
University Institute of Lisbon

Department of Information Science and Technology

A Machine Learning Approach for
Indirect Human Presence Detection

Using IoT Devices

Rui Nuno Neves Madeira

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Computer Engineering

Supervisor

Prof. Dr. Luís Miguel Martins Nunes, assistant professor
ISCTE-IUL

September 2016

Resumo

A recente maior democratização da tecnologia contribuiu para o aumento da
disponibilidade de dispositivos dedicados à melhoria dos nossos espaços de vivência
e trabalho, capazes de controlo remoto pela internet e de interoperabilidade com
outros.

É neste contexto que a detecção de presença humana é fundamental pois:
permite a automatização de acções, a aprendizagem de padrões de uso, a detecção
de problemas de doença ou intrusão, etc. Dispositivos específicos de detecção de
presença normalmente tem falhas dependendo da sua natureza, e não costumam
estar coordenados de forma a melhorar a performance.

Coordenar os aparelhos de forma a obter um nível mais inteligente de uso requer
um outro dispositivo ou software capaz de comunicar e controlar os outros. A
Muzzley é uma empresa que criou uma aplicação móvel onde os utilizadores podem
registar todos os seus dispositivos e depois controla-los a partir do programa.

Esta dissertação propõe uma abordagem para a detecção de presença baseada
na utilização de métricas extraídas das mensagens entre os dispositivos e a plataforma
da Muzzley. A ideia é que a detecção não será feita por informação de sensores
específicos mas sim pela analise de padrões de interacções com os dispositivos.
Conjuntos de dados anónimos criados na plataforma serão submetidos a uma fase
extensa de processamento de forma a criar atributos interessantes para o treino e
teste de algoritmos de aprendizagem automática.

As contribuições principais deste estudo são os algoritmos de processamento
construídos para a criação da informação relevante para a tarefa, a demonstração
da capacidade do uso destas interações para a detecção de presença, e os métodos
usados de forma a melhorar a performance da abordagem.

Palavras-chave: Detecção de Presença Humana, Inteligência Ambiental, In-
ternet das Coisas.

iii

Abstract

The recent increased democratization of technology led to the appearance of
new devices dedicated to the improvement of our daily living and working spaces,
capable of being remotely controlled through the internet and interoperability with
other systems.

In this context, human presence detection is fundamental for several purposes,
such has: further automization, usage pattern learning, problem detection (illness,
or intruder), etc. Current intrusion detection devices usually have flaws depending
on type and many times are not coordinated for better performance.

Coordinating the devices for higher level operation however requires a device,
or software, that is able communicate and control them. Muzzley is a company
that tries to solve this issue by creating a mobile application where the user can
register all its devices and control them from there.

In this dissertation we propose an approach to human presence detection using
metrics based on messages between devices and the Muzzley platform. The idea
is that the detection does not rely on information from specific presence detectors,
but that it is able to achieve its purpose by analyzing the patterns of interactions
with the devices. For this, anonimyzed datasets created by the Muzzley platform
are submitted to an extensive processing in order to create meaningful features
that will then be used with a machine learning algorithm for training and testing.

The main contributions of this study is the processing done to create meaning-
ful information for the task, the demonstration of the capabilities of the interac-
tions between these devices and platforms for human presence detection, and the
methods used to improve the performance of the approach.

Keywords: Human Presence Detection, Ambient Intelligence, Internet of
Things.

v

Acknowledgements

I would like to thank my parents and my family for all the love they gave me
all my life, and for their efforts to provide me a comfort living that allowed me to
develop myself as a human being and to focus properly on my academic path.

I would also like to thank my supervisor, Luís Nunes, for all his support and
help in this project, and for all I learned from him in these months and in my time
at ISCTE-IUL.

A big thanks to my friends from outside the university, their friendship was
crucial for my social life and my personal development, allowing me to learn things
from other areas and to have precious escapades from the academic work.

And finally, a very important thank you to everybody that worked beside me at
the university during the thesis, since this kept us motivated and inspired through
this hard and possibly lonely journey.

Without all of you this wouldn’t have been possible. My deepest appreciation.

vii

Contents

Resumo iii

Abstract v

Acknowledgements vii

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 4
1.3 Scientific Contribution . 4
1.4 Structure of the Dissertation . 5

2 State of The Art 7
2.1 Home automation, Ambient Intelligence and Internet of Things . . 7
2.2 Human Presence Detection Devices 9
2.3 Sensor Fusion . 9
2.4 The Concept of Time in a Sequence of Events 10
2.5 A Unique Platform . 11

3 Data Processing 13
3.1 The Muzzley Platform . 13
3.2 Segmentation Engine . 15
3.3 Structure of the Raw Dataset . 17

3.3.1 user_reads . 18
3.3.2 user_writes . 19
3.3.3 device_updates . 19

3.4 Plugins Developed . 20
3.4.1 devicesPerUser . 22
3.4.2 loadEventsToDB . 24
3.4.3 presenceFromDevices . 27

ix

Contents

3.4.4 changePropertyUpdates . 29
3.4.5 interactionStatsPerUser . 30
3.4.6 createMLDatasetGenStats 33
3.4.7 createCSVsForPresence . 36

3.5 Non Processed Schemas . 38

4 Initial Experiments and Exploration 39
4.1 Initial Exploration . 39
4.2 Machine Learning Scripts created 41

4.2.1 fullAlgorithm . 41
4.2.2 usingSavedConfig . 42

4.3 Initial Scikit-Learn Experiments . 43
4.4 Feature Selection . 49
4.5 Addressing the Imbalance Issue . 51
4.6 Results Exploration . 55
4.7 Exploration with Other Algorithms 61
4.8 Parameter Search . 63

5 Final Experiments 65
5.1 Not Excluding Information from the Metrics 66
5.2 Excluding Messages Used to Generate Presence Information from

Metrics . 70
5.3 Using more data . 72
5.4 Conclusions On The Final Experiments 73

6 Conclusions 75
6.1 On the Development of the Project 76
6.2 On the Results Obtained . 77
6.3 Future Work . 78

x

List of Figures

3.1 Overview of the interactions in the Muzzley ecosystem 14
3.2 Muzzley device hierarchy . 14
3.3 Sequence of the processing plugins 21
3.4 Component interactions . 21
3.5 Partial example database document for the devicesPerUser plugin . 22
3.6 Partial example database document for the loadEventsToDB plugin 25
3.7 Partial example database document for the presenceFromDevices

plugin . 28
3.8 Partial example database document for the changePropertyUpdates

plugin . 30
3.9 Partial example database document for the interactionStatsPerUser

plugin . 31
3.10 Partial example database document for the createMLDatasetGen-

Stats plugin . 33
3.11 Example database document for the createCSVsForPresence plugin 36

4.1 Example of generated tree structure 57
4.2 Violin graph of the number of different schemas between devices

users own vs number of correctly predicted instances 58
4.3 Violin graph of the totalAvgDay metric vs number of correctly pre-

dicted instances . 59
4.4 Violin graph of the totalCountHalf metric vs number of correctly

predicted instances . 59
4.5 Violin graph of the total number of devices users own vs number of

correctly predicted instances . 60

xi

List of Tables

4.1 Features used in first two results that will be presented 45

4.2 Classification report using non-continuous events for labeling not
excluding any information from the metrics 46

4.3 Confusion matrix for the same scenario of Table 4.2 46

4.4 Classification report using non-continuous events for labeling and
excluding information used for labeling from the metrics 46

4.5 Confusion matrix for the same scenario of Table 4.4 46

4.6 Classification report using continuous events for labeling and not
excluding any information from the metrics 47

4.7 Confusion matrix for the same scenario of Table 4.6 47

4.8 Classification report using user_NDI for labeling and not excluding
any information from the metrics 48

4.9 Confusion matrix user_NDI not excluding for the scenario of Table
4.8 . 48

4.10 Top feature importance values of some of the initial results accord-
ing to the Random Forest algorithm 50

4.11 Comparison of classification reports for several techniques to cope
with the imbalance problem . 54

4.12 Comparison of classification reports using different classification al-
gorithms . 62

xiii

List of Tables

5.1 Results for each type of dataset obtained using 70% for training with
down-sample and 30% for testing using the window based approach
and without excluding any information from metrics 66

5.2 Results for each type of dataset obtained using 70% for training with
down-sample and 30% for testing using the event based approach
and without excluding any information from metrics 67

5.3 Top feature importance values of the not excluding section accord-
ing to the XGBoost algorithm . 69

5.4 Results for each type of dataset obtained using 70% for training with
down-sample and 30% for testing using the window based approach
and excluding messages used to gather presence from metrics 70

5.5 Results for each type of dataset obtained using 70% for training with
down-sample and 30% for testing using the event based approach
and excluding messages used to gather presence from metrics 71

5.6 Top feature importance values of the excluding section according to
the XGBoost algorithm . 72

xiv

Abbreviations

AdaBoost Adaptative Boost (see page 61)

AVG AVeraGe (see page 46)

IoT Internet of Things (see page i)

RGB Red Green Blue (see page 15)

SMOTE Synthetic Minority Over-sampling TEchnique (see page 53)

SVC Support Vector Classifier (see page 41)

XGBoost EXtreme Gradient Boost (see page 61)

xv

Chapter 1

Introduction

Human presence detection is an ongoing challenge in several scenarios and appli-

cations, one of them is in ambient intelligence and home automation. This project

intends to create a system able to infer about presence using general information

and statistics of usage and interaction with different types of devices.

Ambient intelligence in computing refers to technology that is non-intrusively

integrated in an environment, doesn’t need user intensive interaction, and adapts,

in an automated way, to the necessities of each user and context. The goal of this

technology is the creation of complex systems with simple interfaces that enhance

the quality of our daily lives [1] [2] [3].

In order for this vision to become a reality, several authors have pointed out

certain attributes that the systems need to have [1] [2] [3] [4]:

• Integration, the devices should be embedded in the environment in a perva-

sive but non-intrusive way.

• “Awareness”, the technology must be able to understand its context in order

to correctly interact with it.

• It should be tailored to the needs of each user, and be able to adapt to their

behaviour changes and external factors.

1

Chapter 1. Introduction

• It should be able to predict the activities and needs of the users.

• And distributedness, several devices and systems should be connected and

exchange information, but in a way that the failure in one of the network

nodes does not lead to a total system failure.

Internet of things (IoT) is the network of physical objects with electronics,

software, sensors and connectivity capabilities that allow these devices to commu-

nicate with each other and to exchange information. Because they are connected

in a network, the devices can be interacted and monitored remotely from another

point in the network. By joining the information of each device, and through

the interaction of each device with its environment, we are able to build complex

systems, with better precision, that may enhance our quality of life [5] [6] [7] [8]

[9].

The previous concepts are connected, the internet of things is a technology

that enables the creation and improvement of more complex ambient intelligence

systems. A network of several devices of different types and purposes is a fun-

damental tool to understand the context in which the system is operating. The

fusion of information from the devices is very important to decide which actions

to carry out, and through the combination of the actions of several devices the

system can cooperate with the user and fulfill his needs.

Sensor fusion is the combination of information from several sensors in a way

that the end result has more quality and precision than the information of each

single one. It is a fundamental concept in ambient intelligence, and in a lot of

other areas such as robotics. In order to be able to understand the needs of its

user and context, an ambient intelligence system has to structure and process very

efficiently the data it receives from its device so that quantity is also quality [10]

[11].

Home automation can be seen as an instantiation of the concept of ambient

intelligence in which the environment we want to “make intelligent” is a residence,

2

Chapter 1. Introduction

and the functions we want to control and monitor are the temperature, the venti-

lation and humidity, the energy consumption, the garden sprinklers, etc.

1.1 Motivation

The problem this project intends to address is related to this vision of ambient

intelligence for personal residences. Nowadays is increasingly common to have one

or more devices related to this area on our houses. [11] predicts that before 2020

the internet of things will be comprised of more than 50 billion devices. Even

today there are quite a few different devices available in the market for a lot of

different purposes. Good examples are thermostats, humidity controllers, carbon

dioxide sensors, motion sensors, door sensors, etc.

A problem with these devices is that each manufacturer company has its way

of communicating and programming its device. Muzzley is a Portuguese company

established in 2012 with the purpose of the creating a mobile application and a

platform that allows for the interaction with all types of devices, independently of

their brand, from a single system. The application has been evolving and nowa-

days it boasts of more advanced functions, related to ambient intelligence, such

as coordinating the registered devices through programmed rules or behaviours

learned from the information received from the devices and user interactions. It

is in this context that human presence detection becomes an important thing.

The information about human presence at home is interesting for several rea-

sons:

• Allows the automation of several actions such as turning on the lights when

someone arrives, turning off when they leave, turning on the kitchen auto-

matic cooking robot, turning on the smart sockets, etc.

• May aid in some forms of intrusion detection.

3

Chapter 1. Introduction

• Allows the learning of user routines, since it is fundamental to know when a

user is at home or when he is simply interacting with the devices remotely.

• Can help detect behaviour anomalies related to health conditions.

Specific and high fidelity detectors however are usually expensive for domestic

use. The more affordable devices have limitations, for example a person sitting

down on a couch will not be detected by a regular motion sensor. Besides this,

some devices may not be precise enough on their own.

1.2 Objectives

The idea of this dissertation is to process the data generated from interactions

between the user, the devices and the Muzzley platform in order create general

metrics, not related to each device usage or characteristic, like for example average

number of interactions per day, or number of interactions in the last half hour.

And then use them to train machine learning models for presence detection. The

information to be used comes from every device possible, even if it isn’t explicitly

direct to presence, because the idea is to do an indirect detection based on usage

and behaviour patterns of the devices available in the house.

The point is that if this proves to be a good method, it will allow to infer

information about presence for users that don’t have presence related sensors.

And may increase the overall fidelity of houses equipped with presence detectors

compensating for the inherent flaws of each type of sensor.

1.3 Scientific Contribution

This dissertation presents the following contributions:

• reviews state of the art projects in the area of ambient intelligence and

internet of things related with the presence detection problematic.

4

Chapter 1. Introduction

• creates and fully describes an approach to process data from a system that

monitors and controls several types of IoT devices with the intent of gener-

ating features for machine learning classification.

• presents the potential capabilities of the generated data used with machine

learning algorithms for human presence detection.

• Elaborates on the techniques and processes used for result exploration and

to improve the scores of the machine learning classification.

• provides conclusions on the approach reasoning on future work and imple-

mentation possibilities

Part of the work present in this document is based on the final report delivered

for the Introduction to Research in Engineering course of the Master in Computer

Engineering, titled: "Human Presence Detection in Ambient intelligence Systems

Without relying on Specific Sensors".

The work conducted in this dissertation resulted in the following publication:

R. Madeira, L. Nunes, (2016), "A Machine Learning Approach for Indirect Hu-

man Presence Detection". Proceedings of the International Conference on Digital

Information Management, 2016, Porto. In press.

1.4 Structure of the Dissertation

In Chapter 2 we present projects related to this one stating their contributions

and declaring their similarities and differences with this dissertation. In Chapter 3

the Muzzley platform is described, the raw dataset contents are explained and the

processing used to generate the feature and the new csvs for machine learning are

described in depth. Chapter 4 begins by explaining the machine learning scripts

and tools used, it then presents the initial results obtained. After this several

sections about exploring the results and improving the scores follow. Chapter 5

concerns the final experiments done and the improvements are discussed. Finally

5

Chapter 1. Introduction

in Chapter 6 conclusions are drawn on the results obtained and the developing

process of this dissertation.

This study followed the Design Science Research method [12] [13]. For further

description of the phases applied in this case refer to the document presented

for the Introduction to Research in Engineering course. Described briefly, the

dissertation started with the identification and motivation behind the objective.

The objectives were presented and now will continue to be elaborated upon, along

with the state of the art. Chapters 3, 4 and small details of 5 concern the design

and development phase, where the developed plugins, machine learning scripts

and improvements are described. Chapter 4 and 5 are the demonstration and

evaluation stage. And finally, this document along with the published paper serve

as the communication step.

6

Chapter 2

State of The Art

2.1 Home automation, Ambient Intelligence and

Internet of Things

In recent years the increased general availability of computing technology, the

decrease in size of powerful devices of this area, the easiness of implementation

of network infrastructures, the practical advances in artificial intelligence and the

familiarization of people with these new technologies, has led to an increase in

the accessibility of devices related to ambient intelligence and internet of things

to the general audiences [3] [14] [15]. The main devices that can be found in

common technology stores are light bulbs, capable of network connection and being

remotely controlled. Sensors, like thermostats, carbon dioxide sensors, motion

sensors, etc. And surveillance cameras with network connection.

The increased presence of these devices, that are easy to install and start to

use, without the need for large infrastructures to support them, with the possible

of coordination between them through third party products, have made “tradi-

tional” home automation systems less popular. Examples of “traditional” home

automation systems are the central heat control, intelligent shutters, intrusion de-

tection, gas leak detector, etc. The popularity of these new devices has however

helped create a bigger interest in the area, and is now common to find in Portugal,

7

Chapter 2. State of The Art

stores dedicated to the area, offering great quality products, and also house which

are built with home automation in mind [16].

Because of this there has been lot of interesting work in the area of ambient

intelligence for home and work spaces that by fitting the environment with differ-

ent types of these devices, with different purpose, aim to reach the technological

visions for this area. One of these projects is Dream Green House [17], which has

the goal of creating the world’s most intelligent house, but also focusing on ecology.

The project consists of a series of subprojects, each one focusing on one aspect

to improve the house, for example, a module to control energy consumption, an-

other for temperature control, luminosity control, water consumption monitor, etc.

The house continues being developed, as new technology arises in the area, new

functionalities are structured and implemented and older modules are updated.

A system, built using Linux, Java and a Raspberry Pi serves as the main

controller of the devices placed in the house, receiving information from the other

devices and systems. In 2013 [18] developed a presence detection system at a room

or zone level for the house. This system infers about presence by using a large

quantity of information gathered from several sources. The type of data used and

its source may indicate presence explicitly, such is the case for pressure sensors

placed in beds and chairs, or implicitly, in the case for example of the detection

of network traffic coming from a PlayStation system.

Another example of house that implements these technologies is the Gator

House [19], which has the objective of creating a smart home that can help and

monitor the daily life activities of the senior population or people with special

needs. The house has a lot of systems and functionalities, such as smart pantries

and fridges that can create automatic shopping lists, smart ovens, smart sockets,

pressure sensors on the floor, etc. One of the most interesting contributions of

the project is the creation of a model of architecture of middleware to control and

coordinate all the systems implemented in the house. This model is structured

in layers, the base layer has to do with the raw data produced by the devices,

8

Chapter 2. State of The Art

and then, progressively through the layers the system becomes more complex and

abstract in the sense of the created information.

In [20] the authors describe a system that joins information from several sen-

sors, using Bayesian networks and Markov chains to reduce each sensor noise, in

order to detect human presence. The system was built by layers and receives

information from devices such as thermostats, door sensors, and cameras. Its ca-

pabilities were tested by using it to monitor an office in the University of Palermo.

2.2 Human Presence Detection Devices

The goal is to create a system that can detect human presence without relying

on specific detection devices. However, to build the system and to better under-

stand the results that will be obtained it is important to know which devices are

available that focus specifically on detection, and what are their capabilities and

weaknesses. In [21] the authors do a survey on available methods to detect pres-

ence and other related concepts such as occupancy, the number of people present,

and the identification of each person. They also explain the physical traits used by

the devices to infer about these concepts. Then the devices are classified according

to the attribute they use to operate. The authors also refer some work related to

sensor fusion. The survey ends with a summary on the capabilities of each type of

device and conclusions for the area, one of which is the importance of the creation

of sensor fusion systems, on a greater scale and complexity, in order to solve these

problems with better precision.

2.3 Sensor Fusion

In addition to those described in [21] there are a lot more projects related to sensor

fusion to solve presence detection problems and other related issues such as person

tracking and identification. For example in [22], Bayesian networks and Markov

9

Chapter 2. State of The Art

chains were used to join the information from several sensors in order to detect

people and track their movement. An interesting aspect of this project is that

they used Gaussian probability distribution functions to model the information

gathered from each sensor by varying the average and covariance of each function

according to the properties of the sensor.

In [23] the authors used a Kalman filter to join the information from the Wi-Fi

module, magnetometer, gyroscope and accelerometer of a smartphone with the

purpose of tracking a person’s movement on a known space. Initially sensor fusion

was thought to be more important for the project since the approach was different

than the present one that focuses on the interaction statistics instead of sensor

values, but these projects continue to be relevant as state of the art.

2.4 The Concept of Time in a Sequence of Events

Another important aspect for this problem and area, is the usage and processing

of data related with time. There are many ways to model information about

time: timestamps, offsets of time between events, time windows of varied size, etc.

The authors of [24] studied several ways identification and segmentation of human

activities in video and motion capture files. An interesting conclusion is that in

this case the usage of a time window is not the best way to solve the problem.

In [24] it’s described a way to process time series, in real time, using a hier-

archical tree structure. This algorithm seems interesting for this type of problem

since the devices involved generated a lot of data in short time. The authors in

[25] have done an extensive analysis of the usage of different types of clustering

algorithms on time series data.

10

Chapter 2. State of The Art

2.5 A Unique Platform

This project however is so far unique and quite different from the others discussed

before. A lot of different types of devices from different companies interact in the

Muzzley platform. Each one with its details on the way it works and communicates

with its manufacturer platform and with Muzzley. Besides this, the system should

work in every house and every user, instead of most of other projects that focus on

a specific house and, or, type of user. The system must also behaviour correctly

independently of the environment on which the user decided to use the devices,

and independently of the way the devices are located in the space. And finally, the

system must be able to adapt to each user daily life habits and learn his patterns

of device usage.

11

Chapter 3

Data Processing

3.1 The Muzzley Platform

Muzzley is an application for mobile devices that allows the control and monitoring

of devices from different manufacturers in a single system. A user just has to

register his devices in the application, he then has access to a user interface suited

to each type of device that allows interaction with its properties.

For this to happen the device manufacturer has to integrate his devices with

Muzzley. This can be done cloud to cloud, in the case of manufacturers who

already have a built platform to support their devices, or cloud to device using

Muzzley’s own platform to interact with the device. To do the integration the

manufacturer has to provide information about the type of integration, interfaces

or HTTP URLS needed, etc. Then he has to define an ontology that establishes

the properties and components of its devices, and the relationships between them.

A user interface used to interact with the device must also be provided, a pre-

defined one can be used or a new one using HTML and CSS can be created. This

is what the application will use when navigating to the device page.

13

Chapter 3. Data Processing

Figure 3.1: Overview of the interactions in the Muzzley ecosystem1

The manufacturer must also define its device hierarchy. This is used by Muzzley

in order to have its own way of identifying the devices and their properties without

relying on each company’s identification method, since that would be very difficult

to integrate and would probably lead to conflicts. The hierarchy in the Muzzley

platform is composed by profile: this is an identifier for a type of device, for

example a light bulb or a thermostat. Channel, a unique identifier for a certain

concrete device. Component an identifier for a certain component of a device, for

example a cooling system with more than one fan, each fan is a component. And

property the identifier for a certain property of a component, in the cooling system

example it could be the speed and angle of the fan.

Figure 3.2: Muzzley device hierarchy2

To communicate with the manufacturer clouds and the devices Muzzley uses

a set of JSON schemas that specify the structure and type of data the messages

between these entities uses. So the manufacturers must also specify for each prop-

erty which type of schema it uses. For a color light bulb this could be for the
1https://www.muzzley.com/documentation/images/integration_assets/_img1.png
2https://www.muzzley.com/documentation/images/integration_assets/_img5.png

14

https://www.muzzley.com/documentation/images/integration_assets/_img1.png
https://www.muzzley.com/documentation/images/integration_assets/_img5.png

Chapter 3. Data Processing

example the colour-rgb (Red, Green, Blue) schema that indicates that, aside from

other fields, the messages would have the r, g, and b fields with a value between 0

and 255.

Muzzley also has an automation engine that allows the users to set up rules

that control the devices. These rules can use a lot of different events as triggers:

time, location, properties of other devices, etc. And can then actuate changing the

properties of others devices. These rules capability comes straight out of the box

only requiring the user to set up the rules or to adopt some already pre-defined

ones.

3.2 Segmentation Engine

The Muzzley system generates data related to the messages interactions between

the user application and the platform, and then between the platform and each de-

vice manufacturer systems when this applies. The quantity of messages generated

by the platform in a short period of time is quite big, and so gathering and storing

this information is also a challenge. In order to facilitate this process Muzzley

has developed a program called Segmentation-Engine. This program can listen

to the messages being transmitted, and operate on them. It stores the messages,

filtering and, or, masking some fields if necessary, and compress the information

if needed. It can also calculate metrics from received messages or saved datasets,

delete saved information according to some parameters, etc. The program was

built to do this continuously, while listening to messages or new dataset entries,

serving as an automated dataset creation tool.

The Segmentation-Engine is a program written in Python, that uses a lot of

libraries and operates using other applications such as the Redis and Mongodb

databases. The program is used through the command line and it has 3 main

functions. Schema operations, regarding actions on locally stored schemas. The

datasets operations, for the creation of a dataset, to append information to an

15

Chapter 3. Data Processing

existing one, or to clear datasets. And the metrics operations to do calculations

and create new data based on the stored datasets.

To create the datasets the program listens to the Muzzley platform and stores

the captured messages in csv files. Options can be applied to these operations

such as type of messages to store. Details on these types on section 3.3. A list

of fields to exclude from the dataset. And masking so that the ids present on the

dataset aren’t the ones used in the real application messages.

The metric operations are the crucial part for the data processing phase of

this project. These allow the creation of new information by reading the stored

datasets and do calculations on them. In order to do this new parts of the program,

called plugins, can be developed, each corresponding to a new metric. Each metric

has a configuration that defines if it is active, which types of schemas from each

dataset it has access to, etc. The program can then run a metric, a list of them, or

all of them. If the metric needs to access a csv dataset the Segmentation Engine

already is prepared to deal with this abstracting the reading of the datasets and

saving on a Redis database the files and lines that were already processed. In case

the plugins need access to a MongoDB database the program also facilitates this

procedure.

The program also has a set of production services, and more may be added

in the future. These are deployment configurations that can easily be used to

run the program with a specific purpose. One of them is the muzzley-dataset-

writer a configuration that keeps the Segmentation Engine running, listening to

the messages sent in the Muzzley platform and creating datasets based on them.

This is the process responsible for creating the initial sets for this project.

The data created will then undergo a processing phase to create the features

and information that will serve as input to the machine learning algorithms. This

phase was done by developing plugins for the Segmentation Engine that will cal-

culate the necessary metrics. These plugins use both the Redis database when

reading from the stored datasets and the MongoDB database to store new metrics

16

Chapter 3. Data Processing

and be able to correlate metrics and calculate new ones. Developing these algo-

rithms within the Segmentation Engine however puts some constraints on them,

mainly they have to be ready to work with stream-like data, because the program

is prepared to handle data this way.

Developing the plugins in Python, a language we didn’t have previous expe-

rience with, and building the algorithms in accordance with the Segmentation

Engine structure meant an initial adaption phase with slower development. In

retrospective this paid off, because there was the opportunity to learn a new pro-

gramming language, that is very suited for the jobs of data processing and machine

learning, also the created plugins follow the Segmentation-Engine way of operation

so in the future they can be easily integrated for other purposes or built upon to

improve this project.

3.3 Structure of the Raw Dataset

The messages from a “raw” dataset are divided in three types: messages from the

application to the device in order to obtain its state called user_reads, from the

application to the device to change its state named user_writes, and the messages

from the device to the whole platform in order to signal a state change called

device_updates.

The Segmentation Engine stores the data in csvs in folders. Inside the main

folder there are 3 subfolders that correspond to each type of dataset. Inside each

one of these there are subfolders for each type of schema. The schemas, as de-

scribed before, are related to how each message should be composed depending on

the property it refers to. So there are folders for color-rgb, of, for example, light

bulbs, for brightness, for battery levels of certain devices, etc. Inside these folders

there are csvs, one per day, where each line correspond to a captured message.

17

Chapter 3. Data Processing

3.3.1 user_reads

These messages concern direct requests from the application or the platform to a

specific device in order to obtain the value of one of its properties. These requests

might be triggered by the user, for example opening the application, or by the

rules module if it needs to know a property at a certain time. The response to

this request with the value of the property is given directly and is not part of

the device_updates data set, this also means that response is not gathered by

the Segmentation Engine, and so values of properties must be learned from the

updates or the writes.

These messages contain information about the ids and names of the device

hierarchy to which the request is sent, and all other related information, such

as property classes, schema, etc. It also contains information about the time of

generation of the message in the timestamp field, the user_id corresponding to

which user generated this message and the trigger field, that marks if this message

was generated by a user or a rule.

This and the next type of dataset, user_writes, also have an additional special

field that will be called user_NDI (non-disclosed information). This field contains

special information that won’t be disclosed in this document. The information was

gathered from users who agreed to help this project, allowing for the data collec-

tion, and it was only handled by Muzzley. The idea is that with this information

some more realistic datasets can be created, however it is still very different from

having explicit time information about when there was presence at home.

Muzzley’s insight was that these read messages were the least important for

this project since that they don’t always mean a direct interaction with a device

or the platform. They will however be very important to have data about the user

and his devices. Regardless of this, the messages will also be present in the rest of

the processing because they might contribute for the presence detection.

18

Chapter 3. Data Processing

3.3.2 user_writes

These messages are instructions, generated by the user or a rule, to a device in

order to change the value of one of its properties. They are very similar to the

user_reads messages, but have some fields more depending on the schema of the

message. For example, if the message is for an rgb coloured light bulb to change its

colour then it will have the additional r, g and b fields. Like the user_reads, these

messages have important information about the users and their devices. They also

might contribute a lot for the detection problem, since they are specific requests

for a property change, and the trigger field will also tell if these were done by a

user or by a rule.

3.3.3 device_updates

These messages are quite different from the other types, they are sent throughout

the platform and inform the concerned entities, a user application for example,

about the value of a device property. Because they inform the value, these messages

have, like the user_writes, more fields depending on the type of schema. However,

since these don’t originate in a user application, they don’t have the user_id.

Because of not having a user_id field, each message will have to be mapped to

one, or several users. But this is a fundamental step since these updates may give a

very good insight in terms of presence detection. Another problem with the dataset

is that the updates are generally periodic, or originated by a property change.

This means that devices who broadcast their status frequently will generate a lot

of information that maybe won’t be as useful, and the same is true for devices who

change their properties very frequently, like for example, thermostats or weather

stations because of fluctuations in temperature, atmospheric pressure, etc.

19

Chapter 3. Data Processing

3.4 Plugins Developed

As described before, because of the nature of the generated data, the Segmentation-

Engine is prepared to work in a stream like way. In order to continue this paradigm

the developed plugins must be prepared to be able to process stream-like data in-

stead of batch-like which puts some constraints on the complexity and efficiency of

some algorithms. Clearly some algorithms could have an overall better structure,

and some parts could have being developed in a more efficient or clear way.

Adding to the requisites described, the quality of the code also suffered because

the developing was more incremental than completely planned from the beginning.

The reason for this is that more insight on the problem was gained from work-

ing on it, and also due to the new fields added to the data during development,

requested after the initial analysis of the results. And thus, more functionalities

were interesting to add to the plugins, increasing their complexity. Regardless,

the overall quality of the plugins is good and the processing can be completed in

a reasonable time window.

The next diagram shows the flow of information between algorithms, evidenc-

ing also their order. Next to each a brief summary of its functions can be found:

20

Chapter 3. Data Processing

Figure 3.3: Sequence of the processing plugins

The next diagram shows each plugin according to its interactions with other

components:

Figure 3.4: Component interactions

21

Chapter 3. Data Processing

A detailed description of the plugins will now follow, along with implementation

decisions, objective and possible parameters.

3.4.1 devicesPerUser

This plugin iterates through the dataset types that have information about user_ids,

that is the user_reads and writes. The objective of this plugin is to create infor-

mation per user about its devices, including the devices hierarchy. The algorithm

will create a document with fields like, number of devices, number of components,

the complete device hierarchy of that user, different schemas used by these devices,

etc. This document will then be inserted in MongoDB.

Figure 3.5: Partial example database document for the devicesPerUser plugin

"total_Schema=power-w" : 1,
"totalDifferentSchemas" : 1,
"totalComponents" : 1,
"totalProperties" : 1,
"devices" : [

{
"profile_name" : "WeMo Insight Switch",
"channel_id" : "881406K110009E",
"profile_id" : "569521afbd95b4a08a9ca9e8"

}
],
"totalDevices" : 1,
"differentSchemas" : [

"power-w"
],
"properties" : [

{
"channel_id" : "221519K121109E",
"property_id" : "energy",
"property_name" : "Energy"

}
],
"timezone" : "None",
"totalSchemas" : 1,
"totalIndividualUnits" : 1,
[...]

The plugin starts by doing a query to its correspondent collection in MongoDB

to see if there are already users in the database. Then it starts to use the Seg-

mentation Engine built in capabilities to iterate through the stored csv datasets,

skipping the device_update dataset because this one doesn’t have user_ids and

22

Chapter 3. Data Processing

thus is not useful. Per each message iterated the plugin will use the user_id

present to find in the dictionary if there is already that user, if there isn’t, it cre-

ates a new user, which is also a Python dictionary, with that id and certain count

fields such as totalDevices, totalSchemas, set to 0 and list fields, such as devices,

differentSchemas, etc. empty. Then it will check if there is timezone info for the

present user, if there isn’t and the current message has a timezone, it will assign

that timezone to the user as another field in the user dictionary.

Then the algorithm will check the current user individual units list. This is

a list of dictionaries each one corresponding to a unique device to the property

level in the Muzzley hierarchy. So each dictionary has profile_id, channel_id,

component_id, property_field and schema field. The idea is to see if the current

source from where the message came has already been assigned to this user, this

is done checking if there already is a dictionary on the list with the ids present on

the message, if there isn’t, one is created and added to the list.

If there is already such item on the list the algorithm will continue to process

messages since nothing more is to be added to the user. However if the individual

unit is new for this user, the plugin will continue by checking the similar lists,

devices, components, properties, to see if that id has already been mapped to this

user, and if not creating dictionaries with the correspondent id and the channel id.

For example adding the current message component_id and channel_id as fields

of a dictionary in the components list.

It will also use profile, component and property labels to add counts to the

user dictionary, for example for a light bulb message being processed it can add

a plus one count to the total_Comp=bulb field of the user. The schema is also

added to a list of different schemas if it isn’t already there.

A user that was modified in this run of the algorithm is marked has changed

and in the end the user list will be iterated in order to update the database with

the new users info. This is an implementation decision made to avoid updating

the database each time new information is added to a user. This works well,

however because the plugin takes some time to iterate through all messages when

23

Chapter 3. Data Processing

the dataset is big, for example 1 hour for a month long data, additional methods

should be added to the plugin to save the new gathered information periodically

in case there is a problem during the run.

3.4.2 loadEventsToDB

The main idea of this plugin is to insert into MongoDB all of the events of all

types of a dataset, so that it’s easier to do queries and create information in other

plugins. The algorithm also does some more things: the device_updates type of

messages don’t have the user_id in then, so using the information created by the

devicesPerUser it can, according to the profile, component and property id, map

a user_id to each device_update message. This plugin also uses the timezone

information of each user, retrieved in the devicesPerUser, and then using the

timestamp of each message it can calculate the date of the message. This is

very important to create usage statistics. Finally it is very interesting for the

presence problem to know which update occurred without a previous user_write

message, because this indicates that either it changed by itself, ex: the value of a

thermometer, or it changed because of a manual interaction, ex: the user turned

the light bulb manually so he has to be at home. Comparing the values and

timestamps between user_writes and device_updates messages the algorithms is

able to mark which update was due to a user_write.

The plugin starts by doing a query to the devicesPerUser collection in Mon-

goDB in order to retrieve every user we have information so far, and maps these

users to a python dictionary using the user_id as key. Then it starts reading

the stored user_reads dataset and generates a dictionary from each message, with

each field with its correct type, and extra time related fields, minute, hour, day

of week, calculated using the message timestamp and the user timezone, if one is

known in the devicesPerUser information.

After processing the user_reads dataset the algorithm moves to the writes and

updates since for this implementation these have to be processed together. Write

24

Chapter 3. Data Processing

Figure 3.6: Partial example database document for the loadEventsToDB plu-
gin

"schema" : "https://ontology.muzzley.com/schemas/v1/timestamp",
"timestamp" : NumberLong(1462098710812),
"component_label" : "Plant",
"dayOfWeek" : "Sunday",
"month" : "May",
"timezone" : "Europe/Greenwich",
"trigger" : "user",
"property_name" : "Water last reading",
"hour" : 11,
"format" : "seconds",
"day" : 1,
"component_id" : "plant-sensor-1",
"profile_id" : "117e12e51bbb443ec06d7d",
"changeProperty" : true,
"profile_name" : "Koubachi Plant Sensor",
"component_classes" : "com.muzzley.components.sensor.plant",
"channel_id" : "31189",
"property_id" : "water-last-reading",
"io" : "r",
"minute" : 31
[...]

messages are read, events for them are created, like in the reads, and they are

stored in a buffer. When the buffer is full, its length is a global variable, the

algorithm iterates through the updates and checks if the element in the middle of

the writes buffer has a lower timestamp than the current update message, if so

half of the buffer is flushed inserting the write events in the database and loading

new ones. When the middle element timestamp is no longer lower the algorithm

will process the current update event.

Processing the current event has two phases, first the plugin searches the writes

buffer to see if there is a write to the same device property, meaning profile,

channel, component and property id between messages has to be the same, with

at most a 4 minute time difference. If so, this means the current update event was

caused by a write message, a trigger field is created on the update with the write

message trigger and a user_id field with the corresponding user id. 4 minute is a

heuristic defined time frame, discussed with Muzzley that is used in order to take

into account delays in the network, delays while gathering messages and delays

of the device generating the update. An update event is appended to a list per

correspondent write message found.

25

Chapter 3. Data Processing

In the second phase the algorithm goes through the devicesPerUser information

and if the corresponding profile, channel, component and property of the message

matches a unit in a user information then an update event is appended to a list

with that user id, but this time with a trigger that marks it as an independent

update. This is only done if this user id was not already gathered in the first phase.

Finally time information is calculated for the created events using the time zones

of users mapped to these events and the events are inserted into the database.

The plugin does this until there are no more write messages to process. Then

it checks to see if there are more update datasets to process, since a lot of schemas

present in the updates are not present in the writes, and if so it process those

events. The implementation decisions in this algorithm rested in how to best do

the search for write messages related to update ones. Other possibilities instead of

the writes buffer used are inserting immediately the write messages and then do

a query to see if there is a match. Or inserting all messages and then in the end

do queries and change the update messages that got matched. Both alternatives

rely on query times to be effective, which means creating and updating indexes.

For large number of messages to process the solution implemented or the second

alternative are probably the best since they don’t require constant queries and

index updating. However, even with the chosen approach, indexes had to be

created anyway because of queries done in other plugins.

The possible parameters for this plugin are the length of the write events

buffer and the bulk insert limit. The bulk insert limit is the number of inserts

to the database done at once. This batch like insert type was adopted to try to

further speed up the algorithm. After the algorithm run indexes are created for

the user_id, timestamp, and user_NDI fields in this collection since these will be

heavily queried in other plugins.

26

Chapter 3. Data Processing

3.4.3 presenceFromDevices

This plugin is responsible to collect events that give information about presence.

This information is a mixture of heuristics, for example device_updates from

light bulbs that were independent, this probably means that the user is home.

And sensor information, for example cameras with motion sensors. The plugin

creates this information by doing a set of queries to the loadEventsToDB collection,

and then generates a document per user with lists of events that each have a

window of time and a value between 0 and 1 that correspond to certainness of

presence. The events are divided in two types: continuous, gathered from devices

like alarms which their state give a continuous source of presence information, and

non-continuous like motion sensors or light bulb interactions which have a time

window, heuristically defined, in which the occurrence of the event is relevant.

Adding to this information some users were given a chance to contribute with

the user_NDI field. With this, additional presence information can be gathered

in certain conditions and better tag the datasets.

As with the devicesPerUser this plugin starts by doing a query to its own

collection in the database to retrieve the users that are already there. Then it

does a list of queries to the loadEventsToDB collection, each one corresponding

to a specific type of event we want to gather presence information from. The

results of each query are passed to a function that processes them, accepting as

parameters the results, the collection of users, the type of dataset, the name to

give to this presence information, the presence value, the time window and if it’s

a continuous event.

This function will iterate through the results skipping those already processed

according to saved timestamp, if information is already present for the user_id

of the current result it will retrieve that user document from users dictionary,

otherwise it will create a new user. Then it will create an event for this result,

saving the original timestamp, the schema, the original value, and if it is a contin-

uous event. It then creates an identifier using the profile, channel, component and

27

Chapter 3. Data Processing

Figure 3.7: Partial example database document for the presenceFromDevices
plugin

"presenceInfo" : [
{

"value" : 0.8,
"endTimestamp" : NumberLong(1464152502667),
"continuous" : false,
"startTimestamp" : NumberLong(1464151902665),
"decay" : 3.33333333333333e-006,
"origValue" : "100.34",
"origTimestamp" : NumberLong(1464152202677),
"schema" : "weight-kg",
"io" : "i"

},
{

"value" : 0.8,
"endTimestamp" : NumberLong(1464153204641),
"continuous" : false,
"startTimestamp" : NumberLong(1464152604641),
"decay" : 3.33333333333333e-006,
"origValue" : "100.34",
"origTimestamp" : NumberLong(1464152904641),
"schema" : "weight-kg",
"io" : "i"

}
],
"hasNDI" : false,
"hasNonContinuous" : true,
"processingTimestamp" : NumberLong(1464152904641),
"hasContinuous" : false
[...]

property id present in the result, this identifier is stored in a list in the user info,

if it isn’t already there, and is used after to exclude events with this identifier in

other plugins.

If the result is of a continuous type the function will check its value and add

a value to the event, 1 for home and 0 for away. It will then set the event start

timestamp to the original timestamp and add it the presence info list of the user

and the event list of the corresponding type. If the event list for that type is not

empty it will set the last event end timestamp to this current one start timestamp.

If it is of a non-continuous type it will use the provided interval in the pa-

rameters of the query, heuristically defined, to calculate the event start and end

timestamps from the original timestamp and then will add these events to the

lists. The algorithm will also store the messages ids, simply because sometimes

there are messages from the same device hierarchy with the same value and the

28

Chapter 3. Data Processing

same timestamp, and this way we can avoid processing again the same messages

if the plugin is run again or is in a continuous production service. Finally as with

the devicesPerUser, the users marked has changed are updated on the database.

3.4.4 changePropertyUpdates

Depending on the type of device and its use cases sometimes the update messages

generated by it may report repeated values. For example an alarm may create a

lot of updates since it was activated up to the point it was turned off, however

only two times the arm property changed. The same is true in the case of the read

messages, several read messages may be sent for a property that hasn’t changed

in value meanwhile. Also for the write messages, repeated write messages for the

same property with the same value are in some cases common, specially when they

are triggered by rules. This plugin was created to mark the events that effectively

report a property change instead of just broadcasting a repeated value, since this

may generate more meaningful information about the messages. The idea is to

save a state per property of each device and then check if an update message

reports a new value or if a write message contains a new value. For the reads case

basically the read is marked if there hasn’t been another read since the property

changed.

So contrary to the other plugins, which are more focused on the user_id for

their operation, this one is oriented to a property device identifier composed by

profile, channel, component, property and user ids. It stores a timestamp and an

event per identifier that corresponds to the last update message from this device

property. Then it will iterate through the events checking per identifier if the new

message, an update or a write differs from the last one. If so the event is marked

by creating the new field changeProperty with true value and then updating the

loadEventsToDB collection, and the event is also stored in this identifier data so

that it can be compared to the next.

29

Chapter 3. Data Processing

Figure 3.8: Partial example database document for the changePropertyUp-
dates plugin

"newReadMessage" : false,
"data" : {

"schema" : "https://ontology.muzzley.com/schemas/v1/status-onoff",
"property_classes" : "com.muzzley.properties.status",
"timestamp" : NumberLong(1464539043525)
"component_label" : "Bulb",
"dayOfWeek" : "Sunday",
"value" : "False",
"month" : "May",
"trigger" : "independent_update",
"property_name" : "Status",
"hour" : 17,
"day" : 29,
[...]

},
"timestamp" : NumberLong(1464701245075)
[...]

In the case of the read messages there is a Boolean variable associated with

the identifier that is set to true each time the saved data changes and set to false

when a read message for that identifier is processed. A message that is processed

while the variable is true is updated in the loadEventsToDB collection with the

changeProperty field, like in the update and read cases. This way only one read

message is marked per property state change.

As with the loadEventsToDB, event comparison is done by comparing the

dictionaries representing the messages, excluding certain fields, such as timestamp,

etc. in order to see if the message reports new values or not. This is done because

the fields in the message are dependent on the schema and this way works on all

of them.

3.4.5 interactionStatsPerUser

This plugin is responsible for creating usage statistics for each user. It iterates

through all database loaded messages and creates metrics per user with different

levels of granularity, taking into account the type and time of day. The metrics are

created by counting events and time passed, then averages are calculated using

this information. Examples of created metrics are: average number of update

30

Chapter 3. Data Processing

messages per hour, average number of write messages per weekend day, average

number of independent update messages per hour on a weekday, etc. Metrics are

also divided by if the counts concern messages marked as changeProperty.

Figure 3.9: Partial example database document for the interactionStatsPe-
rUser plugin

"iWeekendCountCP" : 11,
"iWeekdayCountCP" : 74,
"rWeekendCountCP" : 8,
"userWeekendAvgDay" : 3,
"WeekdayAvgHour" : 0,
"iNightWeekdayindependent_updateCount" : 17,
"rWeekendAvgMin" : 0,
"userAvgDay" : 1,
"iDawnWeekdayindependent_updateCount" : 12,
"rAvgDay" : 1,
"rDawnWeekenduserCountCP" : 8,
"rCount" : 13,
"ruserAvgDay" : 1,
"iNightWeekdayindependent_updateCountCP" : 17,
"currentTimestamp" : NumberLong(1464715201302)
"totalCount" : 98,
"iAvgDay" : 5,
"iDawnWeekendindependent_updateCountCP" : 1,
"iNoonWeekdayindependent_updateCount" : 25,
"ruserAvgMin" : 0
[...]

This plugin starts by retrieving users’ information from the devicesPerUser

collection and then it will iterate through the users skipping those that don’t have

timezone information, also checking if there is already information for this user

in this plugin collection and if not, it creates a new dictionary for it. For each

user it will then do a query to the presenceFromDevices and if that yields a result

it will then query loadEventsToDB collection to retrieve all his events, sorted by

timestamp. This query is limited to results with timestamp greater than the saved

one so that events are not processed twice. Then start and end timestamps are

retrieved from the first and last events returned by the query, and the plugin starts

iterating the results.

Firstly, if the exclude option is set, it will check the presence information for

the identifiers and if the current one matches it will skip the event. Then it will

use the dayOfWeek information to create a typeOfDay, Weekend or Weekday and

the hour to create a timeOfDay, morning if between 7 and 13, noon if 13 and 19,

31

Chapter 3. Data Processing

night if 19 and 1, and dawn between 1 and 7. After this it starts doing counts

based on the event information. These counts take into account several levels of

the Muzzley hierarchy and other information. For example, the first count is the

type of dataset at this time of day in this type of day with this trigger. This is

composed has a field name for the user dictionary, so a field for this type of count

can be iMorningWeekendindependent_updateCount, in which “i” means it is from

the updates dataset. An example of a different type of granularity of this count

would be for example dataset and trigger, which for this case would compose the

field iindependent_updateCount. A duplicate version of each type of metric is

also created with the CP letters on the end of its name, meaning that this metric

only counts events that were marked has changeProperty.

After a lot of different types of counts are done the plugin will then calculate

days passed based on the difference between the first and last event timestamp.

This is important to know how many week and weekend days passed to have statis-

tics based on each. The algorithm then iterates the collected counts calculating

the averages. In order to do this it calls a function that will discount time passed

based on the properties of the count, for example if it is referred to weekend it will

removed all time passed in weekdays and then it will divide the count with the

remaining time to obtain the average. This is done in three levels, minutes, hours

and days.

Finally, as with other plugins, users marked as changed will be updated in the

database. The algorithm however does some simplifications. First when counting

the days passed, even if a user only has a couple of events at the beginning of the

day, that day is counted. Then when discounting the time, for example for time

periods, time is simply divided by 4, the number of periods. And the same for

time passed depending on week or weekend days. In the long run, if the user has

normal activity throughout the days the simplifications won’t distort too much

the real values, but it is something to take into account. Doing the algorithm

other way would probably mean a much more complicated solution with a slightly

better precision that might not make much difference.

32

Chapter 3. Data Processing

It is worth noting that the metrics marked as CP were a later introduction to

the plugin and so they were not present in the initial experiments, but this will be

stated again when explaining the experiments.

3.4.6 createMLDatasetGenStats

This plugin generates more immediate metrics that will serve as the main building

block of the csvs for machine learning. Depending on the chosen mode it will either

create a database entry per message from the loaded ones, or an entry per window

of time. The metrics on this entry are for example: number of write messages

in the past 5 minutes, number of independent updates in the past half hour, etc.

This algorithm also creates information about presence per entry by querying the

presenceFromDevices collection.

Figure 3.10: Partial example database document for the createMLDataset-
GenStats plugin

"wLastMessageDiffCP" : 1292,
"totalDiffSchemasCountHalf" : 1,
"iindependent_updateCountHalfCP" : 1,
"ruleLastMessageDiff" : 0,
"rruleLastMessageDiffCP" : 835,
"ruleCountQuarter" : 5,
"iindependent_updateCountFive" : 1,
"ruleCountHalf" : 5,
"iLastMessageDiffCP" : 0,
"totalDiffSchemasCountQuarterCP" : 1,
"iindependent_updateLastMessageDiff" : 0,
"presenceStatusContinuous" : "n/a",
"totalCountQuarter" : 6,
"iDiffSchemasCountHalf" : 1,
"rDiffSchemasCountHalf" : 1,
"totalCountFiveCP" : 1,
"totalCountHalfCP" : 1,
"iCountHalfCP" : 1,
[...]

The plugin starts by retrieving information from the devicesPerUser collection,

the interactionStatsPerUser collection and its own collection. Then it iterates each

user_id to query the loadEventsToDB collection to retrieve the events that weren’t

processed yet, sorted by timestamp. It will then process them by window or by

event depending on which mode has been selected.

33

Chapter 3. Data Processing

If window mode is selected statistics are calculated each time we move to a

new time frame. In order to do this the algorithm gets the last event timestamp

and the current event timestamp is initialized with the first event time. It then

enters a while cycle that continues as long as the current is lower than the last

timestamp. Inside this while there is another cycle that essentially adds events

to a list as long as the event timestamp is lower than the current timestamp and

there are more events to process. This is the list that will be used to calculate

this time window metrics. In this mode the time metrics are calculated from the

window timestamp and the user timezone.

If event mode is selected, the events are iterated and simply added to the

list to be used to calculate statistics, time metrics are gathered directly from the

event. As with the interactionStatsPerUser, if event exclusion is turned on before

adding to the lists in both window and event mode, those events are skipped if

they were used to gather presence from. Then for each window or each event,

another function goes through the selected events list. Since metrics are based in

messages occurring in the last 1, 5, 15 and 30 minutes, the ones out this timeframe

are removed. This function will then do counts to create the metrics using this

list, for example, wuserFivecount, the number of user writes messages in the last

5 minutes.

Besides count related metrics very similar to the interactionStatsPerUser plu-

gin, this plugin has 2 other types of metrics. Firstly there are the different schemas

metrics. These count the number of messages that use a different schema per time

window and granularity as the other counts. So for example if in the last 15 min-

utes there was an update message for an rgb bulb and an update message for an

alarm that was activated, the metric iDifferentSchemasCountQuarter will be 2.

And if for example another 2 messages for a different rgb bulb were processed,

this metric will still be 2 since no different schema was counted. This is imple-

mented by keeping a list of schemas, appending when a new one is processed and

then retrieving the list length to create the metric value. The reason behind these

metrics is that they represent indirectly the number and types of devices being

34

Chapter 3. Data Processing

interact with. This may be very relevant for presence, for example somebody ar-

riving home probably interacts with different type of devices in a very short time,

switching lights on, changing the thermostat temperature, turning a cooking pot

on, watering plants, etc.

The second type of different metrics are the last message difference. These

basically hold in seconds how much time ago a message of a certain granularity

was generated. So for example if the metric wRuleLastMessageDiff holds the value

5 it means that the last time a write message with the rule engine as trigger was

seen was approximately (since its rounded from milliseconds) 5 seconds ago. This

is implemented by storing the last event of each type, the difference in time is

calculated between the current processing time and the last events of each type.

The idea of these metrics is that even with the counts it may be useful to know

when was the last time a message of a certain type occurred.

As with the interaction stats per user, for each of these types of metrics, the

counts, the counts of different schemas and the last messages differences, an equal

counterpart exists that holds the same type of information but only takes into

account events that were marked as changedProperty.

Regardless of the selected mode, the last step for creating an entry in this

plugin collection is retrieving information about presence. Values for presence

are stored individually for each type of presence, non-continuous continuous and

user_NDI, and an “n/a” is used when a user doesn’t have that type. A total

presence value is also stored. In order to do this a function iterates through the

presence events of the user and retrieves the values of the events that have time

windows in which the timestamp of the event/window fits. If more than one event

is gathered the values are summed and if the value is bigger than 1 it is lowered

to one. Finally the new entry is inserted in the database in a bulk operation, the

same way it’s done in the loadEventsToDB plugin.

The main parameters for the plugin is the mode: window / event and the size

of the time window. Initially this plugin would also restrict the users from which

35

Chapter 3. Data Processing

metrics would be calculated depending on their number of devices and average in-

teractions, but both this function, and the possibility to create a dataset of users

with specific type of presence information, were implemented in the createCSVs-

ForPresence plugin. The reason for this is the time this plugin takes to run, in

this way we need to run it fewer times.

The different schemas, the last messages differences and the metrics marked

as CP were a later introduction to the plugin and so they were not present in the

initial experiments, but this will be stated again when explaining the experiments.

3.4.7 createCSVsForPresence

This plugin uses the information generated in the others to create csv files that

will later be used with machine learning algorithms. It creates a line of csv per

createMLDatasetGenStats document, writing in the file the information gener-

ated in this plugin plus other like the ones presence in the interaction stats and

devicesPerUser, such as: total number of devices of this user, total number of

components, etc. It can also create datasets with some variations: only writing in

the csv lines of users with more than X devices, only using information presence

from continuous sources, etc.

Figure 3.11: Example database document for the createCSVsForPresence plu-
gin

"timestamp" : NumberLong(1464683282852),
"user_id" : "t4bn98yar4",
"lastIdsProcessed" : [

ObjectId("57cdc2b8c1bec10834f3fdf7"),
ObjectId("57cdc2b8c1bec10834f3fdf8")

]

It starts by retrieving information from the devicesPerUser, the interaction-

Stats, the createMLDatasetGenStats and its own database collection. It then

iterates the createMLDatasetGentStats information since each entry in this col-

lection will correspond to a csv line. Per entry it will first check the eligibility of

36

Chapter 3. Data Processing

this line according to the presence information available for the user, for example

if a continuous only information dataset is to be created, entries of users who don’t

have that type of information will be skipped. The same is done in case minimums

are set for devices or interactions averages, for example if minimum devices is 5

and a user only has 3, its entries will be skipped. Except when stated these mini-

mums for tests are always 1. This means users need to have at least one device to

be eligible, of course, but they also need to have at least 1 interaction per day as

average.

After this it will check its own collection information to see which entries of

this user were already processed using the timestamps. If the entry isn’t skipped

after all these checks it will be passed to a function that will create the csv line.

This function will write the presence status and call other functions depending

on the selected mode. The 0 mode will write in the line features related to the

devicesPerUser plugin, such as number of devices of a user, and the createML-

DatasetGenStats metrics. Mode 1 will write metrics from 0 mode plus the calcu-

lated statistics from the interactionStatsPerUser. Finally the mode 2 will write all

the previous metrics plus the same ones but to the schema level granularity, but

was not used at all in the dissertation.

The main difference between the MongoDB collections and the csvs is that in

the database a metric will not be stored if its 0, for example if there is no update

messages count in the last five minutes the document won’t have that field. In the

csv however all features must be there even if they are 0. In order to do this the

plugin has lists has global variables that contain each part of the possible name

combinations for metrics, for example the list [“w”, “r”, “i”] represents the types of

message, and then it combines them and checks if the current document has that

metric name as field, gathering the value if it has or writing 0 in case it doesn’t.

Finally the line is inserted into a created csv file. Segmentation Engine func-

tions are used that automatically take care of writing the csv headers. There is

also a limit of lines per file, if the limit is reached a new file is created, this is to

help making the created files more manageable to inspect, copy, etc.

37

Chapter 3. Data Processing

3.5 Non Processed Schemas

Because of the nature of some devices certain schemas have a lot more entries than

others. Typical examples are the update messages of devices like thermostats, noise

level meters, and humidity meters. The number of messages generated by these

devices is orders of magnitude greater than the others and thus heavily increase

processing time. This led to the decision that for this project, we were not going

to process the related schemas. This is a problem mostly with update and read

messages, but for consistency they are also not processed in the write messages

datasets.

However it is interesting to note that some of these types of devices may by

themselves serve as a presence detection system, the noise levels for example may

reveal important information about presence. It would have been interesting to use

these messages in the presenceFromDevices plugin to try to retrieve more presence

relevant events. However noise levels would have to be scanned and processed first

in order to try to identify per house, what are the noise levels boundaries per class.

This is not a trivial task, it would also not be very precise since we have no specific

information about presence that we can use. The same is true for temperature

levels, humidity levels and carbon dioxide levels, all of them would be very useful

but is not an easy and straightforward task to include that related information

here. But it is indeed very interesting future work that will complement and

enhance the approach described in this document.

38

Chapter 4

Initial Experiments and Exploration

4.1 Initial Exploration

The development of the Segmentation-Engine and the creation of these initial

datasets started at the same time as this project. So initially there wasn’t much

available information to work with. Regardless, initial csv datasets were generated

with older versions of the described plugins and were very important to see the

capabilities of the planned approach.

In order to do that Weka [26] was used because of its usability, automatic

plotting and correlation of data features, and possibility to try a lot of machine

learning algorithms and tools easily. Weka is a machine learning tool developed

in the University of Waikato in New Zealand. It can be used as a library called

directly from java code, with a simple terminal like interface, or with a graphical

interface. The graphical interface has three modes explorer, where a dataset can

be loaded and then filters can be applied, supervised or unsupervised algorithms

can be used, feature selection can be done, etc. Experimenter, where a set of

algorithms can be applied to a dataset, varying their parameters or other variables,

to obtain meaningful results. And finally the KnowledgeFlow that is a way to set

up machine learning experiments but using graphic objects to create the process

flow.

39

Chapter 4. Initial Experiments and Exploration

This initial dataset was gathered from 3 days of Muzzley platform interactions.

After running the plugins in different modes the generated csvs size ranged from

2MB to 300MB. This data was from roughly 900 users, but depending on the mode

only the data from some users could be used. The results obtained in this phase

showed that the approach is interesting but more exploration was needed. Tests

were done using regression, treating presence as a continuous values, and discretiz-

ing the presence value gathered in the plugins into two or more classes. Values

discretized to two classes became the norm because there aren’t a lot of different

values set for the presence related events, and they are heuristically defined so it

didn’t make sense to use regression or more classes.

An example result, gathering information only from continuous sources and

discretizing into two classes, using a j48 decision tree, the Weka implementation

of the C4.5 algorithm [27], and 10-Fold cross validation as evaluation method,

we were able to achieve overall 99% of correctly classified instances. But for the

same case, using non-continuous sources for presence gathering the results for the

presence class were below 50%.

However as it will be discussed further along, we discovered the datasets must

be separated by type of presence and further development was made on the plugins,

so focus will be on the results of the next phase.

Feature selection algorithms were also used to eliminate most features, since

with the described plugins over 300 features are generated but only 30 to 60

remained after applying feature selection filters. This step helped training the

classifier faster, with better precision and to understand what information was

more useful.

After this phase more data was available and Weka was switched for Scikit-

Learn [28] in order to have faster and more capable algorithms, and also an easy

way to build a machine learning pipeline. Scikit-Learn is a free software machine

learning Python library that features several classification, regression and cluster-

ing algorithms. It uses and is prepared to work with NumPy and SciPy.

40

Chapter 4. Initial Experiments and Exploration

Having no previous experience with Python or Scikit-Learn we were moti-

vated to learn Python to write the plugins described before, since the rest of the

Segmentation-Engine was built with this language, and to use Scikit-Learn for

the machine learning part because of its popularity and good results. Some ex-

tra considerations have to be taken into account, for example to use Scikit-Learn

every feature has to be numerical, Weka instead could detect and assume String

features as nominal. Despite the differences, adaptation was easy and two Scikit-

Learn based Python script like files to do the machine learning experiments were

created. These will be described in the next sections.

4.2 Machine Learning Scripts created

4.2.1 fullAlgorithm

The first script is called FullAlgorithm because it uses tools from all parts of the

machine learning process. The program starts by using Pandas [29], a Python data

manipulation library, to read from the created csvs. Then Pandas functions are

called to transform the created structure to matrices supported by Scikit-Learn.

After this the presence attribute is discretized to {0, 1} meaning unknown or

presence. Feature selection is done choosing an algorithm from these: SelectKBest,

with Chi2 [30] as the scorer function, LinearSVC [31] or a Random Forest [32], the

last two cases are classifying algorithms which in their normal operation will rank

the features in terms of their contribution to classification, so they can be used in

this feature selection phase.

The Random Forest algorithm was heavily used throughout the dissertation,

it is an ensemble method that consists in creating many decision trees and then

use the mode of their classification or the mean prediction in the case of regression

as the output. Each tree is built using a subsample of the instances and of the

features. The idea is to use the powerful prediction capabilities of decision trees

to build better models that suffer less from overfitting.

41

Chapter 4. Initial Experiments and Exploration

The next phase is parameter search, the classifier chosen, in this case a Random

Forest, is fitted and tested to see which options for the classifier best suit the

problem. This process also has 3 modes, the first is random parameter search, the

second grid search and in the last both types of searches are used. Parameters are

scored by testing the data with a 3-fold cross validation, and the best parameters

are chosen. Finally the algorithms will be evaluated with a 5-fold cross validation

for reference.

At the end of the process the chosen estimator will be stored to physical mem-

ory using the pickle Python library. The array of chosen attributes is also stored

this way. A file is created since the beginning of the process that serves as log.

This process is done with a small dataset of all the csv information generated so

that heavy tasks, such as feature selection, and even heavier, parameter search,

can be done, in a reasonable time, with several variations trying to find the best

machine learning algorithm configuration.

4.2.2 usingSavedConfig

The second script is called usingSavedConfig, the objective of this one is to use

the selected features and classifier from the FullAlgorithm to classify and test on

a bigger dataset. In order to do that the algorithm loads the pickled feature array

and starts reading from the dataset already excluding the non-selected features.

Then the classifier is loaded and 10-fold cross validation is used to train and test

it on the new data. These new algorithms were used with a month long gathered

data from the Muzzley platform. The total data for each scenario ranged between

less than 1 GB and 15GB, depending on the processing phase with the plugins.

The results obtained will now be presented.

42

Chapter 4. Initial Experiments and Exploration

4.3 Initial Scikit-Learn Experiments

Due to the way the instances are tagged, the experiments are mainly divided be-

tween "excluding" and "not excluding". The “excluding” experiments are more

difficult scenarios where the events that were used to calculate presence infor-

mation are not taken into account in the counts and averages calculated by the

plugins. This is done using an identifier that uses profile, component and property

id. So no brightness events of a light bulb will enter the statistics if the brightness

information of this bulb was used to gather presence information for a user in the

heuristic labeling step. But if, for example, the color-RGB property of this bulb

wasn’t used for presence labeling, the events related to this will enter the statistics.

Although the metrics used don’t contain information about values and thus the

algorithm can’t use the same information used for tagging we are also doing tests

with this setup to further explore the capabilities of the approach.

As stated before, the gathered presence value from the plugins was discretized

to 0.0 or 1.0, and will be referred as unknown and presence from now on. It is

important to note that for the non-continuous and the user_NDI datasets the 0.0

unknown class are instances that we didn’t have information to tag as presence.

While in the continuous dataset 0.0 unknown refers to instances that according to

the gathered information there shouldn’t be presence in the house.

The first experiments yielded very good results, over 0.9 precision and recall

was achieved for both classes, excluding and not excluding labeling information.

However, after further exploration we realized the algorithm was using the metrics

to detect each user almost individually and then classifying according to if the

user has mostly presence tagged instances or unknown ones. This was possible

because users with devices that contribute with continuous type information had

much more presence tagged instances than the ones which only had non-continuous

type information.

This led to the conclusion that for now the information gathered from each sep-

arated type of event: non continuous sources, ex: light bulbs, continuous sources,

43

Chapter 4. Initial Experiments and Exploration

for example: alarms, and user_NDI shouldn’t be all gathered in the same dataset.

So the experiments were repeated with different types of datasets.

Results will now be presented stating the difference between them, depending

on whether events were excluded or not, and which type of events were used to

gather presence information from. These results are obtained with the process

previously explained in the Scikit-Learn Experiments section with the difference

that the parameter search phase was not done due the time this phase takes. Also

the features created from the changeProperty marked events, the different schemas

features and the last message difference features weren’t already implemented yet.

The next table shows the selected features for the two first presented scenarios.

This is just to complement the results since further discussion of the features will

be done in section 4.4 and in Chapter 5.

44

Chapter 4. Initial Experiments and Exploration

Table 4.1: Features used in first two results that will be presented

experiment features

window

non-

continuous

not exclud-

ing

hour, minute, typeOfDay=Weekday, typeOfDay=Weekend, time-

OfDay=Morning, timeOfDay=Noon, timeOfDay=Night, time-

OfDay=Dawn, totalDevices, individualUnits, differentSchemas,

rruleCountMin, rruleCountFive, rruleCountQuarter, rruleCountHalf,

iindependent_updateCountMin, iindependent_updateCountFive,

iindependent_updateCountQuarter, iindependent_updateCountHalf,

rCountFive, rCountQuarter, rCountHalf, iCountFive, iCountQuarter,

iCountHalf, totalCountMin, totalCountFive, totalCountQuarter,

totalCountHalf, wWeekdayAvgDay, rWeekdayAvgDay, rWeekendAvg-

Day, iWeekdayAvgDay, iWeekendAvgDay, wruleAvgDay, ruserAvgDay,

ruserAvgHour, rruleAvgDay, iindependent_updateAvgDay, iindepen-

dent_updateAvgHour, rAvgDay, iAvgDay, iAvgHour, totalAvgDay,

totalAvgHour

window

non-

continuous

excluding

hour, minute, typeOfDay=Weekday, typeOfDay=Weekend, time-

OfDay=Morning, timeOfDay=Noon, timeOfDay=Night, timeOf-

Day=Dawn, totalDevices, individualUnits, differentSchemas, wrule-

CountHalf, rruleCountFive, iindependent_updateCountMin, iinde-

pendent_updateCountFive, iindependent_updateCountQuarter, iin-

dependent_updateCountHalf, wCountQuarter, rCountFive, rCoun-

tQuarter, rCountHalf, iCountFive, iCountQuarter, iCountHalf, to-

talCountMin, totalCountFive, totalCountQuarter, totalCountHalf,

rWeekdayAvgDay, rWeekendAvgDay, iWeekdayAvgDay, iWeekendAvg-

Day, ruserAvgDay, rruleAvgDay, iindependent_updateAvgDay, rAvg-

Day, iAvgDay, totalAvgDay

In the first new experiment events were not excluded and only presence gath-

ered from non-continuous events was used:

45

Chapter 4. Initial Experiments and Exploration

Table 4.2: Classification report using non-continuous events for labeling not
excluding any information from the metrics

classes precision recall f1-score support

unknown 1.0 1.0 1.0 4979672

presence 0.87 0.49 0.62 20330

avg/total 1.0 1.0 1.00 5000002

Table 4.3: Confusion matrix for the same scenario of Table 4.2

actual classes
classes predicted

unknown presence

unknown 4978142 1530

presence 10427 9903

As with the initial experiments, we have now removed the events that were used

to collect presence information from the statistics and repeated the experiment

with the previous dataset:

Table 4.4: Classification report using non-continuous events for labeling and
excluding information used for labeling from the metrics

classes precision recall f1-score support

unknown 1.0 1.0 1.0 4980543

presence 0.54 0.14 0.22 19459

avg/total 0.99 1.0 1.00 5000002

Table 4.5: Confusion matrix for the same scenario of Table 4.4

actual classes
classes predicted

unknown presence

unknown 4978246 2297

presence 16726 2733

46

Chapter 4. Initial Experiments and Exploration

Then the same experiment was done but this time a minimum of devices,

schemas and interaction per day was enforced. And then a maximum limit of

these features was used. So only users who fulfilled these conditions were in the

dataset. This tested if the model would behave better when there was information

from more or less devices available. The results weren’t better, recall dropped to

0.12 and 0.13 respectively. Precision however climbed to 0.60 in the case of the

maximum devices, which suggests the algorithm is more certain of presence cases

with less devices.

In order to use the rest of the presence information, datasets were created

separately for users who had continuous information and user_NDI information.

For the continuous case:

Table 4.6: Classification report using continuous events for labeling and not
excluding any information from the metrics

classes precision recall f1-score support

unknown 0.72 0.62 0.67 412795

presence 0.83 0.89 0.86 884421

avg/total 0.80 0.80 0.80 1297216

Table 4.7: Confusion matrix for the same scenario of Table 4.6

actual classes
classes predicted

unknown presence

unknown 257197 155598

presence 100776 783645

And with the user_NDI information:

47

Chapter 4. Initial Experiments and Exploration

Table 4.8: Classification report using user_NDI for labeling and not excluding
any information from the metrics

classes precision recall f1-score support

unknown 1.0 1.0 1.0 441060

presence 0.67 0.39 0.49 2343

avg/total 1.0 1.0 1.00 443403

Table 4.9: Confusion matrix user_NDI not excluding for the scenario of Table
4.8

actual classes
classes predicted

unknown presence

unknown 440618 442

presence 1435 908

These were then reproduced again but excluding the events used to gather

presence information. For the continuous case the results remained mostly the

same. For the user_NDI case recall dropped quite significantly reaching 0.08.

Finally, we experimented with a set of users who had all types of information and

this experiment achieved good results, similar to the previous presented in Table

4.8.

After this, all these variations were tested again but with the difference that

each line of the csv was created per event instead of using a time window. In

the non-continuous dataset this approach lowered the scores overall but raised

recall in some cases. For the continuous cases this approach also lowered the

obtained scores. In the user_NDI dataset though, especially with the excluded

events dataset, the results had a significant increase. Finally for the dataset of

users who had all types of information the results remained practically the same.

The number of users present in each dataset varied greatly, for the non-

excluding datasets: the non-continuous has 1220 users, the continuous 189, the

48

Chapter 4. Initial Experiments and Exploration

user_NDI 56, and only 5 users had information of all types. For the excluding

cases the non-continuous has 778 users, the user_NDI 26 and for the rest numbers

remain the same. The difference in number of instances of each class was also very

big, mostly just the continuous dataset had more lines of the presence class, for

non-continuous and user_NDI in most cases the unknown class was more present

as the showed results illustrate.

Despite these differences in the datasets and the results obtained, the many

experiments gave us an insight to the problem. As expected the algorithm as a

hard time identifying possible presence for the non-continuous case. Even counting

in the metrics the messages that were used to determine the user’s presence and

build the training-set’s labels, is not a guarantee of a high accuracy, which means

it probably makes sense to continue counting these instead of handicapping so

heavily the training data just to assure the model generalizes the rule. For the

other cases results were quite good, except in the user_NDI only dataset were

it didn’t have a very good recall, probably because this is the scenario closest to

explicit information and so its more difficult.

4.4 Feature Selection

Initial tests with the three techniques for feature selection described in the scripts

section showed that there wasn’t a significant difference in performance between

them. Also when using the SelectKBest algorithm with the Chi2 metric, scores

didn’t vary much by choosing the 100 best features or the 50 best. These results

coupled with the fact that using a Random Forest’s feature importance values is a

fast and more adaptable method for each scenario, since the number of attributes

chosen is based on their scores instead of an initial argument, led to the adoption

of this technique for all the tests, including the ones already presented.

The large number of features is due to the different possible granularity and

different time period counts, so the main objective with feature selection was to

try to find out what type of metric specificity worked best.

49

Chapter 4. Initial Experiments and Exploration

Table 4.10: Top feature importance values of some of the initial results ac-
cording to the Random Forest algorithm

experiment top features

window non-

continuous not

excluding

(minute,0.162), (hour, 0.128), (iindependent_updateCountFive,

0.074), (totalCountFive, 0.059), (iCountFive, 0.044), (iindepen-

dent_updateCountQuarter, 0.043), (iCountHalf, 0.029), (differentSchemas,

0.026), (rruleCountHalf, 0.025), (iCountQuarter, 0.022),

window continu-

ous not exclud-

ing

(hour, 0.121), (minute, 0.074), (individualUnits, 0.047), (iWeekdayAvg-

Day, 0.038), (iindependent_updateAvgDay, 0.038), (iAvgDay, 0.03), (rWeek-

dayAvgDay, 0.028), (rAvgDay, 0.028), (typeOfDay=Weekend, 0.027)

window

user_NDI not

excluding

(minute, 0.144), (hour, 0.141), (totalCountFive, 0.06), (rCountFive, 0.03),

(rruleCountFive, 0.027), (wCountFive, 0.027), (wruleCountFive, 0.025), (to-

talCountHalf, 0.022), (iAvgDay, 0.022), (iWeekendAvgDay, 0.021)

window non-

continuous

excluding

(minute, 0.296), (hour, 0.267), (individualUnits, 0.024), (totalCount-

Five, 0.016), (totalCountQuarter, 0.016), (totalCountHalf, 0.016), (typeOf-

Day=Weekend, 0.015), (totalDevices, 0.015)

window continu-

ous excluding

(hour, 0.122), (minute, 0.075), (rWeekdayAvgDay, 0.039), (iWeekendAvg-

Day, 0.039), (individualUnits, 0.036), (iWeekdayAvgDay, 0.036), (iindepen-

dent_updateAvgDay, 0.033), (iAvgDay, 0.033), (totalAvgDay, 0.033), (type-

OfDay=Weekday, 0.03)

window

user_NDI ex-

cluding

(minute, 0.432), (hour, 0.387), (typeOfDay=Weekend, 0.025), (typeOf-

Day=Weekday, 0.015), (timeOfDay=Noon, 0.009), (totalCountFive, 0.009),

(totalCountHalf, 0.009), (timeOfDay=Night, 0.008), (timeOfDay=Dawn,

0.008), (iCountFive, 0.008), (iCountHalf, 0.008)

As Table 4.10 shows selected features depend on the type of dataset in question

and if the dataset excludes or not the events used to gather presence. By further

examining the Table and the complete output of the algorithms some remarks can

be done:

• Hour and minute were in most cases the top relevant features. However,

when removing them a lot of tests achieved better performance, in the order

of 0.1, and in the rest the drop in performance was only of 0.1. For the

hours its normal that a pattern related to the habits of users exists and

it may sometimes lead the algorithm to, however for minutes this is more

50

Chapter 4. Initial Experiments and Exploration

strange and may be connected to the periodicity in the generation of some

messages, or with the mechanisms of the rules engine.

• For the averages created in the interactionStatsPerUser plugin the most rel-

evant usually were the hourly and daily ones. The most selected from these

time periods were usually the total ones, totalAvgHour and totalAvgDay, but

type of dataset (reads, writes, updates) per type of day and type of dataset

per type of day per trigger were also highly chosen.

• In terms of specificity metrics that counted by type of dataset and type of

trigger were the most significant.

• In the count metrics from createMLDatasetGenStats the quarter and half

hour periods were the most relevant. But for the non-continuous and the

user_NDI datasets the minute and five minutes counts were important.

• Results for the event approach are not present in the table but they mirror

the observed pattern with some differences: the main one is that in all

scenarios of the continuous dataset there are higher scores for the count

features instead of average ones. Other differences are more count features

scores for the excluding cases, and slightly different, for example write related

instead of read, counts in all experiments.

Despite these points since the feature selection phase is not very time consum-

ing, and the training and validation with the selected features takes an acceptable

time, we decided to continue outputting all possible features and let the selec-

tion algorithm reduce the complexity. Except for hour and minute that are also

outputted but then excluded in the load phase in the results of the next chapter.

4.5 Addressing the Imbalance Issue

Because of the way presence information is created it is normal that the datasets

that use non-continuous events and the user_NDI information have significantly

51

Chapter 4. Initial Experiments and Exploration

more instances of the unknown classes than the presence ones. The classes are not

represented equally, this means our datasets are imbalanced. It is very common

for a dataset to not be completely balanced, however in this case the numbers of

each class vary greatly and so it is a problem for training the algorithm since it will

favor the class with more instances. It is also a problem for performance metrics,

since overall precision and recall don’t reflect well the classification quality, but

this is something we took into account from the beginning and the reason why the

results analysis focuses on the scores obtained in each class.

A lot of techniques and procedures can be applied to try to mitigate this

dataset imbalance, examples of these are: gathering more data, which in this case

wouldn’t change the distribution, generating synthetic samples, it could help in

these datasets but since the class tagging is done heuristically we chose to not use

any other method that could distort the results. A more suitable algorithm can be

chosen, but random forests is already a good algorithm for imbalanced datasets.

The data can be resampled, meaning changing the instances that go into the train

and tests sets. Weights can be applied to classes or samples, etc.

So in order to try to cope with these differences between number of instances

of each class, we have tried two techniques available in Scikit-Learn and two other

ones available in the Imb-Learn [33], Imbalanced Learn, an independent library

that extends Scikit-Learn with a lot of different re-sampling techniques.

First we tried creating the classifiers in scikit with different class weights, this

means the classifier will be more penalized making mistakes of a certain regarding

with another. So in our case we tried the weights 1 for the 0, unknown class, and 5

for the 1, presence class. Next we tried a very similar technique: sample weights,

the difference here is that each sample has its own weight instead of the sample

being set by class but in theory, if samples of the same class have the same weight,

the techniques should have the same results, and indeed they had. Then we tried

using other weights and the results will be presented in Table 4.11 and discussed

after it.

52

Chapter 4. Initial Experiments and Exploration

Then we resorted to the Imb-Learning library that offers re-sampling func-

tions such as down-sampling (or under-sampling), over-sampling and the SMOTE

[34] Synthetic Minority Over-sampling Technique . As stated, re-sampling means

changing the composition in terms of instances of the train and test sets. Down-

sampling means that the dataset will be downsized approximating the number of

instances of each class to the numbers of the less common class. So this usually

means discarding instances of the majority class. If we have for example 1000 in-

stances, 900 of the 0 class and 100 of 1, a normal 1:1 down sampling would mean

200 instances in the final dataset, 100 of the 0 class and 100 of the 1. Over-sampling

means that the number of instances of the minority class will be augmented to the

number of the majority class, in a simple over-sampling this is done by repeating

instances. So in the last example the final dataset would be composed of 1800

instances, 900 from the 0 class and 900 from the 1 class.

SMOTE is one of the more complex resampling techniques available in the

Imb-Learn, it is an oversampling technique that instead of repeating samples from

the minority class it creates new synthetic samples. These types of more advanced

techniques have reported to achieve very good results, but we had problems trying

them because of the size of the dataset and the number of features. Besides, as

stated, before we prefer not to work with synthetic samples.

So experiments for the most interesting cases were done adding an additional

re-sampling phase with Imb-Learn that was either random down-sampling, or ran-

dom over-sampling. Random in this case means that in the down-sampling case

the majority class samples are randomly selected, and in the over-sampling that

the repeated instances are also random. Scores improved significantly when re-

sorting to these techniques. Table 4.11 will show the obtained performance with

each one for the case of the window based approach using information from the

user_NDI for the presence values.

From these experiments the techniques that have shown more potential are

down-sampling and over-sampling, with the second one having slightly better re-

sults. Class and sample weights struggle because of the great difference in number

53

Chapter 4. Initial Experiments and Exploration

Table 4.11: Comparison of classification reports for several techniques to cope
with the imbalance problem

technique classes precision recall f1-score support

base
unknown 1.00 1.00 1.00 441060
presence 0.40 0.33 0.36 2343
avg/total 0.99 0.99 0.99 443403

classe weight: balanced
unknown 1.00 0.84 0.91 441060
presence 0.02 0.55 0.03 2343
avg/total 0.99 0.84 0.91 443403

sample weight: 5
unknown 1.00 1.00 1.00 441060
presence 0.36 0.38 0.37 2343
avg/total 0.99 0.99 0.99 443403

sample weight: 200
unknown 1.00 0.83 0.90 441060
presence 0.02 0.58 0.03 2343
avg/total 0.99 0.82 0.90 443403

sample weight: 400
unknown 1.00 0.72 0.83 441060
presence 0.01 0.67 0.02 2343
avg/total 0.99 0.72 0.83 443403

sample weight: 2000
unknown 1.00 0.59 0.75 441060
presence 0.01 0.72 0.02 2343
avg/total 0.99 0.60 0.74 443403

class weight: 1000
unknown 1.00 0.62 0.77 441060
presence 0.01 0.71 0.02 2343
avg/total 0.99 0.62 0.76 443403

down sampling
unknown 0.75 0.80 0.77 2343
presence 0.78 0.73 0.75 2343
avg/total 0.76 0.76 0.76 4686

over sampling
unknown 0.85 0.81 0.83 441060
presence 0.82 0.86 0.84 441060
avg/total 0.84 0.83 0.83 882120

of samples, since much greater weights are required to increase scores in the pres-

ence class that then result in lowering the performance in the unknown class.

Advanced setups could have been tried, for example a different percentage of re-

sampling, instead of 50%/50% and then applying different weights to the classes,

but since results improved significantly with the re-sampling tests, these hypoth-

esis were not further explored.

Taken only the scores into consideration the obvious choice would be to pick

54

Chapter 4. Initial Experiments and Exploration

over-sampling for further improvement of the scores in the rest of the project.

However, this technique has problems in our case that are not easily represented

here. The first is that this technique creates additional copies of instances from the

minority class in order to have a 50%/50% distribution, but since these scores were

obtained using cross validation, this means that the high performance might be

due to overfitting, since for each fold there were probably instances in the training

and test sets that were the same. The second, and more important aspect, because

the other could be circumvented, is that we are working with big datasets that

take a lot of computational resources to process and over-sampling is a technique

that in this case heavily increases the number of instances to process. And so,

down-sampling was chosen has the technique to further try to improve the results

obtained from now on.

4.6 Results Exploration

The idea for this phase was to explore the results obtained so far and the values

distribution in the datasets to find ways to improve the classification. Although

this didn’t contribute significantly with improvements to the algorithms, work

done and tools used will be described in this section to provide further insight

into the problem and to serve as example for this type of exploration. An extra

Python script was created, called dataVisualization, again using Scikit-Learn and

Pandas, very similar to the fullAlgorithm, but with some different capabilities.

The first one is to output the dataset with the extra predicted column that

contains the values that the algorithm has predicted for every instance, and an-

other column called Correct, that hold the values "no" or "yes", depending on the

correctness of prediction. The purpose of this is to try to manually find patterns

that lead to the failure or success of the classification. This was done for small

cases to be able to open the generated CSVs in Microsoft Excel and use tools

available in this program like column sorting to better analyze the data. Some

interesting insights from these tasks are:

55

Chapter 4. Initial Experiments and Exploration

• Metrics of average statistics still feel like a way to identify each user, although

this is mitigated by the randomness and the way algorithms like the random

forest work. However as seen in the feature selection section the classifiers

takes more than these features into account.

• A lot of the features don’t provide extra information, especially in the case

of the event based mode when a lot of messages are generated in a short

period of time.

• As expected it is very difficult to understand the algorithms prediction just

with this examination.

The next step was similar, the predicted dataset was output but this time

resorting to TreeInterpreter [35], a Python package that enables the decomposi-

tion of predictions from scikit’s Decision Tree or Random Forests. The output is

composed of an array of values per features, with length equal to the number of

classes, in this case two. These values represent the contributions of this feature

to the decision of prediction. The final column is the prediction, an array with the

total value of prediction per class. This is a very interesting concept but difficult

to analyze and in the end it didn’t result in new conclusions or ideas.

A Decision Tree and the trees created with the Random Forest algorithm are

composed by rules in their nodes which represent divisions in the data depending

on the values of features. After the creation of the model we can extract these rules

to try to visualize the generated tree. So a Decision Tree was used for simplicity

and an extra step was created to extract to output the tree like structure of rules.

The files created however are quite complex and difficult to follow, so no insights

were gained with this process. An extract of the generated output is presented

next:

56

Chapter 4. Initial Experiments and Exploration

Figure 4.1: Example of generated tree structure

if (iWeekdayAvgDay <= 18.5) {
if (rruleAvgDay <= 5.0) {
if (iCountFive <= 30.5) {
if (ruserCountHalf <= 297.5) {
if (rWeekdayAvgDay <= 78.5) {
if (iWeekendAvgDay <= 0.5) {
if (iindependent_updateCountQuarter <= 0.5) {
if (minute <= 55.5) {
if (totalCountMin <= 94.5) {
if (hour <= 16.5) {
if (minute <= 50.5)
if (hour <= 1.5) {
if (totalDevices <= 4.0) {
if (minute <= 48.5) {
return [[0. 54.]]
} else {
if (rruleCountHalf <= 2.5) {
return [[1. 0.]]
} else {
return [[0. 2.]]
}

[...]

Finally the visualization package of pandas was used to create graphs to better

analyze the results. Some of them will now be presented, taken from a test with

the event based approach using continuous events for tagging excluding messages

used to gather presence from the metrics and with no down-sampling:

This first graph compares the number of different schemas among devices the

user has to the number of correct and incorrect predicted instances. As can be

seen the number of correct predictions grows slightly as the number of different

schemas does. So it can be said that the number of different types of devices, or

devices with several different types of properties influences the positively on the

prediction. This isn’t true for all scenarios, for the user_NDI datasets for example,

this feature almost didn’t influence classification.

57

Chapter 4. Initial Experiments and Exploration

Figure 4.2: Violin graph of the number of different schemas between devices
users own vs number of correctly predicted instances

In the next one, figure 4.3, the metric totalAvgDay is confronted with the

correct number of predictions. This metric is an average number of messages this

user and his devices generate per day. As with the other metric, a higher number

means better prediction, and a number close to 0 increases heavily the number of

incorrect instances. This behaviour is more consistent among scenarios.

The metric totalCountHalf, that holds the number of interactions counted

in the last half hour is the next one to be compared to the number of correct

predictions in figure 4.4. A higher value means just some slightly better results

in some parts of the curve. Another thing to note is that when values go over

approximately 750 all instances are correctly classified.

58

Chapter 4. Initial Experiments and Exploration

Figure 4.3: Violin graph of the totalAvgDay metric vs number of correctly
predicted instances

Figure 4.4: Violin graph of the totalCountHalf metric vs number of correctly
predicted instances

59

Chapter 4. Initial Experiments and Exploration

Following the trend for this scenario a higher number of devices means more

correct classifications as can be seen in figure 4.5. But this is not true for all

scenarios.

Figure 4.5: Violin graph of the total number of devices users own vs number
of correctly predicted instances

It is difficult to draw general conclusions since depending on the scenarios some

features influenced more or not, which means for now it is interesting to keep using

all features and resorting to feature selection. It seems things depend mostly on

the type of dataset, as concluded before, and generally, more devices and more

messages, meaning more information available, leads to better results with the

continuous type, while for the user_NDI and the non-continuous its the opposite.

These types of analysis are very interesting but in our project didn’t lead to

practical changes to improve the results. The analysis of the prediction output, the

features contribution and the trees structure were difficult to analyze and draw

conclusions, the graphics were more clearer although covering all scenarios and

features with them would take a lot of time. Reflecting on the conclusion of the

previous paragraph, in the future this type of analysis may serve for example to

60

Chapter 4. Initial Experiments and Exploration

understand from which number of devices, different devices and usage would the

application be able to provide a presence indicator with good confidence.

4.7 Exploration with Other Algorithms

Although in the very initial experiments with Weka several algorithms were tested

to find the most suited for the problem, the switch to Scikit-Learn brought more

computational efficiency and access to some other algorithms or different imple-

mentation of the ones in Weka. And so it made sense to again try the datasets

with a set of algorithms to see if there is one which naturally was more suited for

our objective.

The typical, or more popular, ones available in Scikit-Learn were chosen, and

then an additional algorithm was installed and tried: XGBoost [36] , an highly

optimized version of the gradient boosting algorithm that has been gaining a lot of

attention in the recent years because it was used to win a lot of machine learning

competitions, and used in production by a lot of companies. The main idea of the

algorithm is to create an ensemble of many weak prediction models, in this case

decision trees, and combine them into a strong model using boosting, an iterative

process to improve performance based on a cost function.

Besides this an extra technique was tried called Voting, a meta-classifier avail-

able in Scikit-Learn that takes a list of classifiers as input and then the idea is that

the prediction is chosen as the majority prediction of the ensemble of classifiers.

The voting ensemble in this case consisted in Logistic Regression, LinearSVC,

adaBoost and XGboost.

A table will now be presented that will exemplify results obtained for the

window mode using user_NDI for presence information, already with the down-

sampling phase active:

61

Chapter 4. Initial Experiments and Exploration

Table 4.12: Comparison of classification reports using different classification
algorithms

algorithm classes precision recall f1-score support

decision tree

unknown 0.76 0.81 0.78 2343

presence 0.79 0.74 0.77 2343

avg/total 0.78 0.77 0.77 4686

random forest

unknown 0.73 0.84 0.78 2343

presence 0.81 0.68 0.74 2343

avg/total 0.77 0.76 0.76 4686

logistic regression

unknown 0.68 0.87 0.76 2343

presence 0.82 0.59 0.69 2343

avg/total 0.75 0.73 0.73 4686

LinearSVC

unknown 0.69 0.87 0.77 2343

presence 0.82 0.60 0.69 2343

avg/total 0.75 0.73 0.73 4686

knn

unknown 0.80 0.62 0.70 2343

presence 0.69 0.85 0.76 2343

avg/total 0.74 0.73 0.73 4686

extra trees

unknown 0.74 0.82 0.78 2343

presence 0.80 0.72 0.76 2343

avg/total 0.77 0.77 0.77 4686

adaboost

unknown 0.71 0.84 0.77 2343

presence 0.80 0.65 0.72 2343

avg/total 0.76 0.75 0.74 4686

xgboost

unknown 0.75 0.80 0.77 2343

presence 0.78 0.73 0.75 2343

avg/total 0.76 0.76 0.76 4686

voting

unknown 0.68 0.93 0.78 2343

presence 0.89 0.56 0.69 2343

avg/total 0.78 0.74 0.74 4686
62

Chapter 4. Initial Experiments and Exploration

It is interesting to note that there isn’t an algorithm that can be singled out

as much better than others for this problem. As expected, and since it was chosen

before because of the Weka results, the random forest algorithm has a very good

performance, but also the extra trees and, surprisingly, the decision tree. In most

algorithms tested in this phase randomness plays a part, which means further tests

could show variations that would probably not be very significant. Also most of

them have important parameters that require heavy tuning in order to perform

better or to adapt to a certain problem. Here the default parameters were used,

since a lot of time and effort would be necessary to tune all the algorithms for all

scenarios, but as will be discussed in the next section, parameter tuning wouldn’t

probably change the conclusion obtained in these tests.

However the purpose of these tests was not to find the perfect combination of

algorithm and parameters, it was about checking if there was a specific algorithm

that behaved exceedingly well for our case. These experiments were then done for

other cases: presence from continuous, from non-continuous, event based approach,

etc. The results were similar, Random Forest and XGBoost took the lead, with

occasional rivaling results from the Decision Tree and LinearSVC, depending on

the scenarios. There was no significant result that would compensate to have a

different classifier for a specific scenario so the conclusion was to either continue

using the Random Forest algorithm or switch to the XGBoost. XGBoost was

chosen, not because it achieve much better results than the random forests but

because it uses better the computational resources available, taking less memory to

run, and optimizing the computation by using all available cores efficiently (Scikit’s

default parallelization settings require copying the dataset per core used).

4.8 Parameter Search

Parameter search was designed as an important step in the tests in order to try

to achieve better performance. For the very first tests, the ones, not shown in

this document, were it was found that datasets should be created separately for

63

Chapter 4. Initial Experiments and Exploration

each presence source, parameter search was done, using the techniques described

in the 4.2 section. The results however in these tests didn’t improve much by

the parameter search phase, and because it was a heavy processing task, it was

skipped in the other tests until this point.

In spite of the initial results of parameter search, we tackled this section again

and searched for more parameter variations and possibilities for both Random

Forests and XGBoost. The number of variables that can be tuned in both algo-

rithms is considerably large, and it would be very intensive work to understand

them all completely and manually tune them for each scenario. So as before, the

tests were done using GridSearch and RandomSearch, with values gathered from

available literature.

As an example, the tests done on the window mode with presence gathered

from user_NDI and down-sampling showed a 0.2 increase in precision for the avg

f1-score with the Random Forest algorithm and a 0.1 increase for the XGBoost

algorithm, with no notable difference in recall for both. But these were obtained

after 20 to 50 minutes of parameter search, depending on the number of parameters

and values to test. It was then concluded that for this project the potential

performance increases of the parameter search phase versus the required tuning

and, or, searching time, did not produce enough improvements to justify its use

since there are a lot of scenarios to test, and thus this phase was skipped from this

point on.

64

Chapter 5

Final Experiments

These final experiments were obtained by applying what was learned in the tests

described in chapter 4, by using newly engineered features and by resorting to a

new validation type.

New datasets were created with the difference in time since last message and the

number of different schemas from the createMLDatasetGenStats plugin, and with

the changeProperty related features from both creatMLDatasetGenStats plugin

and the interactionStatsPerUser one. These features were described in chapter 3,

on their respective sections.

For classifying algorithm XGBoost was chosen, because of the reasons stated

in Section 4.7, and so, attribute selection was also changed to use feature impor-

tances from an XGBoost algorithm, reducing the now approximately 1000 fea-

tures to usually around 50 to 100. As for dealing with imbalance in the datasets,

down-sampling was the technique used. For the final validation a new script was

created. The idea was that even though down-sampling validated with cross-

validation is very effective, it doesn’t represent the original imbalanced problem

and thus doesn’t represent the actual capabilities of the classification with this

type of heuristic tagging. What this new script does is split the data into two

equally stratified parts, which means they retain the original percentage of class

distribution, one with 70% of the total instances that will be transformed with

65

Chapter 5. Final Experiments

down-sampling and used to train the algorithm, and the other with 30% of the

instances that will be used as test data without down-sampling.

Tables will now be shown with results obtained using this configuration. One

table per each mode, window and event based, will be presented with each entry

corresponding to a type of dataset depending on the source of presence used.

Another set of tables will then be presented for the same scenarios but in which

events that were used to gather presence are excluded for the metrics.

5.1 Not Excluding Information from the Metrics

As with the initial results the number of users depending on type was: 1220 for

the non-continuous, 189 for the continuous and 56 for user_NDI.

Table 5.1: Results for each type of dataset obtained using 70% for training
with down-sample and 30% for testing using the window based approach and

without excluding any information from metrics

type of presence data classes precision recall f1-score support

non-continuous

unknown 1.00 0.95 0.98 2915601

presence 0.08 0.92 0.15 12951

avg/total 1.00 0.95 0.97 2928552

continuous

unknown 0.86 0.90 0.88 123839

presence 0.95 0.93 0.94 265326

avg/total 0.92 0.92 0.92 389165

user_NDI

unknown 1.00 0.92 0.96 132318

presence 0.06 0.88 0.11 703

avg/total 0.99 0.92 0.96 133021

Starting with the non-continuous dataset, compared with the initial results

there was a significant drop in precision for the presence class to almost zero, but

recall increased to almost double. Results for the unknown class remain practically

66

Chapter 5. Final Experiments

the same. The f1-score also dropped significantly due to these changes. Which

might suggest these results are worst than before, however, the recall increase

is very important because it means the algorithm can detect almost all presence

tagged situations. The much greater imprecision might mean that there are a lot

more cases where there should be presence, but the plugin used for tagging didn’t

find any event that could be used to gather presence value.

For the continuous case the results are an overall improvement, every score

for both class and the average were increased with the new features and meth-

ods. With the user_NDI the results are similar to the non-continuous, precision

dropped abruptly for the presence class but recall doubled. For this case the same

reason could be applied, the user_NDI is a value tied to the reads and writes

messages, so it is probable that many instances that actually represent presence

cases weren’t tagged as such.

Table 5.2: Results for each type of dataset obtained using 70% for training with
down-sample and 30% for testing using the event based approach and without

excluding any information from metrics

type of presence data classes precision recall f1-score support

non-continuous

unknown 0.99 0.93 0.96 506315

presence 0.64 0.94 0.76 61921

avg/total 0.95 0.94 0.94 568236

continuous

unknown 0.95 0.96 0.95 52710

presence 0.98 0.97 0.97 98115

avg/total 0.97 0.97 0.97 150825

user_NDI

unknown 1.00 0.99 0.99 33696

presence 0.87 1.00 0.93 3141

avg/total 0.99 0.99 0.99 36837

For the event approach the results improved in all scenarios. In the non-

continuous case, precision increased 0.1 and recall practically doubled, leading to

an approximately 0.05 increase in the average scores since the good scores for

67

Chapter 5. Final Experiments

the unknown class were maintained. In the continuous dataset all scores were

increased, specially in the unknown class, were the values rose in approximately

0.4. The user_NDI case also had major increases, in this case in the presence

class.

In this approach we can see the imbalance between classes is of lesser orders

of magnitude than in the previous. This probably contributed for the precision

values to remain high, contrary to the window version. Besides this, the nature

of this dataset: instances are only created when a message is processed, makes it

easier to have entries correctly tagged, in opposition to the window mode where

in some intervals of time there are none, or very few messages and no information

from presence could have been gathered.

Table 5.3 shows the top feature values for the presented scenarios obtained

using an XGBoost algorithm for feature selection. The main difference that can be

observed from the table and remarks in 4.4 is that last message difference related

features appear on the very top in all scenarios except the window continuous

and the event non-continuous. Averages continue prominent in the continuous

datasets. Change Property marked features are also common in all experiments.

Further exploring the output of the algorithms reveals the new different schemas

related features also have relevant scores specially in the event approach, and

that the patterns shown in 4.4 remain, with count related features important for

non-continuous and user_NDI, and averages more relevant in the continuous.

68

Chapter 5. Final Experiments

Table 5.3: Top feature importance values of the not excluding section according
to the XGBoost algorithm

experiment top features

window non-

continuous not

excluding

(LastMessageDiffCP, 0.081), (LastMessageDiff, 0.061), (totalDevices, 0.058),

(rruleLastMessageDiff, 0.05), (ruleLastMessageDiff, 0.047), (rruleLastMes-

sageDiffCP, 0.036), (ruleLastMessageDiffCP, 0.033)

window continu-

ous not exclud-

ing

(iWeekdayAvgDay, 0.068), (wruleLastMessageDiff, 0.065), (WeekdayAvg-

Day, 0.056), (iindependent_updateLastMessageDiffCP, 0.05), (rruleLastMes-

sageDiffCP, 0.044), (WeekendAvgDay, 0.042), (rDawnWeekdayuserAvgDay,

0.032), (rruleAvgDay, 0.032), (iAvgDay, 0.03)

window

user_NDI not

excluding

(rruleLastMessageDiff, 0.085), (irule_writeUpdateAvgDay, 0.067), (rule-

LastMessageDiff, 0.065), (LastMessageDiff, 0.055), (iWeekdayAvgDay,

0.037), (rLastMessageDiff, 0.035), (ruserLastMessageDiff, 0.032), (ruser-

LastMessageDiffCP, 0.028), (iWeekendAvgDay, 0.028)

event non-

continuous not

excluding

(iindependent_updateCountFive, 0.063), (iindependent_updateAvgDay,

0.052), (totalDevices, 0.043), (differentSchemas, 0.031), (rrule-

LastMessageDiff, 0.028), (wruleLastMessageDiffCP, 0.023), (iindepen-

dent_updateCountHalf, 0.023), (irule_writeUpdateLastMessageDiffCP,

0.023), (ruserCountHalf, 0.022)

event continuous

not excluding

(rruleLastMessageDiffCP, 0.153), (iuser_writeUpdateLastMessageDiffCP,

0.049), (wruleLastMessageDiff, 0.047), (WeekdayAvgDay, 0.038), (to-

talDevices, 0.034), (wLastMessageDiffCP, 0.031), (ruserLastMessageDiffCP,

0.025), (timeOfDay=Noon, 0.022)

event user_NDI

not excluding

(rruleLastMessageDiffCP, 0.066), (iuser_writeUpdateLastMessageDiffCP,

0.046), (wuserLastMessageDiffCP, 0.04), (ir-

ule_writeUpdateLastMessageDiffCP, 0.04), (rWeekendAvgDay, 0.03),

(ruleLastMessageDiffCP, 0.029), (rruleLastMessageDiff, 0.027), (iWeek-

dayAvgDay, 0.027), (iLastMessageDiffCP, 0.026)

69

Chapter 5. Final Experiments

5.2 Excluding Messages Used to Generate Pres-

ence Information from Metrics

As with the initial results the number of users depending on type was: 788 for the

non-continuous, 189 for the continuous and 28 for user_NDI.

Table 5.4: Results for each type of dataset obtained using 70% for training
with down-sample and 30% for testing using the window based approach and

excluding messages used to gather presence from metrics

type of presence data classes precision recall f1-score support

non-continuous

unknown 1.00 0.86 0.92 1818230

presence 0.02 0.62 0.04 7900

avg/total 0.99 0.86 0.92 1826130

continuous

unknown 0.71 0.72 0.71 122275

presence 0.87 0.86 0.86 261917

avg/total 0.82 0.82 0.82 384192

user_NDI

unknown 1.00 0.80 0.89 67486

presence 0.01 0.86 0.02 187

avg/total 1.00 0.80 0.89 67673

For the exclusion window scenario the results emulate what was obtained in

the non-exclusion case. In the presence class for non-continuous precision and

f1-score drop but recall is greatly increased compared with the initial results. In

the continuous dataset all values are increased, and so the averages are augmented

by 0.2. For the user_NDI the results are also similar to the non excluding, with

dropped precision but a greatly increased recall for the presence class.

70

Chapter 5. Final Experiments

Table 5.5: Results for each type of dataset obtained using 70% for training with
down-sample and 30% for testing using the event based approach and excluding

messages used to gather presence from metrics

type of presence data classes precision recall f1-score support

non-continuous

unknown 0.98 0.74 0.84 474423

presence 0.26 0.85 0.39 50497

avg/total 0.91 0.75 0.80 524920

continuous

unknown 0.82 0.87 0.84 52707

presence 0.93 0.90 0.91 98106

avg/total 0.89 0.89 0.89 150813

user_NDI

unknown 1.00 0.98 0.99 29708

presence 0.63 0.99 0.77 1181

avg/total 0.99 0.98 0.98 30889

For this approach the results are also greatly increased compared with the

initial. But as expected there is a drop compared with the non excluding scenario.

This comes in the form of a heavily decreased precision for the presence class in

the non-continuous dataset, and a significant decrease for the same score in the

user_NDI dataset.

Table 5.6 shows the importance values now for the excluding experiments.

There isn’t a significant difference with the results show in Table 5.3, they can

be summed as an overall change in specificity or focus of the granularity. For

example, rruleLastMessageDiff for the same scenario instead of lastMessageDiff,

or iWeekdayAvgDay instead of iWeekdayAvgDay. Also, as expected, the count

related features drop in scores, and are no longer present or have a more general

granularity. Further analysis finds that the different schemas features also drop

significantly in the window tests but remain present in the event ones.

71

Chapter 5. Final Experiments

Table 5.6: Top feature importance values of the excluding section according
to the XGBoost algorithm

experiment top features

window non-

continuous not

excluding

(rruleLastMessageDiff, 0.108), (totalDevices, 0.096), (totalCountFive, 0.049),

(individualUnits, 0.041), (LastMessageDiff, 0.032), (ruleLastMessageDiff,

0.031), (iWeekdayAvgDay, 0.028), (totalAvgDay, 0.028)

window continu-

ous not exclud-

ing

(WeekdayAvgDay, 0.062), (wruleLastMessageDiff, 0.046), (WeekendAvg-

Day, 0.043), (iindependent_updateLastMessageDiffCP, 0.04), (iAvgDay,

0.04), (iuser_writeUpdateAvgDay, 0.035), (wruleLastMessageDiffCP, 0.033),

(rDawnWeekdayuserAvgDay, 0.033), (totalDevices, 0.03)

window

user_NDI not

excluding

(userLastMessageDiffCP, 0.074), (LastMessageDiffCP, 0.064), (ruserLastMes-

sageDiff, 0.059), (iLastMessageDiff, 0.057), (wuserLastMessageDiff, 0.045),

(WeekendAvgDay, 0.045), (individualUnits, 0.038)

event non-

continuous not

excluding

(individualUnits, 0.048), (totalDevices, 0.039), (differentSchemas, 0.036), (ir-

ule_writeUpdateLastMessageDiffCP, 0.034), (iindependent_updateAvgDay,

0.033), (totalCountMin, 0.025), (ruserLastMessageDiff, 0.023), (wWeek-

dayAvgDay, 0.023), (rruleLastMessageDiff, 0.022)

event continuous

not excluding

(rruleLastMessageDiffCP, 0.153), (totalDevices,

0.061), (iuser_writeUpdateLastMessageDiff, 0.054),

(iuser_writeUpdateLastMessageDiffCP, 0.049), (wLastMessageDiffCP,

0.042), (wruleLastMessageDiff, 0.033), (rWeekendAvgDay, 0.033), (LastMes-

sageDiff, 0.024), (totalCountHalf, 0.024)

event user_NDI

not excluding

(LastMessageDiff, 0.078), (iindependent_updateLastMessageDiff, 0.067),

(timeOfDay=Night, 0.05), (iindependent_updateCountQuarter, 0.041),

(iuser_writeUpdateLastMessageDiff, 0.031), (userLastMessageDiffCP,

0.031), (iindependent_updateCountMin, 0.029)

5.3 Using more data

For the results presented so far, one month of anonymized data was used. There

were more months of gathered data available to use for this project, however, both

the Muzzley platform and the objectives and approach of this dissertation evolved

and so not all data collected can be used for experiments. There was only one

72

Chapter 5. Final Experiments

more month of data that could be joined with this one for the experiments, and

this is what we did for the very last phase. The main objective for this was to see

how the models behaved with more data, specially for tests with down-sampling.

This was only done with the event approach, since the window one generates a lot

more data, taking much more time to process, also the event approach performed

better in the last phase.

For the 70%/30% validation results dropped for the non excluding scenarios

and remained mostly the same for the excluding. With the down-sampling vali-

dation scores increased for both non-continuous and user_NDI datasets in both

scenarios. Overall it can be said that the models perform slightly better with this

new month of data, although there are exceptions to this and in the long run some

possible variations on the habits and interactions of the users should be taken into

account, namely those related to the seasons.

5.4 Conclusions On The Final Experiments

Although not shown here, tests for 5.1 and 5.2 scenarios but with cross validation,

as before instead of the new 70% / 30% process were done. These showed an

overall increase in performance which means the new features are an improvement

to the classification. The main increase however comes from down-sampling has

seen in chapter 4, and from the effect of joining all the improvements.

The high scores shown by the event approach indicate this might be the best

way to go for future work or a production application of this study. In this chapter

we have showed results obtained where the test set conserved its imbalanced prop-

erties in order to stay true to our original created datasets. Real explicitly tagged

data obtained from users however would probably follow a class distribution that

its less imbalanced than some of our cases, so the difficulty of real data might be

softened by the fact that is more balanced.

73

Chapter 6

Conclusions

This study presented an approach for human presence detection in a ambient

intelligence like context. Further improvement can be applied to the system but

still it performs well in its current state for certain scenarios and shows a promising

capability for detection using unspecific data from several IoT devices. In order

to create the system an extensive processing phase was applied to anonymized

data gathered from a real application, the Muzzley app and platform, generating

metrics for each new example. Datasets were labeled with presence information

inferred by heuristic methods.

The generated datasets were used with the Weka and Scikit-Learn machine

learning libraries in order to test the approach. After obtaining the initial results

we tried to improve them, first focusing on feature selection, then on addressing the

class imbalance issue present in some scenarios. After this, we explored the results

better to see what could be improved, tests were done with different algorithms,

and experimented with parameter search. Finally, the improvements and new

features were used in a final testing phase creating the final scores that were

analyzed and compared with the initial ones.

75

Chapter 6. Conclusions

6.1 On the Development of the Project

The main challenges of the project were the processing needed, the diversity of

devices that interact with the platform, the creation of adequate features and not

having explicit presence information.

Originally the project was more related to sensor fusion. The idea was to join

information from all types of devices possible in order to detect presence and then

try to see by removing specific devices and removing the number of devices used, to

what limit of minimum information presence could be detected with a reasonable

accuracy. But we ended up using only the interactions because of the way tagging

was done and because it would be the best way to be able to use all devices from

all users and thus create this novel approach.

The project was supposed to count with a explicitly tagged dataset from users

who agreed to share their presence hours. This ended up not occurring since is not

an easy thing to ask of the users. We had however the user_NDI dataset, that,

while not being completely specific, is a closer to reality information. Nevertheless

we think the mechanisms we used for tagging are good for at least proving the

potential of this indirect presence detection. Also, this type of tagging could

maybe inspire and be applied to other projects related to data mining, or machine

learning with IoT devices, for example for activity detection, the cooking activity

events could be tagged according to the cooking pot messages, etc.

Most of the development time of the project was on creating the plugins to

process the data, since there was the need to first understand the data, to adapt to

new technologies and tools and to plan the algorithms to follow the same paradigm

as the rest of the Segmentation Engine. The first results with Weka were done

quickly since we already had experience with it, and then another learning phase

came with the adoption of Scikit-Learn. The bulk of the rest of the time was

invested in doing experiments and tweaking the algorithms and plugins to have

good conclusions.

76

Chapter 6. Conclusions

6.2 On the Results Obtained

The results obtained were quite interesting. Since the initial results that the

approach has shown potential and the improvements done further increased it. In

the final results the window approach achieved recall higher than 0.8 for all types

of datasets in the presence class, while also having achieving top scores in the

unknown class. Precision however was not so good for presence, which as analyzed

in chapter 5 could be due to lack of information for tagging. The exclusion scenario

was also better than the initial since there wasn’t such a significant decrease in

scores.

In the event approach the final results were better. Recall had very good scores

for both classes and precision didn’t drop as drastically. Also for the exclusion

scenario the results suffered a minor overall drop with the user_NDI, possibly the

most realistic of the datasets, still having very good scores.

In terms of features used, as analyzed, it isn’t necessary at least for now, to use

that many levels of granularity since some very specific features don’t add much

more information. The features implemented in the later phase, the number of

different schemas and time differences between last messages were important for

the classification along with the initial overall average metrics and the immediate

counts mostly at the type of message and type of trigger metric.

The results obtained are also interesting because for all tests, except when

stated, we didn’t set a minimum number of devices or interactions in order for

users to be considered, except the at least 1 average interaction per day, which

means the results obtained were considering a lot of different setups and types of

users.

In terms of implementing this system, although the process phase could be

optimized, it is very plausible to be able to integrate the operations needed to

generate the features information in a Muzzley like platform, since most of the

metrics are basically counts and averages. Training the model does take some

time, specially if parameter search is considered, but it wouldn’t be necessary to

77

Chapter 6. Conclusions

train new algorithms that often. The prediction with the chosen classifiers is also

very fast, so this part wouldn’t probably be the bottleneck.

This dissertation also resulted in the publication of the paper "A Machine

Learning Approach for Indirect Human Presence Detection" presented at the In-

ternational Conference on Digital Information Management held September of

2016 at Porto.

6.3 Future Work

A lot of ideas and improvements are possible for future work. The first of which is

to try getting an explicitly tagged dataset or a way for users to give feedback about

the prediction since it is fundamental to validate these results in the more realistic

possible way before applying the algorithms in production. Other improvements

are more features, such as similar ones to the different schemas but for different

identifiers in the hierarchy that would represent the exact number of properties of

devices that were changed. These different schemas / identifiers could be applied

to the interactionStatsPerUser to have averages of these numbers. An even bigger

dataset could be used and create features related to the current season, average

weather for a time period, current weather, etc.

Other approaches could also be tried, such as using regression instead of clas-

sification to have a certainty level of presence, although this can be done with the

prediction probability capabilities of the Random forest and XGBoost classifiers.

Or using Markov Chains or Recurrent Neural Networks with a more sequence or

memory based dataset.

Also, besides these improvements, for a production application of this study

the information of specific detectors and the heuristics used for tagging these

datasets would be features themselves since in this new real scenario all possible

information is to be used.

78

References

Presence detection is related to other important information an ambient in-

telligence system should have about its context. Such as occupation, that is how

many people are present, and which activity is currently being done, and if possi-

ble to know all this information for each division of the environment, in this case,

for each room. A possible evolution is the creation of systems or modules to do

these other types of tasks and then connect them together, and with the presence

module, in a way that the predictions of each can be used by the others for better

accuracy.

Although some results can be improved, the approach described provides in-

sights for systems integrating these new types of devices to build upon. These

new IoT devices are easily acquired and start working out of the box, so it is very

interesting to have this novel way to be able to join information from all of them

with a specific purpose. Presence detection, and, as mentioned, activity detection,

or occupation number, are very important challenges to ambient intelligence and

hopefully this dissertation will help shed a little light on the current possibilities

with these devices and technologies.

79

Bibliography

[1] Eli Zelkha et al. “From Devices to "Ambient Intelligence"”. In: Digital Living

Room Conference (1998) (cit. on p. 1).

[2] Diane J. Cook, Juan C. Augusto, and Vikramaditya R. Jakkula. “Ambi-

ent intelligence: Technologies, applications, and opportunities”. In: Pervasive

and Mobile Computing 5.4 (2009), pp. 277–298 (cit. on p. 1).

[3] E.H.L. Aarts and J.L. Encarnacão. True Visions: The Emergence of Ambient

Intelligence. Springer, 2006, p. 454 (cit. on pp. 1, 7).

[4] Friedemann Mattern and Christian Floerkemeier. “From the internet of com-

puters to the internet of things”. In: Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics) 6462 LNCS (2010), pp. 242–259 (cit. on p. 1).

[5] Lopez Research. “An Introduction to the Internet of Things (IoT)”. In: Lopez

Research Llc Part 1. of.November (2013), pp. 1–6 (cit. on p. 2).

[6] Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. The Internet of things.

Vol. 291. 4. 2004, pp. 76–81 (cit. on p. 2).

[7] Gerald Santucci. “The Internet of Things : Between the Revolution of the

Internet and the Metamorphosis of Objects”. In: Forum American Bar As-

sociation (2010), pp. 1–23 (cit. on p. 2).

[8] Cognizant Reports. “Reaping the Benefits of the Internet of Things”. In: May

(2014) (cit. on p. 2).

[9] Kaivan Karimi. The Role of Sensor Fusion in the Internet of Things (cit. on

p. 2).

81

References

[10] James L. Crowley and Yves Demazeau. “Principles and techniques for sensor

data fusion”. In: Signal Processing 32.1-2 (1993), pp. 5–27 (cit. on p. 2).

[11] Dave Evans. “The Internet of Things - How the Next Evolution of the Inter-

net is Changing Everything”. In: CISCO white paper April (2011), pp. 1–11

(cit. on pp. 2, 3).

[12] Ken Peffers et al. “A Design Science Research Methodology for Information

Systems Research”. In: J. Manage. Inf. Syst. 24.3 (Dec. 2007), pp. 45–77

(cit. on p. 6).

[13] Richard Baskerville. “What design science is not”. In: European Journal of

Information Systems 17.5 (2008), pp. 441–443 (cit. on p. 6).

[14] Juan Carlos Augusto and Daniel Shapiro. Advances in Ambient Intelligence:

Volume 164 Frontiers in Artificial Intelligence and Applications. IOS Press

Amsterdam, The Netherlands, 2007, p. 200 (cit. on p. 7).

[15] Diane J. Cook and Sajal K. Das. “How smart are our environments? An

updated look at the state of the art”. In: Pervasive and Mobile Computing

3.2 (2007), pp. 53–73 (cit. on p. 7).

[16] Gustavo José Henriques Patrício. “Redes Sem Fios de Microcontroladores

com Acesso Remoto Aplicada à Domótica”. In: Cadernos de Saúde Pública

(2009) (cit. on p. 8).

[17] Rob Collingridge.Dream Green House. 2009. url: http://dreamgreenhouse.

com/index.php (visited on 12/28/2015) (cit. on p. 8).

[18] Rob Collingridge. Dream Green House: Occupancy & Presence. 2013. url:

http://www.dreamgreenhouse.com/projects/2013/presence/index.

php (visited on 12/28/2015) (cit. on p. 8).

[19] Sumi Helal et al. “The Gator tech smart house: A programmable pervasive

space”. In: Computer 38.3 (2005), pp. 50–60 (cit. on p. 8).

[20] Alessandra De Paola and ML Cascia. “User detection through multi-sensor

fusion in an AmI scenario”. In: 15th International Conference on Information

Fusion (FUSION), 2012 (2012), pp. 2502–2509 (cit. on p. 9).

82

http://dreamgreenhouse.com/index.php
http://dreamgreenhouse.com/index.php
http://www.dreamgreenhouse.com/projects/2013/presence/index.php
http://www.dreamgreenhouse.com/projects/2013/presence/index.php

References

[21] Thiago Teixeira, Gershon Dublon, and Andreas Savvides. “A Survey of

Human-Sensing: Methods for Detecting Presence, Count, Location, Track,

and Identity”. In: ACM Computing Surveys 5 (2010), pp. 1–35 (cit. on p. 9).

[22] Christian Martin et al. “Sensor Fusion Using a Probabilistic Aggregation

Scheme for People Detection and Tracking”. In: Proc. of the 2nd Euro-

pean Conference on Mobile Robots (ECMR 2005), Ancona, Italy 54 (2005),

pp. 176–181 (cit. on p. 9).

[23] Zhenghua Chen et al. “Fusion of WiFi, Smartphone Sensors and Landmarks

Using the Kalman Filter for Indoor Localization”. In: Sensors 15.1 (2015),

pp. 715–732 (cit. on p. 10).

[24] Dian Gong, G Medioni, and Xuemei Zhao. Structured Time Series Analysis

for Human Action Segmentation and Recognition. 2014 (cit. on p. 10).

[25] T Warren Liao. “Clustering of time series data - a survey”. In: Pattern Recog-

nition 38 (2005), pp. 1857–1874 (cit. on p. 10).

[26] Mark Hall et al. “The WEKA data mining software”. In: SIGKDD Explo-

rations Newsletter 11.1 (2009), p. 10 (cit. on p. 39).

[27] J Ross Quinlan. C4.5: Programs for Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1993 (cit. on p. 40).

[28] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: . . .

of Machine Learning . . . 12 (2012), pp. 2825–2830 (cit. on p. 40).

[29] Wes McKinney. “Data Structures for Statistical Computing in Python”. In:

Proceedings of the 9th Python in Science Conference 1697900.Scipy (2010),

pp. 51–56 (cit. on p. 41).

[30] R L Plackett. “and the Chi-squared Test”. In: 51 (1983), pp. 59–72 (cit. on

p. 41).

[31] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A Training

Algorithm for Optimal Margin Classifiers”. In: Proceedings of the Fifth An-

nual Workshop on Computational Learning Theory. COLT ’92. New York,

NY, USA: ACM, 1992, pp. 144–152 (cit. on p. 41).

83

References

[32] Tin Kam Ho. “Random decision forests”. In: Proceedings of 3rd International

Conference on Document Analysis and Recognition 1 (1995), pp. 278–282

(cit. on p. 41).

[33] Guillaume Lemaitre. Imbalanced-Learn. 2014. url: https://github.com/

scikit-learn-contrib/imbalanced-learn (visited on 09/08/2016) (cit.

on p. 52).

[34] Nitesh V. Chawla et al. “SMOTE: Synthetic minority over-sampling tech-

nique”. In: Journal of Artificial Intelligence Research 16 (2002), pp. 321–357

(cit. on p. 53).

[35] Ando Saabas. TreeInterpreter. 2015. url: https://github.com/andosa/

treeinterpreter (visited on 07/28/2016) (cit. on p. 56).

[36] Tianqi Chen and Carlos Guestrin. “XGBoost : Reliable Large-scale Tree

Boosting System”. In: arXiv (2016), pp. 1–6 (cit. on p. 61).

84

https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/andosa/treeinterpreter
https://github.com/andosa/treeinterpreter

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Scientific Contribution
	1.4 Structure of the Dissertation

	2 State of The Art
	2.1 Home automation, Ambient Intelligence and Internet of Things
	2.2 Human Presence Detection Devices
	2.3 Sensor Fusion
	2.4 The Concept of Time in a Sequence of Events
	2.5 A Unique Platform

	3 Data Processing
	3.1 The Muzzley Platform
	3.2 Segmentation Engine
	3.3 Structure of the Raw Dataset
	3.3.1 user_reads
	3.3.2 user_writes
	3.3.3 device_updates

	3.4 Plugins Developed
	3.4.1 devicesPerUser
	3.4.2 loadEventsToDB
	3.4.3 presenceFromDevices
	3.4.4 changePropertyUpdates
	3.4.5 interactionStatsPerUser
	3.4.6 createMLDatasetGenStats
	3.4.7 createCSVsForPresence

	3.5 Non Processed Schemas

	4 Initial Experiments and Exploration
	4.1 Initial Exploration
	4.2 Machine Learning Scripts created
	4.2.1 fullAlgorithm
	4.2.2 usingSavedConfig

	4.3 Initial Scikit-Learn Experiments
	4.4 Feature Selection
	4.5 Addressing the Imbalance Issue
	4.6 Results Exploration
	4.7 Exploration with Other Algorithms
	4.8 Parameter Search

	5 Final Experiments
	5.1 Not Excluding Information from the Metrics
	5.2 Excluding Messages Used to Generate Presence Information from Metrics
	5.3 Using more data
	5.4 Conclusions On The Final Experiments

	6 Conclusions
	6.1 On the Development of the Project
	6.2 On the Results Obtained
	6.3 Future Work

