF) 400 MHz — 950 MHz 866 MHz — Europe; 915 MHz - USA
Microwaves (uW) 2.4 GHz - 6.8 GHz 2.45 GHz, 3.0 GHz

Table 15 - Frequency bands of RFID system

It is used the sensor MFRC522 fig. 2-10, that is a highly integrated reader/writer 1C for
contactless communication at 13.56MHz. The MFRC522 reader supports ISO/IEC 14443
A/MIFAR and NTAG (Semiconductors, 2016). In the development of this work we faced a
problem that was how in the database the users/bikers identified is individual training and
number of workouts performed. This is the solution that we get, so to biker could perform a
training need to have a tag to identify in the coordinator. With this solution in database the
biker will have all his trainings available and thus can compare them. This solution (using
RFID) was adopted, because can simply connect the RFID sensor to the coordinator and the
energy that the sensor consumes is very low. Every user that use the system need to be

registered in a file on the SD card.

39

| System Prototype Description

[TRANCEIVER Fﬁ_;\ RFID
RFID READER A \ TRANSPONDER

MrLrr > \ 5
RECEIVED DATA TRANSCEIVER —— | PASSIVETAG

2> / £ \\

/ . FL LR F
TAG MODULATES
RF FIELD WITH DATA
MODULATED RF FIELD
Transceiver Passive Tag

Figure 2-10 - Sensor RFID-RC522

2.1.4. GPS

In order to get a localization information of the biker and the preformed route the coordinator
node includes a GPS receiver. The GPS shield fig. 2-11 and fig. 2-12 collect the altimetry and
speed of the athlete and have the ability to save data in SD card, this one is useful to log the
information, local DB. The GPS system operates independently of any telephonic or internet

reception.

40

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

y
)

o |
A
P |
|
P |
p |
B
A

Figure 2-11 - Adafruit Ultimate GPS Logger Shield Figure 2-12 - GPS module GlobalTop PA6H

The shield fig. 2-11 uses an embedded GPS module is a GlobalTop PA6H with Mediatek
MT3339 fig. 2-12 chipset that achieves the industry highest level of sensitivity (-165dBm)
and instant Time-to-First Fix (TTFF) with lowest power consumption for precise GPS signal
processing to give the ultra-precise positioning under low receptive, high velocity conditions
(GlobalTop Technology Inc., 2011). FGPMMOPAGH is excellent low power consumption
characteristics (acquisition 82mW, tracking 66mW), power sensitive devices, especially

portable applications.

2.1.5. Arduino Fio

The Arduino Fio fig. 2-13 is a microcontroller board based on the ATemega328P runs at 3.3V
and 8MHz. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 8
analog inputs, an on-board resonator, a reset button, and holes for mounting pin headers. It
has connections for a Lithium Polymer battery. An XBee socket is available on the bottom of
the board. The Arduino Fio is intended for wireless applications (“Arduino -
ArduinoBoardFio", 2016).

41

| System Prototype Description

»
Py 4 |22
: + o
g s 0 E
A B 3 screa ig b= o
SRS~ £] L :
' e 42 ' 1
I e
| 2| o 1 "42
] = W e
L [—
oo = —1
L L
[I
=] [Fe I
T~ eessdo Ao —sons {
B
-
. 1
—y - - +
=T Lot N E Sl E =
I T 2
E_ L L L GND GhO
G»J_ |y B 4 FI0_LOGO
! . ' S | ;
Ol J_ e T S Crm— TITLE: Arduino-Fio-v22 ® @‘ SFE
=T BE L [Document Number: . REU:
| 1L L Shigeru Kobayashi
{f'. Date: 10/03/18 19:84 ‘Sheet: 1/1

Figure 2-13 - Arduino Fio Schematic

On this project we develop and implement a six node wireless network based on Arduino Fio
processing platform, they work as end-nodes and are responsible for the acquisition of sensor
data to the network. In the following images shows the mounted equipment and used in the
project (end-nodes).

42

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Figure 2-14 - Hand end-node

Figure 2-15 - Feet end-node

%
) -y

Figure 2-16 - Body and Bicycle end-node

Here is presented one of the gloves fig. 2-14
of the WSN, on the left is visible the sensors
from FlexiForce® stitched to the Gloves. In
the middle is the condition circuit created in
a board (using a Low Power Quad
Operational Amplifier) (LM324-N)
("LM324-N | Operational Amplifiers |
Amplifier | Description & parametrics”,
2016), and two resistances. On the right side
is presented the microcontroller Arduino Fio
and attached to them is the XBee.

Like on gloves we have the same
connections and the same circuits the main
different is that we use three sensors from
FlexiForce® fig. 2-15. Using one more
sensor we pretend to obtain more accurate
values of the force applied to the pedals of

the bicycle.

This equipment fig. 2-16 is responsible for
the measure of the variables pitch, roll and
yaw. Like in the above figures the
microcontroller used is the Arduino Fio and
attached to them we have a XBee module

and a IMU board from Pololu.

43

| System Prototype Description

The acquisition and primary processing of sensor data is made by the microcontrollers. The
microcontroller is programmed using Arduino IDE ("Arduino - Software"”, 2016), using a C
compiler language and Arduino libraries. Depending of the type of sensors and the
connections they require. On the microcontrollers the data is collected and processed to be
ready to send for the coordinator.

In the case of the force sensors used in the gloves and shoes will be present in schematic way,

all the connections were made to guarantee that the data is collected.

The schematic circuit represented is used to get the values from the force sensors, this
specially circuit is for the gloves. The difference between this circuit and the circuit used in
shoes is the insertion of a new resistor a utilization of another AMPOP and a new force
sensor. Looking to the schematic fig. 2-17. Battery is a lithium polymer that powers the
circuit, Sensor 1 and Sensor 2 are the FlexiForce® sensors presented above, these are

connected to the conditioning circuit.

2
v+ E

Arduino Fio

XBee ATmega328

3.3V AD Al

1IMO

Sensor 1 Sensor 2

Figure 2-17 - Arduino Fio Force Sensors Gloves Schematic representation

In the case of IMU fig. 2-19, the connection is made by I1°C protocol. This communication
protocol requires a mere two wires, like asynchronous serial, but those two wires can support

up to 1008 slave devices. Also unlike SPI, 1°C can support a multi-master system, allowing

44

IPSeCrIErIn:J:nce Assessment for Mountain bike based on WSN and Cloud Technologies

more than one master to communicate with all devices on the bus. Most 1°C devices can
communicate at 100KHz or 400KHz. Communication via 1°C is more complex than with
UART or SPI solution. The signaling must adhere to a certain protocol for the devices on the
bus recognize it as valid 1°C communications. Fortunately, most devices take care all the
fiddly details ("I12C - learn.sparkfun.com”, 2016). The program that we develop was based on
Arduino program provided by Pololu’s fig. 2-18, this program allows the Arduino calculating
estimated roll, pitch and yaw values from the sensor, making use of Arduino and Pololu’s

LSM303 and L3G libraries.

Courtesy of Pololu Corporation.

5| Pololu MinIMU-9 + Arduino AHRS

pPitch
40.77

7| Pololu MinIMU-3 + Arduino AHRS.

Pololu MinIMU-9 + Arduino AHRS

i

Figure 2-18 - AHRS System designed by Pololu

LSM303 library makes it simple to read the raw gyro data. In case of raw accelerometer and

magnetometer data is possible to get them using the L3G.

45

| System Prototype Description

Arduino Fio

XBee ATmega328

Al A5

| VIN
GND

SCL
SDA

IMU

Figure 2-19 - Arduino Fio IMU Schematic representation

2.1.6. Arduino Mega 2560

The Arduino Mega fig. 2-20 is a microcontroller board based on the ATmegal280. It has 54

digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4

UARTS (hardware serial ports), a 16MHz crystal oscillator, a USB connection, a power jack,

an ICSP header is provided with a reset button in case of something goes wrong. The mega is

compatible with most shields designed for the Arduino ("Arduino - ArduinoBoardMega",

2016). Arduino Mega is theoretically equivalent to packed four Arduinos Uno’s into one

board. The Mega supports a whopping 256 kB of flash program space. He will receive all the

information from another end-nodes.

[™F+ Arduino MEGA
[CE

=
A+

Figure 2-20 - Arduino Mega Schematic

46

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

He works as coordinator and could find it on the frame of the bicycle. On the fig. 2-21 it can

be seen that is described the connection of three shields and one sensor.

Sﬁ i T
XBee \ A

AdafruitUltimate GPS L | _ | _ e eeccescepecccccesdeccscaas
Logger Shield | K

Shield Yun

SDA
SCK
MOSI
RFID-RC522 MISO
GND freeevereemmas
RST

Aduino Mega
ATmega2560

Figure 2-21 - Coordinator schematic representation

Starting from the bottom of the scheme platform based on ATMEGA2560 model we have the
microcontroller, attachment to them the RFID sensor that permits to each user identify itself
regarding in the coordinator. In the case of the first shield, shield YUN fig. 2-22 is one of the
most important, it is responsible with the communication via 3G/4G with the remote database,
this is, the data is processed and when it’s ready is sent to database through a wireless
connection. Yun Shield runs Open Source OpenWrt system (Same system as runs in Arduino
Yun) and is fully compatible with Arduino IDE ("Yun Shield", 2016).

47

| System Prototype Description

RJ45

A=
Asss

Iduino Yun

l

531

I IDUINDO

GGE;’ECH
Yun Shield

o [T

USB Port

700-0314-01

‘‘‘‘‘‘
<<<<<<

Figure 2-22 - Yun Shield

One of the problems of this demanding work was the sending of the collected data form the
sensors to the cloud, using this shield the communication is possible. This shield uses two

protocols of communication with the microcontroller ICSP and UART.

The shield Yun and Arduino Mega (together) is similar to the Leonardo (“Arduino -
ArduinoBoardLeonardo”, 2016) in that the ATmegal6u2 has built-in USB communication,
eliminating the need for a secondary processor. This allows the shield Yun to appear
connected to a computer as mouse and keyboard, in addition to a virtual (CDC) serial / COM

port.

In the Mega2560, the UART between mega2560 and megal6u2 will influence the Bridge
feature with the Iduino Yun Shield. So we have to disconnect it by setting megal6u2 into
reset mode. Made this little intervention on Arduino mega, the utilization of the header In-
Circuit Serial Programming (ICSP) is fundamental because it will possible to develop the
applications through a Wi-Fi connection. Eliminating the need of the USB cable connected to

the microcontroller, for the insertion of new sketch’s.

A universal asynchronous receiver/transmitter (UART) is a block of circuit responsible for
implementing serial communication. In our case the Arduino Mega — built on an
ATmega2560 has a whopping four UARTSs ("Serial Communication - learn.sparkfun.com”,
2016).

48

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Moving for the next shield we have the Adafruit Ultimate GPS Logger Shield, in this one the

communication protocols used is SPI and UART.

In case of SD card the SPI protocol is needed, the main difference between 1°C and SPI is that
SPI is a synchronous solution. Because that it uses separate lines for data and “clock™ that
keeps both sides in perfect sync. The clock is an oscilatory signal that tells the receiver

exactly when the sample the bits on the data line.

In SPI fig. 2-23, only one side generates the clock signal (usually CLK or SCK for Serial
Clock). The side that generates the clock is called the “master”, and the other side is called the
“slaved”. There is always only one master (which is almost always the microcontroller), but

there can be multiple slaves.

When data is sent from the master to a slave, it’s send on a data line called MOSI, for “Master
Out / Slave In”. If the slave needs to send a response back to the master, the master will
continue to generate a prearranged number of clock cycles, and the slave will put the data
onto a third data line called MISO, for “Master In / Slave Out”. “Prearranged” because the
master always generates the clock signal, it must know in advance when a slave needs to
return data how much data will be returned. SPI is a “full duplex” (has separate send and
receive lines, and the information could be transmitted simultaneously in both directions)
(Mohammadi, 2016).

MASTER SLAVE
SCK += SCK
MOSI > MOSI
MISO <+ MISO
Master to Slave Slave to Master

SCK

ek, (UL TAAATL

Master ; i
01234567

Slave-In

mso LT

Slave-Out

Figure 2-23 - Representation of SPI protocol

49

| System Prototype Description

For the GPS the protocol used is UART, in this case UART_1 (TX_1 and RX_1).

The last but not the least, it’s the shield for the XBee that use UART 2 (TX 2 and RX 2),
and is responsible for the reception of all data from the WSN. Because the microcontroller

works as a coordinator

50

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

51

| System Software

Chapter 3 - Embedded Software
3. Arduino Fio IMU Sensor

It was developed embedded software for microcontrollers, which is responsible of the

acquisition, and processing of the data delivered by the sensors.

All the microcontrollers are programmed using C language. Several Arduino libraries were

used to deal with shields and the sensor boards.

In our AHRS system is used the Direct Cosine Matrix Algorithm (DCM), it calculates the
orientation of a rigid body in respect to the rotation of the earth by using rotation matrices.
Rotation matrices have the advantage of being a natural fit to control and navigation. A

rotation matrix describes the orientation of one coordinate system with respect to another.

xb yb zb xe ye ze
Tex Txy Txz] xe Tex Tyx Tzx] xb

— 1 _
R=1|x Ty MNz| ye R =%y Yy Tzy|yb
Tzx Tzy Tzz) ze Txz Tyz Tzz1 zp

The columns of the matrix are the unit vectors in one system as seen in another system. A
vector in one system can be transformed into the other system by multiplying it by the
rotation matrix. The transformation in the reverse direction is accomplished with the inverse
of the rotation matrix, which turns out to be equal to its transpose. Certain types of vectors
(directions, velocity, acceleration and translation) can be transformed between rotated

reference frames with 3x3 matrix (Lima & Torres, 2012).

Ap= a vector A measured in the frame of reference of the plane;
Ac=a vector A measured in the frame of reference of the ground,
Tex Txy Txz

yx Tyy Tyz]=T0tatiOTl matrix (4)
Tzx Tzy T2z

R =

AG == RAp

The rotation matrices are related to the Euler angles, which describe the three consecutive
rotations needed to describe the orientation. So the relation between the direction cosine

matrix and Euler angles is:

(5)

52

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

X 1 0 0 X'
Y|=10 cosy —siny||y’
Z 0 siny cosy L7’
[X] [cos@ 0 sinf][X']
vf=| o 1 o ||y (6)
[Z] L—sin@ 0 cosflLZ"]
(X1 [cos¢ sing 0][X"""]
Y|=|sin¢p cos¢p Of|Y" (7)
VA 0 0 1Lz

The coordination system shown in fig. 2-9 is typically used in flight simulators with the origin
located at the aircraft centroid, with y-axis pointing forward, the x-axis off the right and the z-

axis pointing up. Note that orders matters (5)->(6)->(7). Combine all three transformations
(roll, pitch, and yaw).

cosOcos¢p sinpsinbcosep — cosysing cosysinfcosp + sinpsing
R = |cosOsing sinysinbsing + cosipcos¢p cospsinfsing — sinpcosgp (8)

—sinf sinipcosb cosycosf

Equation (4) and (8) express how to rotate a vector measured in the frame of reference of the
plane to the frame of reference of the ground fig. 2-10.

i e
£

Local Level
Tangent Plane

Earth Fixed
Frame (e)

» Y

Inertial Frame (i)
To
Vernal .
Equinox . o (r-1,)

»
X Xe
Figure 3-1 Vector measured in the frame of reference of the plane to the frame of reference of the ground

Equation (2) is expressed in terms of direction cosines. Equation (8) is expressed in terms of
Euler angles (Zhao Lin, Xia, Liu, & Cheng, 2007). The following equations permit to
calculate the Pitch, Roll and Yaw (Ran & Cheng, 2016).

Pitch — Y = —asin(1y,)
(9)

53

| System Software

Roll - 6 = atan2(ryy,1,,)

Yaw - ¢ = atan2(ryx, Tyx)

void Euler_angles(void){ //Equation (9)
pitch = -asin(DCM_Matrix[2][0]);
roll = atan2(DCM_Matrix[2][1], DCM_Matrix[2][2]);
yaw = atan2(DCM_Matrix[1][0],DCM_Matrix[0][0]);

}

DCM algorithm is represented on fig. 3-2.

Accelerometer
XY,z

Magnetometer
XY, Z

Gyroscope
XY, Z

Accelerometer
XY,z

) | R Matrix I—P R Matrix

Roll-Pitch Error

Drift Detection

Heading Error

Euler Angles
(roll, pitch, and yaw)

Error

Adjustment

Gyroscope readings have different offsets depending on which direction the gyroscope is

Sensors Magnetomete
Calibration agnetometer Y
> Gyroscope
X' Y, 2 ;
L]
[}
L]
L]
L]
+ -

Drift Adjustment

Normalization and
Kinematics

Figure 3-2 - Direct Cosine Matrix Algorithm Overview

Pl Controller

facing, when these readings are integrated over time it causes the integral result to drift.

Before apply equation (9), it is essential to correct this problem (drift), and the process of

enforcing the orthogonally conditions ‘“renormalization” is used. First compute the dot

product of X and Y rows of the matrix, which is supposed to be zero, so the result is a

measure of how much the X and Y rows are rotating toward each other.

rxx
X = Txy

rx Z

error = X.Y = XTY = [Txx

Tyx

Y = T‘yy
Tyz

Tyy

Tyx

Tez] |Tyy

Tyz

(10)

54

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

We apportion half of the error each to the X and Y rows, and approximately rotate the X and

Y rows in the opposite direction by cross coupling.

T error
X =|Ty|= Xorthogonal =X - 2 Y
[Tz] (11)
Tyx error
Y =Ty = Yorthogonal =r = 2
[Tyz]

Orthogonal error is greatly reduced by substituting equation (11) into (10), keeping in mind
that the magnitude of each row and column of the R matrix is approximately equal to one.
The next step is to adjust the Z row of the matrix to be orthogonal to X and Y

row. The way to do that is to simply set the Z row to be the cross product of the ~ (12)

Xand Y rows.

Txx
Ty | = Zorthogonal = Xorthogonal X Yorthogonal
Txz

The last step in the renormalization process is to scale the rows of the R matrix to assure that
each has a magnitude equal to one. The resulting magnitude adjustment equations for the row

vectors are:

Xnormalized = E (3 - Xorthogonal-Xorthogonal)Xorthogonal
Ynormalized = E (3 - Yorthogonal- Yorthogonal)yorthogonal

Znormalized = E (3 - Zorthogonal- Zorthogonal)zorthogonal

(13)

void Normalize(void){
float error=0;
float temporary[3][3];
float renorm=0;

error= -Vector_Dot_Product(&DCM_Matrix[0][0], &DCM_Matrix[1][0])*.5; //eq.11

Vector_Scale(&temporary[0][0], &DCM_Matrix[1][0], error); //eq.11

55

| System Software

Vector_Scale(&temporary[1][0], &DCM_Matrix[0][0], error); //eq.11

Vector_Add(&temporary[0][0], &temporary[0][0], &DCM_Matrix[0][0]);//eq.11
Vector_Add(&temporary[1][0], &temporary[1][0], &DCM_Matrix[1][0]);//eq.11

Vector_Cross_Product(&temporary[2][0],&temporary[0][0],&temporary[1][0]); // c= a x b //eq.12

renorm=.5 *(3 - Vector_Dot_Product(&temporary[0][0],&temporary[0][0])); //eq.13
Vector_Scale(&DCM_Matrix[0][0], &temporary[0][0], renorm);

renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0], &temporary[1][0])); //eq.13
Vector_Scale(&DCM_Matrix[1][0], &temporary[1][0], renorm);

renorm=.5 *(3 - Vector_Dot_Product(&temporary[2][0],&temporary[2][0])); //eq.13
Vector_Scale(&DCM_Matrix[2][0], &temporary[2][0], renorm);

These equations state that to adjust the magnitude of each row vector to one, is necessary to
subtract the dot product of the vector with itself (the square of the magnitude), subtract from
three, multiply by %, and multiply each element of the vector by the result.

The accelerometer is not affected by drift, therefore, it can be used as an orientation reference
in X and Y axis of the rigid body to compensate the roll-pitch error (gyro’s offset error). The
magnetometer’s readings are used to calculate the heading of the rigid body, this one helps to
compensate yaw error. The heading of the system used as the reference vector in the Z axis
(yaw error), in addition to roll-pitch error calculated by the accelerometer, it allows the

system to calculate the rotations correction matrix.

3.1.Data Communications

In order to communicate in the WSN (between end-nodes and coordinator) fig. 3-3 is used the
ZigBee protocol, while the communication between coordinator and the database is made

using Wi-Fi. The server connection is via the Ethernet protocol.

56

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

()
V% (é) —

Ethernet

Figure 3-3 - Representation of communication between coordinator and server

3.2.ZigBee

The coordinator and every end-node have a simple XBee radio, this piece of electronic is
based on the IEEE 802.15.4 standard designed for point-to-point and star communications.
ZigBee over 802.15.4, defines specifications for low-rate Wireless Personal Area Network
(WPAN) for supporting simple devices that consume minimal power and typically operate in
the personal space of 10m. ZigBee provides a self-organized, multi-hop, and reliable mesh
networking with long battery lifetime (Lee, Su, & Shen, 2007). In these networks it’s possible
to have two types of devices a full-function device (FFD) or reduce-function device (RFD). A
node can operate as either a FFD or RFD. An FFD can perform all the tasks that are defined
by the ZigBee standard, and it operates in the full set of the IEEE 802.15.4 MAC layer. An
RFD performs only a limited number of tasks (Elahi & Gschwender, 2010).

Coordinator: A coordinator is an FFD and responsible for overall network management.

Each network has exactly one coordinator.

End device: An end device can be an RFD. An RFD operates within a limited set of IEEE
802.15.4 MAC layer, enabling it to consume less power. The end device (child) can be
connected to a router or coordinator (parent). It also operates at low duty cycle power,
meaning it consumes power only while transmitting information ("ZigBee", 2016). The end

device performs the following functions:

57

| System Software

e Joins or leaves a network;
e Transfers application packets;

In the project is used the star topology fig. 3-4 and fig. 3-5, in which the coordinator (center

node) is placed in bicycle frame.

XBee XBee XBee

End-Node End-Node

21 My: 2341 My: 3421
234 DL:1234 DL: 1234

End DH: 0 DH: 0 DH: 0
Node BD: 19200 BD: 19200 BD: 19200
SL: 40A47CB9 SL: 40A47C3F SL: 40A47621
End
Node | NE": XBee XBee
N Y s End-Node End-Node
L My: 3214 My: 2431
= Coordinator 2 DL: 1234 XBee DL: 1234
o hg DH: 0 Coor s DH: 0
NG BD: 19200 BD: 19200
P R SL:40A487A2 My: 1234 SL: 40F9DE39
End \ End DL: 4321
Node Node DH: 0
| XBee
\ End-Node N XBee
End-Node
End My: 2314
Node DL: 1234 My: 2314
DH: 0 CH-C DL: 1234
BD: 19200 i, aami DH: 0
SL: 40A47C28 2 BD: 19200
SL: 40A47C28
Figure 3-4 - WSN topology used Figure 3-5 —Principal configurations

The main configurations made on each XBee module are: PAN ID to identify the network, the
Destination Address (High and Low) to distinguish the network nodes and the baud rate.
These configurations they are setup through the XCTU Software ("XCTU - Next Gen
Configuration Platform for XBee/RF Solutions - Digi International™, 2016). The star topology
was adopted for the reason that nodes are closely to the coordinator and the end-nodes only

transmit the data from the sensors.

3.3.Communication M2M

Like above is explain this protocol allows the connection without human interaction. The
coordinator node is the gateway of WSN, the connection with the server in the cloud is done
through a mobile internet modem. The modem used is a ZTE MF910 4G LTE Mobile Router
is a new 4G Pocket Wi-Fi Hotspot which connects up to 10 Wi-Fi enabled devices to 4G
Network. With 4G download speeds up to 150Mbps. Supports five LTE bands and tri band
UMTS (3G UMTS and 2G GPRS/GSM network). MF910 ZTE could support 4G LTE Band
3/7/8/20, and this LTE category 4 (Cat4) mobile Wi-Fi Gateway with a built-in-battery that
lasts for up to 8 hours use. This router is used for wireless Internet access using LTE, UMTS

or GSM mobile telephony networks.

58

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

3.4.Wireless

Wireless fidelity (Wi-Fi) include IEEE 802.11 a/b/g standards for wireless local are networks
(WLAN). It allows users to surf the internet at broadband speeds when connected to an access
point (AP). The IEEE 802.11 architecture consists of several components that interact to
provide a wireless LAN that supports station mobility transparently to upper layers. An IEEE
802.11 network can operate over one of the 14 channels defined for the 2.4GHz. Each channel
is 22 MHz wide, and, since the overall ISM bandwidth is just above 80 MHz, the channels are
partially overlapped. The modulation scheme is either a DSSS (direct sequence spread
spectrum) for the lower bit rates, or an OFDM (orthogonal frequency division multiplexing)
for the higher ones. This protocol is used by the Yun shield, and permits that information

arrive to the database.

3.5.Ethernet

The term Ethernet refers to the family of LAN products covered by the IEEE 802.3 standard
that defines what is commonly known as the CSMA/CD protocol. The connection to the

server is made by twisted-pair cable 100MbpsFast Ethernet.

59

| Cloud

Chapter 4 - Cloud

4, Server

The Server fig. 4-1 in this work is responsible for the storage of every training performed by
each biker. There is the place were the data is all saved for further analysis through a mobile
application, this is, the application access to the webserver through PHP modules and present
the data in the application with a user friendly view. The main objective is to centralize all the
information in one place. This could be a problem if something went wrong with the server,
but some mechanisms were created, like a local database and the possible in the mobile

application to export each training.

LAMP web server on
Raspberry Pi 2

GPIO Pins

Linux
Apache ‘ %Raspberrg Pi m
Model B
MySQL
PHP ' Ethernet cable
2 Ethernet
LAMP Stack = m =

5V/2A Power supply

Figure 4-1 - LAMP Architecture system

The LAMP term is one of the most common configuration for webservers which standard for:
Linux — operation System;

Apache- webserver (http) software;

Mysql — database server;

PHP or Perl — programming languages;

60

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

The main reason to use the raspberry pi as a webserver is because he is dedicated network
device, and there is an equipment very accessible in terms of costs and efficiency, making is

job perfectly. The operating system and all mechanisms needed is freeware.

All the configuration was made at the command line, and is possible to access to the

webserver through a secure shell (ssh) connection.

4.1.Database

One of the most important things in this work is the conception and the implementation of the
database. Because the database needs to have the right design to support all data and to store
with the best manner the information of each coach and biker. All structure of the database
was made in the tool called MySQL Workbench ("MySQL :: MySQL Workbench Manual”,
2016). This tool delivers visual options to the developer, providing data modeling, SQL
development and comprehensive administrations tools for server configuration and user
administration. MySQL is the most popular appliance to development databases. The model

developed for object-relational database (ORD) is shown in the fig. 4-2.

61

| Cloud

| training 4

'

_| biker A
bikerId INT
email VARCHAR(255)
password Y ARCHAR(255)
weight VARCHAR(255)

—J coach v
coachld INT
email VARCHAR(255)
password ¥ ARCHAR({255)

height VARCH AR (255)

<t coach_coachld INT H

PRIMARY
PRIMARY

fi_biker_coachi_idx

Figure 4-2 - Database Model Diagram

Like it was shown before the database is constituted with three main tables:

e Coach: There is the coach credentials. In this work the registrati

biker_bikerld INT

rideld INT

dat Y ARCHARY{ 255)

latit VARCHAR(255)

la VARCHAR(255)

longit WARCHAR (255)

lo VARCHAR(255)

vel VARCHAR(255)

ang VARCHAR(255)

alt VARCHAR(255)
r_hand_sensor 1V ARCHAR(255)
r_hand_sensor2 ¥ ARCHAR{255)
|_hand_sensorl VARCHAR(255)
|_hand_sensor? VARCHAR(255)
r_feet sensorl VARCHAR(255)
r_feet_sensor2 VARCHAR(255)
r_feet_sensor3 VARCHAR(255)
|_feet_sensorl VARCHAR(255)
| _feet_sensor2 Y ARCHAR(255)
|_feet_sensor3 YARCHAR{255)
pitchBiker VARCHAR(255)
rollBiker VARCHAR(255)
vawBiker V ARCHAR{255)
pitchBicycle VARCHAR(255)
rollBicycle VARCHAR(255)
vawBicycle VARCHAR(255)

on of the coach is

made by the administrator of the database. At the beginning the registration was made

in the application, but this way was not possible to control these same records.

Therefore, it was decided disable this option. Only after that registration the Coach

could access to the database. The coaches have the possibility

bikers. The primary key is Coachld.

to register is own

e Biker: In this table is presented the data that a coach need to fill in the registration of a

biker, the coach defines the password and the username (in this ca

in the coach). Despite the biker not perform is own register, the coa

se is the email like

ch may provide the

username and password for the biker visualize is own trainings and his evolution. The

primary key is the bikerld.

62

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

e Training: There is the place were each training is stored. The values collected by the
sensors’ nodes are sent by the coordinator to the table. The primary key is the dat (date

of precise moment of training).

Regard to relations every coach has at least one biker, and one biker need to have one coach.

The biker may have the number of trainings that he desires.

4.2.PHP Modules

The usage of the php modules is necessary for the interaction with the application and with
coordinator. This php files are housed in the cloud, every time is needed to get some
information from database or to insert some information these files are called. In the

coordinator is used two files:

e getRiderld.php: This file is important to know how many trainings already was
performed. Let’s see a simple case one biker already perform two trainings, he wants
to perform another one, this simple php file goes to the database and see the number of

last training.

e sendData.php: Like name indicates this file will send all data collected from sensors.

<?php

include("'conn.php™);

$created_date = date(""Y-m-d H:i:s");
$biker_bikerld =$ GET['biker_bikerldT;
$rideld=$_GET['rideldT;

$dat=$ GET['dat];

$latit=$_GET[latit];

$la=$ GET['laT;

$longit=$_GETT'longit";

$lo=$_GETT'lo7;

$vel=$_GET['vell;

$ang=$_GET['ang'];

$alt=$_GET[altT;

$r_hand_sensorl=$ GET]['r_hand_sensorlT;
$r_hand_sensor2=$_GET['r_hand_sensor27;
$l_hand_sensorl=$ GET['l_hand_sensorlT;
$l_hand_sensor2=$_GET['l_hand_sensor27;

$r_feet sensorl=$ GET['r_feet sensorl;

63

| Cloud

$r_feet sensor2=$ GET['r_feet_sensor2T;
$r_feet sensor3=$ GET['r_feet sensor3T;
$I_feet_sensorl=$ GET['l_feet_sensorl?;
$I_feet_sensor2=$_GET['l_feet_sensor2;
$I_feet_sensor3=$_GET['l_feet_sensor3;
$pitchBiker=$_GET['pitchBiker1;
$rollBiker=$_GET['rolIBiker'];
$yawBiker=$_GET['yawBiker1;
$pitchBicycle=$_GET['pitchBicycle'];
$rolIBicycle=$_GET['rolIBicycleT;
$yawBicycle=$_GET['yawBicycle'];

$sql_insert = "insert into training (biker_bikerld,rideld,dat,latit,la,
longit,lo,vel,ang,alt,r_hand_sensorl,r_hand_sensor2,l_hand sensorl,l_hand_sensor2,
r_feet _sensorl,r_feet sensor2,r_feet sensor3,l_feet sensorl,l feet sensor2,l feet sensor3,
pitchBiker,rolIBiker,yawBiker,pitchBicycle,rolIBicycle,yawBicycle) values (‘$biker_bikerld',
'$rideld’,'Screated_date','$latit','$la’,' $longit','$lo','$vel’,'$ang’,'$alt’,'$r_hand_sensorl’,

'$r_hand_sensor2','$l_hand_sensorl','$l_hand_sensor2','$r_feet sensorl','$r_feet sensor2','$r_feet sensor3',

'$I_feet_sensorl','$l_feet_sensor2','$l_feet_sensor3','$pitchBiker','$rolIBiker','$yawBiker','$pitchBicycle’,
‘$rolIBicycle','$yawBicycle’)";
mysql_query($sql_insert);

if($sql_insert){
echo "send data successful;

Yelse{

echo "send data unsuccessful™;

>
In case of the application there are a few files that are important for the proper functioning of

the application:

e connectToDB.php: Perform the connection to the database, every single php file uses

this file.

o login.php: When a coach tries to access to the application, this will see if the coach is

registered in the database.

64

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

o loginBiker.php: A biker tries to access to the application, this file will see if the biker
is registered on the database. It’s important that the biker is registered to perform a

training.

o createBiker.php: Entering in the application the user will see all is bikers and has the

option to register others.

e getCoachldUsingEmail.php: At the beginning, the users enter is username (email)

and with this information the file will get the Coachld.
e getCoachEmailByUsingCoachld.php: Get the email using the Coachld.

e getBikersByCoachld.php: This file will retrieve a list of the bikers that a coach is

responsible.

e getTrainingArrayByBikerld.php: Will retrieve a list in a json format of all training

performed for a given Bikerld.

e getTrainingArrayByRiderld.php: When the coach or biker choose which training

want to analyze this will get the individual training number performed.

All this programming could be done in a single file, but for a good comprehension and good
debugging it was decided to make it by step by step. If any problem occurs is easy to detect
the fault.

65

| Application

Chapter 5 - Application
5. Mobile Application

The application is to allow very friendly access to each training session, with this application
every coach and biker can access to every training session that already perform. The mobile
application was developed with Android studio and can run approximately in 97,4% of the
devices like is presented in fig. 5-1. The minimum operating system version targeting tablets
and phones with the Android 4.0.3 (IlceCreamSandwich). To execute the application, the
android device necessarily requires a connection to the internet either mobile network or Wi-
Fi.
Phone and Tablet

Minimum SDK APl 15: Android 4.0.3 (IceCreamSandwich) [T}

Lower API levels target more devices, but have fewer features available.

By targeting API 15 and later, your app will run on approximately 97,4% of the devices
that are active on the Google Play Store.

Figure 5-1 - Configuration Android Studio
5.1.Sequence Diagram

The sequence of activities in the application have two options, depending which user is
logged Coach fig. 5-2 or Biker fig. 5-3.

66

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

5.1.1. Coach Sequence Diagram

Coach Interaction with Application

Create Biker) ‘z@ M Fragments

Eleven Fragmerts can be chossed

Figure 5-2 - Sequence diagram Coach interaction

5.1.2. Biker Sequence Diagram

Biker Interaction with Application

Eleven Fragments can be chossed

Figure 5-3 - Sequence diagram Biker interaction

67

| Application

Well in the diagrams is possible to see every interaction that a coach or a biker may make in
the mobile application. In the login Activity fig. 5-4 the user must to choose if he had coach

or biker account. By default, is selected the coach account.

Password

SIGN IN

Coach

Biker

Figure 5-4 - Login view
Depending of this choice the mobile application will behave according to the diagrams
presented. In the case of the fragments is where the analyze is performed, this is, the report

and graphs are presented in the Fragment in total there is eleven fragments.

1. Report: present some results like the duration, maximum altitude, minimum altitude,

distance, calories, maximum velocity and average speed,;

duration = getTrainingDuration(trainingDataL.ist);

maxAltitude = train.round(getMaxAltitude(trainingDataL.ist),2);

minAltitude = train.round(getMinAltitude(trainingDataL.ist),2);

maxVelocity = train.round(getMaxVelocity(trainingDataL ist),2);

averageSpeed = train.round(getAverageSpeed(trainingDataL.ist),2);

distance = train.round(getDistance(trainingDataL.ist),2);

calories = train.round(METS*getCaloriesBurned(trainingDataL ist)*Float.parseFloat(weight),2);

/**

*Calculate all the time in hours that a certain biker made during is training session
* @param trainingDataList

* @return result (time spent in hours during the training)

*/

private float getCaloriesBurned(ArrayList<Training> trainingDataL.ist) {
float result=0;
ArrayList<String> tempL.ist = new ArrayList<>();

for (int i = 0; i<trainingDataL.ist.size();i++){
tempList.add(trainingDataL ist.get(i).getDat().substring(0,8).trim());

}

Collections.sort(tempList);

SimpleDateFormat simpleDateFormat = new SimpleDateFormat("HH:mm:ss");

68

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

try {
Date startTime = simpleDateFormat.parse(tempList.get(0).trim());

Date endTime=simpleDateFormat.parse(tempList.get(tempList.size()-1).trim());

long difference = endTime.getTime()-startTime.getTime();

int diffSeconds = (int) difference / 1000 % 60;

int diffMinutes = (int) difference / (60 * 1000) % 60;

int diffHours = (int) difference / (60 * 60 * 1000) % 24;

/llong diffDays = difference / (24 * 60 * 60 * 1000);

result= diffHours+diffMinutes*MINUTETOHOUR+diffSeconds*SECONDSTOHOUR;
} catch (ParseException e) {

e.printStackTrace();

¥

return result;

}

/**

*Calculate all duration of the training session

* @param trainingDatal ist

* @return value (present in HH:mm:ss)

*/

private String getTrainingDuration(ArrayList<Training> trainingDataL.ist) {

String value = "";

ArrayList<String> tempList = new ArrayList<>();

for (int i = 0; i<trainingDataL.ist.size();i++){
tempList.add(trainingDataL.ist.get(i).getDat().substring(11,19).trim());

}

Collections.sort(tempList);

SimpleDateFormat simpleDateFormat = new SimpleDateFormat("HH:mm:ss");

try {
Date startTime = simpleDateFormat.parse(tempList.get(0).trim());

Date endTime=simpleDateFormat.parse(tempList.get(tempList.size()-1).trim());

long difference = endTime.getTime()-startTime.getTime();

int diffSeconds = (int) difference / 1000 % 60;
int diffMinutes = (int) difference / (60 * 1000) % 60;
int diffHours = (int) difference / (60 * 60 * 1000) % 24;
/llong diffDays = difference / (24 * 60 * 60 * 1000);
value= diffHours+":"+diffMinutes+":"+diffSeconds;

} catch (ParseException e) {
e.printStackTrace();

¥

69

| Application

return value;

¥
/**

* calculate the average of the velocity

* @param trainingDataL ist

* @return average velocity

*/

private float getAverageSpeed(ArrayList<Training> trainingDataL.ist) {

float averageValue = 0;
for (int i=0; i< trainingDataL.ist.size();i++){

averageValue+=trainingDataL.ist.get(i).getVel();
}

return averageValue/trainingDataL.ist.size();

}

/**

* get the Max velocity during all training session

* @param trainingDataList

* @return fastestValue

*/

private float getMaxVelocity(ArrayList<Training> trainingDataL.ist) {

float fastestValue = Float. MIN_VALUE;

for (int i= 0; i<trainingDataL.ist.size();i++){
if ((trainingDataL ist.get(i).getVel())>fastestValue){
fastestVValue=(float) trainingDataL ist.get(i).getVel();
}
}

return fastestValue ;

}

/**

*get the minimum altitude of the training session

* @param trainingDataList

* @return smallestAltitude

*/

private double getMinAltitude(ArrayList<Training> trainingDataL.ist) {

float smallestAltitude = Float. MAX_VALUE;

for (int i =0; i< trainingDataL.ist.size();i++){
if ((trainingDataL ist.get(i).getAlt())< smallestAltitude){
smallestAltitude=(float) trainingDataL.ist.get(i).getAlt();
¥
¥

return smallestAltitude;

¥

/**

70

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

*get the maximum altitude from the training session

* @param trainingDataList

* @return biggestAltitude

*/

private float getMaxAltitude(ArrayList<Training> trainingDataL.ist) {

float biggestAltitude = Float. MIN_VALUE;

for (int i=0; i< trainingDataL.ist.size();i++){
if ((trainingDataL.ist.get(i).getAlt())>biggestAltitude){
biggestAltitude=(float) trainingDataL.ist.get(i).getAlt();

¥
¥

return biggestAltitude;
}

/**
*Convert the latitude and longitude from DDMM to Decimal degrees
* @param value

* @return result
&

private float convertDegreeMinuteMToDecimal(float value) {

int indexOfPoint;
indexOfPoint = new Double(value).toString().indexOf(".");

String valuel = String.valueOf(value);

String aux1=valuel.substring(0,indexOfPoint-2);
String aux2=valuel.substring(indexOfPoint-2,valuel.length());

float result=Float.parseFloat(aux1)+(Float.parseFloat(aux2)/60);

return result;

¥

/**

*Receive one list and calculate the total distance of the path
* @param listOfRides

* @return distance

*/

private float getDistance(ArrayList<Training> listOfRides){

ArrayList<Training> tempList = new ArrayList<>();
double distance = 0;
for (int i =0; i<listOfRides.size();i++){

Training training = new Training(listOfRides.get(i).getDat(),convertDegreeMinuteM ToDecimal((float)
listOfRides.get(i).getLatit()),listOfRides.get(i).getLa(),convertDegreeMinuteMToDecimal((float)
listOfRides.get(i).getLongit()),listOfRides.get(i).getLo());

tempList.add(training);

71

| Application

Collections.sort(tempList, new TrainingComparator());
for (int i =0; i<tempList.size();i++){
/I Log.d("tempListDat",""+tempList.get(i).getDat()+" "+tempList.get(i).getLatit()+"
"+tempList.get(i).getLongit());
if (i'=0){

float dLat= (float) Math.toRadians(tempList.get(i).getLatit()-tempList.get(i-1).getLatit());
float dLong = (float) Math.toRadians(tempList.get(i).getLongit()-tempList.get(i-1).getLongit());

float a = (float) (Math.sin(dLat/2)*Math.sin(dLat/2)+Math.cos(Math.toRadians(tempList.get(i-
1).getL atit()))*Math.cos(Math.toRadians(tempList.get(i).getLatit()))*
Math.sin(dLong/2)*Math.sin(dLong/2));
float ¢ = (float) (2*Math.atan2(Math.sqrt(a),Math.sqrt(1-a)));

distance+=RADIUSEARTH*c;
}

return (float)train.round(distance,2);

}

Is important to refer that for the calculation of the calories, the formula above is

used:

(14)
Calories = METSXBody Weight(Kg)xTime(h)

The formula is used to simplify the calculation of the energy expended in the physical

activity. In order to simplify the calculation, the scientists have come up with a measure

called MET. One MET is the energy an average person burns at rest per kilogram (kg) of

body weight per hour (h). In other words, one MET is the calories 1 kg of resting human

tissue burns in 1h. It is also known as the RMR. Essentially, with the introduction of MET

concept, the rate of energy we spend performing various tasks is expressed as a multiple of

our RMR. For example, a physical activity that has two METS requires twice the energy we

spend when we rest.

Sports physiologists have calculated the MET values for many sports and daily physical

activities. So the estimated value for bicycling, BMX or mountain is 8.5 METS (Levi, 2013).

2.

Force Sensor Gloves: this fragment is responsible for presenting the graphs of the four

sensors in gloves athlete;

Force Sensor Shoes: In this fragment is possible to see the graphs that translate the

force of the six mounted sensors;

GPS Tracking: Gives an idea of the route that the biker performed on is workout;

72

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

5. Velocity: present the velocity graph in km/h;
6. Altitude: shows an altitude graph in meters.
7. Angle: Demonstrate the angle that the GPS sensor is making with Satellite.

8. Angles Biker: In the chest of the biker the IMU calculate the pitch, roll and yaw of the

biker and in the fragment is presented the graph of that values.

9. Angles Bike: Like in the Biker, the bicycle has another IMU. So to see the movements

of the bicycle the graph is shown in this fragment.

10. IMU Bicycle and Biker difference: To see the difference between the biker and the

bicycle movements this fragment present a graph of that.

11. Export: All the data is saved in the database, but if the user wants to export the

training data here is possible, only need to give a file name and press a button.

5.2.Main Features

This application uses a two secure authentication, if any user wants to use this application he
needs to be register in the database. Only registered users can access to this application, in
order to protect user data. This mechanism is based in username and password to identify the
user and login into the application. At the coordinator only bikers that have a card or tag

registered can perform a training session.

The communication with the database in the application is made through Hypertex Transfer
Protocol (HTTP) requests using the Volley library ("mcxiaoke/android-volley", 2016). Volley

is an HTTP library that makes possible the networking for Android easier and faster.

For the visual presentation of the data collected from the database, is used two libraries
GraphView ("Graph View", 2016) and MPAndroidChart (“PhilJay/MPAndroidChart", 2016)
with these two libraries is possible to create the line graphs, bar charts and the points Charts
that is possible to observe in the fragments. With these libraries is possible to display to the
user’s multiple series of data, scroll with a finger touch move gesture and read the values

from the graphs. Allowing the user analyze every aspect of the graph created.

73

| Results and Evaluation

Chapter 6 Results and Evaluation
6. Evaluation

At the beginning in order to obtain the first results and to design the WSN there was the need
to create simple circuits fig. 6-1 and fig. 6-2.

Figure 6-1 - Force sensors gloves initial assembly Figure 6-2 - Force sensors gloves finally assembly

At the first image the two sensors are connected to the condition circuit, in the second image
the connections are the same but the condition circuit now are placed in a board. The

connections are the same but is possible to see that all the cables are soldered to silicon plate.
This work was made for the gloves and shoes.

In the case of the IMU is little more easy, only four connections are needed.

In the case of the coordinator fig. 6-3 the story is more complex, well the connections are

made to the shields and to every shield it was necessary to test every connection and every
function.

74

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Figure 6-3 - Coordinator assembly

Every microcontroller have is own individual program, and all end-nodes communicate with
coordinator, the communication is made using the XBee. So to visualize the data is very

important to create the android application.

All the microcontrollers are conditioning in little bags fig. 6-4, fig. 6-5 and fig. 6-6, so they
cannot interfere with the natural movement of the cycling and has comfortable to use. For the
acquisition of the values the android application will not needed to be operational, the only

things that is needed is the registration of the coach and biker.

75

| Results and Evaluation

In the case of fig. 6-4 and fig. 6-5 is presented the equipment of the biker with the

embedded sensors Gloves and insoles.

Figure 6-4 - Finnaly Assembly Gloves Sensors Figure 6-5 - Finally assembly shoes sensors

In the frame of the bicycle fig. 6-6 is placed the coordinator, in order to protect and to
secure the shields and the microcontroller to the bicycle is used a little bag. Like we see and

explain above the objective is to get all the data from the others end-nodes and to send the

data to the cloud.

Figure 6-6 - Finally assembly coordinator

76

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

6.1.Results

Several tests were carried out using the implemented system and the data are presented in the
android application. During the training session several variables are collected and are

expressed by:
1. Date, Latitude, Longitude, Altimetry, Velocity, Angle — delivered by GPS Shield;

2. Motions of the Biker and Bicycle (pitch, roll and yaw) — delivered by IMU boards

nodes
3. Force applied on brakes and pedals (ten sensors)- delivered by Force Sensors Nodes

During the training session is perceptible to understand which path the rider traveled, here the

coach can see the latitude and longitude where the rider has, only with touch of a finger.

¥4 U504

LOGOUT

® Igreja da Portela da Azéia
Q (;\\é' e’ 1

2310
‘‘‘‘‘

» 3 0 Pinheirinho -

S R p « Pastelaria E Padaria, Lda
“Sa g

n

Figure 6-7 — Application GPS analyze

77

| Results and Evaluation

Here the velocity during the track is presented and analyzed, velocity vs. time.

1.0 18/472016 VBTN L 1904,/ 3016

W Velacily

11a

108

1206 1954/ 2016
Al

163120 19/4¢2016

13.76

1633035 19742006 TaEAE 15/4/2016 TE3403 19/4/2078

Figure 6-8 - Application velocity analyze

163236 1942016 163354 19/4720 6

Figure 6-9 - Application altitude analyze

16:34:08 13/4/201 6

16:34:15 19/4/206

Desorigtion

163428 1542016

112.3

T

105

Tan

Cescripton

168:3421 187472016

The elevation is a very important point to consider, because depending on the altitude will

require more effort by the bikers.

78

ISCTE-

UL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

In the case of the information collected from the force sensors nodes, the fig. 6-11 shows the

values of force applied to the brakes. In here is represented the four sensors in the gloves. The

values represented in this graph is the velocity (Km/h) vs. force applied (N).

R ALY
L

I

T2 B.54 10,63 213 1308 1239 1276 1A% B3Z 10.09 10.35 11.33

B Right Hand Sensoe 1 B Right Hand Sensor 2 B Left Hand Sensar 1 8 Lel Hand Sensor 2

AL

i

i
|

| Desenpion

10.E 11.51 9.93 1143 10.69

Figure 6-10 - Application analyze gloves sensors (Force)

This bar chart represents the utilization of each force sensor during the training session (e.g., 5

min). Through the fig. 6-11 is possible to see that right hand sensor 2 is the most used by the

biker during the training session.

T8

7.2

L]

a0

G4

48

48%

Right Hand San=or 1 fght Hand Sensar 2 . Left Hend Sansor 1
WN N % Parcentage

220

Left Hard Sengor 2

Figure 6-11 - Application analyze gloves sensors (% usage)

78

7.2

ok

a.0

G4

A4E

79

| Results and Evaluation

Like in the gloves, for the shoes we perform the same analyze, with the difference that we
have six force sensors to collect information.

=
..-—""':::_.
—
—
i

| Descnption
72 E.54 10.63 9.13 13.03 1339 1276 1 B3z 10.09 10.35 11.35 108 1.8 9.9% 1143 10.69

W Right Feet Sensor 1 B Right Feet Sensor 2 1 Right Feet Sensord B Left Feel Sensor 1 Lef Fest Senzor 2 B Leli Feet Senzar 3

Figure 6-12 - Application analyze shoes sensors (Force)

Here is represented the percentage of the usage of the force sensors in the shoes, during the
training session.

Fiqght Feat Sengar 1 Right Feet Sensar 2 Right Faet Sanzor 3 Left Feat Senszar 1 Laft Faet Sensor 2 Left Feet Seneor 3
HN NN % Parcentage

Figure 6-13 - Application analyze shoes sensors (% usage)

80

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

81

| Conclusions

Chapter 7 - Conclusions

The main goal of this dissertation was to design and implement of a Wireless Sensor Network
collect information during the training in the mountain bike sport modality.

Hardware and software components were designed and tested. Referring the hardware part
several conditioning circuits, coordinator and end-nodes modules including sensors were
developed. The WSN nodes were distributed on the smart gloves and smart shoes level, that
communicate with the coordinator node through a wireless connection. In total are present six
end-nodes (RFD) and a coordinator (FFD). The coordinator works as smart gateway and it
performs the data acquisition (receive all information of the other end-nodes) data processing,

prepares the information and send it through Wi-Fi connection to the server.

In the server “Cloud” is used a LAMP architecture that supports a database created for this
demanding project. The LAMP architecture presents advantages in terms of stability and
reliability of Unix operating system, fast server side scripting and high performance database
interaction. The communication with the coordinator, database and application is achieved
through of the usage of PHP modules. With these PHP modules it is possible to read and

write in the database in a simple and effective way.

For the complementation of this work was developed an Android application that permits to a
user to be registered in the database, and to access of all history and all training sessions
analyzing the information collected from the sensors.

This whole system was created with the purpose of helping to improve the overall
performance of bikers, analyzing their data training collected by the wireless sensor nodes.
Using the mobile developed application, a biker’s performance analysis can be carried out by
coach but also by the biker.

To summarize, the system’s architecture is responsible for the acquisition, processing and
data display of the training data including historical data stored in the cloud. Based on the
developed Android APPs the data analysis can be performed in any smartphone or tablet and

helps every biker to increase performance and improve the methodology of his own training.

82

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

6.2.Contributions

This dissertation offers as original contributions regarding the design and implementation of a
system, characterized by the usage of M2M, WSN and Cloud Computing technologies for

athlete’s performance assessment, that are mountain bike users.

Part of the work and preliminary results were included as part of an article (Appendix A) that
was accepted, presented in an international conference IEEE EPE 2016, 20-22 October, lasi

Romania. The article will be published in the IEEEXplorer.

Ribeiro T., Postolache O., and Passos P., “Performance Assessment for Mountain bike based
on WSN and Cloud Technologies”, EPE 2016, IASI Romania 2016 International Conference

and Exposition on Electrical and Power Engineering.

A User Manual (Appendix B) and a Technical Manual (Appendix C) were also made to assist

in the use and understanding of this whole Project.

6.3.Future Work

For the future work, some new features and improvements can be done in order to improve

the system:

Introducing better force sensors, more flexible;
e Introducing better GPS module, to allow a better perspective of the track;

e Improve server and the database, more security, storage capacity, better processing
and better connection to the Ethernet;

e Create smaller PCB circuits using lightweight materials;
e Create a central switch for all nodes to turn on/ off each node.

¢ In the application more methods to correlate data can be done (for example, introduce

technical parameters of the bicycle, weight, tire type, gear ratio, etc,.).

83

| References

References

A Guide To using IMU (Accelerometer and Gyroscope Devices) in Embedded Applications.
« Starlino Electronics. (2009). Starlino.com. Retrieved 9 June 2016, from
http://www.starlino.com/imu_guide.html

Abvio | Cyclemeter. (2016). Abvio.com. Retrieved 9 September 2016, from
https://abvio.com/cyclemeter/

Ahmed, K., & Gregory, M. (2011). Integrating wireless sensor networks with cloud
computing. Proceedings - 2011 7th International Conference on Mobile Ad-Hoc and
Sensor Networks, MSN 2011, 364—-366. http://doi.org/10.1109/MSN.2011.86

Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular
systems: LTE-Advanced. Physical Communication, 3(4), 217-244.
http://doi.org/10.1016/j.phycom.2010.08.001

Almassri, A. M., Hasan, W. Z. W., Ahmad, S. A., Ishak, A. J., Ghazali, A. M., Talib, D. N.,

& Wada, C. (2014). Pressure Sensor: State of the Art, Design, and Application for
Robotic Hand. Journal of Sensors, 2015.

Arduino - ArduinoBoardFio. (2016). Arduino.cc. Retrieved 25 March 2016, from
https://www.arduino.cc/en/Main/ArduinoBoardFio

Arduino - ArduinoBoardLeonardo. (2016). Arduino.cc. Retrieved 9 May 2016, from
https://www.arduino.cc/en/Main/ArduinoBoardLeonardo

Arduino - ArduinoBoardMega. (2016). Arduino.cc. Retrieved 9 May 2016, from
https://www.arduino.cc/en/Main/arduinoBoardMega

Arduino - Software. (2016). Arduino.cc. Retrieved 22 September 2016, from
https://www.arduino.cc/en/Main/Software

Barreiro, J., Postolache, O., & Passos, P. (2014). WSN and M2M for Mountain Biking
Performance Assessment. ISCTE-IUL.

Beck, R. F. (2009). Mountain bicycle acceleration and braking factors. Accident
Reconstruction Journal, 19(4), 49-56.

Bell, C. (2013). Beginning sensor networks with Arduino and Raspberry Pi. [New York]:

Apress.
Bicycle dynamics, control and handling — Sports Biomechanics Lab. (2016).
Biosport.ucdavis.edu. Retrieved 15 August 2016, from

http://biosport.ucdavis.edu/research-projects/bicycle#section-8
Bike Gears, Bike Gear Calculator application for iPhone and iPod Touch.. (2016).

Bikegearcalculator.com. Retrieved 9 September 2016, from
http://www.bikegearcalculator.com

84

https://abvio.com/cyclemeter/
http://www.bikegearcalculator.com/

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Bike Maps, Cycling Workout, Biking Routes | MapMyRide. (2016). Mapmyride.com.
Retrieved 9 September 2016, from http://www.mapmyride.com

Bikes | Trek Bikes. (2016). Trekbikes.com. Retrieved 9 April 2016, from
http://www.trekbikes.com/us/en_US/bikes/c/B100

Campos, A., Fonseca, I., & Lopes, F. (2011). Projecto e Construcdo de um Sistema Embebido
de Tempo-Real Baseado em Linux. ISEC.

Chung, W., Yu, P., & Huang, C. (2013). Cloud computing system based on wireless sensor
network. Computer Science and 877-880. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6644114

cyclists, H. (2016). Heart-rate monitor training for cyclists. BikeRadar. Retrieved 13 August
2016, from http://www.bikeradar.com/gear/article/heart-rate-monitor-training-for-
cyclists-28838/

Dobrnjac, M. (2016). ANNALS of Faculty Engineering Hunedoara — International Journal of
Engineering THERMAL CHARACTERISTICS AND POTENTIAL FOR, 41-45.

Elahi, A. & Gschwender, A. (2010). ZigBee wireless sensor and control network. Upper
Saddle River, N.J.: Prentice Hall.

Endomondo. (2016). Endomondo.com. Retrieved 9 September 2016, from
https://www.endomondo.com

Ethernet Tutorial - Part I: Networking Basics | Lantronix. (2016). Lantronix.com. Retrieved
18 May 2016, from https://www.lantronix.com/resources/networking-tutorials/ethernet-
tutorial-networking-basics/

Fassler, M. (2010). Force Sensing Technologies. Studies on Mechatronics , ETH, 1-49.

FlexiForce A201 Sensor. (2014). Tekscan. Retrieved 20 April 2016, from
https://www.tekscan.com/products-solutions/force-sensors/a201

Garcia-hernandez, C. F., Ibargiiengoytia-gonzélez, P. H., Garcia-hernandez, J., & Pérez-diaz,
J. a. (2007). Wireless Sensor Networks and Applications : a Survey. Journal of Computer

Science, 7(3), 264-273. http://doi.org/10.1109/MC.2002.1039518

GlobalTop Technology Inc. (2011). FGPMMOPAG6H GPS Standalone Module Data Sheet,
(16), 1-37.

Goncalves, A., Thomaz, S., Sa, D. L., & Henrique, D. (2016). Towards a Real-Time
Embedded System for Water. Sensors 2016, 1-20. http://doi.org/10.3390/s16081226

Guedes, T., Neto, H., & Vestias, M. (2007). Camara em Rede com Tecnologia FPGA. IST.

Hazry, D., Sofian, M., & Azfar, a Z. (2009). Study of Inertial Measurement Unit Sensor.
International Conference on ManMachine Systems ICOMMS, (October), 11-13.

85

http://doi.org/10.3390/s16081226

| References

Henzinger, T. A., & Sifakis, J. (2006). The Embedded Systems Design Challenge. In J. Misra,
T. Nipkow, & E. Sekerinski (Eds.), FM 2006: Formal Methods: 14th International
Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006. Proceedings
(pp. 1-15). inbook, Berlin, Heidelberg: Springer Berlin Heidelberg.
http://doi.org/10.1007/11813040 1

Hillman, M. (n.d.). An Overview of ZigBee Networks A guide for implementers and security
testers. Retrieved from https://www.mwrinfosecurity.com/assets/\Whitepapers/mwri-
zigbee-overview-finalv2.pdf

HISTORY | The Marin Museum of Bicycling and Mountain Bike Hall of Fame. (2016).
Mmbhof.org. Retrieved 9 September 2016, from http://mmbhof.org/mtn-bike-hall-of-
fame/history/

Hofer, C. N., & Karagiannis, G. (2011). Cloud computing services: Taxonomy and
comparison. Journal of Internet Services and Applications, 2(2), 81-94.
http://doi.org/10.1007/s13174-011-0027-x

Home - GPS Tracking Systems for Elite Sports. (2016). GPSports | Global Positioning
Systems. Retrieved 11 August 2016, from http://gpsports.com

Honglong, C., Liang, X., Wei, Q., Guangmin, Y., & Weizheng, Y. (2008). An integrated
MEMS gyroscope array with higher accuracy output. Sensors, 8(4), 2886-2899.
http://doi.org/10.3390/s8042886

Huang, Y., Hsieh, M., & Sandnes, F. E. (2008). Wireless Sensor Networks and Applications.
Communication, 2004, 199-219. http://doi.org/10.1007/978-0-387-49592-7

I12C - learn.sparkfun.com. (2016). Learn.sparkfun.com. Retrieved 15 September 2016, from
https://learn.sparkfun.com/tutorials/i2c

Instrumented Bicycle — Sports Biomechanics Lab. (2016). Biosport.ucdavis.edu. Retrieved
15 August 2016, from http://biosport.ucdavis.edu/research-
projects/bicycle/instrumented-bicycle

Jary,. (2014). What is the difference between 3G, 4G, GPRS, E and Wi-Fi. PC Advisor.
Retrieved 11 July 2016, from http://www.pcadvisor.co.uk/feature/network-wifi/what-is-
difference-between-3g-4g-gprs-e-wi-fi-3509254/

Kartsakli, E., Lalos, A., Antonopoulos, A., Tennina, S., Renzo, M., Alonso, L., & Verikoukis,
C. (2014). A Survey on M2M Systems for mHealth: A Wireless Communications
Perspective. Sensors, 14(10), 18009-18052. http://doi.org/10.3390/s141018009

Lee, J., Su, Y., & Shen, C. (2007). A Comparative Study of Wireless Protocols : IECON
Proceedings (Industrial Electronics Conference), 46-51.
http://doi.org/10.1109/IECON.2007.4460126

Levi, C. (2013). How Many Calories Do | Burn Bicycling? The Answer Is Here!.

CoachLevi.com. Retrieved 12 August 2016, from http://coachlevi.com/health/calories-
burned-bicycling/

86

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Lie, D., & Sung, C. K. (2010). Synchronous brake analysis for a bicycle. Mechanism and
Machine Theory. http://doi.org/10.1016/j.mechmachtheory.2009.11.006

Lima, R. R., & Torres, L. a. B. (2012). Performance Evaluation of Attitude Estimation
Algorithms in the Design of an AHRS for Fixed Wing UAVs. 2012 Brazilian Robotics
Symposium and Latin American Robotics Symposium, (2), 255-260.
http://doi.org/10.1109/SBR-LARS.2012.61

LM324-N | Operational Amplifiers | Amplifier | Description & parametrics. (2016). Ti.com.
Retrieved 17 September 2016, from http://www.ti.com/product/LM324-N

Manual, 1. U. (2016). FlexiForce® Sensors User Manual. Tekscan Inc, 1-15. Retrieved from
https://www.tekscan.com/support/faqgs/flexiforce-user-manual

mcxiaoke/android-volley. (2016). GitHub. Retrieved 25 June 2016, from
https://github.com/mcxiaoke/android-volley

Mehndiratta, N., & Bedi, H. (2013). Design Issues for Routing Protocols in WSNs.
International Journal of Application or Innovation in Engineering & Management
(NAIEM), 2(3), 312-320. Retrieved from
http://www.ijaiem.org/Volume2Issue3/IJAIEM-2013-03-23-071.pdf

Miller, M. (2013). Wireless networking. Indianapolis, Ind.: Que.

Mohammadi, M. (2016). Analysis of low complexity uplink/downlink full-duplex wireless
access with spatially random nodes. IET Communications, 10(14), 1777-1785.
http://doi.org/10.1049/iet-com.2016.0237

Molloy, D. (2015). Exploring BeagleBone. Wiley.

Molloy, D. (2016). Exploring Raspberry Pi. Wiley.

Mozer, D. (2016). Bicycle History Timeline. Ibike.org. Retrieved 9 May 2016, from
http://www.ibike.org/library/history-timeline.htm

MySQL :: MySQL Workbench Manual. (2016). Dev.mysgl.com. Retrieved 16 July 2016,
from http://dev.mysql.com/doc/workbench/en/

Oecd. (2012). Machine-to-Machine Communications: Connecting Billions of Devices. Cities,
192(192), 45. http://doi.org/http://dx.doi.org/10.1787/5k9gsh2gp043-en

Our Members | The ZigBee Alliance. (2016). Zigbee.org. Retrieved 25 May 2016, from
http://www.zigbee.org/zigbeealliance/our-members/

Pandian, P. S., Bioengineering, D., Nagar, C. V. R., Safeer, K. P., Gupta, P., Shakunthala, D.

T., ... Padaki, V. C. (2008). Wireless Sensor Network for Wearable Physiological
Monitoring. Journal of Networks, 3, 21-29. http://doi.org/10.4304/jnw.3.5.21-29

87

http://www.ibike.org/library/history-timeline.htm

| References

Pearson. (2011). Evolution of Cellular Technologies Chapter 1. Retrieved from
http://cdn.ttgtmedia.com/searchTelecom/downloads/SearchTelecom_Fundamentals_of _
LTE Chapter_1.pdf

Pereira, V., & Sousa, T. (2004). Evolution of Mobile Communications: from 1G to 4G. 2nd
International Working Conference on Performance Modelling and Evaluation of
Heterogeneous Networks, (July).

Performance of Wireless Networks: WiFi - High Performance Browser Networking
(O'Reilly). (2016). High Performance Browser Networking. Retrieved 24 August 2016,
from https://hpbn.co/wifi/

Performance, H. (n.d.). MEMS Inertial Measurement Units for Complex Motion Capture and
Processing.

PhilJay/MPAndroidChart. (2016). GitHub. Retrieved 25 June 2016, from
https://github.com/PhilJay/MPAndroidChart

Pololu - MinIMU-9 v3 Gyro, Accelerometer, and Compass (L3GD20H and LSM303D
Carrier). (2016). Pololu.com. Retrieved 9 May 2016, from
https://www.pololu.com/product/2468

Prayudi, 1., & Kim, D. (2012). Design and implementation of IMU-based human arm motion
capture system. 2012 IEEE International Conference on Mechatronics and Automation,
ICMA 2012, 670-675. http://doi.org/10.1109/ICMA.2012.6283221

Radio Frequency Identification Tags - Semi Passive (Battery Assisted Backscatter) -
Available Technologies - PNNL. (2016). Availabletechnologies.pnnl.gov. Retrieved 26
August 2016, from http://availabletechnologies.pnnl.gov/technology.asp?id=90

Ran, C., & Cheng, X. (2016). A Direct and Non-Singular UKF Approach Using Euler Angle
Kinematics for Integrated Navigation Systems. Sensors, 16(9), 1415.
http://doi.org/10.3390/s16091415

Sanches, R. (2015). Conheca os tipos e modelos de Bicicleta. NUcleo Bike. Retrieved 10 June
2016, from http://www.nucleobike.com.br/dicas/conheca-os-tipos-e-modelos-de-
bicicleta/

Santos, R. & Perestrelo, L. (2015). BeagleBone For Dummies. Wiley.

Semiconductors, N. X. P. (2016). MFRC522 Standard performance MIFARE and NTAG
frontend, (April).

Serial Communication - learn.sparkfun.com. (2016). Learn.sparkfun.com. Retrieved 17
September 2016, from https://learn.sparkfun.com/tutorials/serial-communication

STEYN, W. J. vdM., VAN NIEKERK, H., & JACOBS, W. M. G. (2014).
CLASSIFICATION OF MOUNTAIN BIKE TRAILS USING VEHICLE-PAVEMENT
INTERACTION PRINCIPLES. South African Journal for Research in Sport, Physical
Education & Recreation (SAJR SPER), 36(1), 211-227. Retrieved from

88

http://availabletechnologies.pnnl.gov/technology.asp?id=90
https://learn.sparkfun.com/tutorials/serial-communication

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

http://ezproxy.leedsbeckett.ac.uk/login?url=http://search.ebscohost.com/login.aspx?direc
t=true&db=s3h&AN=95529862&site=eds-live&scope=site

Steyn, W. J., & Warnich, J. (2014). Comparison of Tyre Rolling Resistance for Different
Mountain Bike Tyre Diameters and Surface Conditions, 36(2), 179-193.

Stoces, M., Vangk, J., Masner, J., & Pavlik, J. (2016). Agris on-line Papers in Economics and
Informatics Internet of Things (l1oT) in Agriculture -Selected Aspects. AGRIS on-Line
Papers in Economics and Informatics, 1(2), 83-88.
http://doi.org/10.7160/a0l.2016.080108

Strava | Run and Cycling Tracking on the Social Network for Athletes. (2016). Strava.com.
Retrieved 9 September 2016, from https://www.strava.com

Sundstrom, D., Backstrom, M., Carlsson, P., & Tinnsten, M. (2015). Optimal distribution of
power output and braking for corners in road cycling, (2), 1-2.

Tavares, J., Velez, F. J., & Ferro, J. M. (2008). Application of Wireless Sensor Networks to
Automobiles. Measurement Science Review, 8(3), 65-70.
http://doi.org/10.2478/v10048-008-0017-8

Understanding Bike Frame Materials - REI Expert Advice. (2016). Rei.com. Retrieved 15
June 2016, from https://www.rei.com/learn/expert-advice/bike-frame-materials.html

Woodman, O. J. (2007). An Introduction to Inertial Navigation. University of Cambridge.
http://doi.org/10.1017/S0373463300036341

Wynn, N. & Elton-Walters, J. (2016). The best cycling apps for iPhone and Android (video) -
Cycling Weekly. Cycling Weekly. Retrieved 31 July 2016, from
http://www.cyclingweekly.co.uk/news/product-news/best-cycling-apps-143222

XBee ZigBee Addressing. (2016). kb. Retrieved 18 June 2016, from
http://knowledge.digi.com/articles/Knowledge _Base_Article/XBee-ZigBee-
Addressing/?l=en_US&fs=Search&pn=1

XCTU - Next Gen Configuration Platform for XBee/RF Solutions - Digi International.
(2016). Digi.com. Retrieved 18 July 2016, from http://www.digi.com/products/xbee-rf-
solutions/xctu-software/xctu

Yun Shield. (2016). Dragino.com. Retrieved 22 July 2016, from
http://www.dragino.com/products/yunshield/item/86-yun-shield.html

Yuriyama, M., & Kushida, T. (2010). Sensor-cloud infrastructure physical sensor
management with virtualized sensors on cloud computing. Proceedings - 13th
International Conference on Network-Based Information Systems, NBiS 2010, 1-8.
http://doi.org/10.1109/NBiS.2010.32

Zeng, D., Guo, S., & Cheng, Z. (2011). The Web of Things: A Survey (Invited Paper).
Journal of Communications, 6(6), 424-438. http://doi.org/10.4304/jcm.6.6.424-438

89

http://www.cyclingweekly.co.uk/news/product-news/best-cycling-apps-143222
http://knowledge.digi.com/articles/Knowledge_Base_Article/XBee-ZigBee-Addressing/?l=en_US&fs=Search&pn=1
http://knowledge.digi.com/articles/Knowledge_Base_Article/XBee-ZigBee-Addressing/?l=en_US&fs=Search&pn=1
http://www.dragino.com/products/yunshield/item/86-yun-shield.html

| References

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1), 7-18.
http://doi.org/10.1007/s13174-010-0007-6

Zhao Lin, Xia, L., Liu, F., & Cheng, Y. (2007). Application of UKF for MEMS IMUs and
Fluxgate Sensors Based Attitude and Heading Reference System of Carriers, 0, 2278—
2283.

ZigBee. (2016). Gta.ufrj.br. Retrieved 15 June 2016, from
http://www.gta.ufrj.br/grad/10_1/zigbee/padrao.html

90

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

91

| Appendix A

Appendix A

Article

This article has been accepted and presented in EPE 2016 9th edition October 20-22, 2016
IASI, Romania 2016 International Conference and Exposition on Electrical and Power
Engineering.

9th
editon

:
—
i

LN ==

-59:-._ Wt
4 ol gy f,
i ‘g‘

- 577‘7"2 e : >~ X = 3
FACULTY OF ELECTRICAL ENGINEERING ULl ! as. i8S I

Organized by the Faculty of Electrical Engineering in lasi and SETIS Association, the EPE
Conference is confirmed as an important event in the community of Electrical Engineering.
The conference started in 1999 and is being held on alternate years, with the intent of
attracting a wide national an international audience from both the academic and industrial
communities.

The conference is technically co-sponsored by IEEE Romanian Section and is included in the

IEEE meetings database with record number #38374.

92

http://www.ee.tuiasi.ro/
http://setis.ee.tuiasi.ro/

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Performance Assessment for Mountain bike based on
WSN and Cloud Technologies

Tiago Ribeiro Octavian Postolache Pedro Passos
Telecommunications Institute Telecommunications Institute CIPER
ISCTE-IUL ISCTE-IUL FMH

Lisboa, Portugal
Tiago_Ribeiro@iscte.pt

Abstract—The mountain bike is one of the most used
equipment’s in outdoor sports activities. The present work
presents a distributed sensing system for cycling assessment to
increase performance. Thus a wireless sensor network attached
to the sport equipment provides to the athlete and the coach with
performance values during practice. The sensors placed in biker
equipment’s behave as nodes of a WSN, This is possible with the
developing of IoT-based systems in sports, the tracking and
monitoring of athletes in his activities has an important role on
his formation as bikers and helps to increase performance,
through the analyze of each session. The implemented system
performs acquisition, processing and transmission, of data using
a ZigBee wireless networks that provide also machine-to-machine
communication and data storage in a server located in the cloud.
As in many cycling applications use the phone as a module to get
the values, this work will be a little different making use of
phone/tablet to consult information. The information stored on
the cloud server will be accessed through a mobile application
that analyses and correlates all metrics calculated using the
training data obtained during practice. Additional information
regarding the health status may be also considered. Therefore,
the system permits that athletes perform an unlimited number of
trainings, these can be accessed at any time through the mobile
application. Making possible to save a history of the evolution of
each athlete the system permits to perform appropriate
comparisons between different training sessions and different
athletes performances.

Keywords— machine-to-machine; bicycle; cloud; wireless
sensor network

1. INTRODUCTION

The history of bicycle remote us to the year of 1418 where
the engineer Giovanni Fontana built a four wheeled “bike”
with rope connected by gears. Only 400 years later, in response
to the starvation and the slaughtering of horses Baron Von
Drais built the first two wheeled bike that has a cord connected
to the back wheel. These velocipedes were made entirely of
wood and were propelled by pushing off the feet [1]. The years
passed and the innovations were many, as the pedals, brakes,
suspension, and the lighter and comfortable materials that we
see today in our bikes. Nowadays bicycles can be classified in
four types: urban bike, BMX, road bikes and mountain bikes

(2]

Lisboa, Portugal
Octavian.adrian.postolache@iscte.pt

Universidade de Lisboa, Portugal
ppassos@fmh.ulisboa.pt

For the conception of this work will be used a mountain
bike, this bicycles are typically used in single tracks where the
terrain can be unpaved. On these tracks commonly we could
encounter rocks, loose gravel, roots and steep grades inclines
and declines. Under these conditions the biker will need to get
a functional interaction with his “machine”, in order to achieve
a balance between speed and safety. The mountain bike is
produced to handle with this type of tracks, normally the
material that is widely used is aluminum (offers a lighter,
stiffer and efficient ride) [3]. To control the bicycle along the
track the biker needs to use the mechanisms with his hands
(e.g., brakes) and feet (i.e., pedals), and the positioning of his
body is also fundamental. A functional position will permit the
biker make rapid changes of direction and get the desirable
speed. The biker position could be essential to deal with some
external factors such as the slope of the track and its obstacles.
It is the interactive behavior of the bicycle and biker which
wanted to acquire, dynamic and kinematic data through a
Wireless Sensor Network was designed and implemented.
These WSN permits to get values to some of the following
variables: 1) braking intensity and frequency (both hands); ii)
pedal strength (both feet); iii) position of the bicycle in the
three plans of motion (x, y and z); iv) position of the biker in
the three plans of motion. With this set of variables, it was
possible to calculate some important aspects to describe the
bicycle ~ biker interaction.

For the athletes the training is the most important way to
achieve a better performance whether professional or
recreational level. In this era of the Internet of Things (IoT),
this term IoT refers to the connection of physical objects to the
Internet and that can communicate through wireless or wired
connections and interact with each other and collaborate with
other things or objects, to create new services in order to
achieve common objectives [4]. Where vehicles, buildings,
health systems [5]-[6] and a lot of another’s things are
characterized by sensors, software and network connectivity
that enable the data collection and data exchange remotely
across existing network. Creating a large pool of resources
inter-liked through a dynamic network of networks. In 2020 it
is estimated that will be around 50 billion devices connected to
the internet. One sustainable [oT platform relies on three pillars
(renewable energy, connectivity, and collaboration) [7]. This
system will allow the users to obtain data from his/her own
training session. The data capture with this sensors network

93

| Appendix A

provides the users with information which can be used to adapt
the training methods and improve the performance. The
connectivity and collaboration are a fundamentals pillars in this
work. Because an autonomous exchange of information
through the WSN will permit feed the database and by
consequence a coach and a biker will collaborate in the analyze
of a determined training session.

II. RELATED WORK

Cycling it’s a complex physical activity that involves a set
of movements. The bicycle with a human comprises a human-
vehicle with a dynamic behavior. In contrast with an
automobile or aircraft, the pilot of a bicycle comprises
80%~90% of the overall system mass and thus the motion of
the driver rider is not negligible. These movements can be
analyzed using different techniques, such as instrumented
bicycle or motion capture techniques [8]. These two techniques
highlight the complexity of the study. The first one it’s related
with the use of sensors on the bike or in the biker’s equipment
like pressure sensors and GPS. The second technique could be
related with the movement of the biker related with the bicycle,
that is, analyze the influence of the position of the upper body
and the legs while the bicycle is on movement. These two
techniques allows the creation of models that describe the
movement, the points of pressure [8] and speed that a biker
could be doing while training on certain track. These data could
be used to provide a track-specific performance report.

Machine-to-Machine (M2M) communication [9] is an
emerging technology that envisions the interconnection of
machines without the need of human interventions. The main
concept lies in seamlessly connecting an autonomous and self-
organizing network of M2M-capable devices to a remote
client, through wired or wireless network. The M2M is a
combination of various heterogeneous electronic,
communication, and software technologies. An intelligent
software application is usually employed at the remote client to
process the collect data and provide the end user with a set of
smart services and a practical interface. The above challenges
stress the imperative need for standardization of M2M
communications [10]. The ability to connect new devices to the
network lead to the evolution of the Internet of Things (IoT)
[11]. In this scenario, Cloud Computing [12] can be seen as a
scalable infrastructure [13] that supports computing power,
storage and software services.

With the advances in wireless sensor networks (WSN) the
use of these networks for collect and interpret data in real-time
was facilitated. In the past they were typically used wired
sensor networks but have always been expensive, due to
installation and maintenance costs. But the large amount of
research projects in this area allows for the existence of tiny
hardware (and more accurate) devices with reduced cost/size.
One of the areas on the rise is the monitoring in automobiles
[14] and the physiological monitoring [15]. These advances
include the development of communication standards such as
IEEE 802.15.4/ ZigBee. This sensor network support small
power consumption and node expansion compared to other
networks standards for WSN [16].

Joining M2M communication, WSN and Cloud
Computing. This architecture allows to stored and processed

sensor data in a more accessible form, available timely, and
cost-effective. This concept can be called sensor-cloud, it
allows easier integration with new mobile devices like tablets
or smartphones through customized mobile applications that
collect data from cloud and process all sensor data.

The growth of information technology and the easy access
to it, currently thousands of application are released to the
market per day, some of these apps are related with the use of
bicycles and cycling, but most only collect information via
mobile phone modules. The difference through this work is to
use WSN that can in real time detect all interactions that a
biker has with his bike and through M2M communication send
this data to the cloud, to be analyzed and processed in the
mobile application.

III. OVERVIEW

The architecture of the system has three blocks Fig. /. At
first block is represented the bicycle and the biker, so it’s easy
to assume that wireless sensor network was placed, on the

3 @
{ L
) = Cloud

‘\

Mobiks Application

Figure 1 - System Architecture

sports equipment (i.e., gloves, shoes, chest trap and bicycle
frame). Each of the end nodes has a microcontroller Fig. 2 that
will read the behavior and the interaction of the biker with his
bicycle. These nodes will make the acquisition and processing
of primary data and then send it to coordinator, that stores the
information on a local database and send it to the cloud. The
second block is the server (cloud), which receives the
information and makes it available to be accessed later. The
third block, represents a mobile application that accesses the
information in the cloud, interprets and correlates all biker
information and allows data visualization with a friendly
graphical user interface.

94

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Arduino Fio XBee

XBee

Adafruit Ultimate

Arduino Mega GPS Logger Shield

Figure I - WSN End Node and Coordinator components

IV. HARDWARE

The hardware involved in the WSN is responsible for the
acquisition, processing and sending of data to the server. So, in
the WSN are the force sensors, inertial measurement boards
and microcontrollers. The microcontrollers interpret and read
the information from sensors and inertial measurement boards.

A. Sensors and conditioning circuits

Force sensors from FlexiForce [17], act as a force sensing
resistor in an electric circuit, when no pressure is applied to the
sensor the resistance is very high, otherwise the resistance
decrease. In the project these sensors are in the biker shoes and
gloves, these ten sensors acquire the interaction described. The
following conditioning circuit is used:

vout

Figure 3 - Conditioning circuit for force sensors

The equations of the output voltage are represented as
follows:

R
Vout = ——xVref (@8]

where, the parameters in equation (1) are defined as follows:
Vout: is the output voltage [V];
Rs: is the variable resistance, force sensor [Q]
R: is the reference resistor [Q];
Vref: is the reference voltage [V];

B. Inertial measurement unit

IMU, is an inertial measurement unit that packs an
L3GD20H 3-axis gyro and an LSM303D 3-axis accelerometer

and 3-axis magnetometer onto a tiny 0.8x0.5 board. This board
allows to calculate some angles between the bicycle and the
rider as well as the direction of the movement.

The nine independent rotation, acceleration and magnetic
readings (known as 9 Degrees of Freedom) provide all the data
needed to make an attitude and heading reference system
(AHRS). These sensors, combined with a built-in processor,
create an inertial sensor system fully cable of measuring the
attitude of objects in 3D space. The accelerometers measure
proper acceleration — the rate at which the velocity of an object
is changing. They measure the static (gravity) or dynamic
(motion vibration) acceleration forces of a given object. The
ideal accelerometer in AHRS provides a long term stability,
low vibration error and reliability. Magnetometers are used in
AHRS to measure the direction of the magnetic field at a point
in space. In case of gyroscope the AHRS demand very precise
sensors; the gyros are used as the primary source of orientation
information. The quality of these devices has big impacts in
overall performance of the inertial sensor system [18]. Though
this technology provides good accuracy and reliability, it is not
conducive to a MEMS-based AHRS due to its larger size and
greater power requirements.

This sensor is used in the chest of the rider to measure the
upper body motion and in the bicycle frame to record the
oscillations on the three plans of motion [19]. Each of the three
sensors acts as a slave device on the same I°C bus [20].

The orientation of the bicycle/rider is often described by
three consecutive rotations, whose order is important. The
angular rotations are called the Euler angles. The orientation of
the body frame with respect to the fixed earth frame was
determined in the following manner.

Figure 4 - Representation IMU axis

C. Embedded Systems

The Arduino Fio is a microcontroller board based on the
ATmega328P runs at 3.3V and 8MHz. It has connections for a
Lithium Polymer battery. An Xbee socket is available on the
bottom of the board. The Arduino is intended for wireless
applications [21]. On this project exists five of these boards,
they work as end nodes and are responsible for the acquisition

95

| Appendix A

of sensor data to the network. Another microcontroller is an
Arduino Mega it as based on the ATmegal280. It contains
everything to support the microcontroller. The Mega is
compatible with most shields in the market [22]. He works as a
coordinator and could find it on the frame of the bicycle. All
the communication between the WSN is done through a
ZigBee network 802.15.4 [23] with modules coupled to each
microcontroller.

As can be seen in the Fig. 5, the network has a star
topology, in which the Arduino Mega Fig. 2 (center node) as
the coordinator is placed in bicycle frame.

End

Node
\J
End End
Node . - B Node
* Coordinator
A
End End
Node Node

Figure 5 - WSN Topology

The coordinator node it also has a GPS shield that registers
all movements and has the capability to locate our exact
position within a few meters, as well as other variables like
speed, altitude and angles.

V. SYSTEM SOFTWARE

It was embedded software in the microcontrollers, which is
responsible for the interpretation of the data that the sensors
capture. At this moment the system is in an early stage, only
the local database is function properly.

All the microcontrollers are programmed using C language
and also some Arduino libraries to deal with the shields and the
sensor boards.

In our AHRS system is used the Direction Cosine Matrix
Algorithm (DCM), he calculates the orientation of a rigid body,
in respect to the rotation of the earth by using rotation matrices.
Rotation matrices have the advantage of being a natural fit to
control and navigation. A rotation matrix describes the
orientation of one coordinate system with respect to another.

xb yb zb xe ye ze
xe xb
R= ‘ ye Rl'= yb
ze zb

The columns of the matrix are the unit vectors in one
system as seen in another system. A vector in one system can
be transformed into the other system by multiplying it by the
rotation matrix. The transformation in the reverse direction is

accomplished with the inverse of the rotation matrix, which
turns out to be equal to its transpose. Certain types of vectors
(directions, velocity accelerations and translations) can be
transformed between rotated reference frames with 3x3 matrix
[24].

Ap = a vector A measured in the frame of reference of the
plane;

Ag = a vector A measured in the frame of reference of the
ground;

x Ty Tz

Tyy Tyz

Ty Tz

R= = rotation matrix

T
Tyx
Tox

A; =RAp (2)

The rotation matrices are related to the Euler angles, which
describe the three consecutive rotations needed to describe the
orientation. So the relation between the direction cosine matrix
and Euler angles is:

X 1 0 0 4
v[=[0 cosy —siny y'l 3)
VA 0 siny cosypllz
X cos @ 0 sin@][X
vl[=] o 1 o ||r 4
zZ —sin 8 0 cos 811lZ
X cos ¢ sin¢ 0][X"
Y[=|sin¢ cos¢p O0f|¥" (&)
Z 0 0 1liz"

The coordination system shown in Fig. 4 is typically used
in flight simulators with the origin located at the aircraft
centroid, with y-axis pointing forward, the x-axis off the right
and the z-axis pointing up. Note that orders matters, (3)->(4)-
>(5). Combine all three transformations (roll, pitch and yaw).

R
cosbcosgp sinysinfdcosp — cosysing cospsinfcosg + sinpsing
= |cosBsing sinsindsing + cosypcosg cospsinbsing — simpcosg (6)
—sinf sincos@ cosypcosB
Equation (2) and (6) express how to rotate a vector
measured in the frame of reference of the plane to the frame of
reference of the ground. Equation (2) is expressed in terms of
direction cosines. Equation (6) is expressed in terms of Euler
angles [25]. The following equations permit to calculate the
Pitch, Roll and Yaw:
Pitch - = —asin(r,,)
Roll = 6 = atan2(r,,,1,,) @
i Taz

Yaw —» ¢ = atunZ(ry,‘, rm)

For a visual representation of DCM algorithm Fig. 6.

96

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

N2

R Matrix R Matr wie

‘Normakzason and
Kinematcs

Figure 6 - Direct Cosine Matrix Algorithm Overview

Gyroscopes readings have different offsets depending on
which direction the gyroscope is facing; when these readings
are integrated over time it causes the integral result to drift.
Before apply equation (7), it is essential to correct this problem
(drift), and the process of enforcing the orthogonally conditions
“renormalization” is used. First compute the dot product of the
X and Y rows of the matrix, which is supposed to be zero, so
the result is a measure of how much the X and Y rows are
rotating toward each other:

rxx ryx
Ty ¥V = [Ty

7y,

X =

sz
Tyx
error = X.Y = XTY = [rneyhies] |y
Ty

We apportion half of the error each to the X and Y rows,
and approximately rotate the X and Y rows in the opposite
direction by cross coupling:

r
> error

X=|Ty|= Xort)mganal =X- Y
Txz Q)
r
ryx error

= |"¥¥| = Yorthogonat = I — X

Tyz

Orthogonal error is greatly reduced by substituting equation
(9) into (8), keeping in mind that the magnitude of each row
and column of the R matrix is approximately equal to one. The
next step is to adjust the Z row of the matrix to be orthogonal
to X and Y row. The way to do that is to simply set the Z row
to be the cross product of the X and Y rows:

Taex
Txy

TX Z

= Zartho_ganal = erthogonalxyorthogonat (10)

The last step in the renormalization process is to scale the
rows of the R matrix to assure that each has a magnitude equal
to one. The resulting magnitude adjustment equations for the
row vectors are:

1
Xnarmalized = E (3 - Xorthagmlal- Xorthoganal)Xarthngonal)

Ynormulized = 2 (3 - yor[hogonal- Yurthagonal)yarthogunal)

1
Znarmalized = z (3 - Zorthogmlul- Zorthogonai)zorthogonul)

an
These equations state that to adjust the magnitude of each
row vector to one, is necessary to subtract the dot product of
the vector with itself (the square of the magnitude), subtract
from three, multiply by '2, and multiply each element of the
vector by the result.

The accelerometer is not affected by drift; therefore, it can
be used as an orientation reference in the X and Y axis of the
rigid body to compensate the roll-pitch error (gyro’s offset
error). The magnetometer’s readings are used to calculate the
heading of the rigid body; this one helps to compensate yaw
error. The heading of the system used as the reference vector in
the Z axis (yaw error), in addition to roll-pitch error calculated
by the accelerometer, it allows the system to calculate the
rotations correction matrix.

VI. PRELIMINARY RESULTS AND DISCUSSION

The tests are made step by step, the serial of Arduino it’s an
important thing to analyze and helpful tool. At this early stage
all the information goes to the local database through the serial
of Arduino. The tests that were made provide data that was
graphically analyzed. In the local database are stored the
following variables: time, date, longitude, latitude, velocity,
angle, and altitude; plus ten values of the force sensors,
pitchReceived, rollReceived, yawReceived, pitch, roll, and
yaw. It’s important to tell that the variables (pitchReceived,
rollReceived, yawReceived) correspond to the measurement of
movements of the biker, and the variables (pitch, roll, and yaw)
correspond to the movements of the bicycle.

Analyzing these six variables from the movements that the
biker produces together with his bicycle can be detected and
related (e.g., in a curve compare both rolls and see how can the
movement of biker could influence its trajectory).

The magnitude and the frequency of brake on each hand,
the path that runs through the GPS and the measure of pitch,
roll and yaw angles, are examples of some tests already done.
In the next graphics are demonstrate some of the possible tests
that can be performed in WSN.

Some considerations are necessary to understand first, the
range of the Euler angles are presented in the table 1.

Angles Min. value Max. value
Roll -180° 180°
Pitch -90° 90°
Yaw -180 180

TABLE 1 - RANGE OF EULER ANGLES

97

| Appendix A

GPS

906.1
906.08
906.06
906.04
906.02

906
905.98
905.96

905.94
3850.15

Longitude

3850.2 3850.25

Latitude

38503 3850.35

Figure 7 - GPS Tracking, Latitude and Longitude
Velocity vs Force Sensors

100
90
80
70
60
50
40

30

Percentage [%] \ Velocity [km/h]

16:30 16:33 16:36 16:39 16:42 16:45
Time
o sensor 1 @ sensor 2 (<] sensor 3 o vel
Figure 8 - Velocity vs. Force Applied

In this figure can be analyzed the relation between the velocity
and the magnitude of the pressures on the brakes. When exist
a velocity peak and the biker press the brake the velocity
reduces. The sensors are inside of gloves on Fig. 8 we can
measure the pressure that the biker do to apply the force on
brake.

3 Long. Long. Duration Brake
Lat. (start) (start) Lat. (end) (end) Is] 1%]
1850.2256 006.073 3850.2244 | 906.0719 00:00:06 72.19%
38502539 | 906.0508 | 3850.2273 | 905.9646 00:00:20 38.98%

TABLE 2 - POSITION(START/END), DURATION AND BRAKE INTENSITY

End Node

Angles
=

21:36:00

21:40:19

-100
-150

-200 .
Time

@~ Pitch ©- Roll O Yaw

Figure 9 - Angles IMU End Node

Considering the Fig.l10, Table I and Fig.4 it’s possible to
observe that numbers 1 and 2 are representing positive
movements of bicycle, so pitch is point upwards and the roll is
presenting an inclination to the right side, relative to the axis of
the earth. In case of numbers 3 and 4 is the opposite (pointing
down and inclination to the left). Looking to number 5 is
representing the yaw values, so values very close to zero means
that the bicycle is pointing to North.

Coordinator

{

@y

1 16:34:45
mq

@ roll @ Pitch O Yaw

Figure 10 — Angles IMU Coordinator

VII. CONCLUSIONS AND FUTURE WORK

This paper presents an exploratory approach of this sensors
network. Internet of Things applications are pushing the
development of new platforms that support high level of
connectivity between smart devices and also between people
and smart devices, and provide new services for the peoples
according with their goals. The results at an early stage they are
quite encouraging. As described above only local database is
running at the moment, so now the connection to the cloud is
being developed. For this connection we are using the Yun

98

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Shield [26] this shield is one of the most powerful shields for
Arduino boards and he’s designed to solve the internet
connectivity issue [27]. After this problem is solved, it’s time
to construct the database in the cloud and create the application
to analyze all information stored. Considering that the Android
operating system allows data storage, connectivity, web
browser, media support, development environment, we propose
to develop an application that will come in support to any biker
who is trying to achieve a better performance. With the help of
such application the bikers and coaches can monitor measured
values of force exerted on (brakes and pedals), tracking,
velocity, angles between bicycle and biker, etc. The application
offers the possibility of each training session to be accessed
over time, creating a historical of all already training sessions.
All this principles of Android operating system combined with
ToT, such as data storage, connectivity, media support will be
possible to create a sport application. The innovation on this
work is presented on the fact that information is collect through
a wireless sensor network. Making use of the phone/tablet just
to observe the data collected from each training session.

REFERENCES

[1] D. Mozer. “Chronology of the Growth
Development of Bicycle Technology”.
http://www.ibike.org/library/history-timeline.htm.
2016].

[2] R. Snches. “Conheca os tipos ¢ modelos de Bicicleta”. [Online].
Available: http://www .nucleobike.com.br/dicas/conheca-os-tipos-e-
modelos-de-bicicleta/. [Accessed: 8-May-2016].

[3] B. Puliti. “Types of Mountain Bike Frame Materials”. [Online].
Available:
http://mountainbike.about.com/od/technologyinnovations/a/Types-Of-
Mountain-Bike-Frame-Mate: .htm. [Accessed: 9-May-2016].

[4] A. Gabbai. (2015, Jan.). “Kevin Ashton describes ‘the Internet of

Things’: The innovator weighs in on what human life will be like a

of Bicycling and the
[Online]. Available:
[Accessed: 9-May-

century from now. Smithsonian Magazine, USA. [Online]. Available:

http://www.smithsonianmag.com/innovation/kevin-ashton-describesthe-
internet-of-things-180953749/Mo-istD

[5] A. Antonovici, I. Chiuchisan, O. Geman, and A. Tomegea, “Acquisition
and management of biomedical data using Internet of Things concepts,”
Fundam. Electr. Eng. (ISFEE), 2014 Int. Symp., pp. 1-4, 2014.1.
Chiuchisan, H. Costin, and O. Geman, “Adopting the Internet of Things
Technologies in Health Care Systems,” Int. Conf. Expo. Electr. Power
Eng., no. Epe 2014, pp. 532-535, 2014.

[6] [1] C. F. Pasluosta, H. Gassner, J. Winkler, J. Klucken, and B. M.
Eskofier, “An emerging era in the management of Parkinson’s disease:
Wearable technologies and the internet of things,” IEEE J. Biomed.
Heal. Informatics, vol. 19, no. 6, pp. 1873-1881, 2015.

[7] S.B.L.in U. of California “Instrumented Bicycle — Sports Biomechanics
Lab.” [Online]. Available: http://biosport.ucdavis.edu/research-
projects/bicycle/instrumented-bicyele. [Accessed: 5-Jan-2016].

[8] D. Lie, C.-K. Sung. “Synchronous brake analysis for a bicycle,” Mech.
Mach. Theory, vol. 45, no. 4, pp. 543-554, Apr. 2010.

[9] E. Kartsakli, A. Lalos, A. Antonopoulos, S. Tennina, M. Renzo, L.
Alonso, and C. Verikoukis, “A Survey on M2M Systems for mHealth: A
Wireless Communications Perspective,” Sensors, vol. 14, no. 10, pp.
1800918052, 2014.

[10] S. K. Tan, M. Sooriyabandara, and Z. Fan, “M2M Communications in
the Smart Grid: Applications, Standards, Enabling Technologies, and
Research Challenges,” Int. J. Digit. Multimed. Broadcast., vol. 2011, pp.
1-8,2011.

[11] D. Zeng, S. Guo, and Z. Cheng, “The Web of Things: A Survey (Invited
Paper),” J. Commun., vol. 6, no. 6, pp. 424-438, 2011.

[12]

[13]

[14]

[15]

[16]

[171

[18]

(191

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art
and research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7-18,
2010.

C. N. Hofer and G. Karagiannis, “Cloud computing services: Taxonomy
and comparison,” J. Internet Serv. Appl., vol. 2, no. 2, pp. 81-94, 2011.
J. Tavares, F. J. Velez, and J. M. Ferro, “Application of Wireless Sensor
Networks to Automobiles,” Meas. Sci. Rev., vol. 8, no. 3, pp. 65-70,
2008.

P. S. Pandian, D. Bioengineering, C. V. R. Nagar, K. P. Safeer, P.
Gupta, D. T. Shakunthala, B. S. Sundersheshu, and V. C. Padaki,
“Wireless Sensor Network for Wearable Physiological Monitoring,” J.
Networks, vol. 3, pp. 21-29, 2008.

C. F. Garcia-herndndez, P. H. Ibargiiengoytia-gonzdlez, J. Garcia-
hernandez, and J. a Pérez-diaz, “Wireless Sensor Networks and
Applications : a Survey,” J. Comput. Sci., vol. 7, no. 3, pp. 264-273,
2007.

Tekscan, “FlexiForce® Force Sensors | Single Button Force Sensing

Resistor | Tekscan.” [Online]. Available:
http://www.tekscan.com/flexible-force-sensors#third. [Accessed: 20-
Apr-2016]

C. Honglong, X. Liang, Q. Wei, Y. Guangmin, and Y. Weizheng, “An
integrated MEMS gyroscope array with higher accuracy output,”
Sensors, vol. 8, no. 4, pp. 2886-2899, 2008.

I. Prayudi and D. Kim, “Design and implementation of IMU-based
human arm motion capture system,” 2012 IEEE Int. Conf. Mechatronics
Autom. ICMA 2012, pp. 670-675,2012.

Pololu. “MinIMU-9 v3 Gyro, Accelerometer, and Compass (L3GD20H
and LSM303D Carrier),” [Online]. Available:
https://www.pololu.com/product/2468. [Accessed: 13-Feb-2016].

Arduino, “Arduino Fio,” 2016. [Online]. Available:
https://www.arduino.cc/en/Main/ArduinoBoardFio. [Accessed: 4-Jan-
2016].

Arduino, “Arduino Mega,” 2016. [Online]. Available:

https://www.arduino.cc/en/Main/arduinoBoardMega. [Accessed: 3-Jan-
2016].

SparkFun Electronics, “Xbee Buying Guide”, 2015. [Online]. Available:
https://www.sparkfun.com/pages/xbee_guide. [Accessed: 20-Dec-2015].

R. R. Lima and L. a. B. Torres, “Performance Evaluation of Attitude
Estimation Algorithms in the Design of an AHRS for Fixed Wing
UAVSs,” 2012 Brazifian Robot. Symp. Lat. Am. Robot. Symp., no. 2, pp.
255-260, 2012.

Zhao Lin, L. Xia, F. Liu, and Y. Cheng, “Application of UKF for
MEMS IMUs and Fluxgate Sensors Based Afttitude and Heading
Reference System of Carriers,” vol. 0, pp. 2278-2283, 2007.

Dragino, “Yun Shield,” 2016. [Online]. Available:
http://www.dragino.com/products/yundhield/item/8 6-yun-shield.html.
[Accessed:25-Apr-2016.

M. Schwartz, Internet of Things with the Arduino Yin. PACKT, 2014,

99

| Appendix B

Appendix B

User Manual

ISCTE € IUL

Instituto Universitario de Lisboa

Departamento de Ciéncias e Tecnologias de Informagao

User Manual

Performance Assessment for Mountain Bike based on
WSN and Cloud Technologies

Tiago Miguel Nunes Ribeiro

Advisor:
Doctor Octavian Postolache, Assistant Professor
ISCTE-IUL

Co-Advisor:
Doctor Pedro Passos, Assistant Professor
FMH

October 2016

100

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Figures

Eigure 1 - Logi:ACtivity (CoachiSeletted) oo nmnrssmsomsmmss s 1
Figure 2 - ListBikers Activityccccocoeiiiinies

Figure 3 - Create an Biker Activity
Figure 4 - Coordinator node.............................

Figure 5 - ListBikers Added one Biker.................ccooooiiiiiiiiicieeeeeee e
Figuié 6~ Traifiiig T1st SESBIONS o summmmnuin i i s s s v
Figure 7 - Report from Training pressed (Coach point of View)
Figure 8 - Navigation Drawer (Coach point of View)
Figure 9 - Login Activity (biker selected)
Figure 10 - Training List Sessions
Figure 11 - Report from Training pressed (Biker point of VIiew)..........cccoooooiiiiiiicinn, 7
Figure 12 - Navigation Drawer (Biker point of View)
Figure 13 - End Node (switch ON/OFF)

Figure 14 - Coordinator (Switch ON/OFF)ccccoooiiiiiiiiiieeee e

Contents

1. Coach INSTIUCHIONS ..ot 1
2. BIKEr INSTIUCHONS ...t 6
2.1. Perform a training Session

101

| Appendix B

User Manual

User Manual

There are two kinds of users in this application bikers and coaches. The application has the

possibility to handle with both with minor differences.

1. Coach Instructions

Looking to the user “coach”, firstly every coach need to ask for registration to have access to

the application. At the first time in the application the coach will encounter the follow mockups.

Mountain Bike App

Password

Coach v
No Account yet? Press to create one!

Figure 1 - Login Activity (Coach selected)
Here the coach need to insert the credentials which was provided by the admin of the database.
After that the application will verify if the user is registered in case of success the coach will
login in the application fig.2. In the case of failure will present a message and the window will

not change.

Mountain Bike App LoGouT

ADD BIKER

Figure 2 - ListBikers Activity
At first interaction with the application, the coach doesn’t have any biker register so he can’t
see any workout performed, so the first thing to do is register one biker. To do that the coach

must press the button “ADD BIKER” fig.3.

102

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

User Manual

Mountain Bike App LoGouT

Email

Password

Weight

Height

CREATE AN BIKER

Already Created? Go Here.

Figure 3 - Create an Biker Activity

Only coaches can register bikers, one biker can’t register in the database by himself. This is the
required fields to register one biker. In the field Biker Id the coach must insert a ID register in

the SD card on the coordinator, at the moment the coordinator support twelve bikers.

Let’s see a practical example, one coach wants to register one biker, first he need to know the
tag Id like we can see in table 1. So the coach has the tag Id, he goes to the SD Card and write
the tag Id on the text file “authids.txt”. The coach can find the SD card in the coordinator like
is presented in fig.4. In the file the coach only need to write the tag Id number but must

remember that the Id is very important, because is the Id that he will use to register one biker.

103

| Appendix B

O oONOOUVLBEWNRO

=
= O

User Manual

Id Tagld
27654
1821
5467
28698
17665
07833
21347
8765
0765
16332
7643

09432
Table 1 - Ids and Tags Id

Access to the
SD Card

Figure 4 - Coordinator node

So the coach goes to SD Card and insert in file “authids.txt” the tag from the card he wants to

register. The tag number is “16332”, after is insertion he can see that the number is in the

position nine so the number to insert in the application is the number nine.

After all data is inserted the coach press the button “CREATE AN BIKER”, and biker will be

created, then he need to press the link “Already Created? Go Here”.

104

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

User Manual

Mountain Bike App LOGOUT

ADD BIKER

testimail

Figure 5 - ListBikers Added one Biker

Pressing the link, sends the coach to this mockup, here is presented the list of the bikers already
registered. Selecting the biker in this case “testlmail” will send the coach to another activity.

Well we will assume that the biker register by the coach, already have access to the mountain

bike and perform his trainings.

Mountain Bike App

Ride Start End Distance
1 11:33:54 19/4/2016 11:34:37 19/4/2016 0.12Km
2 16:33:06 19/4/2016 16:34:37 19/4/2016 0.29 Km

Figure 6 - Training List Sessions
In this activity is shown another list, but now is presented the number of trainings already made
for the registered biker. Choosing one training will send the coach to another mockup where is

presented a simple report of the training aspects.

= Mountain Bike App LOGOUT

Duration

0:1:31 HH:mm:ss

Max. Altitude
1123 m
Min. Altitude

883 m

Distance

0.29 Km

Calories
14.8 keal
Max. Velocity

13.76 km/h

Average Speed

10.79 km/h

Figure 7 - Report from Training pressed (Coach point of View)

105

| Appendix B

User Manual

To consult another aspects of the training session the coach need to press the icon in the upper
left corner. Pressing the icon will present a Navigation Drawer with all fragments possible to
analyze all aspects of training. In the graphs is possible to get every point value, the coach only

need to press with is finger.

La' Force Sensor Gloves
L! Force Sensor Shoes

™ GPSTracking

M velocity
M Attitude
B angle

M Angles Bike

IM Angles Biker

™ IMU Bicyle and Biker Comparation

Communicate

> Export

Figure 8 - Navigation Drawer (Coach point of View)
All this features are the same if you enter as coach or a biker, the main difference in a coach

and a biker is that a coach can register another bikers and can see all training sessions of all

different biker’s register associated to him and the biker only can see is own trainings.

106

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

User Manual

2. Biker Instructions

In the case of the biker the things are a little simpler, this is, the biker only has access is own
trainings. The biker need to ask the credentials to the coach. The credentials are the same that

the coach define when register the biker.

Mountain Bike App

testmail

SIGN IN

INU ACCUUIIL yELT FIESS (U Lleale Une

Figure 9 - Login Activity (biker selected)

To enter as a biker, the user need to choose the option biker. Like is shown in fig.9. After that

the user enter is credentials and if is register in the database the next mockup will be the training
list.

Mountain Bike App

Ride Start End Distance
1 11:33:54 19/4/2016 11:34:37 19/4/2016 0.12 Km
2 16:33:06 19/4/2016 16:34:37 19/4/2016 0.29 Km

Figure 10 - Training List Sessions
This is the activity shown to the biker the training list sessions that the biker already performed.
Choosing one training will send the biker to another mockup where is presented a simple report

of the training aspects. If a user enters as a biker, he only sees is own training sessions.

107

| Appendix B

= Mountain Bike App LoGouUT

Duration

0:1:31 HH:mm:ss

Max. Altitude
1123 m
Min. Altitude

88.3m

Distance

0.29 Km

Calories

14.8 kcal

Max. Velocity

13.76 km/h

Average Speed
10.79 km/h

Figure 11 - Report from Training pressed (Biker point of View)

User Manual

To consult another aspects of the training session the biker need to press the icon in the upper

left corner. Pressing the icon will present a Navigation Drawer with all fragments possible to

analyze all aspects of training. In the graphs is possible to get every point value, the biker only

need to press with is finger.

™=
=
=
=
-
=
-
=
-

Communicate

>

Force Sensor Gloves
Force Sensor Shoes
GPS Tracking
Velocity

Altitude

Angle

Angles Bike

Angles Biker

IMU Bicyle and Biker Comparation

Export

Figure 12 - Navigation Drawer (Biker point of View)

All this features that we see in the Navigation Drawer are the same if the user is a biker or a

coach, can analyze the workout the same way, and export the training session to SD card.

108

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

User Manual

2.1. Perform a training Session

To perform a training session, the only things that a biker need to do is turning ON the
microcontrollers and put the gloves and insoles in the shoes. There are six microcontrollers so

the biker need to connect all six microcontrollers.

Figure 13 - End Node (switch ON/OFF)

It is advisable to connect the coordinator for last. When all equipment is connected the user
pass the tag or card in the coordinator and wait to led gets ON, after that the biker can perform

is training.

Figure 14 - Coordinator (Switch ON/OFF)

It’s very important that when the biker end is training session make the same thing, this is the

biker the to turn off all equipment. This is all the necessary procedures to a system works well.

109

| Appendix C

Appendix C

Technical Manual

ISCTE £ UL

Instituto Universitario de Lisboa

Departamento de Ciéncias e Tecnologias de Informagao

Technical Manual

Performance Assessment for Mountain Bike based on
WSN and Cloud Technologies

Tiago Miguel Nunes Ribeiro

Advisor:
Doctor Octavian Postolache, Assistant Professor
ISCTE-IUL

Co-Advisor:
Doctor Pedro Passos, Assistant Professor
FMH

October 2016

110

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Figures

Figure 1 - Direct Cosine Matrix Algorithm Overview............. wveveees . 7
Figure: 2= Definition IMU aXis .csvmasasimssriamiisssimssismiiisiissvissievsesnisissesssissasoiins 8
T e B S0 0T daf [=1 o] e AT =T 1L, U 13
Figure 4 - Sensor RFID-RC522 & Tag and Cardcoceeeerieerieniierieeiiesieeiee e esesse e ae e 14
FIBUre 5:= YUN SHIBI .. s vevnessrssssessnsssnssansessasansossssnnssnsensssonsransanarsssssosastosnssnsersssonsssntsansssasssassans 14
Figure 6 - Arduino Mega (configuration to support Yun Shield)ccccoeevevinininienieenenennn 15
Figure 7 - Arduino IDE (discovering IP yun shield).......ccccooiiriiiiienieiiinieniiesesies e 16
Figure 8 - Web Interface Yun shield (LOZIN Ar€a)........ccceevieiieiiieieeniieseciie e cseeie e 17
Figure 9 - Web Interface Yun shield (After Login with success) ... w7
Figure 10 - Web Interface Yun Shield (System)..... .18

Figure 11 - Web Interface Yun Shield (Sensors)
Figure 12 - Adafruit Ultimate GPS Logger Shield...

Figure 13 - GPS Module..........ccoceeverrrnnernennennnen. .20
Figure 14 - Sparkfun XBee EXPlOrer USBcccceeiirieiienieiciiie e sies e sssesssessnesnesnesns 21
Figure 15 - Libraries used in the Arduino programmingcccccueereeiiieiniee e 21
Figure 16 - LAMP Web Server OVEIVIEWcocceeeiiieiiininiesiie st ssnes e ssnesnesnenns 34
Figure:17 - Database mountainBikeDB:. -:aumsumussisssnmmisinsissssiasimsviisisnimisi 36
Figure 18 - Sequence Diagram (Coach interaction)........ccecuevveerierieeniiesesiiesesiese e 39
Figure 19 - Diagram Sequence (Biker interaction)c.cooeeerueeeresinieneeseesreniesiese s e seeseeneas 40
Figure 20 - Login in Mountain Bike Appccccveeueeen. ...40
Figure 21 - Navigation Drawer (Show Fragments)41
Figure 22 ~Report Fragment s esavess 44

Tables

Table 1 - XBee configuration (Coordinator Bicycle Frame)cocceevviviiniiirieniinie e 1
Table 2 - XBee configuration (End node - Left Glove)

Table 3 - XBee configuration (End node - Right Glove) ...

Table 4 - XBee Configuration (End node - Chest Trap)c..coeeererierieienieniesese e sne e
Table 5 - XBee Configuration (End node - Right FOOT)........cvuiiiriiriiniiiiieniesesesecee e 2
Table 6 - XBee configuration (End node - Left FOOT)uuviiriieriiiiiiiiiniineesiese e 3
Table 7 - XBee configuration (End node - Bicycle Frame)ccocevverireirienenesiesesceese e 3

111

| Appendix C

Contents
Lo CONTUNICAION G covusenosivassinessaniosinnonsmssissssseov s ssmss sveisneeinn soes s heserTses RIS SRS TH S SVATIIAR i |
2. ENd NOAES PrOgramMING ...ccceeeuierueeriieieiirieieseeste st sise e e sasesiessbae e s sae s e st essne s s ensaesanen 3
2.1, Arduino FiO FOICE SENSOISccciiieiiiirieerit ettt et sie s e e e s e e s saneens 3
2.2, Arduino FiO IIMU SENSOT ..ceccvieeiieeireesiteesieeeseeeseeessaessaeesseesse e s aaessseensnensnneanns 5
2.2.1; Main eode cuasmmrmmmnans e 5
2:2:1; Correct and definé directions ...c.cmammsnmammnmnnas s s 7
2i2:1. Reading accelerometer, magnetometer and gyroscopeccccevvevuvenveennnns 8
2:2.2. Fanction NOrmalize () wawnsiasswsmanimsimsnsmmessssismisisisises 9
2:2.3. FUNCEION DA COPECHION s ismsawmssmsisomsmssmsissiimssismsvoisni s seinss 11
2.2.4. Euler angles Calculation........coveieeeieieiciee e e 12
N @0 To T (o [=1 o (S PO TP PSPPSR 13
31 Constitution Coordinator . wavnmmasamunanam e i niannaisemms 13
311 T I, 13
312 Yutishield oo s s e s B R B s 14
3.1.2.1. Conhectto Arduind'Mega 2560 :..uswssinvimisnismsiimissnisiivas 15
3.1.2.2. W B DD AR ACEESS i vusvsunsvsssvinivsvsisnsinssvsssusssbosaiosvasonssalssssnsausss vassusvadsi buesasisin 16
3.1.3. GPSISRICIH) cssvonmssssmsmasammmmmmmmenisissesis o raes T S H RTINS 19
3.1.4. XBEE SNIBIA ...ttt et 20
3.2, Coordinator Programming........ccceeveeirieerieeriieeeneeesieesieeeeeesaseesseesssessssessseens 21
4. Cloud SerVeF aumsiimaniininmmarrmrnsmrRssRsRsarams 33
41, Setupofthe LAMP Servel “Cloud” sussimsissinimiionssisssisvaisonssimeissadeniims 34
4.1.1. A] R LT L T——. 34
4:4.2. MYSGlsssamammimmminsninsmimmmisarimi s 35
4.1.3. PHIP cesssussansonsusussmssmonsessmssssimansnssssosss ssasvessvensss o e svmsssnssmsvavs s asveas s e asaaning 35
5. Android application Mountain Bik€ AP «...eccuueerieeriiieriiieseieesiiesiieesiiesssee e sraeeenns 38
5.1, SequenCe DiaBrami.....cccuuii ittt e 39
5.1.1. Coach:SeqUENCE DIABTAM somisscsiisnsissnsisonssisssntassainssssssninsssmssesusmnsnnssginssiaas 39
5.1.2. Biker:Sequence Diagram i 40
5.2: Main Features i ssninissnssiossioniisomimsississisessiimsimisiaiiiasissiiismaanmis 45
h

112

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

1. Communication

All the communication between the End nodes and the coordinator is made by XBee using the
protocol ZigBee based on IEEE 802.15.4.

The XBee modules can be configured in two ways: Transparent Mode (AT) and API Mode
(Application Programming Interface). The mode AT are limited to point-to-point
communication between two XBees. In API mode, we can trivially send and receive from both
the coordinator and many XBees out in the WSN. Additionally, API mode will expose a variety
of additional information encoded in each packet. In this work the communication is point to
point but we use the mode API, this mode is a frame-based method for sending and receiving
data to and from a radio’s serial UART. This mode composes a packet and permit that the

information doesn’t suffer interference.
Below there are the settings made in the all XBee nodes through the XCTU software:

COORDINATOR

CHANNEL [CH] | C

PAN ID [ID] 3333
DESTINATION ADDRESS HIGH [DH] 0
DESTINATION ADDRESS LOW [DL] 4321

16-BIT SOURCE ADDRESS [MY] 11234

SERIAL NUMBER HIGH [SH] 13A200
SERIAL NUMBER LOW [SL] | 40A48802
COORDINATOR ENABLE [CE] | Coordinator [1]
INTERFACE DATA RATE [BD] 1 19200 [4]

API ENABLE [AP] | APl enabled [1]

Table 1 - XBee configuration (Coordinator Bicycle Frame)

ARDUINO FIO LEFT GLOVE B

CHANNEL [CH] | c

PAN ID [ID] 3333

DESTINATION ADDRESS HIGH [DH] ‘ 0

DESTINATION ADDRESS LOW [DL] 1234

16-BIT SOURCE ADDRESS [MY] 3214

SERIAL NUMBER HIGH [SH] 13A200

SERIAL NUMBER LOW [SL] ‘ 40A487A2
COORDINATOR ENABLE [CE] End Device [0]
INTERFACE DATA RATE [BD] 1 19200 [4]

API ENABLE [AP] API enabled w/PPP [2]

Table 2 - XBee configuration (End node - Left Glove)

October 2016

113

| Appendix C

ARDUINO FIO RIGHT GLOVE A
CHANNEL [CH]

PAN ID [ID]

DESTINATION ADDRESS HIGH [DH]
DESTINATION ADDRESS LOW [DL]
16-BIT SOURCE ADDRESS [MY]
SERIAL NUMBER HIGH [SH]
SERIAL NUMBER LOW [SL]
COORDINATOR ENABLE [CE]
INTERFACE DATA RATE [BD]

API ENABLE [AP]

L€

3333

0

1234

4321

13A200

40A47CB9

End Device [0]

19200 [4]

API enabled w/PPP [2]

Table 3 - XBee configuration (End node - Right Glove)

ARDUINO FIO ACC GYRO BIKER
CHANNEL [CH]

PAN ID [ID]

DESTINATION ADDRESS HIGH [DH]
DESTINATION ADDRESS LOW [DL]
16-BIT SOURCE ADDRESS [MY]
SERIAL NUMBER HIGH [SH]
SERIAL NUMBER LOW [SL]
COORDINATOR ENABLE [CE]
INTERFACE DATA RATE [BD]

API ENABLE [AP]

G

3333

0

1234

2341

13A200
40A47C3F
End Device [0]

1 19200 [4]

API enabled w/PPP [2]

Table 4 - XBee Configuration (End node - Chest Trap)

ARDUINO FIO RIGHT FOOT A
CHANNEL [CH]

PAN ID [ID]

DESTINATION ADDRESS HIGH [DH]
DESTINATION ADDRESS LOW [DL]
16-BIT SOURCE ADDRESS [MY]
SERIAL NUMBER HIGH [SH]
SERIAL NUMBER LOW [SL]
COORDINATOR ENABLE [CE]
INTERFACE DATA RATE [BD]

API ENABLE [AP]

| C

3333

|0

1234

3421

13A200

40A47621

End Device [0]

19200 [4]

APl enabled w/PPP [2]

Table 5 - XBee Configuration (End node - Right Foot)

Technical Manual

October 2016

114

ARDUINO FIO LEFT FOOT B

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

CHANNEL [CH] C

PAN ID [ID] 13333
DESTINATION ADDRESS HIGH [DH] 0
DESTINATION ADDRESS LOW [DL] 1234

16-BIT SOURCE ADDRESS [MY] | 2314

SERIAL NUMBER HIGH [SH] 13A200
SERIAL NUMBER LOW [SL] 40A47C28
COORDINATOR ENABLE [CE] End Device [0]
INTERFACE DATA RATE [BD] 19200 [4]

API ENABLE [AP]

AP| enabled w/PPP [2]

Table 6 - XBee configuration (End node - Left Foot)

ARDUINO FIO ACC GYRO BICYCLE

CHANNEL [CH] C

PAN ID [ID] 3333
DESTINATION ADDRESS HIGH [DH] 0
DESTINATION ADDRESS LOW [DL] 1234
16-BIT SOURCE ADDRESS [MY] | 2431
SERIAL NUMBER HIGH [SH] 13A200
SERIAL NUMBER LOW [SL] 40F9DE39

COORDINATOR ENABLE [CE]
INTERFACE DATA RATE [BD]
API ENABLE [AP]

End Device [0]

119200 [4]

APl enabled w/PPP [2]

Table 7 - XBee configuration (End node - Bicycle Frame)
2. End nodes Programming

2.1. Arduino Fio Force Sensors

In this work four of the microcontrollers are using the force sensors A201 from the FlexiForce.
The values retrieved from the sensors are converted ADC values to percentage. So the XBee

have to send percentage values for the coordinator.
#include <XBee.h> //use the library XBee.h

XBee xbee = XBee();
unsigned long start = millis();

uint8_t payload[] = { 0, 0. 0};

// 64-bit addressing: This is the SH + SL address of remote XBee
XBeeAddress64 addr64 = XBeeAddress64(0x0013a200, 0x40a48802),
Tx64Request tx = Tx64Request(addr64, payload, sizeof(payload)):
TxStatusResponse txStatus = TxStatusResponse():

void setup() {

Serial.begin(19200);
xbee. setSerial(Serial);

1

5

October 2016

115

| Appendix C

Technical Manual

void loop() {

if (millis() - start > 15000) {
//read analog input
analogValue0 = analogRead(0);
analogValuel = analogRead(1):
//0-5V --->min=0 max=1023
//0-3.3 ---> min=0 max= 676
/fremap values
/Mfloat voltagePin0 = analogValue0 * (3.3 / 676);
/ffloat voltagePinl = analogValuel * (3.3 / 676):
val0 = map(analogValue0, 0. 676, 0, 100);
vall = map(analogValuel. 0, 676, 0. 100);

//Send a char

char flagl ='a". //send a flag to identify the sensor
payload[0]=flagl; //alocate the flag value

/I value sensorl

payload[1] = valO; //alocate first value

// value sensor2

payload[2] = vall; //alocate second value

xbee.send(tx). //send the bytes to the coordinator
}
// after sending a tx request. we expect a status response
// wait up to 100 milliseconds for the status response
if (xbee.readPacket(100)) {
/I got a response!
// should be a znet tx status
if (xbee.getResponse().getApild() == TX_STATUS_RESPONSE) {
xbee. getResponse(). get TxStatusResponse(txStatus):
// get the delivery status, the fifth byte
if (txStatus.getStatus() == SUCCESS) {
// success. time to celebrate
} else {
// the remote XBee did not receive our packet. is it powered on?

¥
} else if (xbee.getResponse().1sError()) {
} else {
¥
delay(100);
The code above exemplifies the programming needed to collect the data from the force sensors

and to send the data to the coordinator, this code is for the gloves. Well for the shoes the code

has some changes like:
uint8_t payload[] = { 0, 0. 0, 0};

//read analog input
analogValue0 = analogRead(0):
analogValuel = analogRead(1);
analogValue2 = analogRead(2):
//0-5V --->min=0 max=1023
//0-3.3 ---> min=0 max= 676
/fremap values

October 2016

116

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

/Mloat voltagePin0 = analogValue0 * (3.3 / 676).
/Mfloat voltagePinl = analogValuel * (3.3 / 676),
/Mfloat voltagePin2 = analogValue2 * (3.3 / 676);
valO = map(analog Value0, 0, 676, 0. 100)://map the value to transform in percentage
vall = map(analogValuel. 0, 676, 0. 100);

val2 = map(analogValue2, 0. 676, 0, 100);
//Send a char

char flagl ='d";

payload[0] = flagl;

//send value sensorl

payload[1] = valO; //alocate first value

//send value sensor2

payload[2] = vall; //alocate second value

//send value sensor3

payload|3] = val2; //alocate third value

These are the main changes to use the three force sensors in the shoes, but programming the
XBee does not change. The baud rate used in this work is 19200. The baud rate specifies how
fast data is sent over a serial line. It’s usually expressed in units of bits-per-second (bps). If we
invert the baud rate, we can find out how just long it takes to transmit a single bit. This value
determines how long the transmitter holds a serial line high/low or at what period the receiving
device sample its line. Baud rates can be just about any value, the only requirement is that both
devices operate at the same rate. The more common baud rates are 9600, 19200,38400, 57600
and 115200.

2.2. Arduino Fio IMU Sensor

In the case of the IMU sensor the history is little more difficult to explain and understand. This
is a Direction Cosine Matrix (DCM) based Attitude Heading Reference System (AHRS) with
gyro drift correction based on accelerometer (gravity) vector and magnetometer (compass)

vector.

2.2.1. Main code

The main code is presented above, where is possible to see the initiation of the I°C, then the
gyro and accelerometer are reading, some values are accumulated to create a reference. After
that the values are taken and some calculations are made. The main loop runs at SOHz and the
compass data are read at 10Hz. At the main code some important functions are called as will

be mentioned below:

void setup()

Serial.begin(19200);
pinMode (STATUS_LED.OUTPUT); // Status LED

October 2016

117

| Appendix C

Technical Manual

12C_Inmit():
Serial.printIn("Pololu MinIMU-9 + Arduino AHRS");

digitalWrite(STATUS_LED.LOW);
delay(1500);

Accel_Init():
Compass_Init():
Gyro_Init():
delay(20):

for(int i=0:1<32:1++) // We take some readings...

{

Read_Gyro():

Read_Accel();

for(int y=0: y<6: y++) // Cumulate values
AN_OFFSET[y] += AN[y]:

delay(20);

¥

for(int y=0; y<6: y++)
AN_OFFSET[y] = AN_OFFSET[y]/32;

AN_OFFSET[5]-=GRAVITY*SENSOR_SIGN[5];

//Serial.println(" Offset:").
for(int y=0; y<6; y++)
Serial.println(AN_OFFSET[y]):

delay(2000);
digitalWrite(STATUS_LED.HIGH):

timer=millis();
delay(20);
counter=0;

b

void loop() /Main Loop

1)

1

unsigned long currentMillis=millis();

if((millis()-timer)>=20) // Main loop runs at 50Hz
{
counter++:
timer_old = timer:
timer=millis();
if (timer>timer_old)
G_Dt = (imer-timer_old)/1000.0: // Real time of loop run. We use this on the DCM algorithm (gyro
integration time)
else
G Dt=0;

/[*¥** DCM algorithm

// Data adquisition

Read_Gyro(); // This read gyro data

Read Accel(); //Read I2C accelerometer

if (counter > 5) // Read compass data at 10Hz... (5 loop runs)

October 2016 H

118

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

i3
1

counter=0;
Read_Compass(): // Read I12C magnetometer
Compass_Heading(): / Calculate magnetic heading

3

// Calculations...
Matrix_update();
Normalize():
Drift_correction();
Euler_angles():

// Fokok

if((currentMillis-previousMillis)>=interval) {
previousMillis=currentMillis:
printdata();
}
1

s
1
s

Technical Manual

For a visual and a better comprehension is shown the visual representation of the DCM

Algorithm:
X.Y.Z > Yooy
R Matrix
Sensors
Magnetometer » G i Heading
X.Y.z XYL
Gyroscope) G P
X.Y.Z XY,z

R Matrix
Drift Detection
Yaw
Roll-Pitch Error Heading Error

Adjustment

Pl Controller

Normalization and
Kinematics

Figure 1 - Direct Cosine Matrix Algorithm Overview

2.2.1. Correct and define directions

Drift Adjustment
Euler Angles <
(roll, pitch, and yaw) w R Matrix W

int SENSOR_SIGN[9] ={1,1,-1,-1,-1,-1,1,1,-1}; //Correct directions x,y,z - gyro, accelerometer, magnetometer

This little peace of code, defines/correct the positon of the axis. Looking to the IMU board the

axis will be defined as follows:

October 2016

119

| Appendix C

Technical Manual

Figure 2 - Definition IMU axis

The board must be mounted in this way to respect the orientation of the axis.

2.2.1. Reading accelerometer, magnetometer and gyroscope

The L3GD20H’s gyro and the LSM303D’s accelerometer and magnetometer libraries can be
queried and configured through the I°C bus. Using the library LSM303D was performed a
calibration using the sketch “calibration.ino”, this calibration means applying the correct gain
multipliers to the magnetometer signals before applying the update algorithm. Each of the three
sensors acts as a slave device on the same I°C bus, their clock and data lines are tied together
to ease communication with microcontrollers operating at the same voltage as VIN. The
L3GD20H and LSM303D each have separate slave addresses on the I°C bus. The following
code is used to read values from gyro, accelerometer and magnetometer and the configurable

options to select the sensitivities for the gyro, accelerometer and magnetometer.

#include <L3G.h>
#include <L.SM303 h>

L3G gyro;
LSM303 compass:

void 12C_Init(){
Wire.begin();

1

Iy

void Gyro_Init(){
gyro.init();
gyro.enableDefault():
gyro.writeReg(L3G::CTRL_REG4, 0x20): // 2000 dps full scale
gyro.writeReg(LL3G::CTRL_REG]. 0x0F): // normal power mode, all axes enabled, 100 Hz

1
)

void Read_Gyro(){
gyro.read();

October 2016 n

120

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

ANJ[0] = gyro.g.y; //roll

AN[1] = gyro.g.x; //pitch

ANJ[2] = gyro.g.z: /lyaw

gyro_x = SENSOR_SIGNJ[0] * (AN[0] - AN_OFFSET[0]):
gyro_y = SENSOR_SIGN[1] * (AN[1] - AN_OFFSETJ[1]);
gyro_z = SENSOR_SIGN[2] * (AN[2] - AN_OFFSET|2]);

void Accel_Init(){
compass.init();
compass.enableDefault():
switch (compass.getDeviceType())
f

1
case LSM303::device_D:
compass.writeReg(LSM303::CTRL2. 0x18); / 8 g full scale: AFS =011
break;
case LSM303::device DLHC:
compass.writeReg(LSM303::CTRL_REG4_A, 0x28): // 8 g full scale: F'S = 10; high resolution output mode
break:;
default: // DLM, DLH
compass.writeReg(LSM303::CTRL_REG4_A, 0x30): // 8 g full scale: FS =11
h

1

)
// Reads x.y and z accelerometer registers
void Read_Accel(){

compass.readAcc():

ANJ[3] = compass.a.y >> 4. // shift left 4 bits to use 12-bit representation (1 g =256) //roll
AN[4] = compass.a.x >> 4. //pitch
AN[5] = compass.a.z >> 4: /lyaw
accel_x = SENSOR_SIGN/[3] * (AN[3] - AN_OFFSET|3]):
accel y = SENSOR_SIGN[4] * (AN[4] - AN_OFFSET[4]):
accel_z = SENSOR_SIGN[5] * (AN[5] - AN_OFFSET[5]);
b
void Compass_Init(){

// doesn't need to do anything because Accel_Init() should have already called compass.enableDefault()
ik
5

void Read_Compass(){
compass.readMag():

magnetom_x = SENSOR_SIGN[6] * compass.m.y; //roll
magnetom_y = SENSOR_SIGN[7] * compass.m.x; //pitch

magnetom_z = SENSOR_SIGN([8] * compass.m.z; //lyaw
1
)

2.2.2. Function Normalize()

Then the matrix is updated, this is the matrix is populated at each iteration. The next process at
each iteration is the implementation of the DCM algorithm through the function Normalize(),

in this function the vector dot and cross products are used.

void Normalize(void)

!
T

float error=0;

October 2016 n

121

| Appendix C

Technical Manual

float temporary[3](3];
float renorm=0;

error= -Vector_Dot_Product(&DCM_Matrix[0][0].&DCM_Matrix[1][0])*.5; //eq. 2

Vector_Scale(&temporary[0][0], &DCM_Matrix[1][0], error); //eq. 2
Vector_Scale(&temporary[1][0], &DCM_Matrix[0][0]. error): //eq. 2

Vector Add(&temporary[0][0], &temporary[0][0], &DCM_Matrix[0][0])://eq. 2
Vector_Add(&temporary[1][0], &temporary[1][0]. &DCM_Matrix[1][0])://eq. 2

Vector_Cross_Product(&temporary [2][0].&temporary [0][0].&temporary[1][0]); //c=ax b //eq. 3

renorm= .5 *(3 - Vector_Dot_Product(&temporary[0][0].&temporary[0][0])); //eq. 4
Vector_Scale(&DCM_Matrix[0][0], &temporary[0][0]. renorm);

renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0].&temporary[1][0])): //eq. 4
Vector_Scale(&DCM_Matrix[1][0], &temporary|[1][0]. renorm);

renorm= .5 *(3 - Vector_Dot_Product(&temporary[2][0].&temporary[2][0])); //eq. 4

Vector_Scale(&DCM_Matrix[2][0]. &temporary[2][0], renorm);
)

First compute the dot product of X and Y rows of the matrix, which is supposed to be zero, so

the result is a measure of how much the X and Y rows are rotating toward each other.
Txx T'yx
rxy Y= r}'y
Txz ryl

Tyx
error =X.Y = XY = [rxx Txy rxz] Tyy
"z

X

(1)

We apportion half of the error each to the X and Y rows, and approximately rotate the X and Y

rows in the opposite direction by cross coupling.

rXX

error
X =|Ty|= Xorthogonal =X- Y
Txz
(2)
7
ry % error
Y=|Ny|= Yorthogonal = 1=
r 2
yz

Orthogonal error is greatly reduced by substituting equation (2) into (1), keeping in mind that
the magnitude of each row and column of the R matrix is approximately equal to one. The next
step is to adjust the Z row of the matrix to be orthogonal to X and Y row. The way to do that is

to simply set the Z row to be the cross product of the X and Y rows.

October 2016

122

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

Txx
rx}’ Zorthogonal = Xorthogonal X yorthogonal (3)

rXZ

The last step in the renormalization process is to scale the rows of the R matrix to assure that

each has a magnitude equal to one. The resulting magnitude adjustment equations for the row

vectors are:
Xnormalized = E (3 - Xorthagonal'Xorthogonal)Xorthogonal

1
Ynormalized = E (3 == yorthogonal~ Yorthogonul)yorthogonal

1
Znormalized a E (3 - Zorthogonal-Zorthogonal)zorthogonal

(4)
These equations state that to adjust the magnitude of each row vector to one, is necessary to
subtract the dot product of the vector with itself (the square of the magnitude), subtract from

three, multiply by %2, and multiply each element of the vector by the result.

2.2.3. Function Drift Correction

Although the gyros perform rather well, with an uncorrected offset on the order of a few degrees
per second, eventually we have to do something about their drift. What is done is to use other
orientation references in this case is used a correction based on compass magnetic heading.

Then the drift correction is applied:

void Drift_correction(void)

I3
v

float mag_heading_x:

float mag_heading_y:

float errorCourse;

//Compensation the Roll. Pitch and Yaw drift.
static float Scaled_Omega_P[3]:

static float Scaled_Omega_I[3];

float Accel_magnitude:

float Accel_weight;

/%% %R o] and Pitch ko koo ok

// Calculate the magnitude of the accelerometer vector

Accel_magnitude = sqrt(Accel_Vector[0]*Accel_Vector[0] + Accel_Vector[1]*Accel_Vector[1] +
Accel_Vector[2]*Accel_Vector[2]);

Accel_magnitude = Accel_magnitude / GRAVITY: // Scale to gravity.

// Dynamic weighting of accelerometer info (reliability filter)

October 2016

123

| Appendix C

Technical Manual

/] Weight for accelerometer info (<0.5G =0.0, 1G=1.0,>1.5G =0.0)

Accel_weight = constrain(1 - 2*abs(1 - Accel_magnitude).0.1); //

Vector_Cross_Product(&errorRollPitch[0].&Accel Vector[0].&DCM_Matrix[2][0]): //adjust the ground of
reference

Vector_Scale(&Omega P[0].&errorRollPitch[0].Kp ROLLPITCH*Accel weight);

Vector_Scale(&Scaled_Omega_I[0].&errorRollPitch[0].Ki_ ROLLPITCH*Accel_weight):

Vector_Add(Omega_I.Omega_I,Scaled_Omega_I);

J R Ry A WA R ok ook o ok
/I We make the gyro YAW drift correction based on compass magnetic heading

mag_heading_x = cos(MAG_Heading);
mag_heading_y = sin(MAG_Heading):
errorCourse=(DCM_Matrix[0][0]*mag_heading_y) - (DCM_Matrix[1][0]*mag_heading_x); //Calculating

YAW error
Vector_Scale(errorYaw.&DCM_Matrix[2][0].errorCourse): //Applys the yaw correction to the XYZ rotation of

the bicycle, depeding the position.
Vector_Scale(&Scaled_Omega_P[0].&errorYaw[0].Kp_YAW)://.0lproportional of YAW.
Vector_Add(Omega_P.Omega_P.Scaled_Omega_P)://Adding Proportional.

Vector_Scale(&Scaled_Omega_I[0].&errorYaw[0].Ki_YAW)://.00001Integrator
Vector_Add(Omega_I.Omega_I.Scaled Omega_I)://adding integrator to the Omega I

¥
2.2.4. Euler angles Calculation

The next process is the calculation of the pitch roll and yaw through the following equations:

void Euler_angles(void){
pitch = -asin(DCM_Matrix[2][0]):
roll = atan2(DCM_Matrix[2][1].DCM_Matrix[2][2]):
yaw = atan2(DCM_Matrix[1][0],DCM_Matrix[0][0]);
}

x Txy Txz
R =|Tx Ty Tyz|=rotation matrix (5)
Tax Tzy Toz

cos@sing sinysinfsing + cosypcos¢p cosysinfsing — sinpcosgp (6)
—sin6 sinycosb cosycost

[cosecos¢ simpsinfcosp — cosypsing cosysinbcosp + sinpsing
R =
Pitch = ¢ = —asin(r,,)
Roll - 6 = atan2(r,y,1,,) (7)

Yaw — ¢ = atan2(ryy, yx)

The last but not least is the sending to the coordinator of the angles through XBee, this delivery

is performed at an interval of 1000 milliseconds.

October 2016

124

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

3. Coordinator

In the coordinator there are an immense of process’s that can be explained. On the coordinator
is received all data form end nodes, the information is processed and send through a Wi-Fi
connection to the database. The connection to the database and the data sent is through a php
module. In the coordinator is located the local database for security.

3.1. Constitution Coordinator

To get an idea of the constitution of the coordinator is presented a schematic circuit:

A
XBee |

e UART2|

RX_2 ‘

™2

SD Card

GPs sPI
UART_1
icsp
UART_0

Figure 3 - Coordinator Overview
3.1.1. RFID

Radio frequency identification uses a passive device (called an RFID tag) to communicate data
using radio frequency through electromagnetic induction. In the project it is used the sensor
MFRC522, is a highly integrated reader/writer IC for contactless communication at 13.56MHz.
The MFRC522 reader supports ISO/IEC 14443 A/MIFAR and NTAG. This sensor uses the
MFRC522 library, and like in the scheme is shown this sensor is connected to the Arduino

Mega through the SPI protocol.

October 2016

125

| Appendix C

Technical Manual

@ RFID-RC522 @

Figure 4 - Sensor RFID-RC522 & Tag and Card

3.1.2. Yun shield

One of the the problems of every project in this area was the sending of the collected data form
the sensors to the cloud, using this shield the communication it was possible. This shield uses

two protocols of communication with the microcontroller ICSP and UART.

Iduino Yun

21 IDUIND

GEEETECH
Yun Shield

| Iy

700-0314-01

™
=

¥
LILE
%
l]-?

Figure 5 - Yun Shield

October 2016

126

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

In the Mega2560, the UART between mega2560 and megal6u2 will influence the Bridge
feature with the Iduino Yun Shield. So we have to disconnect it by setting mega16u2 into reset
mode fig. 6. Made this little intervention on Arduino mega, the utilization of protocol ICSP is
fundamental because it will possible to develop the applications through a Wi-Fi connection.
Eliminating the need of the USB cable connected to the microcontroller, for the insertion of

new sketch’s.

A universal asynchronous receiver/transmitter (UART) is a block of circuit responsible for
implementing serial communication. Essentially, the UART acts as an intermediary between
parallel and serial interfaces. In our case the Arduino Mega — built on an ATmega2560 — has a

whopping four UARTSs

3.1.2.1. Connect to Arduino Mega 2560

The shield Yun and Arduino Mega (together) is similar to the Leonardo in that the ATmegal6u2

has built-in USB communication, eliminating the need for a secondary processor.

NHBOa® NOwne™mnN
o

-

£C
¥ Short these two pins to
put mega16u2 in reset

state

Figure 6 - Arduino Mega (configuration to support Yun Shield)

To programming the microcontroller with this shield connected is needed to add a “Mega2560
Yun” board type in the file: Arduino\hardware\arduino\avr\board.txt, as below, and reopen the
Arduino IDE:

mega2560Yun.name=Arduino Mega 2560 -- Iduino Yun
mega2560Yun.upload.via_ssh=true
mega2560Yun.vid.0=0x2341

mega2560 Yun.pid.0=0x0044

mega2560Yun.vid. 1=0x2341

October 2016

127

| Appendix C

Technical Manual

mega2560Yun.pid. 1=0x003f
mega2560Yun.upload.tool=avrdude
mega2560Yun.upload.protocol=arduino
mega2560 Yun.upload maximum_size=258048
mega2560Yun.upload maximum_data_size=8192
mega2560Yun.upload.speed=57600

mega2560 Yun.upload.disable_flushing=true
mega2560Yun.upload.use_1200bps_touch=true
mega2560Yun.upload.wait_for_upload_port=true
mega2560 Yun.bootloader.tool=avrdude
mega2560Yun.bootloader.low_fuses=0xff
mega2560Yun.bootloader. high_fuses=0xd8
mega2560Yun.bootloader.extended fuses=0xfd
mega2560 Yun bootloader. file=stk500v2/stk500boot_v2_mega2560.hex
mega2560 Yun.bootloader.unlock_bits=0x3F
mega2560Yun.bootloader.lock_bits=0x0F
mega2560 Yun.build. mcu=atmega2560
mega2560Yun.build.f cpu=16000000L
mega2560Yun.build.board=AVR_MEGA2560
mega2560Yun.build.core=arduino
mega2560Yun build variant=mega

This allows the shield Yun to appear to connected to a computer as mouse and keyboard, in
addition to a virtual (CDC) serial / COM port.

3.1.2.2. Webpage access

To access to the Webpage use a browser to set Iduino_Yun_Shield, and you will see the login

after entering http://192.168.240.1, if it was the first interaction with the board. Otherwise the

IP can be seen on the IDE of the Arduino or in other mechanisms like an application used

“Fing”,

Formatar Automaticamente ®BT ¢
Arquivar Rascunho
| Corrigir Codificagdo & Recarregar a
| Monitor Série T#8M - MiniM... GitHub - polol... Code Archi

Serial Plotter 8L
Placa: "Arduino Mega 2560 -- Dragino Ydn" > |

Portas série
/dev/cu.Bluetooth-Incoming-Port

Porta: "iduino at 172.20.10.4 (Arduino Yun)"

i Programador: "AVRISP mklI" >
Gravar bootloader Portas de rede
ﬁl B R / iduino at 172.20.10.4 (Arduino Y(n)

snrluda “Rusdaa he
Figure 7 - Arduino IDE (discovering IP yun shield)

After putting the IP of the Wi-Fi shield on the web browser the login page will appear.

October 2016

128

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

Welcome to your Iduino Yun. Please enter password to access the web control panel

GEEETECH

PASSWORD

Please be sure you have cookies enabled before proceeding.

Figure 8 - Web Interface Yun shield (Login Area)

Default password for Iduino Yun_ Shield is ‘iduino’. After login, the gui will show the
WiFi/ETH status.

— WELCOME TO USE IDUINO
Err

GEEETECH

VERSION INFO
Fimmware Version Iduino-V1 gesetech-2.02
it Time. Wed Jan 14 17:1001 CST 2015

WIF| (WLANO) - CONNECTED
Addeass 17220104

Netrmasi 285255285240
MAC Adress ABAOALISCIIC
Baceravd 3885 K8
Trasmited 102.56 k8
INTERFACE ETHO

MAC Address ABs0ALISC2FF
Recered 0008

Trasmities s97x8

INTERFACEETHO:9 CONNECTED

Adgrens 17231255254
Netmisk 255.255.255252
MAC Address ABAOALASCRFF
Recened

Traseitioa

WIRED ETHERNET (ETH1)

MAC Address ABAOALLSC2FE
Recenvd ey

Trasmitte 0008

Figure 9 - Web Interface Yun shield (After Login with success)

Clicking the SYSTEM button, you can set the device password. This page is important to define

the Wireless parameters, here you can define where the yun shield is will connecting.

October 2016

129

| Appendix C

Technical Manual

YUN BOARD CONFIGURATION

YUN NAME * iduino

PASSWORD

CONFIRM PASSWORD

I TIMEZONE * [Europe/Lisbon s

WIRELESS PARAMETERS

CONFIGURE A WIRELESS ™2
NETWORK

oerecreo wheess (HeeTs W F) st
NETWORKS
WIRELESS NAME *

iPad de Tiago

SECURITY

PASSWORD *

DISCARD CONFIGURE & RESTART

REST APl ACCESS

REST API ACCESS OPEN © WITH PASSWORD

REST APis allow you to access your sketch from the web, sending
commands or exchanging configuration values

1f your YGn is on a public network, or controlling sensitive equipment,
or both, we recommend you leave the REST API password protected.

Figure 10 - Web Interface Yun Shield (System)
Clicking on SESNSORS button, is important to define the settings related to the yun shield and
the Arduino Mega.
Arduino board type: Define the setting of bootloader/mcu type/fuse during Sketch uploading.
Operation Mode: Make sure the mode is Arduino Bridge mode so that the Bridge class can

work.

October 2016

130

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

10T SERVER CONFIGURATION

savaree By 3)

FEED D
AP KEY

DEVICENAME iduino-ABAO4115C2FC

~

| 20uno sorso 1vee (Ardino Megazseo

OPERATION MODE(Arino Bridge ¢)
DEBUGLEVEL

CHANNEL NAME

wooTe (G 7

REMOTE 10

UPLOAD PATTERN.

DISCARD CCONFICURE & RESTART MCU

Figure 11 - Web Interface Yun Shield (Sensors)

3.1.3. GPS shield

In coordinator node is used a GPS receiver. The GPS shield collect the altimetry and speed of
the athlete and have the ability to have an SD card, this one is useful to log the information
(local data base). The GPS system operates independently of any telephonic or internet

reception.

October 2016

131

| Appendix C

Technical Manual

Figure 12 - Adafruit Ultimate GPS Logger Shield

The shield uses a embedded GPS module is a Global Top PA6H with Mediatek MT3339 chipset
that achieves the industry highest level of sensitivity (-165dBm) and instant Time-to-First Fix
(TTFF) with lowest power consumption for precise GPS signal processing to give the ultra-
precise positioning under low receptive, high velocity conditions. FGPMMOPAGH is excellent
low power consumption characteristics (acquisition 82mW, tracking 66mW), power sensitive

devices, especially portable applications.

o e e e

Figure 13 - GPS Module

For the GPS is used UART protocol and to connect the SD card is used SPI protocol.

3.1.4. XBee Shield

The coordinator and every end node have a simple XBee radio, this piece of electronic is based
on the IEEE 802.15.4 standard designed for point-to-point and star communications. ZigBee
over 802.15.4, defines specifications for low-rate WPAN for supporting simple devices that

consume minimal power and typically operate in the personal space of 10m. ZigBee provides

October 2016

132

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

a self-organized, multi-hop, and reliable mesh networking with long battery lifetime. The shield

for the XBee use UART protocol, and is responsible for the reception of all data from the WSN.

Figure 14 - Sparkfun XBee Explorer USB

3.2. Coordinator Programming

The coordinator has the particularity to use files in the SD card to allow some interactions. It is
need to insert the IP of the cloud server in the file “server.txt” and register the tag Id of the
bikers in the file “authids.txt” this files are present in the SD card. In the coordinator like in the
end nodes it’s needed use some libraries fig.15 to ensure the proper functioning of the shields
and sensors connected to the coordinator (Arduino Mega 2560). On the setup is very important
to ensure that the following code is in the first lines, because through this code will create the

bridge between the Arduino Mega and the Yun shield.

AdafruitGPS Bridge L3G LSM303

rfidRC522 SD XBee-
Arduino_library

Figure 15 - Libraries used in the Arduino programming

https://github.com/adafruit/Adafruit_GPS //Library to use the GPS shield
https://www.arduino.cc/en/Reference/YunBridgeLibrary //library to use the Yun Shield
https://github.com/pololu/I3g-arduino //library to get the values from the gyroscope (IMU)
https://github.com/pololu/lsm303-arduino //library to get the values from accelerometer and magnometer (IMU)

October 2016

133

| Appendix C

Technical Manual

https://github.com/miguelbalboa/tfid //library to use the RFID Sensor
https://github.com/adafruit/SD //library to access the SD card in the shield
https://github.com/andrewrapp/xbee-arduino //library to receive and send data through XBee’s

#include <Bridge h>
#include <Console.h>
#include <YunClient.h>
#include <Wire.h>
#include <XBee h>
#include <Adafruit_ GPS.h>
#include <SPLh>

#include <SD h>

#include <MFRC522 h>

/int SENSOR_SIGN[9] = {1. 1, -1. -1, -1. -1, 1, 1. -1} //Correct directions X.y.z - gyro. accelerometer,
magnetometer

Jfmmmmmmmmneeeeee RFID-RC522----mnnmmmmmmmmnee
#define RST_PIN 35 // Configurable, see typical pin layout above
#define SS_PIN 53 // Configurable. see typical pin layout above

MFRC522 mfre522(SS_PIN, RST_PIN): // Create MFRC522 instance
const int arraySize = 11;

File idFile;

int ids[array Size]:

boolean autenthicate = false;

int rideld;
o RFID-RC522-wmmemmemmememmemene
I/ XBee

XBee xbee = XBee();

XBeeResponse response = XBeeResponse():

// create reusable response objects for responses we expect to handle
Rx16Response rx16 = Rx16Response():

Rx64Response rx64 = Rx64Response();

uint8_t option = 0;
uint8_t data =0,

union {
float f;
byte b[4]:
} stuff;

/I

fise ::GPS & SD::::
/I GPS power pin to Arduino Due 3.3V output.
/I GPS ground pin to Arduino Due ground.

// For hardware serial 1 (recommended):

/' GPS TX to Arduino Due Seriall RX pin 19
/" GPS RX to Arduino Due Seriall TX pin 18
#define my Serial Serial 1

Adafruit_GPS GPS(&my Serial):

October 2016

134

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

/I Set GPSECHO to 'false’ to turn off echoing the GPS data to the Serial console
// Set to 'true’ if you want to debug and listen to the raw GPS sentences.

#define GPSECHO false

// this keeps track of whether we're using the interrupt

// off by default!

boolean usinglnterrupt = false;

void uselnterrupt(boolean): / Func prototype keeps Arduino 0023 happy

// On the Ethernet Shield, CS 1s pin 4. Note that even if it's not

// used as the CS pin, the hardware CS pin (10 on most Arduino boards,

//'53 on the Mega) must be left as an output or the SD library

// functions will not work.

/lconst int chipSelect = 10:

/fconst int chipSelect=4;

File dataFile:
File serverFile;
char server[4] ="";
charid[4] ="";

byte biker_bikerld;

float pitchBiker, rollBiker, yawBiker, pitchBicycle. rollBicycle, yawBicycle:

byte r_hand_sensorl, r_hand_sensor2, 1 hand sensorl, | hand_sensor2, r_feet_sensorl,
r_feet_sensor2. r_feet_sensor3. 1 feet_sensorl. 1 feet_sensor2.1 feet sensor3;

char la, lo:

(R
S

char comma =

iz GPS & SD::::
char yearG L1205

char twoPoints ="";

float vel. ang, alt:

float latit, longit;

unsigned long previousMillis = 0:
const long interval = 80;

void setup() {
Bridge.begin();
Console.begin():

SPIL.begin(). // Init SPI bus
mfre522. PCD_Init(); // Init MFRC522

// XBee
Serial2.begin(19200);

xbee setSerial(Serial2);

1/
pinMode(44, OUTPUT);

GES & SP - BEGIN: vl

GPS.begin(9600),

my Serial.begin(9600):

// uncomment this line to turn on RMC (recommended minimum) and GGA (fix data) including altitude
GPS.sendCommand(PMTK_SET NMEA OUTPUT RMCGGA);

// uncomment this line to turn on only the "minimum recommended" data

October 2016

135

| Appendix C

Technical Manual

//GPS sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY):
/I For parsing data, we don't suggest using anything but either RMC only or RMC+GGA since
// the parser doesn't care about other sentences at this time

/I Set the update rate

GPS.sendCommand(PMTK_SET NMEA_UPDATE_1HZ); // 1 Hz update rate
// For the parsing code to work nicely and have time to sort thru the data, and

// print it out we don't suggest using anything higher than 1 Hz

/I Request updates on antenna status, comment out to keep quiet
GPS.sendCommand(PGCMD_ANTENNA);

// the nice thing about this code is you can have a timer(interrupt go off
// every 1 millisecond, and read data from the GPS for you. that makes the
//'loop code a heck of a lot easier!

#ifdef _arm

usingInterrupt = false; /NOTE - we don't want to use interrupts on the Due
#else

uselnterrupt(true);
#endif

delay(1000);

/I Ask for firmware version

my Serial printin(PMTK_Q_RELEASE);
Console.print("Initializing SD card...");

// make sure that the default chip select pin is set to
// output, even if you don't use it:

pinMode(SS. OUTPUT);

/I see if the card 1s present and can be initialized:
if (!SD.begin(10, 11. 12, 13)) {

/I Console.println(" Card failed, or not present"):
// don't do anything more:
while (1) ;

}

char filename[] = "datalog.txt";
if (SD.exists(filename)) {

SD.remove(filename);
1
5

J e e [B e
/*
mtt=0;
idFile = SD.open("authids.txt". FILE_READ):
if (idFile) {
while (idFile.available()) {
char ch = idFile read().
1d[t] = ch:
tets
¥
idFile.close();
} else {

Console.println("Can't open File authids.txt"):

}

October 2016

136

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

¥/
e oo | B R S T2

int index = 0
serverFile = SD.open("server.txt", FILE_READ);
if (serverFile) {
while (serverFile.available()) {
char ch = serverFile.read():
server[index| = ch;
index++;
¥
serverFile.close();
} else {

Console println("Can't open File server.txt"):
1
s

// Open up the file we're going to log to!
dataFile = SD.open("datalog.txt", FILE_WRITE):
if (! dataFile) {

Console.println("error opening datalog.txt"):

/I Wait forever since we cant write data

while (1) :
}
Il ::GPS & SD -END::
e RFID-RC522---mmmmmmmmmmeeeeeeee
it t=0;

idFile = SD.open("authids.txt", FILE_READ):
if (idFile) {
while (idFile.available()) {

ids[t] = idFile.parselnt();
s

}
idFile.close():
} else {

Console.println("Can't open File authids.txt"):
1
s

#ifdef AVR__
// Interrupt is called once a millisecond, looks for any new GPS data, and stores it
SIGNAL(TIMERO_COMPA _vect) {

char ¢ = GPS read();

//1f you want to debug, this is a good time to do it!
#ifdef UDRO

if (GPSECHO)

if (¢) UDRO =c¢;
// writing direct to UDRO is much much faster than Serial. print

October 2016

137

| Appendix C

Technical Manual

// but only one character can be written at a time.

#endif

}

void uselnterrupt(boolean v) {

if (v) §
// TimerO is already used for millis() - we'll just interrupt somewhere
// in the middle and call the "Compare A" function above
OCROA = OxAF:
TIMSKO [= _BV(OCIEOA);
usinglnterrupt = true;

}else {
/I do not call the interrupt function COMPA anymore
TIMSKO &=~ BV(OCIEOA):
usingInterrupt = false;

)

1

5
#endif //4ifdef AVR__

void loop() {
// unsigned long currentMillis = millis():

if (GPS.newNMEAreceived()) {
// a tricky thing here is if we print the NMEA sentence, or data
/I we end up not listening and catching other sentences!
/I so be very wary if using OUTPUT_ALLDATA and trytng to print out data
/[Serial.println(GPS.lastNMEA()); // this also sets the newNMEAreceived() flag to false

if (IGPS.parse(GPS.1astNMEA())) // this also sets the newNMEAreceived() flag to false
return; // we can fail to parse a sentence in which case we should just wait for another
h
// unsigned long currentMillis = millis():
YunClient client;
char incomingByte;
byte unitel, unite2, unite3, unite4, unite5, uniteot;

if ('autenthicate) {
if (! mfre522.PICC_IsNewCardPresent()) {
return;

/I Select one of the cards
if (! mfre522 PICC_ReadCardSerial()) {
return;
b
/*
// Dump debug info about the card; PICC_HaltA() is automatically called
mfrc522 PICC_DumpToSerial(&(mfre522.uid));
&
unsigned int hex_num;
hex_num = mfrc522 . uid.uidByte[0] << 24:
hex_num += mfrc522.uid widByte[1] << 16
hex_num += mfrc522.uid uidByte[2] << 8:
hex_num += mfrc522.uid . uidByte[3]:

int NFC_id = (int)hex_num:

for (int 1 = 0; 1 <= arraySize; i++) {
if (ids[i] == NFC_id) {

October 2016

138

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

biker_bikerld =1;
Console.print("found id on array:"):
Console.println(ids[i]);
Console.print("Bike 1d:");
Console.println(biker_bikerId);

)

s

1

}
delay(500);

if (client.connect(server, 80)) {
client.print("GET /getRiderld.php?biker_bikerId=").
client.println(biker_bikerld);
delay(2500);
while (client.available() >0) {
rideld = client.parselnt().
1
5
client.stop():
}else {
Console.println("Connection Failed!"):

}

rideld = rideld+1;
autenthicate = true;

/] A
if (GPS.fix) {
xbee.readPacket();

if (xbee.getResponse().1sAvailable()) {
/I got something

if (xbee.getResponse().getApild() == RX_16_RESPONSE || xbee.getResponse().getApild() ==
RX_64_RESPONSE) {
/I got a rx packet

if (xbee.getResponse().getApild() == RX_16_RESPONSE) {
xbee.getResponse(). getRx16Response(rx16);
option = rx16.getOption();
data = rx16.getData(0):
} else {
xbee.getResponse().getRx64Response(rx64);
option = rx64.getOption();
data = rx64.getData(0);

}

//Led Sincronizagéo
digitalWrite(44, HIGH);

switch (incomingByte = char(rx16.getData(0))) {
case 'a":

unitel =rx16.getData(1):
r_hand_sensorl = unitel:
unite2 =rx16.getData(2):
r_hand_sensor2 = unite2;

October 2016

139

| Appendix C

unitel = 0;
unite2 = 0;
/%

unite] = rx16.getData(1);
unite2 = rx16.getData(2);
r_hand_sensorl = word(unitel, unite2);
unite3 = rx16.getData(3);
unite4 = rx16.getData(4);
r_hand_sensor2 = word(unite3, unite4);

unitel ="0"
unite2 ="'\0";
unite3 ="\0";,
united ="\0";
*/
break;
case 'b"

unitel =rx16.getData(1):
1_hand_sensorl = unitel;
unite2 = rx16.getData(2).
1_hand_sensor2 = unite2:

unitel =0;
unite2 = 0;
/* unitel = rx16.getData(1):

unite2 = rx16.getData(2);
| _hand_sensorl = word(unitel, unite2);
unite3 = rx16.getData(3):
unite4 = rx16.getData(4);
1_hand_sensor2 = word(unite3, unite4);

unitel ="0",
unite2 ="\0",
unite3 ="\0",
unite4 = "\0",
¥
break:
case 'd":

unitel =rx16.getData(1).

r_feet_sensorl = 0; //Esta a saturar o sensor prob. condicionamento
unite2 = rx16.getData(2):

r_feet_sensor2 = unite2:

unite3 = rx16.getData(3).

r_feet_sensor3 = unite3:

unitel =0;
unite2 = 0;
unite3 = 0;
/*

unitel = rx16.getData(1);
unite2 = rx16.getData(2);
r_feet_sensorl = word(unitel, unite2):

unite3 = rx16.getData(3);
unite4 = rx16.getData(4);
r_feet_sensor2 = word(unite3, unite4);

unite5 = rx16.getData(5);
unite6 = rx16.getData(6).
r_feet_sensor3 = word(unite5, unite6);

Technical Manual

October 2016

140

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

unitel ="0",
unite2 ="\0";
unite3 = "\0";
unite4 = "\0";
unite5 ="0";
unite6 = "\0",
*/
break;
case'e":

unitel =rx16.getData(1):

1_feet_sensorl = unitel:

unite2 = rx16.getData(2).

1_feet_sensor2 = unite2;

unite3 = rx16.getData(3):

1_feet_sensor3 = unite3:

unitel = 0;

unite2 = 0;

unite3 = 0;

/*
unitel = rx16.getData(1);
unite2 = rx16.getData(2).
| _feet_sensorl = word(unitel, unite2);
unite3 = rx16.getData(3);
united = rx16.getData(4);
1 feet_sensor2 = word(unite3, unite4):
unite5 = rx16.getData(5);
unite6 = rx16.getData(6);
1_feet_sensor3 = word(unite5, unite6):

unitel ="0";
unite2 = "\0";
unite3 ="\0";,
united ="\0";
unite5 = "\0";
unite6 = "\0",

¥/

break;

case 'f":
//Angles************

stuff.b[0] = rx16.getData(l):
stuff.b[1] = rx16.getData(2);
stuff.b[2] = rx16.getData(3):
stuff.b[3] = rx16.getData(4);
pitchBicycle = stuff f;

stuff.b[0] = rx16.getData(5);
stuff.b[1] = rx16.getData(6);
stuff.b[2] = rx16.getData(7);
stuff.b[3] = rx16.getData(8):
rollBicycle = stuff.f;

stuff.b[0] = rx16.getData(9):
stuff.b[1] = rx16.getData(10):
stuff.b[2] = rx16.getData(11):
stuff.b[3] = rx16.getData(12):
yawBicycle = stuff.f;

break;

October 2016

141

| Appendix C

1
I

case 'c":
//Angles************
stuff.b[0] = rx16.getData(1);
stuff.b[1] = rx16.getData(2);
stuff.b[2] = rx16.getData(3);
stuff.b[3] = rx16.getData(4);
pitchBiker = stuff f:

stuff.b[0] = rx16.getData(5);
stuff.b[1] = rx16.getData(6):
stuff.b[2] = rx16.getData(7);
stuff.b[3] = rx16.getData(8):
rollBiker = stuff.f:

stuff b[0] = rx16.getData(9):
stuff.b[1] = rx16.getData(10):
stuff.b[2] = rx16.getData(11);
stuff.b[3] = rx16.getData(12):
yawBiker = stuff.f;

break:
default:

//Serial printIn(" Another Value!!!");

break:

latit = GPS latitude;

la = GPS lat:

lo = GPS.lon;

longit = GPS longitude:

v

el = GPS.speed;

ang = GPS.angle:
alt = GPS.altitude;

if (client.connect(server, 80)) {

// Console.printIn("Connected!");

client.print("GET /sendData.php?");

client.print("biker_bikerld="):
client.print(biker_bikerld);
client.print(" &rideld="):
client.print(rideld);
client.print("&dat=");

client.print(GPS hour, DEC); client.print(twoPoints):
client.print(GPS.minute, DEC): client.print(twoPoints):
if ((int)GPS.seconds >= 0 && (int)GPS.seconds <= 9) {

client.print('0"); client.print(GPS.seconds, DEC): client.print (‘+);

} else {

client.print(GPS.seconds, DEC): client.print (‘+');

3

client.print(GPS.day. DEC): client.print('/");
client.print(GPS.month, DEC): client.print(yearGPS);

client.print(GPS.year, DEC);
//client.print(dat);

client.print(" &latit=");

Technical Manual

October 2016

142

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

client.print(latit);
client.print("&la="):
client.print(la);
client.print("&longit="):

client.print(longit):
client.print("&lo="):
client.print(lo);
client.print("&vel=");
client.print(vel):
client.print("&ang=").
client.print(ang);
client.print("&alt=");
client.print(alt);

client.print("&r_hand_sensorl="):

client.print(r_hand_sensorl):

client.print("&r_hand_sensor2="):

client.print(r_hand_sensor2):

client.print("&Il_hand_sensorl=");

client.print(l_hand_sensorl);

client.print("&Il_hand_sensor2=").

client.print(l_hand_sensor2):
client.print("&r_feet_sensorl="):
client.print(r_feet_sensorl);
client.print("&r_feet_sensor2=").
client.print(r_feet_sensor2);
client.print("&r_feet_sensor3=").
client.print(r_feet_sensor3);
client.print("&I1_feet_sensorl="):
client.print(l_feet_sensorl);
client.print("&1_feet_sensor2=").
client.print(l_feet_sensor2):
client.print("&I_feet_sensor3="):
client.print(l_feet_sensor3):
client.print(" &pitchBiker="):
client.print(pitchBiker):
client.print(" &rollBiker=");
client.print(rollBiker);
client.print("&yawBiker="):
client.print(yawBiker):
client.print("&pitchBicycle=").
client.print(pitchBicycle):
client.print(" &rollBicycle=");
client.print(rollBicycle);
client.print("&yawBicycle=");
client.println(yawBicycle):

Console.print("biker_bikerid=");
Console.print(biker_bikerld):
Console.print("&rideld=");
Console.print(rideld);
Console.print("&dat=");

Console.print(GPS. hour, DEC): Console.print(":"):
Console.print(GPS.minute, DEC); Console.print(':");
if ((int)GPS.seconds >= 0 && (int)GPS.seconds <= 9) {

Console.print('0'); Console.print(GPS.seconds, DEC); Console.print (‘+');

} else {

Technical Manual

October 2016

143

| Appendix C

Console.print(GPS.seconds. DEC): Console.print ('+'):

}
Console.print(GPS.day, DEC); Console.print('/'):

Console.print(GPS.month, DEC): Console.print("/20").

Console.print(GPS.year, DEC);
/I Console.print(dat);

Console.print("&latit="):

Console print(latit);
Console.print("&la="):
Console.print(la):
Console.print("&longit="):

Console print(longit);
Console.print("&lo=");
Console.print(lo);
Console.print("&vel="):
Console.print(vel):
Console.print("&ang="):

Console print(ang):
Console.print("&alt=");
Console.print(alt):
Console.print("&r_hand_sensorl="):
Console.print(r_hand_sensor1):
Console.print("&r_hand_sensor2="):
Console.print(r_hand_sensor2):
Console.print("&1_hand_sensorl=");
Console print(I_hand_sensorl);
Console.print("&1_hand_sensor2=");
Console.print(l_hand_sensor2):
Console.print("&r_feet_sensorl=");
Console.print(r_feet_sensorl);
Console.print("&r_feet _sensor2=");
Console.print(r_feet_sensor2);
Console.print("&r_feet_sensor3="):
Console.print(r_feet_sensor3);
Console.print("&I_feet_sensorl="):
Console.print(l_feet_sensorl);
Console.print("&I_feet_sensor2=");
Console.print(l_feet_sensor2):
Console print("&I_feet_sensor3="):
Console.print(l_feet_sensor3);
Console.print("&pitchBiker="):
Console.print(pitchBiker):
Console.print("&rollBiker=").
Console.print(rollBiker):
Console.print("&yawBiker="):
Console.print(yawBiker);
Console.print("&pitchBicycle=");
Console print(pitchBicycle);
Console.print("&rollBicycle=").
Console.print(rollBicycle);
Console.print("&yawBicycle=");
Console.printIn(yawBicycle):

client.stop():
} else {
Console.println("Connection Failed!"):

Technical Manual

October 2016

144

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

client.stop():

s

printlnSD():

dataFile flush();

} else {

/I not something we were expecting
/I flashLed(errorLed, 1, 25);

} else if (xbee.getResponse().1sError()) {
/mss.print("Error reading packet. Error code: "),
/Mmss.println(xbee. getResponse(). getErrorCode());
// or flash error led

1
S

1

4

¥
s
3
In the programming of the RFID sensor, at the moment it is possible to have twelve bikers

registered and this are defined in the following lines of codes:

const int arraySize = 11;

File idFile:

int ids[array Size];

But if there is the need to register more bikers, the only need is to increase the variable
arraySize. For example, if the objective is to increment the double of the bikers the changes are

as follows:

const int arraySize = 23;
File idFile;
int ids[array Size|:

With the increase of this variable the file authids.txt will support twenty-four registered bikers.

4. Cloud Server

The Server is responsible for the storage of every training performed by each biker. There is
the place were the data is all saved for further analysis through a mobile application, this is, the
application access to the webserver through php modules and present the data in the application
with a user friendly view. The main objective is to centralize all the information in one place.
This could be a problem if something went wrong with the server, but some mechanisms were

created, like a local database and the possible in the mobile application to export each training.

October 2016

145

| Appendix C

Technical Manual

LAMP web server on
Raspberry Pi 2

Linux -
Apache } @ Raspberry Pi
Model 8
MySQL =
Ethernet cable
oy B
LAMP Stack g, :

5V/2A Power supply

Figure 16 - LAMP Web Server Overview

The LAMP term is one of the most common configuration for webservers which standard for:
Linux — operation System;

Apache- webserver (http) software;

Mysql — database server;

PHP or Perl — programming languages;

The main reason to use the raspberry pi as a webserver is because he is dedicated network
device, and there is a equipment very accessible in terms of costs and efficiency, making is job

perfectly. The operating system and all mechanisms needed is freeware.

4.1. Setup of the LAMP Server “Cloud”

To the following setup of the Cloud is necessary the operation system, the WebServer one
mechanism to create databases and one language to guarantee the connection and insertion of

data in the database.

4.1.1. WebServer

To have a cloud, it is need to have a webserver to guarantee that the information is accessible

in the Internet.

sudo apt-get install apache2

October 2016

146

ISCTE-IUL

Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

4.1.2. Mysql

The MySQL is an open-source relational database management system. MySQL is a popular
choice of database for use in web applications, and is a central component of the widely used

LAMP open-source web application software.
sudo apt-get install mysql-server
4.1.3. PHP

Is a server-side scripting language designed for web development but also used as a general-
purpose programming language. PHP code may be embedded into HTML code, or it can be
used in combination with various web template systems. The following commands will install

PHP version 5 and the MySQL libraries to allow PHP to access the MySQL database.

sudo apt-get install php5
sudo apt-get install php5-mysgl

After all setup is complete is possible to access to the WebServer through a remote connection
ssh (Secure Shell).

The Database was created in the program MySQL workbench, to allow visualization of the

entire DB:

October 2016

147

| Appendix C

I coach v] biker v
coachld INT bikerId INT
email VARCHAR(255) 2 email VARCHAR(255)
password VARCHAR(255) password VARCHAR(255)
weight VARCHAR(255)
» height VARCHAR (255)
¥ coach_coachld INT e
h 4
W,
PRIMARY

PRIMARY

fi_biker_coach1_idx

Figure 17 - Database mountainBikeDB

Technical Manual

] training v

¥ biker_bikerld INT
rideld INT
dat VARCHAR(255)
|atit VARCHAR(255)
|la VARGHAR(255)

7 longit VARCHAR(255)
»lo VARCHAR(255)

vel VARCHAR(255)
ang VARCHAR(255)
alt VARCHAR(255)
r_hand_sensor 1 VARCHAR(255)
r_hand_sensor2 VARCHAR(255)
|_hand_sensor 1 VARCHAR(255)
|_hand_sensor2 VARCHAR(255)
r_feet_sensor1 VARCHAR(255)
r_feet_sensor2 VARCHAR(255)
r_feet_sensor3 VARCHAR(255)
|_feet_sensor1 VARCHAR(255)
|_feet_sensor2 VARCHAR(255)
|_feet_sensor3 VARCHAR(255)
pitchBiker VARCHAR(255)
rollBiker VARCHAR(255)
yawBiker VARCHAR(255)
pitchBicyde VARCHAR(255)
rollBicycle VARCHAR(255)
yawBicycle VARCHAR(255)

The DB and the above tables were created in the Database with the following Script in SQL:

CREATE SCHEMA IF NOT EXISTS 'mountainBikeDB' DEFAULT CHARACTER SET utf8 :

USE "mountainBikeDB" ;
-- Table ‘'mountainBikeDB'." coach’
CREATE TABLE IF NOT EXISTS 'mountainBikeDB'.'coach’ (
‘coachld’ INT NOT NULL AUTO_INCREMENT,
‘email' VARCHAR(255) NULL,
‘password’ VARCHAR(255) NULL,
PRIMARY KEY (coachld))
ENGINE = InnoDB:

-- Table ‘'mountainBikeDB' . biker’

CREATE TABLE IF NOT EXISTS "mountainBikeDB' . biker" (
‘bikerld’ INT NOT NULL,
‘email’ VARCHAR(255) NULL.
‘password’ VARCHAR(255) NULL,
‘weight' VARCHAR(255) NULL,
‘height' VARCHAR(255) NULL,
‘coach_coachld’ INT NOT NULL,
PRIMARY KEY ('bikerld', ‘coach_coachld").
INDEX 'fk_biker_coachl idx' (‘coach_coachld" ASC),
CONSTRAINT 'fk_biker_coachl’

October 2016

148

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

FOREIGN KEY (' coach_coachld")
REFERENCES "mountainBikeDB' . coach’ (‘coachld")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- Table ‘'mountainBikeDB'."training’

CREATE TABLE IF NOT EXISTS ‘mountainBikeDB'." training" (
‘biker_bikerld' INT NOT NULL,
‘rideld’ INT NULL.
‘dat’ VARCHAR(255) NOT NULL.
‘latit’ VARCHAR(255) NULL,
‘la VARCHAR(255) NULL.
‘longit’ VARCHAR(255) NULL,
‘lo" VARCHAR(255) NULL,
‘vel' VARCHAR(255) NULL.
‘ang’ VARCHAR(255) NULL,
‘alt’ VARCHAR(255) NULL,
‘r_hand_sensorl’ VARCHAR(255) NULL,
‘r_hand_sensor2’ VARCHAR(255) NULL,
‘l_hand_sensorl’ VARCHAR(255) NULL,
‘1_hand_sensor2’ VARCHAR(255) NULL,
‘r_feet_sensorl’ VARCHAR(255) NULL,
‘r_feet_sensor2’ VARCHAR(255) NULL,
'r_feet_sensor3” VARCHAR(255) NULL,
'l_feet_sensorl’ VARCHAR(255) NULL,
'l feet_sensor2’ VARCHAR(255) NULL,
'l_feet_sensor3’ VARCHAR(255) NULL,
‘pitchBiker’ VARCHAR(255) NULL,
‘rollBiker’ VARCHAR(255) NULL.
‘yawBiker' VARCHAR(255) NULL.
‘pitchBicycle’ VARCHAR(255) NULL,
‘rollBicycle’ VARCHAR(255) NULL,
‘vawBicycle’ VARCHAR(255) NULL,
PRIMARY KEY ('biker_bikerld', "dat’),
INDEX 'fk_training_biker]_idx" (‘biker_bikerld" ASC),
CONSTRAINT 'fk_training_biker1"
FOREIGN KEY (' biker_bikerld')
REFERENCES "mountainBikeDB'."biker' ('bikerld")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB:

All the php files are in the the folder /var/www/html/.

This php files are housed in the cloud, every time is needed to get some information from

database or to insert some information these files are called. In the coordinator is used two files:

* getRiderld.php: This file is important to know how many trainings already was
performed. Let’s see a simple case one biker already perform two trainings, he wants to
perform another one, this simple php file goes to the database and see the number of

last training.

* sendData.php: Like name indicates this file will send all data collected from sensors.

October 2016

149

| Appendix C

Technical Manual

In case of the application there are a few files that are important for the proper functioning of

the application:

connectToDB.php: Perform the connection to the database, every single php file uses
this file.

login.php: When a coach tries to access to the application, this will see if the coach is

registered in the database.

loginBiker.php: A biker tries to access to the application, this file will see if the biker
is registered on the database. It’s important that the biker is registered to perform a

training.

createBiker.php: Entering in the application the user will see all is bikers and has the

option to register others.

getCoachldUsingEmail.php: At the beginning, the users enter is username (email) and

with this information the file will get the Coachld.
getCoachEmailByUsingCoachld.php: Get the email using the Coachld.

getBikersByCoachld.php: This file will retrieve a list of the bikers that a coach is

responsible.

getTrainingArrayByBikerld.php: Will retrieve a list in a json format of all training

performed for a given Bikerld.

getTrainingArrayByRiderld.php: When the coach or biker choose which training want

to analyze this will get the individual training number performed.

All this programming could be done in a single file, but for a good comprehension and
good debugging it was decided to make it by step by step. If any problem occurs is easy
to detect the fault.

5. Android application Mountain Bike App

The application is to allow very friendly access to each training session, with this application

every coach and biker can access to every training session that already perform.

October 2016

150

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

5.1. Sequence Diagram

The sequence of activities in the application have two options, depending which user is logged

Coach or Biker.

5.1.1. Coach Sequence Diagram

Coach Interaction with Application

Figure 18 - Sequence Diagram (Coach interaction)

October 2016

151

| Appendix C

Technical Manual

5.1.2. Biker Sequence Diagram

Bier Interaction with Application

Login Sveessful

Figure 19 - Diagram Sequence (Biker interaction)

Well in the diagrams is possible to see every interaction that a coach or a user may make in
the mobile application. In the login Activity the user must choose if he had coach or biker

account. By default, is selected the coach account.

Password

Coach

Biker

Figure 20 - Login in Mountain Bike App
Depending of this choice the mobile application will behave according to the diagrams
presented. In the case of the fragments is where the analyze is performed, this is, the report

and graphs are presented in the Fragment in total there is eleven fragments.

Eleven Fragments can be chossed

October 2016

152

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

Mountain Bike App

|I_! Report

|_! Force Sensor Gloves
L! Force Sensor Shoes
Lg GPS Tracking

Lg Velocity

|_! Altitude

|_! Angles Bike

|§ Angles Biker

Figure 21 - Navigation Drawer (Show Fragments)

1. Report: present some results like the duration, maximum altitude, minimum altitude,

distance, calories, maximum velocity and average speed,

Here is presented some of the functions that permit to calculate some values about the

training session performed by the bikers. All the data is collected from the database.

private float getCaloriesBurned(ArrayList<Training> trainingDataL ist) { //calculate the time spent in hours

float result=0;

ArrayList<String> tempList = new ArrayList<>();

for (int 1 = 0; i<trainingDataList.size():1++){
tempList.add(trainingDataList. get(1). getDat().substring(0.8).trim()):

)

Collections.sort(tempList);

SimpleDateFormat simpleDateFormat = new SimpleDateFormat("HH:mm:ss");
try {
Date startTime = simpleDateFormat.parse(tempList.get(0).trim());
Date endTime=simpleDateFormat.parse(tempList.get(tempList.size()-1).trim());
long difference = endTime.getTime()-startTime. getTime():

int diffSeconds = (int) difference / 1000 % 60.

int diffMinutes = (int) difference / (60 * 1000) % 60:

int diffHours = (int) difference / (60 * 60 * 1000) % 24

/Mlong diffDays = difference / (24 * 60 * 60 * 1000);

result= diffHours+diffMinutes*MINUTETOHOUR+diffSeconds*SECONDSTOHOUR:
} catch (ParseException e) {

e.printStack Trace();

return result;

October 2016

153

| Appendix C

Technical Manual

1
5
private String getTrainingDuration(ArrayList<Training> trainingDataList) { //return the duration of training

String value ="";

ArrayList<String> tempList = new ArrayList<>();

for (int 1 = 0; i<trainingDataL ist.size():i++){
tempList.add(trainingDataList. get(1). getDat(). substring(0.8).trim());

Collections.sort(tempList);

SimpleDateFormat simpleDateFormat = new SimpleDateFormat("HH:mm:ss");
try {

Date startTime = simpleDateFormat.parse(tempList. get(0).trim()):

Date endTime=simpleDateFormat.parse(tempList.get(tempList.size()-1).trim()):

long difference = endTime.getTime()-startTime. getTime();

int diffSeconds = (int) difference / 1000 % 60
int diffMinutes = (int) difference / (60 * 1000) % 60.
int diffHours = (int) difference / (60 * 60 * 1000) % 24
/Mlong diffDays = difference / (24 * 60 * 60 * 1000);
value= diffHours+":"+diffMinutes+":"+diffSeconds:

} catch (ParseException e) {
e.printStack Trace();

}

return value;

h
private float getAverageSpeed(ArrayList<Training> trainingDataList) { //get the average speed

float averageValue = 0;
for (int 1=0: i< trainingDatal ist.size():i++){

averageValuet+=trainingDatal ist.get(i).get Vel():
b
return average Value/trainingDataList.size():

3

private float getMaxVelocity (ArrayList<Training> trainingDataList) { //get the max velocity

float fastestValue = Float MIN_VALUE:
for (int 1= 0: i<trainingDataList.size():1++){
if ((trainingDatal ist. get(1).getVel())>fastest Value){
fastestValue=(float) trainingDataList.get(1). get Vel():
1
5
}

return fastestValue ;

}

private double getMinAltitude(ArrayList<Training> trainingDataList) { //get the minimum altitude value
float smallestAltitude = Float MAX_VALUE:

for (int 1 =0: i< trainingDataL ist.size():i++){
if ((trainingDatalist. get(1). getAlt())< smallestAltitude) {
smallestAltitude=(float) trainingDataList.get(1). getAlt():
}

1
s

October 2016

154

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

return smallestAltitude;
1
5

private float getMaxAltitude(ArrayList<Training> trainingDataList) {//get the maximum altitude value
float biggestAltitude = Float MIN_VALUE:

for (int 1=0; i< trainingDataList size():i++){
if ((trainingDataList.get(1). getAlt())>biggestAltitude) {
biggestAltitude=(float) trainingDataList.get(1). getAlt():
b
i

return biggestAltitude:
private float convertDegreeMinuteM ToDecimal(float value) { //convert the latitude and longitude to degrees

int indexOfPoint;
indexOfPoint = new Double(value).toString().indexOf(".");

String valuel = String.valueOf(value);

String aux1=valuel.substring(0.indexOfPoint-2);
String aux2=valuel .substring(indexOfPoint-2.valuel length()):

float result=Float.parseFloat(aux1)+(Float.parseFloat(aux2)/60):

return result;
¥

private float getDistance(ArrayList<Training> listOfRides){ //get distance of the biker

ArrayList<Training> tempList = new ArrayList<>();
double distance = 0;
for (int 1 =0; i<listOfRides.size():i++){

Training training = new Training(listOfRides. get(i).getDat().convertDegreeMinuteM ToDecimal((float)
listOfRides. get(1). getLatit()).listOfRides. get(1). getLa().convertDegreeMinuteM ToDecimal((float)
listOfRides. get(1).getLongit()).listOfRides. get(i).getLo());

tempList.add(training):

}
Collections.sort(tempList, new TrainingComparator());
for (int 1 =0: i<tempList.size();1++){
/I Log.d("tempListDat".""+tempList. get(i).getDat()+" "+tempList.get(i). getLatit()+"
"+tempList.get(i). getLongit()):
if (i1=0){

float dLat= (float) Math.toRad1ans(tempList.get(1). getL atit()-tempList.get(i-1).getL atit()):
float dLong = (float) Math.toRadians(tempList.get(1).getL ongit()-tempList.get(i-1). getLongit()):

float a = (float) (Math.sin(dLat/2)*Math.sin(dLat/2)+Math.cos(Math.toRadians(tempList. get(i-
1).getLatit()))*Math.cos(Math.toRadians(tempList.get(i).getLatit()))*
Math.sin(dLong/2)*Math.sin(dLong/2));
float ¢ = (float) (2*Math.atan2(Math.sqrt(a).Math.sqrt(1-a)));

distance+=RADIUSEARTH*c;

1
s

return (float)train.round(distance.2):

October 2016

155

| Appendix C

Technical Manual

= Mountain Bike App LoGouT

Duration
0:1:31 HH:mmiss
Max, Altitude
1123m

Min. Alitude
883m

Distance

0.29 Km

Calories
14.8 keal
Mix, Velocity
13.76 km/h
Average Speed
10.79 km/h

Figure 22 - Report Fragment
2. Force Sensor Gloves: this fragment is responsible for presenting the graphs of the four

sensors in gloves athlete;

private float convertValue(int sensorValue) { /Function to convert % to ADC values
float result=0;
result = (sensorValue*654)/100: //convert the values in percentage to ADC
return result;

private float convertADC ValueToForce Value(float adeValue) { convert ADC value to Kg
float gain = 1500/172; // 1.5Kg /ADCvalue for the 1.5kg
float forceValue= (float) (gain*adcValue*0.001); // convert ADC to g and to kg
return (float) train.round(forceValue.3):;

¥

3. Force Sensor Shoes: In this fragment is possible to see the graphs that translate the

force of the six mounted sensors;
4. GPS Tracking: Gives an idea of the route that the biker performed on is workout;
5. Velocity: present the velocity graph in km/h;
6. Altitude: shows an altitude graph in meters.
7. Angle: Demonstrate the angle that the GPS sensor is making with Satellite.

8. Angles Bike: In the chest of the biker the IMU calculate the pitch, roll and yaw of the

biker and in the fragment is presented the graph of that values.

9. Angles Biker: Like in the Biker, the bicycle has another IMU. So to see the

movements of the bicycle the graph is presented here.

October 2016

156

ISCTE-IUL
Performance Assessment for Mountain bike based on WSN and Cloud Technologies

Technical Manual

10. IMU Bicycle and Biker difference: To see the difference between the biker and the

bicycle movements this fragment present a graph of that.

11. Export: All the data is saved in the database, but if the user wants to export the

training data here is possible, only need to give a file name and press a button.

In the AndroidManifest.xml is important to write the following code, because the application

needs to have access to the Internet and to the SD card.

<uses-permission android:name="android. permission.INTERNET"/>
<uses-permission android:name="android.permission. WRITE_EXTERNAL_STORAGE" />

The following code represents all the libraries used in the build.gradle (Module: app) of the

android studio:

repositories {
maven { url "https://jitpack.io" }

b

dependencies {
compile fileTree(dir: 'libs". include: ["* jar'])
testCompile ‘junit:junit:4.12'
compile 'com.android.support:appcompat-v7:23.0.0"
compile 'com.android.support:design:22.2.1'
compile 'com.mexiaoke.volley:library:1.0.19'
compile 'com.android.support:support-v13:23.0.+'
compile 'com.google.android.support:wearable:+'
compile 'com.google.android.gms:play-services-wearable:+'
compile 'com.github. PhilJay:MPAndroidChart:v2.2.5'
compile 'com.jjoe64:graphview:4.1.0'
compile 'com.google.android.gms:play-services:9.0.1'

5.2. Main Features

This application uses a two secure authentication, if any user wants to use this application he
needs to be register in the database. Only registered users can access to this application, in order
to protect user data. This mechanism is based in username and password to identify the user.

At the coordinator only bikers that have a card or tag registered can perform a training session.

The communication with the database in the application is made through HTTP requests using
the Volley library. Volley is an HTTP library that makes possible the networking for Android

easier and faster.

For the visual presentation of the data collected form the database, is used two libraries
GraphView and MPAndroidChart with these two libraries is possible to create the line graphs,

bar charts and the points Charts that is possible to observe in the fragments. With these libraries

October 2016

157

| Appendix C

Technical Manual

is possible to display to the user’s multiple series of data, scroll with a finger touch move gesture
and read the values from the graphs. Allowing the user analyze every aspect of the graph

created.

October 2016

158

