

School of Technology and Architecture

Department of Information Science and Technology

Software platform to control squads of unmanned vehicles in real-

time

Nuno Miguel Amorim dos Santos

A Dissertation presented in partial fulfillment of the Requirements for the Degree of Master

of Telecommunications and Computer Engineering

Supervisor:

Professor Pedro Joaquim Amaro Sebastião, Ph.D.

 Assistant Professor, ISCTE-IUL

Co-supervisor:

Professor Nuno Manuel Branco Souto, Ph.D.

Assistant Professor, ISCTE-IUL

October, 2016

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

I

ABSTRACT

Unmanned Aerial Vehicles (UAVs) applications are becoming more and more researched.

“Drones” (UAVs) were mainly used as a military technology but are now becoming a leisure

and professional activity for many civilian users.

Nowadays UAVs are mostly controlled by the use of a controller that operates in Radio

Control (RC), although this method of communication limits the vehicle’s distance to the line

of sight of the operator. As a need to overcome the line of sight obstacle, cellular networks

provide a mean of connection and as the coverage is increasing they’re a natural solution as

Wi-Fi is not present everywhere.

In order to accomplish this communication between Drone and Operator, there needs to be a

Ground Control Station that provides the user all the tools needed to operate the vehicle.

This project provides a software platform that is able to monitor a squad of drones whilst also

being able to control one at a time. The platform maintains the communication with the

vehicle at all times, and is also be able to receive live-video in order to overcome the beyond

line of sight obstacle. Besides this, the application provides an admin user, with the capability

of overriding a regular user’s control, assigning the user’s drone to itself for controlling

purposes. A public server is used to make the exchanging of messages possible, and to have a

centralized control over drones and their respective user.

Keywords: Monitoring, Remote Control, Wireless Networks, Software platform, Drones

II

This page was intentionally left in blank

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

III

RESUMO

Os Veículos Aéreos Não Tripulados (UAVs) são cada vez mais utilizados e desenvolvidos. O

que antes era utilizado principalmente como tecnologia militar, tem-se vindo a tornar uma

profissão ou um hobbie para muitos civis.

Hoje em dia os UAVs são controlados geralmente através de um comando, que opera em

Radio Controlo (RC) e, embora seja muito utilizado, este método de comunicação limita a

distância do veículo à linha de visão do operador. Este é um obstáculo que se tem procurado

ultrapassar e as redes móveis providenciam o meio necessário para tal. Desta forma e como a

cobertura das redes móveis tem aumentado progressivamente é hoje em dia uma alternativa ao

Wi-Fi que não tem o mesmo alcance nem a mesma cobertura.

Para que a comunicação entre drone e operador seja viável, tem que existir uma estação de

controlo que forneça ao utilizador todas as ferramentas necessárias para operar o veículo.

Este projeto visa a criação de uma plataforma de software que seja capaz de monitorizar uma

esquadra de UAVs e seja também capaz de controlar um aparelho de cada vez. A plataforma

mantém a comunicação com o veículo em todos os momentos, e permite ainda a receção de

vídeo ao vivo, superando assim o obstáculo da linha de vista. Também é disponibilizada a um

administrador a capacidade de retirar o controlo dos utilizadores aos seus drones alterando

assim o responsável pelo controlo. É também utilizado um servidor público de forma a tornar

a troca de mensagens possível e também por outro lado, controlar de forma centralizada os

drones e os seus respetivos utilizadores.

Palavras-chave: Monitorização, Controlo Remoto, Redes Sem fios, Aplicação, Drones

IV

This page was intentionally left in blank

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

V

ACKNOWLEDGMENTS

I would like to thank my family for all the support given throughout this thesis. Without their

help, guidance and advices it wouldn’t have been possible to finish this thesis and complete

my academic journey. To my father, mother and brother, in particular, my dearest thank you.

I also want to thank one of the most important people in my life, my girlfriend whom has

supported me all along and has given me the strength to do my best and persevere on the

making of the thesis.

Of course, none of this thesis could have been accomplished without the guidance and help of

Professor Pedro Sebastião, who was always available to help in any way he could. His vision

and ideas for the project were key to keep the thesis on track and according to the main goals.

Also, Professor Pedro, together with the Institute of Telecommunications, provided us with

the facilities so that we had the best place to concentrate and work.

I’d also like to address a big thank you to my colleagues who worked on this project with me,

Diogo Peres and António Raimundo. Our team work was crucial and it was important that we

could rely on each other to solve most of the problems. An important mention also to Manuel

Oliveira, for all the advices and for helping us overcoming some difficult issues.

Also, I’d like to leave a remark for Tiago Saraiva, his collaboration and help on the beginning

of the project was very important to get us familiarized with the project.

Last but not least, I’d like to thank all of my closest friend for keeping up with me and giving

me the support I needed.

VI

This page was intentionally left in blank

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

VII

CONTENTS

ABSTRACT .. I

ACKNOWLEDGMENTS ... V

CONTENTS .. VII

FIGURES ... XI

TABLES .. XII

ACRONYMS & ABBREVIATIONS ... XIII

Chapter 1 INTRODUCTION ... 1

1.1 Overview .. 2

1.2 Motivation ... 3

1.3 State of the art ... 4

1.3.1 Flight controllers .. 4

1.3.1.1 Ardupilot .. 4

1.3.1.2 Pixhawk .. 4

1.3.2 Raspberry Pi.. 5

1.3.3 Software ... 5

1.3.3.1 Java and JavaFX ... 6

1.3.3.2 Ground control stations .. 6

1.3.3.3 MavProxy ... 7

1.3.3.4 Mission Planner ... 7

1.3.3.5 Previous work .. 8

1.4 Objectives .. 9

1.5 Contributions ... 9

1.6 Dissertation structure .. 10

Chapter 2 UNMANNED AERIAL VEHICLES .. 12

2.1 Unmanned aerial vehicles ... 13

Contents

VIII

2.2 Unmanned aerial vehicles categories .. 13

2.3 Ground control station and control tower .. 15

2.3.1 Ground control station .. 15

2.3.2 Control Tower .. 16

2.4 Communications .. 17

2.5 Squads of UAVs .. 19

Chapter 3 ELECTRONIC COMPONENTS AND SOFTWARE .. 21

3.1 Electronics ... 22

3.1.1 Main frame .. 22

3.1.2 Electronic speed controller ... 23

3.1.3 Flight controller ... 23

3.1.4 Motors ... 25

3.1.5 Battery ... 25

3.1.6 Navigation systems.. 25

3.2 Raspberry Pi ... 26

3.2.1 Pixhawk Raspberry Pi connection ... 27

3.2.2 MAVProxy .. 27

3.2.3 Camera module ... 27

3.3 SITL Software ... 28

Chapter 4 USER INTERFACE .. 30

4.1 Application ... 31

4.2 JavaFX .. 31

4.2.1 FXML .. 31

4.2.2 Scene builder ... 32

4.2.3 UI controls and CSS ... 33

4.2.4 WebView ... 34

4.2.4.1. HTML5 and JavaScript ... 35

4.2.4.2. HTML files .. 35

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

IX

4.2.5 Concurrency .. 36

4.3 UI screens .. 36

Chapter 5 CONTROL TOWER APPLICATION .. 41

5.1 Control tower .. 42

5.2 MAVLink ... 42

5.3 Login .. 43

5.4 Monitoring ... 44

5.4.1 Drone positioning .. 44

5.4.2 Information status ... 45

5.4.3 Control overriding ... 45

5.5 Control ... 46

5.5.1 Manual control .. 47

5.5.2 Autonomous control ... 50

5.5.2.1 Write waypoint .. 50

5.5.2.2 Read waypoint ... 51

5.5.2.3 Clear waypoint ... 52

5.6 Server ... 52

5.7 Raspberry Pi ... 54

5.8 Streaming ... 54

5.8.1 Wowza ... 54

5.8.2 HTML5 via web Sockets ... 55

Chapter 6 RESULTS .. 58

6.1 Tests ... 59

6.2 Monitoring Tests .. 60

6.2.1 Admin monitoring ... 60

6.2.2 User monitoring .. 61

6.2.3 Evaluation .. 62

6.3 Control tests .. 62

Contents

X

6.3.1 Manual control .. 63

6.3.2 Autonomous control ... 64

6.3.3 Evaluation .. 69

6.4 Overriding test ... 69

6.4.1 Taking control .. 69

6.4.2 Giving control .. 71

6.4.3 Evaluation .. 72

6.5 Video stream testing ... 72

6.5.1 Wi-Fi scenario .. 73

6.5.2 4G .. 74

6.5.3 3G .. 75

6.5.4 Evaluation .. 76

Chapter 7 CONCLUSIONS AND FUTURE WORK .. 78

7.1 Conclusions ... 79

7.2 Future work ... 80

REFERENCES .. A

ANNEXES ... E

Annex A – Scene builder and UI screens ..F

Annex B – Monitoring tests ... H

Annex C – Manual control tests ... I

Annex D – Overriding test .. L

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

XI

FIGURES

Figure 1.1 Example of the MAVProxy GCS. The console is on top, the visual UI on the right

and the telemetry on the left. .. 7

Figure 1.2 The Mission Planner GCS .. 8

Figure 2.1 Example of a drone ... 13

Figure 2.2 A civilian type GCS Source: (diydrones.com, 2009) ... 15

Figure 2.3 A military grade GCS Source: (Industry, 2011) ... 16

Figure 2.4 Features of the Control Tower software platform .. 17

Figure 2.5 The communications scheme .. 18

Figure 3.1 Multi-Rotor possible configurations. Source: (Harris, 2014) 22

Figure 3.2 An example of a 30A ESC .. 23

Figure 3.3 The Pixhawk and its main specs. Source: (pixhawk.org) 23

Figure 3.4 Pixhawk PWM Outputs. Source: (pixhawk.org) .. 24

Figure 3.5 Raspberry Pi 3 ... 26

Figure 3.6 Raspberry Pi Pixhawk connection. Source: (ardupilot.org, 2016) 27

Figure 3.7 Raspberry Pi Camera Module. Source: (sparkfun.com) ... 28

Figure 4.1 Code snippet from the Login.fxml. ... 31

Figure 4.2 MonitoringScreen.fxml as seen on Scene Builder .. 33

Figure 4.3 MonitoringScript and Java Interaction. .. 35

Figure 4.4 The login view .. 37

Figure 4.5 The Monitoring View ... 38

Figure 4.6 Controlling View .. 39

Figure 5.1 MAVLink packet structure. Source: (qgroundcontrol.org/mavlink) 42

Figure 5.2 Login flowchart ... 43

Figure 5.3 Overriding and giving control flowchart. ... 45

Figure 5.4 Yaw pitch and roll axes. Source: (norunway.com/wp) ... 47

Figure 5.5 Gamepad used for manual control .. 48

Figure 5.6 Values on the axis of the controller. Source: (Davison, 2006) 49

Figure 5.7 Write Waypoint diagram. Source: (qgroundcontrol.org/mavlink). 50

Figure 5.8 Read Waypoint diagram. Source: (qgroundcontrol.org/mavlink). 51

Figure 5.9 Clear Waypoints diagram. Source: (qgroundcontrol.org/mavlink). 52

file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767705
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767705
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767706
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767707
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767708
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767709
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767710
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767711
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767712
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767713
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767714
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767715
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767716
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767717
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767718
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767719
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767720
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767721
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767722
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767723
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767724
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767725
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767726
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767727
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767728
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767729
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767730
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767731
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767732
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767733

Figures, Tables and Formulas

XII

Figure 5.10 Video Stream flowchart .. 56

Figure 6.1 Admin monitoring. .. 60

Figure 6.2 User logged in, monitoring one drone. ... 61

Figure 6.3 Adding waypoints. .. 64

Figure 6.4 Waypoints registered and "Fly" button already pressed. .. 65

Figure 6.5 Drone reached last waypoints. .. 65

Figure 6.6 Choosing RTL mode. .. 66

Figure 6.7 RTL mode selected and UAV returned to "home". .. 67

Figure 6.8 Takeoff sent. ... 68

Figure 6.9 Go to sent and finished. .. 68

Figure 6.10 Confirming the overriding. ... 70

Figure 6.11 Drone overridden. ... 70

Figure 6.12 Confirming the giving of control. ... 71

Figure 6.13 Control given back. ... 71

Figure 6.14 Wi-Fi Scenario result. ... 73

Figure 6.15 4G scenario result. .. 74

Figure 6.16 3G scenario result. .. 75

TABLES

Table 2.1 UAVs categories description. Source: (Austin, Reg, 2010), (Unmanned Aerial

Vehicles An Overview , 2008) ... 13

Table 3.1 Most used APM Copter flight modes (Ardupilot Dev Team, 2016) 25

Table 6.1 Tests, objectives and expected results. ... 59

Table 6.2 Manual control test scenarios. .. 63

Table 6.3 Video stream scenarios and results .. 72

file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767734
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767735
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767736
file:///C:/Users/Nuno/Desktop/Tese-Nuno-Santos%20v7%20(with%20annexes).docx%23_Toc465767745

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

XIII

ACRONYMS & ABBREVIATIONS

3G

4G

ACK

APM

CAN

CPU

CS

CSI

CT

DSI

ESC

FFMPEG

FPS

GCS

GPIO

GPRS

GPS

GPU

GSM

GUI

HD

HSPA

HSDPA

3rd Generation

4th Generation

Acknowledgment

Ardupilot Mega

Controller Area Network

Central Processing Unit

Control Station

Camera Specification Interface

Control Tower

Display Specification Interface

Electronic Speed Controllers

Fast Forward Moving Picture Experts Group

Frame Per Second

Ground Control Station

General Purpose Input/output

General Packet Radio Service

Global Positioning System

Graphics Processing Unit

Global System for Mobile

Graphical User Interface

High Definition

High Speed Packet Access

High Speed Downlink Packet Access

Acronyms & Abbreviations

XIV

HSUPA

IMU

IP

JRE

High Speed Uplink Packet Access

Inertial Measurement Unit

Internet Protocol

Java SE Runtime Environment

LTE

MAV

NAT

OS

P2P

PWM

RAM

Long-Term Evolution

Micro Aerial Vehicle

Network Address Translation

Operating System

Peer-to-Peer

Pulse Width Modulation

Random Access Memory

RC

RGS

RPi

RTMP

RTSP

RTT

TCP

UART

UAV

UI

UMTS

USB

UV

Radio Control

Remote Ground Station

Raspberry PI

Real-time Transport Messaging Protocol

Real-time Transport Streaming Protocol

Round Trip Time

Transport Control Protocol

Universal Asynchronous Receiver/Transmitter (UART)

Unmanned Aerial Vehicle

User Interface

Universal Mobile Telecommunications System

Universal Serial Bus

Unmanned Vehicle

TUAV Tactical Unmanned Air Vehicle

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

XV

VTOL Vertical Take-off and Landing

Acronyms & Abbreviations

XVI

This page was intentionally left in blank

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

1

Chapter 1
INTRODUCTION

This Chapter, introduces the thesis, the motivations

behind the project, the contributions of this work,

the objectives and the state of the art of the field.

Introduction

2

1.1 Overview

Drone activities have been increasing in the last decade, what then was mainly used for

military purposes is now a leisure activity for many aviation enthusiasts. Radio Control (RC)

is the major communication method used between the operator and the drone, however with

the most recent developments regarding cellular networks, there is a way of exploring the

beyond line of sight limitation that exists in almost all RC controlled vehicles.

Drones or Unmanned Aerial Vehicles (UAVs) vary in size and endurance, being categorized

by these characteristics. This thesis is focused on one of the smaller variety of UAVs, and

how can they when used in squads, of more than one vehicle, be remotely controlled and

monitored by the use of a software platform.

The communication is achieved through the use of cellular networks or Wi-Fi; the flight

controller is capable of receiving messages from the platform, translating the received

parameters into movement induced by the propellers. The flight controller is part of the

system that composes the whole UAV, it features sensors, that take an important part on the

balance and stability of the drone and it also includes a GPS to achieve more precision and

autonomous flight.

The software platform is responsible for the monitoring and controlling of each UAV,

allowing for the monitoring of more than one at a time. Aided by a server that will be

responsible for handling the users, associated drones and the forwarding of messages the

software platform/server system should provide a secure and reliable way of managing a

squad of drones without the limitation of the traditional RC range of communication.

Besides monitoring and controlling, the application will serve the purpose for an admin to

keep track of all the registered and related user’s and their respective drones. With such

information the admin will be capable of overriding control, removing access from certain

users to the main server, disallowing them and making them incapable of communicating with

their previous drone. When controlling, with the use of the onboard Raspberry Pi (RPi) and its

camera, the users will have access to a live video feed.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

3

1.2 Motivation

An unmanned vehicle has the capability of travelling through ground, air and sea, whilst

being remotely controlled through a platform like a computer or any other that enables the

communication between it and an operator. At first this technology, regarding UAVs, was

mainly available for the military, however with recent development it is now a common

leisure activity and the technology is far more accessible and cheaper.

There are several reasons to why development and research around UAVs is very useful. For

starters, unmanned vehicles allow the work to be done without the need of having a person

present, this is especially useful when talking about war scenes, which may be dangerous

environments and so the presence of humans should be avoided as to prevent casualties. Other

uses for this type of vehicles could be of surveillance type, monitoring forests to prevent fires,

patrolling borders and coastlines to control illegal activities. Another example could be the

use of unmanned vehicles to provide emergency equipment for people in need of urgent

medical care. It could also be useful to have a drone to perform management tasks on a farm

or other work places, increasing productivity (Global Research News, 2014). Some private

companies are also investing in unmanned vehicles, like Amazon who recently stated their

intentions on building “delivery drones” using UAVs (D'Onfro, 2014).

On 2015, Rutgers University from New Jersey, United States announced and released a video

showing that they managed to create an UAV that was capable of going underwater and

moving. The United States Navy already invested in the project as they see a lot of potential

in the use of hybrid drones that have the capacity of flying as well as moving underwater

(Blesch, 2015).

Some smaller companies also make use of unmanned vehicles, especially UAVs, for leisure

purposes providing applications and innovative designs for smaller drones to be used by

everyone who’s interested in UAVs.

The vast majority of hobby UAVs are controlled through the use of RC whilst the military

ones are controlled by satellite communications. The recent development of cellular networks

and the introduction of 4G networks like LTE makes room for the possibility of controlling

unmanned vehicles with low latency making it possible to receive live video for control

behind line of sight.

Introduction

4

It is then useful to work on a software platform that will improve the already existing studies

whilst enabling the control and monitoring of squads of unmanned vehicles, with the use of

cellular networks as a mean to effectively establish a communication with drones.

1.3 State of the art

The research on UAVs over the years has provided studies and projects, that include the

development of software and hardware, that is capable of providing open-source or

proprietary tools which enable the drone to fly remotely controlled or autonomously with the

required flight stabilization. These projects are constantly being updated and contribute to the

high availability of civilian UAV technology.

1.3.1 Flight controllers

Focusing only on open-source flight controllers, two types were considered: ArdupilotMega

(APM) and the Pixhawk.

1.3.1.1 Ardupilot

The APM is as the Pixhawk a free and open-source project and an autopilot able to control

fixed-wing aircraft, multi-rotor helicopters as well as traditional helicopters. It is capable of

delivering autonomous stabilization to the vehicle as well as way-point based navigation. The

use of the APM allows for the following features to be used:

 Firmware loading for different types of UAV configurations

 Two-way telemetry using Mavlink

 Autonomous take-off, landing and special action commands such as video and camera

controls.

These features make the APM a good alternative to the more up to date and faster Pixhawk.

1.3.1.2 Pixhawk

The Pixhawk autopilot is a high performance autopilot that represents the combination of the

PX4FMU and PX4IO modules. It manages different types different types of firmware

depending on the type of vehicle used thus requiring different firmware for fixed-wing, multi-

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

5

rotors, cars or boats for example. It features sensors and is a more up-to-date and faster

processing alternative to the APM (pixhawk.org, 2016).

Being targeted at high end research or amateur activities it provides all the mechanisms

needed for this thesis research purposes.

1.3.2 Raspberry Pi

The Raspberry Pi (RPi) is a low-cost, credit card-sized computer that may be plugged in to a

monitor and be used as a regular computer using a keyboard and a mouse.

The latest and most powerful RPi, the RPi 3 Model B has the following specs

(raspberrypi.org, 2016):

 A 1.2GHz 64-bit quad-core ARMv8 CPU;

 1GB of RAM;

 4 USB Ports;

 40 GPIO Pins;

 Full HDMI port;

 Ethernet port;

 Combined 3.5mm audio jack, camera specification interface (CSI), Display

specification interface (DSI), Micro SD Card Slot and VideoCore IV 3D

graphics core.

Besides the possibility to be used as a personal computer, the RPi is useful for the making of

electronic systems and for programming amongst other things. It is going to be used on the

UAV as a companion computer to make possible the exchange of data between the ground

control station and the Pixhawk/APM, through the use of a bus cable connecting its General

Purpose Input Output pins (GPIO) to their telemetry pins. The RPi has the specs needed to

work effectively and together with its low price constitutes a good mean to achieve the

communication between the drone and the ground control station.

1.3.3 Software

To build the application it is important to choose what is going to be the language to be used,

and what is the software needed to build the application. Several languages could be used,

however Java, is the choice taken for its versatility and usability.

Introduction

6

1.3.3.1 Java and JavaFX

Java is a programming language launched in 1995 by Sun engineers. It has since been key for

the development of all type of applications. It is now in its 8th version offering good

performance, being transversal to all operating systems and also providing vast amounts of

documentation. It also offers good User Interface (UI) designing tools like JavaFX and

Swing. JavaFX is the chosen API for the development of the UI.

First released in 2007 it developed slowly and only in 2010 Oracle announced that JavaFX

was to have a much bigger part in Java than what it then used to have. The latest Java version

8 was the first one to have ever included JavaFX in the distribution, ready to be implemented

by developers. According to Oracle, it is the natural replacement for Swing, which will

continue to be present in the JRE, however Oracle encourages all developers to start working

and deploying their applications using JavaFX. The Scene Builder, a visual UI designing tool

also aids and visually improves the developers work.

1.3.3.2 Ground control stations

Over the years with the use of more and more open-source flight controllers from the user’s

behalf, some software platforms, more commonly known as Ground Control Stations (GCS),

started as projects to control and monitor drones. Through the exchange of MAVLink

Messages, the protocol used in the exchange of messages between the flight controller and the

GCS, it is possible to control and monitor vehicles. The current MAVLink version to the date

of this thesis is 1.1.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

7

1.3.3.3 MavProxy

MAVProxy is a fully functional GCS for UAV’s. It is a command line, open-source based

GCS, however, there are some plugins that provide it with a GUI for better usability. Its

simplicity, and the fact that it is built in python make it transversal to all OS’s and make it

possible for it to be installed on the Linux RPi operative system. Figure 1.1 represents the

MavProxy GCS application.

1.3.3.4 Mission Planner

The Mission Planner GCS is one of the most complete open-source GCS’s to be used on the

control of UAV’s. It is built to be used on the Ardupilot open-source projects. It gives the user

the possibility of loading the corresponding firmware on to a flight controller, like the APM

or the Pixhawk, to load configurations of three types of vehicles: plane, rover or copter.

Besides the firmware it also presents the user with tools to setup and configure the vehicle. If

the user intends to plan autonomous missions for the vehicle it also provides that option as

well as saving or loading previous planned missions. Regarding telemetry and the monitoring

of the vehicle it also provides information about the UAV’s statuses if the hardware is fit to

do so.

Figure 1.1 Example of the MAVProxy GCS. The console is on

top, the visual UI on the right and the telemetry on the left.

Introduction

8

Mission Planner is only available on Windows and this limits its use to only this operating

system. The reliability and functionalities of Mission Planner make it a good standard of what

tools a GCS should provide its users to make for a good user experience. Figure 1.2 represents

the Mission Planner GCS and its main screen.

1.3.3.5 Previous work

This thesis follows on the work done by Tiago Saraiva during the last year. Tiago Saraiva’s

work focused on the making of an Android application capable of controlling a UAV through

the use of a tablet and smartphone. Tiago’s work was important as it involved some subjects

worked on this thesis, such as the MAVLink messages protocol, a public server to overcome

the Network Address Translation (NAT) and it is also contemplated the use of the RPi on the

drone.

Figure 1.2 The Mission Planner GCS.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

9

1.4 Objectives

The main goal of the thesis is to develop a software that allows the control and monitoring of

squads of unmanned vehicles. As so, the objectives can be described in the following topics:

1. Communication with the vehicle: Development of a computer application to establish

a connection to the vehicle and receive real time information such as video and

telemetry.

2. Monitoring: After the initial phase and with a connection assured we have to ensure

that we receive the coordinates for one or more vehicles for real-time monitoring

purposes.

3. Control: As we monitor the vehicles, the user has to have the possibility of choosing a

vehicle and take control of it. After this is done, the user should receive live-video

from the vehicle and will be responsible for its control.

4. Override: If a drone is being controlled by another user, the controller behind the GCS

should be able to override and take control of the vehicle previously controlled by the

user.

1.5 Contributions

This dissertation proposes to develop a software platform that will allow for the monitoring

and control of a squad of vehicles. It is intended that this thesis will achieve the goal of

successfully monitoring more than one associated drones with the use of a remote server, to

manage and guarantee the exchange of messages between drones. Although it can monitor

several drones, it is intended that one user should only be able to control one associated drone

at a time. The system should have an admin, or a user with special credentials, that has the

possibility of monitoring the activities from all registered users and their drones, and, under

special circumstances, the admin may overtake and remove the user from accessing the drone.

On the drone, a RPi is present to ensure the communication between the user and the flight

controller, as well as a RPi Cam, to ensure the transmission of a live video feed. It is also

proposed that this system should work using cellular networks for out of line of sight control.

Introduction

10

This project has contributed to:

 Ciência Viva ‘16 Encontro com a Ciência e Tecnologia em Portugal: Demonstração

Drones controlados por telemóveis July 2016;

 Lectures, drone workshops and activities during one week for Ciência Viva during

July 2016.

Also, a scientific article about the work developed in this project is going to be written.

1.6 Dissertation structure

This chapter will serve to present the dissertation structure. It is divided in seven chapters in

the following way:

Chapter 1 is the Introduction chapter, it will include a brief overview of this thesis, the

motivation behind it, the state of the art and also the targets and goals to be achieved.

Chapter 2 presents the UAVs system, how UAVs are categorized, how GCSs are used to

control the drones and the distinction between them and this thesis proposed application.

Chapter 3 describes the electronics behind the UAV. The RPi will also be introduced in this

chapter as well as its camera module and the important MAVProxy GCS.

Chapter 4 is intended to explain how the UI of the software platform was built as well as what

was the software used.

Chapter 5 will go into more detail on how the application works, the connection to the server,

the server itself, the manual and autonomous control, the monitoring, the Raspberry Pi

integration in the system and the MAVLink protocol.

Chapter 6 shows the results and an evaluation of the application system.

Chapter 7 presents the main conclusions and topics for future work.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

11

This page was intentionally left in blank

Introduction

12

Chapter 2
UNMANNED

AERIAL VEHICLES

This chapter will describe the meaning of an

unmanned aerial vehicles in the context of flying

squads.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

13

2.1 Unmanned aerial vehicles

It is understood that an UAV is a pilotless aerial vehicle that is capable of being guided

through remote control by any person or autonomously by using pre-programmed software or

navigation systems based routes (The Utilization of Unmanned Aerial Vehicles (UAV) for

Military Action in Foreign Airspace, 2014). For these vehicles to properly fulfill their purpose

they have to be able to take commands from a Ground Control Station (GCS), maintain a

secure and reliable connection between the planes and controllers at all times, have failsafe

mechanisms and have adequate navigation systems so that the vehicle can move to accurate

and precise locations.

2.2 Unmanned aerial vehicles categories

UAVs can be categorized according to three main characteristics: range, size and altitude.

Typically, the higher the drone goes, the heavier it is and the larger its range. According to

this it is possible to categorize each UAV in the following way (Austin, 2010):

Table 2.1 UAVs categories description. Source: (Austin, Reg, 2010), (Unmanned Aerial Vehicles An

Overview , 2008)

Category Takeoff Weight

[kg]

Range

[km]

Endurance

[hours]

Altitude

[m]

HALE 2 500 – 12 500 Trans global 24 - 48 15 000 – 20 000

MALE 1 000 – 1 500 <500 24 – 48 5 000 – 8 000

TUAV 150 – 500 100 – 300 6 - 10 3 000 – 5 000

Close Range UAV 150 100 2 – 4 3 000

Mini UAV < 30 30 < 2 150-300

Micro UAV 0.10 20 < 1 250

Figure 2.1 Example of a drone.

Unmanned Aerial Vehicles

14

Table 2.1 describes how the different UAVs categories differ from each other, the description

of each of these categories is:

 HALE: High Altitude Long Endurance;

 MALE: Medium Altitude Long Endurance;

 TUAV: Medium Range;

 Close range;

 Mini UAV;

 Micro UAV.

Each of these categories serve different purposes. The first four ones are only for military use

whilst from the Mini UAV and below categories are adequate for civilian purposes.

The latter categories are dependent on three more important ones that are related to the

drone’s construction, these can be Fixed-Wing, Rotary-Wing, Fixed-Wing Hybrid and Multi-

Rotor (Chapman).

Fixed-Wing aircraft have a fixed wing which surface will generate the major lift of the drone,

giving the vehicle natural gliding capabilities and making these more suitable for carrying

more equipment for longer distances with less power. These types of drones are not capable

of vertical take-off and landing (VTOL). The HALE, MALE, TUAV and Close Range UAVs

are usually fixed-wing aircraft.

Rotary-Wing aircraft is an aircraft with only one rotary wing, similar to a helicopter, that

gives this vehicle the propulsion needed to fly and to vertically take-off and land.

Multi-Rotor drones consist of aircraft with several rotor-blades that revolve around a fixed

mast. Many setups are possible and these vehicles have more stability than the fixed-wing and

rotary-wing. Multi-rotors and rotary-wings are more indicated to be of the Mini or Micro

UAV category.

For this thesis purpose it was used a Mini multi-rotor UAV, as it is more adequate for civilian

activities mainly for the stability, the VTOL capability and the ease to pilot and configure.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

15

2.3 Ground control station and control tower

As it is known a UAV needs to be remotely controlled, whether it is more or less autonomous

it always needs human interference in order to make sure that the drone behaves

appropriately. For this to happen the drone needs to communicate effectively with a Ground

Control Station (GCS).

In this thesis it is going to be made a distinction between two types of controlling methods,

the Control Tower and the Ground Control Station, that may sound virtually the same,

however there are differences in their use and consequently they can have different purposes.

To effectively distinguish the two, it’s important to take a look at the real life already existing

examples and study their use.

2.3.1 Ground control station

UAVs are remotely controlled by the use of GCSs, this allow each user to pilot the vehicle in

real-time, using video if provided from an onboard video-camera or by visual line of sight,

and it is also possible to have a drone fly a pre-programmed path if it has the possibility of

using navigation systems. The communication between the drone and the GCS also allows the

user to retrieve additional information from the UAV like battery status, payload, flying

information status, etc... In the case of civilian use these GCSs can be connected to a

particular drone and are available as smartphone applications or as pc software. These civilian

GCSs often need to be near the drone flying area in order to be able to communicate with it.

Figure 2.2 is an example of a civilian made GCS.

Figure 2.2 A civilian type GCS Source: (diydrones.com,

2009).

Unmanned Aerial Vehicles

16

If the drone is being used by the military, these GCSs are more complex, more reliable and

also more secure, they often need to have a licensed pilot operating it and it offers the

technology needed to control and monitor the UAV over large distances. The drones’ onboard

computers are also able to manipulate the vehicle according to the mission and the pilot

instructions. These GCSs do not need to be near the drone as the budget allows for big

distance communication (McHale, 2010). Figure 2.3 represents an example of a military

grade GCS.

2.3.2 Control Tower

Control towers are more commonly known for being present in worldwide aviation airports.

Stationed on the ground, they are responsible for a certain airspace and, within this, they

provide air traffic control services that are required to guide airplanes in order to prevent

collisions, organize and expedite the flow of air traffic, providing information and support for

pilots.

Provided the above concept, used for general aviation, the same can be applied, although in a

smaller scale and dependent on the user needs, to UAVs and GCSs. UAVs are already

controlled through the use of a GCS, however if it’s of our desire to monitor more than one

drone, a typical one would not allow that to happen.

Figure 2.3 A military grade GCS Source: (Industry, 2011).

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

17

Combining the usability of a GCS and the concept of real-world Control Towers it is possible

to build an application that monitors and controls more than one UAV adding extra-

functionalities to a GCS, this will be further explained on chapter 4 and 5. From now on, this

thesis software platform will be named as Control Tower (CT). In figure 2.4, a scheme is

drawn to show the features.

2.4 Communications

To make it possible for a user to operate a drone through the use of a GCS there has to be a

mean of communication between the two. It’s very important that the communications are

assured all the time to make real-time flight possible.

Depending on the type of control there are several ways of communicating with the drone. If

it is intended to control the UAV within line of sight radio control can be used, this transmits

the information through radio frequency and it needs a transmitter on the GCS and receiver on

the UAV. For control beyond line of sight, radio control is no longer an effective mean and as

so the communication can be achieved through wireless communication links like the use of

mobile networks (3G, 4G) or satellite communications.

In figure 2.5 the communications scheme pretended is explained with more detail. The

drones, through the Raspberry Pi are connected either to a cellular network or a Wi-Fi access

Figure 2.4 Features of the Control Tower software platform.

Unmanned Aerial Vehicles

18

Figure 2.5 The communications scheme.

point, connecting to the Internet and logging in to the server. The user, logins to the

application, which in its turn connects to the server and then connects the user to its

corresponding drone. The server is responsible for the delivery of MAVLink messages from

the user to the corresponding UAV and vice-versa.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

19

2.5 Squads of UAVs

This thesis aims to build an application focused on squads of UAVs. A squad of UAVs can be

considered every time someone needs to have a task being performed by more than one

vehicle, being autonomously or manually controlled. When having such a system it is useful

that an admin or a more privileged user be given the possibility to monitor how all the drones

are performing or being maneuvered.

According to whether the drone has an adequate behavior or not, the admin of the system has

the possibility of intervening in the action and deciding to overtake its control and start to

control it itself. This system has applications on a big range of markets, from the military to

civilian.

Unmanned Aerial Vehicles

20

This page was intentionally left in blank

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

21

Chapter 3
ELECTRONIC

COMPONENTS AND

SOFTWARE

This chapter presents a description of the

electronics and components used in UAVs.

Electronic components and software

22

3.1 Electronics

A UAV has some basic components that are required for it to be able to fly, these include: the

main frame, the Electronic Speed Controllers (ESC), the flight controller, the motors or

actuators, the battery and the navigation systems (GPS for this thesis). Besides these main

components other sensors may be present as well as additional payload, like a gimbal holding

a camera. To make the communication between the UAV and the CT possible it also needs a

Raspberry Pi to be present, as well as a Wi-Fi dongle.

3.1.1 Main frame

As explained on the last Chapter there are 3 main types of main frame configurations and this

thesis is focused on a multi-rotor type UAV. Several configurations are possible with multi-

rotors, the most usual are quadcopters, hexacopters and octocopters and they are distinguished

by having 4, 6 and 8 motors respectively. The general rule, regarding theses configurations is

that the more motors there are the more lifting power and stability the drone will have,

however energy consumption will have to be taken in account and as more motors are present

the more energy will be consumed by the UAV (Harris, 2014).

For this thesis purpose, the main frame configuration chosen is an hexacopter. After having

chosen the main frame configuration the frame will also have to be able to hold all of the

other main components explained next.

Figure 3.1 Multi-Rotor possible configurations. Source: (Harris, 2014).

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

23

3.1.2 Electronic speed controller

The ESC is responsible for varying the speed of the electric motor, they are connected to the

power distribution board which is connected to the batteries.

3.1.3 Flight controller

The flight controller is the unit responsible for controlling the UAV, it communicates with the

ESCs to control the motors which enable the drone to fly according to the given commands.

In this thesis the flight controller used was the Pixhawk.

The Pixhawk is an open-hardware project aimed at providing a high-end autopilot hardware at

low cost, its main specifications are in figure 3.3.

Figure 3.3 The Pixhawk and its main specs. Source: (pixhawk.org).

Figure 3.2 An example of a 30A ESC.

Electronic components and software

24

As seen in figure 3.3 the Pixhawk includes four sensors, the 3-axis ST Micro LSM303D

accelerometer/magnetometer, the ST Micro L3GD20 3-axis gyroscope, the Invensense MPU

6000 3-axis accelerometer/gyroscope and the MEAS MS5611 barometer. The accelerometer

is used to measure the total acceleration present, whether it be the earth’s gravity or 3D space

movement, the gyroscope is able to measure spin and twist, the magnetometer is able to

measure where the strongest magnetic force is coming from, generally the magnetic north,

and the barometer is used to measure the atmospheric pressure.

The Pixhawk also features 14 PWM (Pulse Width Modulation)/servo outputs represented in

figure 3.4. This means that out of these 14 outputs 8 can be used to connect to the ESCs and

control 8 motors meaning the other 6 can be used to control servos.

There are also several input ports which are important for this thesis purposes. These are the

GPS, which is connected to the GPS port allowing for the use of several flight modes during

autonomous or manual flight, the Raspberry Pi is connect to the telemetry port to assure the

RPi is able to receive and send data.

The radio input signal which goes on the Spektrum receiver port and enables the controller to

receive radio communication, the power module connected to the power port as to provide

power to the flight controller and the buzzer to the indicated port as a mean to let the user

know if everything is going according to the expected. Regarding the buzzer four different

sounds are distinguishable, one for errors, another for calibration, one for arm/disarm and one

to inform that the GPS signal has been locked.

The firmware running on the Pixhawk is the APM Copter as the UAV is a multi-rotor. This

firmware allows for the communication between the flight controller and the CT through the

use of MAVLink messages. This offers the users several flight modes to be used when

convenient and it gives the possibility of using autonomous waypoint based flight as well as

real-time control. A list of the most used flight modes is exemplified on table 3.1.

Figure 3.4 Pixhawk PWM Outputs. Source: (pixhawk.org).

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

25

Table 3.1 Most used APM Copter flight modes (Ardupilot Dev Team, 2016)

Flight Mode Description

Stabilize Allows the operator to fly the vehicle

manually, regulating automatically the roll and

pitch axis

Altitude Hold Using this mode, the operator maintains a

constant altitude

Loiter The loiter mode maintains the current location

heading and altitude. If the control sticks are

released the vehicle will hold its position

Return-to-Launch (RTL) Sends the Copter from its current position to

the pre-defined home position

Auto The Auto mode will instruct the copter to

follow a pre-programmed mission stored in the

auto-pilot

Guided Guided Mode will instruct the copter to go to a

designated target location

3.1.4 Motors

Motors along with the propellers are responsible for generating the thrust needed to lift the

UAV. When building a UAV, it’s important to choose the right motors as it is needed to have

in consideration the thrust to weight ratio. As is the case with multi-rotors it is important that

the motors can produce around 50% more thrust than the total weight of the drone (Alex, et

al., 2015).

3.1.5 Battery

The batteries are the UAVs power supply. They provide the power to all the components

present in the UAV. When choosing batteries to deploy on the drone it is important to

consider their weight and the power they are able to output.

3.1.6 Navigation systems

Navigation systems are crucial for the piloting of the UAV. The user needs to know the

drones position accurately at all times in order to accurately monitor from the CT and this is

possible through the use of a GPS connected to the flight controller. Besides monitoring, the

CT is also able to control the UAV, and with the aid of navigation systems it becomes

Electronic components and software

26

possible to set waypoints on a map, extract its coordinates, and send it to the flight controller

that will enable autonomous flight and guide the drone to the desired waypoints. Besides this,

as seen on table 3.1, the RTL mode is only available when navigation systems are present as it

needs to know the “home” coordinates in order to guide the drone safely to that position.

3.2 Raspberry Pi

The Raspberry Pi (RPi), represented in figure 3.5, is a credit card sized computer used with

the main purpose of connecting the UAV to the CT. Its preferable operating system is the

Raspbian, a Linux distribution containing more than 35 000 packages and precompiled

software. The RPi is able to connect to the internet using a Wi-Fi dongle or through a standard

ethernet cable connection, and thus is able to connect to a remote server to start the

communication process. It is connected to the telemetry port on the Pixhawk and with the use

of Mavproxy and a Java program is able to transmit the MAVLink messages to the server and

the CT. A RPi camera module for live video feed purposes.

Figure 3.5 Raspberry Pi 3.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

27

3.2.1 Pixhawk Raspberry Pi connection

For the RPi to communicate the MAVLink Messages to the CT it has to be connected to the

Pixhawk. This connection is made through the use of UART cables, that make the link

between the telemetry port on the Pixhawk and the RPi I/O pins. This link is visually

explained on figure 3.6.

3.2.2 MAVProxy

MAVProxy is a minimalistic GCS for UAVs. It supports the APM Copter software which is

the firmware running on the flight controller.

MAVProxy is installed on the RPi, through the use of the connection with the Pixhawk it gets

the telemetry data from the UAV which is then transmitted through the form of MAVLink

messages to the Java program that is able forward these messages to the public server to be

then redirected to the CT. The Java program will be later explained in more detail on chapter

5.

3.2.3 Camera module

The RPi Camera Module is used to transmit live video feed to the CT. This camera is attached

to the RPi, and using the internet connection provided, live streams the video. To access the

video camera, terminal commands can be used, such as the raspivid which records video with

a certain amount of time or the raspistill which captures still images. The camera quality can

also be changed according to the user needs being the camera module capable of recording

Figure 3.6 Raspberry Pi Pixhawk connection. Source:

(ardupilot.org, 2016).

Electronic components and software

28

High Definition (HD) 1080p video. Streaming HD video requires a large bandwidth and a

very good and stable internet connection, it is difficult to achieve good framerates and low

latency when streaming HD video.

There are also several existing libraries to access the camera module like video4linux2

(V4L2) and the python Picamera.

FFMPEG was also installed on the RPi to compress the raw data and send the compressed

video over the internet as it is the most complete multimedia framework available.

3.3 SITL Software

Software in the Loop (SITL) allows for users to run Ardupilot software on the PC directly,

without any hardware needed to be present. It can be installed on any platform or operating

system meaning that it is possible to simulate a UAV within our computer.

By launching SITL and the MAVProxy GCS it is possible to test how a drone should behave

in the outside world. The GCS receives the drone telemetry, and is able to send commands

seeing that same vehicle following the received commands.

With the use of SITL, it is possible to test whether the application performs correctly without

the need of having a real drone.

Figure 3.7 Raspberry Pi Camera Module. Source:

(sparkfun.com).

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

29

This page was intentionally left in blank

User interface

30

Chapter 4
USER INTERFACE

The chapter 4 describes the user interface,

JavaFX and its main importance to the

Graphical User Interface (GUI)

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

31

4.1 Application

The main thesis focus is the building of an application that allows for the control and

monitoring of drones using a computer. This application is built using the Java programming

language, being JavaFX the API used for the making of the GUI. The whole system is

comprised with the Java application, the public server which is critical in the redirecting of

messages and the Raspberry Pi, present on the drone to establish the communication with the

flight controller. Figure related to subsections 4.2.2 and 4.3 are displayed on annex A for

better visualization.

4.2 JavaFX

JavaFX consists in a set of graphics and media packages that enable developers to design,

create, teste, debug and deploy rich client applications that operate consistently across diverse

platforms (Pawlan, 2013).

JavaFX is being regarded as the substitute of Java Swing, which is still widely used but

JavaFX is preferred as it comprises a set of utilities that are more useful to the building of the

application.

4.2.1 FXML

FXML is an XML-based language and it provides a structure for building a user-interface

without having to include this code within our main application (Fedortsova, 2014). This

makes it easier for the developer to separate the GUI from the application logic.

Within JavaFX each FXML file is attributed a controller class that will perform all the actions

regarding the interaction of the user with the scene. FXML has an active interaction with the

Scene Builder, as the two are “connected”, any change performed on each one will influence

the other one. Three FXML files were created in order to fulfill the applications needs, each

representing a different scene.

Figure 4.1 Code snippet from the Login.fxml.

User interface

32

In figure 4.1 is an example of a code snippet from the FXML file login.fxml which represents

the Login screen and it shows the placement of a button with the id “button”, with a call to the

controller class function named goToScreen2 through the onAction=”#goToScreen2” and

with a text “Login” so that the user knows what the purpose of the button is. Two other text

fields are present, so that the user is able to input a password and a username.

4.2.2 Scene builder

Scene Builder is a tool provided by Java to be used with JavaFX. As mentioned in 4.2.1 it is

connected with a FXML file and gives the developer an easy way of designing the GUI

saving the changes directly to the file. The version used is the JavaFX Scene Builder 2.0.

With Scene Builder it is possible for the user to have an easy access to all the UI Controls and

graphic tools designed by JavaFX without having the need to code them directly in the

application. It is possible to select Containers, Controls, Menus, Shapes, Charts and 3D

objects. It also gives the user the possibility of using a Canvas for drawings as well as

SubScenes and SwingNodes.

Besides the graphical elements, it also provides an easy way of modifying the layout, whether

changing the size manually or by changing the background color of the element by using CSS

elements.

Each element created has the possibility of having assigned code on the controller class. For

this to happen the Scene Builder allows for the controller to be manually assigned to the

FXML file and through the use of the Code option it is possible to make calls to existing

functions on the controller class. An id can be given to the element so that it can be easily

accessed with a call using @FXML on the Java class. Other calls can be made for example,

the onAction, used as a response to when a button is pressed, or Mouse Clicked as a response

to when a mouse is clicked over that element, and so on... In figure 4.2, the example of the

MonitorinScreen.fxml as seen on the scene builder, with the all the customization options on

the left of the screen, and the layout, properties and code logic on the right.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

33

4.2.3 UI controls and CSS

The UI Controls are the heart of JavaFX. They are comprised of all the elements needed to

create a visually rich GUI. UI Controls used in the application are for example:

 Buttons;

 Labels;

 Text Field;

 Password Field;

 List View.

 Buttons are important because they represent “action points”, this means that the user is able

to press a button to do a certain action, usually described in the button itself. Labels can be

used to store graphics, images or just plain text, being mostly used in the application to show

text information. Text Fields and Password Fields are similar, they both allow the user to

input plain text that can later be accessed to perform a certain action, the only difference is the

password field “hides” the text characters so that they cannot be read on the screen, this is

useful, for example, during the login menu of the application. List Views are useful to show

Figure 4.2 MonitoringScreen.fxml as seen on Scene Builder.

User interface

34

information through the form of a list, making it possible for the user to scroll through a list of

items.

Cascading Style Sheets or CSS is a language used to describe the style of an HTML

document, and it is applied the same way it is to HTML to JavaFX. CSS can be applied to

nodes in JavaFX making possible for the user to change the background color, text color or

even add background images. This makes possible to change and diversify the text and

background images with relative ease compared to other tools.

4.2.4 WebView

JavaFX also comes with an embedded web browser. This web browser interface is called a

WebView and gives the user a component that is capable of full browser functionality through

its API.

Based on WebKit, an open-source web browser engine, it has support for the afore mentioned

CSS, Document Object Model (Dom) and HTML5 (Redko, 2014). This web view made

possible for the rendering of HTML5 contents from local and remote URLs, the execution of

JavaScript commands and the possibility of making up calls to be made from JavaScript to

JavaFX.

Making use of the mentioned capabilities this tool, along with Web Engine, used to provide

the basic web page functionality to support user interaction, allowed for the use of HTML and

JavaScript files to render a web page. WebView and Web Engine are part of what is known as

the JavaFX web component.

During the streaming of live-video some problems were found. The embedded JavaFX

browser has some limitations regarding the rendering of scripts as it does not support WebGL

and Adobe Flash. The solution to this was to use JxBrowser, a licensed API, which integrates

a Chromium-based browser to JavaFX and thus providing the specifications needed to render

and display the received video stream. The live-video stream issues and solutions will be

further detailed on chapter 5.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

35

4.2.4.1. HTML5 and JavaScript

HTML5 and JavaScript are related technologies, as they go hand-to-hand in web pages.

HTML5 defines the latest standard of HTML and it is a markup language used to design web

pages. JavaScript is a programming language that is mostly used to make web pages

interactive and it can be directly integrated into the HTML file.

As mentioned, the JavaFX web component supports the latest features of HTML5 some of

these being the Canvas and SVG, the Interactive Element Tags, web sockets, and so on...

4.2.4.2. HTML files

Two HTML files were created, one monitoring_script.html and one control_script.html, their

purpose is to design a web page that embeds google maps, to be included on the

corresponding web view. Since the UAVs have coordinates, it is a requirement of the CT that

the user is able “see” the position of the drone in map, and as such the Google Maps

JavaScript API, proved to be the most suitable JavaScript library available to customize and

deliver the maps.

Starting with the monitoring_script.html its purpose is to create a map to allow the user to

monitor the position of the drone. This is achieved by the interaction between the JavaScript

and the JavaFX web components, in figure 4.3, is a scheme that helps to better understand the

interaction between these two components.

Figure 4.3 MonitoringScript and Java Interaction.

User interface

36

From the scheme in figure 4.3, it can be understood that the JavaFX loads the HTML file,

creating the google maps then, when a drone is connected and it is intended to be monitored,

the Java communicates the coordinates to the JavaScript by passing and executing the script

within the file. Finally, when the coordinates are received the script creates a marker by using

the Google Maps API and updates the marker constantly to keep the user up to date regarding

the drones position.

The control_script.html file has the same logic than the file mentioned above, biggest

difference is that the map is now focused on only one drone and the selected one is the only

that matters. To make it easier for the user to follow this drone, the map is fixed on the drones

given coordinates, and whenever the drone changes position or moves a polyline is drawn on

the map so that the user knows the path taken.

4.2.5 Concurrency

To help with bigger processing demands, it is required that the application be thread safe, and

this means taking advantage of multitasking to avoid making the application UI unresponsive.

JavaFX is aware of this and as such provides a package, javafx.concurrent, that gives the

developer the tools needed to create multi-threaded applications. (Fedortsova, 2012)

One of the main requirements of the CT is that it should be able to monitor more than one

drone, and this would be very difficult to achieve without concurrency. By using the Task

class, from the javafx.concurrent package, it is possible to have each drone be assigned to

each task, thus enabling the user to monitor more than one drone. Each task is a thread, and

runs independent from the JavaFX main thread and any other, allowing for the UI maintain its

responsiveness without compromising any received data.

4.3 UI screens

As explained JavaFX is the software platform used to build the GUI. As so, the GUI is

composed with all of the assets mentioned in 4.2, and for the needs of the application three

main FXML files were created, the Login.fxml, the MonitoringScreen.fxml and the

ControlScreen.fxml. Each one of these are meant for a different task and are independent of

each other.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

37

The Login.fxml is always the first screen to be loaded, its purpose is to show the login page

which is the app loading screen. Through this, the user has access to a text field and a

password field to enter the required credentials and then use the login button to verify them.

It’s a simple screen, that fulfills only the purposes of authentication. In figure 4.4, it is shown

a screenshot of this scene.

Up next, following the authentication from the login screen is shown the

MonitoringScreen.fxml, this screen represents the home screen, where a user is able to

monitor the connected drones as well as the respective user connected to them. The

background initializes the google maps and allows the user to situate where in the world each

drone is connected. Two main buttons are present; one connects or disconnects from the

server depending on the state of the connection and the other one allows for the control of a

specific drone and advances to the next screen. On the left side of this screen, the drone status

is represented; the UAV id, its type, vertical speed, groundspeed, altitude, throttle and the

ping are present to show the user all the information requested. On the right side two lists are

shown; the top one represent the users’ connected and available to control drones, whilst the

bottom list shows all the drones and respective users connected to the server at that moment.

On figure 4.5, it is possible to see all the mentioned parts of the screen.

Figure 4.4 The login view.

User interface

38

Finally, the last screen is the ControlScreen.fxml and it represents the control part of the

application. As this screens purpose is to control the drone it is also the one with the most

features. Just like the MonitoringScreen.fxml the background also initializes google maps and

it also provides the user with all the information regarding the drone status, on the right

bottom half of this scene it is possible to see that the same information is shown. On the right

top, however, more information from the UAV status is present; the battery percentage, the

armed/disarmed lock and the current flight mode are present to give the user more insight

about the drone. On the left bottom screen four buttons are present; the Manual Control,

Autonomous Control, Start video and Go back. These buttons allow for the user the choose

the type of control they want the drone to execute, manual or autonomous (mission planning).

Regarding the manual control, three buttons and a combo box turn visible when prompted.

The Arm/Disarm button will arm or disarm the drone, the change mode button together with

the combo box allow for the user to change the drones flying mode and the Start Manual

Control button will initialize the manual control of the drone. For the autonomous button,

mission planning through waypoints can be executed. Six buttons will then appear:

 Add Waypoints, so that the user can add waypoints to the mission;

 Clear Waypoints, to clear any pending mission waypoints;

 Fly, to start the mission, after adding the waypoints;

Figure 4.5 The Monitoring View.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

39

 Show waypoints, this will show all the loaded waypoints on the screen;

 Send Takeoff, will send a takeoff message to the drone;

 Go to, will send the drone to a specific point in the map chosen by the user.

Some drones will also provide live-video streams and these can be accessed by the start video

button. If the user however wants to return to the monitoring screen, the go back recedes to

that. A screenshot of this screen can be seen on figure 4.6.

Figure 4.6 Controlling View.

User interface

40

This page was intentionally left in blank

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

41

Chapter 5
CONTROL TOWER

APPLICATION

This chapter describes the full system behind the

GUI, the application logic, public server,

Raspberry Pi and the live video-stream.

Control tower application

42

5.1 Control tower

Behind the GUI the application has a logic to make all the elements connect and work. The

Control Tower application as explained on the earlier chapter is divided into three screens.

One allows for the user to login to the server, being the other two responsible for the control

and monitoring of UAVs. The CT integrates with a public server, for message redirecting

purposes and with the Raspberry Pi connected to the flight controller. The messaging protocol

between the CT and the UAV is the MAVLink protocol.

5.2 MAVLink

Micro Aerial Vehicle Link (MAVLink) is the protocol used for the exchanging of messages

between the CT and the Pixhawk. It is a header only message library, first released in 2009 by

Lorenz Meier, its current version is 1.1 as of the date of this thesis.

Each MAVLink packet can have a length of up to 263 bytes, the header occupies 6 bytes,

payload can have any size up to 255 bytes, being the last 2 bytes reserved for checksum bytes.

The header’s 6 bytes are: the message header 0xFE, the message length, the sequence number

of the message which can go up from 0 to 255, the System ID by default set to 1, the

Component ID also set by default to 1 and the MessageID which has the purpose of

identifying the payload. The payload has a variable size represents the data contained in each

message and is what the CT and flight controller are interested in retrieving from each

MAVLink packet. The last two bytes are used for checksum, using the CRC method.

Figure 5.1 MAVLink packet structure. Source: (qgroundcontrol.org/mavlink).

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

43

5.3 Login

The login process represents the authentication of any user on the server. The process can be

described in the following scheme, present on figure 5.2.

As it can be seen through figure 5.2, the user is prompted to fill the username and password

fields. Next and when the user presses the login button it starts the process of authentication.

The authentication has two “points” of credentials comparison to increase security. First it

requires PHP authentication, this sends a JSON Post request to the server containing both the

credentials and checking through the database if the user exist and the passwords corresponds,

if they exist a JSON Response is issued and it can have three types:

 0, username not found;

 0, wrong credentials;

 1, authentication successful.

Figure 5.2 Login flowchart.

Control tower application

44

According to each type of response an information is passed to the user so that he knows the

result of the login, and in the case it failed, a warning window is shown and the user can try to

login again.

The second “point” of security is through the Java code running on the server, when

connecting, the application opens a TCP connection between the server and the app, and then

a login message is sent to the Java code including both of the credentials, this will allow the

server to check the database and respond either with a LOGIN_SUCCESS message, or a

LOGIN_FAILED.

These two authentication methods are independent of each other, creating two layers of

security, adding redundancy to the system, which makes it useful in case one of them is

bugged or unable to work.

Another addition to the authentication system is the password encryption. To add an extra

layer of security, using the java.security package, the cryptographic Secure Hash Algorithm

SHA-512 is used to hash the password creating a safer method of authentication.

5.4 Monitoring

The monitoring process consists on the monitoring of all the information regarding connected

drones. By switching MAVLink messages with the server and the RPi on the UAV it is

possible to get the drones location, its information status, the user to which it is connected at

that moment and if the user is logged in as the Admin it is possible to override the control of

other users.

5.4.1 Drone positioning

The monitoring screen allows the user to locate the drone by using google maps. This is

achieved by the exchanging of messages between the flight controller and the CT. As

explained on 5.2, MAVLink messages are constantly being exchanged by the two parts, and

each message provides a different type of information.

For the drone positioning the message used is the MSG_GPS_RAW_INT, that carries the

values of latitude and longitude based on WGS84 frame reference and expressed in degrees

1 ∗ 107. To have the actual value of longitude and latitude we then have to divide the given

value by 1 ∗ 107. WGS84 is an Earth-centered and Earth-fixed reference system.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

45

By constantly receiving the updated position, it is possible to communicate these values to the

html and JavaScript file and then update the drones position on the map.

5.4.2 Information status

Besides the location of the drone, to effectively monitor a drone it’s important to receive and

show all the data regarding the UAV state. This includes receiving its altitude, groundspeed,

vertical speed, throttle, the type of drone and its ID. All of these information statuses are

again contained on a specific type of MAVLink message, MSG_VFR_HUD. By analyzing

these messages, it is possible to immediately retrieve these parameters and display them to the

user.

5.4.3 Control overriding

The primary feat of the CT is the control overriding. This feature, allows the admin to take or

give control to determined users according to its preference. This is mostly useful for security

purposes, for example, having a squad of drones controlled by different users and performing

different tasks the admin can monitor if all the users have an adequate behavior when piloting.

The control overriding is achieved by interacting with the server, as all the information is

stored in it. The flowchart depicted in figure 5.3 better explains this interaction.

Figure 5.3 Overriding and giving control flowchart.

Control tower application

46

As it can be seen on figure 5.3, the interaction starts with the login. Only admin credentials

have the privilege of being able to know which drones are online and connected to a certain

user. Then, when connected, the admin will be able to identify all the drones on the map,

monitoring their location and getting their information statuses as well. If, however, user and

drone are not connected to each other at that moment, neither the drone nor the user are

visually identifiable.

The overriding process takes place when the admin clicks on a connection between drone and

user and chooses the take control option. This will trigger a TAKE_CONTROL message

containing the operator username and the drone ID, sending it to the server. When the

message is received on the server end, it retrieves the data, updates the database and

associates the drone with the admin’s IP redirecting all the upcoming MAVLink messages to

the admin instead of that user.

When the user loses control of a drone to the admin it won’t be able to connect back to the

drone unless permission is given to do so. With this approach, some problems may arise, for

example, if the operator is manually flying the drone, the sudden loss of control may cause the

drone to crash. To deal and try to avoid this outcome there is a failsafe solution presented,

however, good judgement from the admin is important to avoid accidents. The proposed

solution to this problem is to change the drone mode to ALTITUDE_HOLD, before losing the

control so that drone maintains its altitude and stays in the same position.

As the admin is capable of overriding control, it also has the possibility of giving the control

back to the previous user. During the overriding process the CT knows which user has lost

control, so when the user wants to give the control a GIVE_CONTROL message is again

issued to the server that will follow the same principle as earlier. The database will be

updated, the drone then becomes associated with the previous IP again, and communication

between the user and the drone is now assured.

5.5 Control

The control part of the CT allows for the user to remotely command the drone, and it features

two main points, the manual and autonomous control. As explained on chapter 4, there is a

dedicated screen for this part and it gives the user more detailed information regarding the

drone’s status.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

47

5.5.1 Manual control

To describe how the manual control works it’s important to first understand some basic

principles on how multi-rotors are able to fly.

There are 3 axis involved when a drone is moving, yaw, pitch and roll. Yaw axis represents

the rotation movement of the drone, roll axis represents the side movement making the drone

go left or right and the pitch axis tilts the UAV forward or backward making it accelerate or

decelerate. Figure 5.4 better represents these axes.

The control of each of these axis is achieved by changing the motors speed. To roll and pitch

all the drone has to do is speed up half of the motors and slow down the other half. The yaw is

achieved by speeding up diagonally across motors, slowing down the others.

When manually controlling a drone the flight controller is in charge of converting the

received commands in order to make the motors speed increase or decrease to make the drone

have movement. This is achieved by the CT communication with the drone through the use of

the MAVLink message MSG_RC_CHANNELS_OVERRIDE.

The MSG_RC_CHANNELS_OVERRIDE MAVLink message has as data 8 communication

channels, each receives an input value between 1000 and 2000, representing the minimum

value accepted and the maximum respectively. If the value given for any channel is 65535

Figure 5.4 Yaw pitch and roll axes. Source: (norunway.com/wp).

Control tower application

48

Figure 5.5 Gamepad used for manual control.

then this means that the value is not set and is thus ignored. The first 4 channels represent the

roll, pitch, throttle and yaw respectively.

As the CT has the purpose of being used on a computer there were two possibilities to

manually control the drone, one is through the use of the keyboard keys, the other is by using

an external controller. The first possibility had a problem with a lack of sensitivity, the keys

have only two states, they are either pressed or not pressed and as such it is not very intuitive

for the user to know how much it needs to press to have the drone respond accordingly. As so,

the choice fell over the second possibility, using an external controller more specifically, a

game pad as depicted in figure 5.5, as it resembles the radio remote controls used by RC

hobbyists worldwide.

To gather input from the controller, the LightWeight Java Game Library(LWJGL) is used.

LWJGL is basically a Java library that enables cross-platform access to popular native API’s

and in the case of the CT application the Jinput library offered by it is key to gather input

from the remote controller. Jinput is also a cross-platform API, but it allows the program to

poll input devices like the keyboard, mouse, joystick and game pads (Davison, 2006).

When using the game pad, just like the traditional RC controllers, there are two control sticks

that can be used for the same task, one for throttle control and another one for steering. These

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

49

control sticks are identifiable as left and right analog sticks and have two axis of movement, x

and y. The gathered values are float numbers, ranging from -1.0 to 1.0 on both axis (Davison,

2006). Figure 5.6 better represents this correlation.

The MSG_RC_CHANNELS_OVERRIDE values oscillate between 1000 and 2000 so in

order to get these values it is important to find the mathematic correlation formula between

these values and the ones that are gathered from the analog sticks input. The following

mathematic expression allowed for this conversion:

 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑉𝑎𝑙𝑢𝑒 = 𝑠𝑙𝑜𝑝𝑒 ∗ (𝑥|𝑦) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (1)

Explaining the equation above, the channelValue represents the value to be sent into the

MSG_RC_CHANNELS_OVERRIDE, the slope has a fixed value of 500, the (x|y) represents

the analog sticks axis chosen input received value, between -1.0 and 1.0, and the intercept has

a value of 1500. This equation should return a value between 1000 and 2000, that will be used

on the MSG_RC_CHANNELS_OVERRIDE to be sent to the flight controller.

To be able to manually control the drone the user will have to have a game pad connected to

the pc, and the drone as to be set to armed. To set the drone to armed a

MSG_COMMAND_LONG has to be sent to the flight controller with the command

COMPONENT_ARM_DISARM and the first parameter set to 1, if it is set to 0 the drone will

be disarmed.

Some problems arise from the use of a game pad instead of a RC controller, being the most

important feature the lack of sensitivity. The analog stick is smaller than the ones used on RC

control, and due to this the slightest changes will have a bigger value difference, this means

that the user should operate the controller more carefully.

Figure 5.6 Values on the axis of the controller. Source:

(Davison, 2006).

Control tower application

50

5.5.2 Autonomous control

The autonomous control is achieved through the use of waypoints navigation. This method

enables the flight controller to receive GPS coordinates, and stores that information in the

form of waypoints. Then when the user commands it to start, the flight controller knows the

waypoints order and starts flying the drone to the correct location at the specified altitude

through each one.

MAVLink has what it calls the Waypoint Protocol. This protocol describes how waypoints

are sent and read from the UAV in order to ensure the consistency of information between the

sender and the receiver (QGroundControl, 2016). Three different types of communication

between UAV and the CT can be done regarding the waypoints protocol: read, write and

clear.

5.5.2.1 Write waypoint

To write a waypoint, or to send a list of waypoints, there as to be a switch of messages

between the CT and the UAV. The figure 5.7 better represents this message switching system.

Figure 5.7 Write Waypoint diagram. Source:

(qgroundcontrol.org/mavlink).

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

51

As it can be seen from figure 5.2, the process starts with the sending of a MAVLink message,

WAYPOINT_COUNT, containing the number of waypoints the user wants to send to the

drone. This generates a response message, WAYPOINT_REQUEST, from the flight

controller asking for the first waypoint, attributing it the sequence number 0. The CT must

then respond with the first WAYPOINT_MESSAGE. This procedure will repeat until the last

waypoint is sent and then a WAYPOINT_ACK is sent from the flight controller confirming to

the CT that all waypoints have been received. For this procedure to work, the waypoint

message sent has to have the same sequence number has request from the flight controller.

5.5.2.2 Read waypoint

Within the waypoints protocol, it is also possible for the user to request the UAV about the

loaded waypoints. To do this, the CT when requesting has to follow the procedures described

on figure 5.8.

Figure 5.8 Read Waypoint diagram. Source:

(qgroundcontrol.org/mavlink).

Control tower application

52

To start requesting the saved waypoints the CT first sends a WAYPOINT_REQUEST_LIST

message to the flight controller. This message will trigger a WAYPOINT_COUNT message

has a response containing the number of waypoints present. The CT then becomes aware of

how many waypoints are presents and will send a WAYPOINT_REQUEST for each one.

Each one of these messages received on the flight controller will trigger a waypoint message

response containing each waypoint according to the sequence number requested. At the end of

this procedure the CT will send a WAYPOINT_ACK message to inform the flight controller

that all waypoints have been received.

As soon as the described procedure ends, the waypoints are then displayed to the user on the

google maps display.

5.5.2.3 Clear waypoint

It is also possible for the user to clear the existing waypoints list from the flight controller if it

intends to do so. The procedure is much simpler than the latter two, and it is only required that

the CT sends a WAYPOINT_CLEAR_ALL message to the flight controller that when

received will clear the stored waypoints list, sending as a response a WAYPOINT_ACK

message confirming to the CT that it is now clear. Figure 5.9 graphically shows a better

representation of the transaction. (Davison, 2006)

5.6 Server

To have the CT communicate with the RPi on the UAV over the internet they both need to

know each other’s IP addresses. Due to both these applications being behind NATs there is no

way they can effectively communicate directly. The server manages to solve the NAT

Figure 5.9 Clear Waypoints diagram. Source:

(qgroundcontrol.org/mavlink).

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

53

problem, using a public IP address both the CT and RPi can have access to the server, log in

and switch MAVLink messages between each other.

As explained on 5.2, 5.4 and 5.5 the CT application is divided between the Login, Monitoring

and Controlling, this means that the server has to fulfil certain requirements for each one of

these. There are two protocols of communication available for the communication between

the CT, UAV and the server, these are the UDP and TCP protocols. Each have their own

advantages and disadvantages and are both used to fulfil different types of requirements.

For login purposes, it is important to have an extra layer of security to make sure that the

messages exchanged are not lost, this way the TCP protocol is the best alternative as it is a

more reliable protocol meant to provide error-free data transmission, retransmitting lost

packets and confirming that all of them are received. When logging in, the speed of the

message exchange is not important, reliability is the main requirement and TCP is the more

suitable choice. For monitoring and controlling purposes, the message exchange has to be

fast, otherwise the delay won’t allow for real-time control. This way, the UDP protocol is the

more suitable one, it offers less reliability and won’t control whether the message reached

their destination nor retransmit lost packets, however it will keep on delivering messages

constantly as needed for real-time control. The majority of the MAVLink messages don’t

require any type of confirmation, however when they do the MAVLink protocol is able to

provide responses in the form of ACK that will enable the CT to interpret on determined

situations whether the message reached or not its destination.

The server is also supported by an online database that stores all the users and their respective

passwords for login purposes, as well as all the drones that are capable of logging in, allowing

for several users and drones to be online at the same time without interfering with each other.

The database also has default assignments for each of the users and drones, this means that

each user can only have access to its assigned drones being the admin the only one who has

the capability of visualizing all of the online drones and users.

When the server has more than one user online, each assigned to a different drone, it faces a

redirecting problem on how will it know which message belongs to whom. To address this

issue, the server assigns the IP address of each user to the IP address of each assigned drone

using a handler, this way, every time it has to dispatch a message coming from either of them

it checks each handler for the assigned IP address and then sends. Another issue arises when a

user has multiple drones connected to it and it needs to distinguish them from each other. The

Control tower application

54

MAVLink messages on their own don’t have any identifiers, and to the CT when they’re

analyzed they don’t differ from UAV to UAV, so in order to address this problem, the server

encapsulates each message with the IP address of the drone it is being sent from before

dispatching. This way, when the CT receives an encapsulated message all it needs to do is

unpack the incoming message and extract the IP address of the drone it comes from and the

user is now able to distinguish multiple UAVs from each other.

5.7 Raspberry Pi

Each drone is equipped with a RPi, to allow for a connection to the internet and a connection

to the flight controller. By connecting to the internet, and running the inside scripts the RPi

starts the Mavproxy which identifies the connection to the Pixhawk and thus captures all the

MAVLink messages coming from and to the flight controller. The scripts also start a Java

program that is responsible for logging the drone to the server, dispatching the MAVLink

messages to the server and receiving the incoming ones. The RPi is also responsible for the

handling of the streaming, and together with the server will provide a live video stream to the

CT.

5.8 Streaming

In order to have live video streaming from the drone two approaches were studied and tested,

one used Wowza Streaming Engine as a streaming server to redirect the stream from the RPi

Camera to the Control Tower and the other was through html5 video stream through web

sockets. Both of these methods used the RPi Cam, and required a stable internet connection to

have the required delay times.

5.8.1 Wowza

Wowza Streaming Engine came as a solution to find a streaming server that was capable of

delivering the video live stream to the CT. To do this, Wowza was installed on the public

server to be accessed at all times.

Wowza incorporates streaming protocols such as the Adobe Flash RTMP, the Adobe Flash

Dynamic Streaming, Apple HTTP Live Streaming, MPEG-DASH, RTSP/RTP, among others.

This made possible the encoding of the video-stream in the RPi using FFMPEG, to an RTMP

link redirected to the public server’s IP address. When the stream connected all it is needed is

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

55

a player on the Control Tower application to open the link to the server, to render the video

stream.

With this approach some problems were encountered, the first of which is the lack of

compatibility between the JavaFX incorporated media assets, and, as was previously

explained on chapter 4, there is no flash plugin supported on the incorporated web engine.

The JavaFX Media Assets only support four types of protocols, FILE, HTTP, JAR and HTTP

Live Streaming (HLS) (docs.oracle.com, 2016). Of these, only HLS is supported by Wowza,

and it is not a protocol that fulfills the requirements needed for live video streaming. HLS

works by sending video as a series of small files, with a typical duration of 10 seconds,

although this value can be reduced to smaller values (developer.apple.com, 2016). By

segmenting files with a minimum duration, the HLS ends up introducing a delay of around 10

seconds on average which makes it impossible to control a live drone. Using the incorporated

media assets was no longer an option, due to its limitations.

The other studied possibility was the use of an HTML player, such as JW Player to render the

RTMP stream provided by Wowza. However, another limitation of JavaFX was found, as

RTMP streams require the Adobe Flash plugin to work. Flash is not supported on the web

engine, and thus the player won’t render the incoming live video stream.

As explained on 4.2.4, the solution to render the incoming live stream is a licensed API,

JxBrowser. This API, when integrated into JavaFX, made possible for the inclusion of a more

complete web browser that included the latest Flash plugin, needed for the rendering of the

stream. The results, using Wowza, FFMPEG as an encoder on the RPi and the browser on the

CT, averaged around 0.5 seconds.

5.8.2 HTML5 via web Sockets

To complement the last alternative, another solution was found based on the work of

Phoboslab where the author provided a tutorial and all the necessary html and javascript files

needed to make the project work (Szablewski, 2013). This project was based on HTML5 and

web sockets, and an encoded stream on the RPi behalf to MPEG-1.

To make this project work, two things were mainly important. The first was the use of the

public server to store the stream-server.js javascript file, that, through web sockets receives

the stream from the RPi via HTTP. Then all the receiving end needs to do is to run the

Control tower application

56

stream.html file inside the browser, which, together with the jsmpg.js javascript file, will

render the webpage and the live video stream with surprisingly low delays. On average, the

delays achieved using this project were 0.2 and 0.3 seconds which are enough to enable live

control. These results will be further explained on chapter 6.

Figure 5.10 Video Stream flowchart.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

57

This page was intentionally left in blank

Results

58

Chapter 6
RESULTS

The chapter 6 presents results and performance

evaluation to the application performance on

experimental conditions.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

59

6.1 Tests

To obtain the application results, some features were defined as milestones that the

application had to be able to reach in order to fulfill its main purpose. These results can be

defined in four different areas: monitoring, controlling, overriding and video streaming. In

the monitoring phase two scenarios are distinguished if the user is the admin and if the user is

not and admin. Table 6.1 details how each test should be conducted and the expected result.

Table 6.1 Tests, objectives and expected results.

Tests Objective Expected result

1.Monitoring

Test whether the user is able to

monitor its assigned drone. If admin

should be able to monitor more than

one

The application should behave

accordingly and allow for a regular

user to monitor its assigned drone. An

admin should be able to monitor more

than one drone

2.Control

Test whether a user, or admin, is able

to control its assigned drone,

manually or autonomously

The user or admin should be able to

control the vehicle live through the

internet. The vehicle’s movement

should be visible and all the

waypoints must be completed during

autonomous/mission control

3.Overriding
Test whether the admin is able to

override a regular user control

The admin should be able to remove

the user’s control. The user should

lose access to the database and won’t

be able to control the drone unless the

admin returns the control

4.Live video-stream

Test whether the application receives

live video feed using Wi-Fi, 3G and

4G

The application should receive the

live video feed and the time on the

video should be compared to the one

showed on the chronometer. The

latency time shouldn’t be over 500

ms and ideally should be less than

300ms

The first three tests are made under simulation conditions, using the SITL software,

previously explained. The last test, will be made using a RPi and a RPi Cam, as this is what

would go onto the drone to transmit the live video feed. All the following subsections figures

are present in the indicated annexes, for better visualization.

Results

60

Figure 6.1 Admin monitoring.

6.2 Monitoring Tests

The monitoring tests serve the purpose of evaluating whether the application successfully

monitors one or more vehicles in real-time. Two scenarios were evaluated, the admin

monitoring and user monitoring. As explained on the previous chapters, the admin has

different permissions when comparing with regular users. Admin should be able to monitor

online drones, and see to which users they are connected to. Regular users are only able to

monitor their assigned drones, according to the server’s database. Figures from the following

subsections are present in annex B.

6.2.1 Admin monitoring

This scenario tests whether the admin is capable or not of monitoring more than one vehicle at

a time, the admin is able to see all the connected users on a list, and from that list is able to

start the monitoring of the select drones.

Figure 6.1, represents the admin view when two users are connected and both their drones are

being monitored. The two drones are represented on the first list, identified by their ID. Below

the top list, it is visible to which user each drone is assigned.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

61

6.2.2 User monitoring

The application provides users with the possibility of monitoring their assigned drones. When

registered on the server’s database, a user is assigned with one or more drones. These, when

online, will be the ones the user is capable of monitoring and controlling. While monitoring,

the application will provide all the information regarding the position of the drone, its ID and

its information statuses such as the altitude, groundspeed, vertical speed and throttle. When

the UAV symbol is pressed it shows its ID in order to distinguish between them if the user has

more than one drone online in the nearby space.

The first test happens with a user connected to one drone. In this test it will be shown that the

application is able to monitor one drone and receive its information.

In figure 6.2 it is then visible the drones positioning on the map, it is identified as drone 1. As

the user doesn’t have any more of its drones connected only this one is available. On the

bottom half it is also indicated the ping times. It is achieved using the equation (2), Round

Trip Time (RTT) which returns the result in ms.

𝑅𝑇𝑇[𝑚𝑠] = 𝑡𝐶𝑇𝑜𝑤𝑒𝑟/𝑆𝑒𝑟𝑣𝑒𝑟 + 𝑡𝑆𝑒𝑟𝑣𝑒𝑟/𝐹𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 + 𝑡𝐹𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟/𝑆𝑒𝑟𝑣𝑒𝑟 + 𝑡𝐶𝑇𝑜𝑤𝑒𝑟/𝑆𝑒𝑟𝑣𝑒𝑟 (2)

The ping result presented in figure 6.2 is around 119 ms, and this represents the average time

the messages take from one end to the other. It was calculated according to (2), sending 5

Figure 6.2 User logged in, monitoring one drone.

Results

62

ping messages every second and then calculating the arithmetic average based on those 5

times received.

6.2.3 Evaluation

The monitoring tests showed that the application successfully manages to distinguish between

two types of users, the admin and the normal user. Different screens are shown for each type

of user, and they both allow for different types of information to be seen. With the normal

user connected it can monitor all their assigned drones, and when the admin is connected it

manages to monitor all the logged in and connected vehicles.

6.3 Control tests

In order to perform the control test two scenarios had to be evaluated, the autonomous and

manual control. The application provides two ways of controlling and they are useful in

different types of situations, has such it will be tested whether the drone is able or not of

completing these tasks. Manual control subsection figures can be found in annex C.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

63

6.3.1 Manual control

The application features the manual control of the drone, this means that it is possible for the

user to connect a controller on to the pc and use as mean to get the UAV moving. Three

different scenarios will be tested. The analog stick on the left side of the remote represents the

throttle, and will make the UAV rotors rotate faster or slower. The right side analog has the

purpose of changing the roll and pitch, changing the direction of movement from the drone.

As such the scenarios involve showing that when using the analog sticks, the drone reacts and

its movement is visible on the application.

Table 6.2, shows the different scenarios tested and the figure indication that shows each test

result in the annexes.

Table 6.2 Manual control test scenarios.

Scenarios Action Result Figure

Throttle up

The left analog stick is pointing

forward, the application sends a

command to the drone increasing

the throttle value

The drone gains altitude and

goes up as a result of

increased throttle values.

The altitude values are high,

and the positive vertical

speed indicate the drone is

rising

Annex C

Figure C. 1

Throttle down

The left analog stick is pointing

backwards, towards the user,

sending commands for the throttle

values to get lower

The drone goes down and

loses altitude when throttle

values are decreased. The

altitude is getting lower and

the vertical speed values are

negative indicating the drone

is lowering its altitude.

Annex C

Figure C.2

Moving and turning

The right analog stick goes to any

side, sending commands changing

the pitch and roll values

By changing the yaw pitch

and roll the drone gains

movement, being capable of

going forwards, backwards

and turning to any side or

over itself.

Annex C

Figure C.3

Results

64

6.3.2 Autonomous control

In this scenario the drone is stationed on the ground and receives an order from the operator to

go to a certain location. This is achieved by sending waypoints to the flight controller so that

it stores them and then when in ‘Auto’ mode it takes off and heads to the correct location. The

operator, using the Control Screen of the application, is able to locate the drone on the map

and selects the ‘Add Waypoints’ button to start registering waypoints on the drone, and when

ready, presses ‘Fly’ so that the drone takes off and heads to the destination.

In figure 6.3 the user selects how many waypoints wants to add to the flight controller, the

number chosen will be the number registered and sent.

Figure 6.3 Adding waypoints.

In figure 6.4 the drone has already registered the waypoints and has received the ‘Fly’

command, which switches its mode to ‘Auto’, arms the drone and makes it take off to the first

waypoint. The location is now changing and, the red trace shows the path taken by the drone

and the ‘Altitude’ shows a value of 2.47 m, showing that it is ascending. The next step is

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

65

getting to each waypoint until it finally reaches the last destination.

Figure 6.4 Waypoints registered and "Fly" button already pressed.

Figure 6.5, represents the drone in the last waypoint, where it will now wait for further

instructions. In the map it can be seen the path taken by the drone, reaching all three

waypoints and advancing until the last one is reached. The height is now 14.99 m, as the user

input was around 15 m for this last waypoint.

Figure 6.5 Drone reached last waypoints.

Results

66

As part of the autonomous control, the flight controller features the ‘RTL’ mode, explained

earlier, that autonomously leads the UAV to a pre-defined waypoint marked as ‘home’. This

process is illustrated in figure 6.6 and 6.7, as the user only needs to select the RTL mode and

the drone will return to the initial location.

Figure 6.6 Choosing RTL mode.

As a result of the ‘RTL’ mode, in figure 6.6, it can be seen that the UAV is already above the

initial location, and the altitude is decreasing, meaning it is descending and will land on the

ground, as this is visible in figure 6.7.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

67

Figure 6.7 RTL mode selected and UAV returned to "home".

Besides the waypoints there is another type of autonomous control, and that is through the use

of the ‘Guided’ mode. By using this mode, the user is able to send a single waypoint to the

UAV and it will then go to the sent coordinates. However, for this mode to work and the

drone start flying it has to already be on the air, and that can be achieved by sending a

TakeOff message with a chosen altitude. The application allows for the user to use this

option, through the use of the ‘Send Takeoff’ and the ‘Go To’ buttons. This is visible in figure

6.8 and 6.9.

Results

68

Figure 6.8 Takeoff sent.

In figure 6.8 the ‘Takeoff’ was sent and the drone is now rising, the throttle is at 41.0 and the

vertical speed is around 0.14 m per second. The UAV is at an altitude of roughly 5 meters. It

is important to notice that the drone did not change its position from the original one and is

only going up, the groundspeed is 0.0 m/s. It is now possible to send a ‘Go To’ and choose a

location on the map to send those coordinates.

Figure 6.9 Go to sent and finished.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

69

Figure 6.9 represents the Go To and the drone is now reaching its destination waypoint. It

went from the 5 m of the takeoff to 10 m, as defined by the user.

6.3.3 Evaluation

Analyzing the results obtained for both manual and autonomous Control it is possible to retain

that the applications reacts well to the commands given by the user. Manual control relies on

the use of an external controller connected to the application, this through the use of both

analog sticks is able to control the drones throttle and movement. Each scenario tested

showed that the simulated UAV reacted accordingly to the sent commands.

During autonomous control, the user is presented with three forms of control: mission

(multiple) waypoints, guided (single) waypoint and RTL. All of these are well integrated into

the application and work the way it is intended. When sending multiple waypoints receives all

of them, stores them in the flight controller and waits for the user’s signal to start flying. It

then manages to get each of them and go to the next one, and when reaching the last one,

waits for the next command. The second mode, guided waypoint allows the user to send the

UAV to a specific location, however, it does need the drone to be armed and off the ground.

Sending a takeoff allows the user to lift the drone to a specific altitude, and after the user can

now send a ‘Go To’. The ‘RTL’ mode, successfully manages to send the drone to the home

position, with the user only having to select the correct mode.

6.4 Overriding test

The overriding test has the purpose of testing whether the application is able of taking and

giving control back to regular users. All the subsection figures can be found in annex D for

better visualization and comprehension.

6.4.1 Taking control

This test was made using the Admin account, and figures 6.10 and 6.11 are representative of

this action.

Results

70

Figure 6.10 Confirming the overriding.

In both figures 6.10 and 6.11, it is shown the transaction in the taking control action. At first

the image was centered on the ocean, no drones are connected to the Admin as it is supposed,

then when taking control the map relocates to the location of the drone that was previously

controlled by DiogoPeres. The user DiogoPeres was then removed from the database and can

no longer enter the application again to control this drone until the admin decides to give the

control back. The drone is now visible on the upper list, and is now available to be controlled

and monitored by the admin.

Figure 6.11 Drone overridden.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

71

6.4.2 Giving control

In this scenario it will be tested whether the admin is capable or not of giving the control back

to the user.

Figures 6.12 and 6.13 are representative of this action and shows how the giving control back

is processed.

Figure 6.12 Confirming the giving of control.

Figure 6.13 Control given back.

Results

72

In figures 6.12 and 6.13 the flow of giving control action is represented. At first, a

confirmation window is shown, then when the user accepts it, the database assigns the drone

to the previous user and it can now log in and control this user.

6.4.3 Evaluation

Both the scenarios were successfully executed. The taking control was able to remove the

user from the database and by doing this the user will be unable to connect again to the drone.

With the control overridden, the admin is now in charge of that drone and it now waits for

commands coming from the admin.

In order for the user to connect again to the drone, the admin has to give the control back, and

that possibility was successfully executed during the tests.

6.5 Video stream testing

In order to test the live video stream three scenarios were studied. The first was through the

use of Wi-Fi, the second and third were done using cellular networks 3G and 4G. As

explained earlier, all the tests involving the application’s interaction with the UAV were done

under simulation conditions using the SITL software. As such, all the tests done on the

performance of the live video-stream were made under simulation conditions, and not on a

flying drone. The application is able to a video-stream through the use of the technology

explained on 5.8.2, and then under each scenario a simple capture was taken. This capture is a

photograph and it represents an instant in which two times can be compared, the real time,

present on the phone and the application time, viewed on the computer screen. The difference

in time represents the delay taken by the stream to reach from the Raspberry Pi to the

application.

On table 6.2, a summary of the tests and results is shown, each of these will be explained with

more detail on the following subsections. All the times on the test figures are in the format

[minutes]:[seconds]:[tenths of seconds].

Table 6.3 Video stream scenarios and results

Scenarios Resolution Framerate [fps] Delays [s]

Wi-Fi 320x240 ~24 0.26

4G 320x240 ~24 0.3

3G/ HSPA 320x240 ~24 0.31

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

73

6.5.1 Wi-Fi scenario

Figure 6.14 Wi-Fi Scenario result.

In figure 6.14 the Wi-Fi scenario capture is represented. The time on the phone is seen to be

00:59:50 seconds, and the time received on the application is around 00:59:24 seconds. This

means that there is a latency of about 0.26 s, for a capture averaging around 24 fps and with a

resolution of 320x240. This is a good result, anything under 0.3 s would allow for live video

control, however latency can have some variance, and depending on the receiving conditions

it can increase or decrease the tested time.

Results

74

6.5.2 4G

Figure 6.15 4G scenario result.

In the 4G scenario, delay times have risen to 0.3 s as visible in figure 6.15. The time on the

phone is around 00:11:57 seconds and the time received on the application is 00:11:27

seconds, this is an expected result when comparing to Wi-Fi, as the download/upload speeds

aren’t as high in 4G. However, it is indeed a good delay time, as the video quality and

framerate stayed constant from Wi-Fi to 4G, averaging 24 fps and the same resolution of

320x240.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

75

6.5.3 3G

In this scenario it is tested the latency of the video using cellular networks, in this particular

case, HSPA technology was used for the connection to the internet.

Figure 6.16 3G scenario result.

In figure 6.16 it is visualized the latency of the video when using cellular networks. Just like

when using Wi-Fi the, the video is encoded with a size of 320x240 and the framerate is

around 24 fps, which gives a good and fluid quality of the transmission. The delay is around

0.31 s, as the time on the phone is 3:51:65 and on the application is perceived to be around

3:51:34. The difference from Wi-Fi is around 0.05 s which doesn’t make for a big difference,

however when flying it may be noticeable by the operator.

Results

76

6.5.4 Evaluation

All three scenarios showed promising results as the times obtained on the testing’s was

around 0.3 s. As referred earlier, it is intended that delay be as low as possible so that the user

is capable of controlling the drone live and for the purpose of monitoring outside the delays

values will be highly dependent on the connection to the network and on its type. During the

tests and since they were done in an area where it is possible to get coverage of 3G and 4G

networks both results were positive showing that under any of these the live delay times were

mostly acceptable. For the results to get better and to try and improve the results, the quality

of the transmission would have to be changed, like changing to a smaller resolution and

reducing the framerate on the RPi.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

77

This page was intentionally left in blank

Conclusions and future work

78

Chapter 7
CONCLUSIONS AND

FUTURE WORK

The chapter 7 presents the conclusions and some

topics for future work.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

79

7.1 Conclusions

This thesis primary goal was to develop a software platform that was capable of the

monitoring and controlling of more than one UAV, through the use of wireless networks such

as Wi-Fi or cellular networks.

Through the development of this thesis, the main topics studied and developed revolved

around on how to build a Java application, named Control Tower, that was capable of

transmitting and receiving messages over the internet to keep track of one or more drones. In

order for this application to be built, several lines of work had to be crossed. The first was

understanding how a drone works, how flight controllers integrate with drones and how can

they be integrated and connected to a device that is capable of providing a connection to the

internet to transmit the packets. This device happened to be the Raspberry Pi, a very small

sized computer that fit the job of transmitting the messages, and connecting to the Pixhawk

through its I/O pins minimizing the latency on the messages delivery.

The next line of work involved thinking on how could the application transmit to an unknown

IP over the network, and on how could the application distinguish between the incoming

messages of more than one drone when the messages don’t have any identifier capable of

being used. The solution to this problem was the use of a public server, avoiding thus the

NAT problem that doesn’t enable for direct communication between the application on

different networks. As the application has to monitor not only the drones, but the users

connected to them, the server also includes a database, that keeps the records of each

registered user and their associated drones. The database makes a distinction between two

types of users, the Admin and the regular users. The Admin has privileges, and is capable of

overriding the control of one user so that it can be the Admin the one to control it. The Admin

also has the capability of giving the control back, if the situation demands so. The server now

knows all the registered drones, their identifier, and the users they’re assigned to, this means

that the server is now capable, through the use of the Mavlink protocol, of redirecting each

incoming message to the Control Tower application.

After being capable of receiving Mavlink messages containing the information about each

connected drone, the application is able to monitor and position each drone on the map, so

that the user can identify their location. Besides monitoring, the application is also capable of

controlling one drone at a time, either through manual or autonomous control. For the

Conclusions and future work

80

application to be complete, it also features the live streaming of video, through the RPi Cam

and the RPi.

The simulated tests result, showed that the Control Tower works well on receiving,

monitoring and sending control commands, it performs well and the messages are received on

the end half making the drone execute the right actions. The overriding accomplishes its goal,

removing the user’s control and their access to the database, this way making them enable to

log in again until the vehicle’s control is returned.

Regarding the video stream times, it is well shown that the results deteriorate from the use of

Wi-Fi, 3G and 4G. Even though the delay times increase, they still are good times for the

technology used and the transmissions framerate, this shows results could be further improved

by testing on different encoding values.

7.2 Future work

For future work some improvements can be made, e.g.:

 Testing the application on the real-world, using the right vehicles on the right weather

and safety conditions;

 Improving the applications UI, add more features, make the application more

responsive;

 Improving the overriding system, not only can the Admin override but even without

removing the other users control the drone should still accept commands from the

admin as a priority;

 Reducing the average video stream times and ping times;

 Encoding transmission messages for increased security;

 P2P between one user and its drone without the need of a centralized server.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

81

This page was intentionally left in blank

References

A

REFERENCES
Sparkfun. [Online] [Cited: 09 October 2016.] Available from:

https://www.sparkfun.com/products/retired/11868.

Adafruit Sensor Overview. Adafruit. [Online] 04 August 2014. [Cited: 19 September 2016.]

Available from: https://learn.adafruit.com/adafruit-lsm9ds0-accelerometer-gyro-

magnetometer-9-dof-breakouts/overview.

Adding HTML content to JavaFX Applications: 3 Supported Features of HTML 5. Oracle

Java Documentation. [Online] [Cited: 20 September 2016.] Available from:

http://docs.oracle.com/javase/8/javafx/embedded-browser-tutorial/html-five.htm.

Alex and Sam. 2015. How to choose the right motor for your multicopter drone. Drone Trest.

[Online] October 2015. [Cited: 19 September 2016.] Available from:

http://www.dronetrest.com/t/how-to-choose-the-right-motor-for-your-multicopter-drone/568.

Ardupilot Mega [Online] [Cited: 29 September 2016]. Available from:

http://www.ardupilot.co.uk/.

Austin, Reg. 2010. Unmanned Aircraft Systems, UAVs Design, Development and Deployment.

s.l. : Wiley, 2010.

Blesch, Carl. 2015. Navy Funds Rutgers to Develop Drone Equally Adept at Flying and

Swimming. Rutgers The State University of New Jersey. [Online] 23 October 2015. [Cited: 22

September 2016.] Available from: http://news.rutgers.edu/research-news/navy-funds-rutgers-

develop-drone-equally-adept-flying-and-swimming/20151022#.V-RNAvArKUl.

Chapman, Andrew. Types of Drones: Multi-Rotor vs Fixed-Wing vs Single Rotor vs Hybrid

VTOL. Australian UAV. [Online] [Cited: 27 August 2016.] Available from:

http://www.auav.com.au/articles/drone-types/.

Communicating with Raspberry Pi via MAVLink. Ardupilot. [Online] [Cited: 08 October

2016.] Available from: http://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

B

Davison, Andrew. 2006. Chapter 28.9. Building a Game Pad Controller with JInput. 2006.

DIY Drones. DIY Drones. [Online] 17 December 2009. [Cited: 06 October 2016.] Available

from: http://diydrones.com/photo/hornet-gcs-and-hornet-micro?xg_source=activity.

D'Onfro, Jillian. 2014. Why Amazon Needs Drones More Than People Realize. Business

Insider. [Online] 30 July 2014. [Cited: 22 September 2016.] Available from:

http://www.businessinsider.com/amazon-drones-2014-7.

Fedortsova, Irina. 2012. Concurrency in JavaFX. Oracle. [Online] June 2012. [Cited: 20

September 2016.] Available from: http://docs.oracle.com/javafx/2/threads/jfxpub-

threads.htm.

Why use FXML: Oracle. Oracle. [Online] January 2014. [Cited: 20 September 2016.]

Available from:

http://docs.oracle.com/javafx/2/fxml_get_started/why_use_fxml.htm#CHDCHIBE.

FFMPEG. FFMPEG. [Online] [Cited: 19 September 2016.] http://ffmpeg.org/.

Global Research News. 2014. Unmanned Aerial Vehicles (UAV): Drones for Military and

Civilian Use. Global Research. [Online] 21 March 2014. [Cited: 22 September 2016.]

Available from: http://www.globalresearch.ca/unmanned-aerial-vehicles-uav-drones-for-

military-and-civilian-use/5374666.

Harris, Phil. 2014. Aerial Insight, Multirotor Configurations. Aerial Insight. [Online] 2014.

[Cited: 05 September 2016.] Available from:

http://static1.squarespace.com/static/52dabcbfe4b00bd4279a5cb3/t/545a1f0ce4b0dc3018ad0a

10/1415192332960/Multirotor+Configurations.pdf.

Industry, Defense. 2011. It’s Better to Share: Breaking Down UAV GCS Barriers. Defense

Industry Daily. [Online] 03 October 2011. [Cited: 06 October 2016.] Available from:

http://www.defenseindustrydaily.com/uav-ground-control-solutions-06175/.

JavaFX Tutorials: What is JavaFX. JavaFX Tutorials. [Online] [Cited: 20 September 2016.]

http://www.javafxtutorials.com/whatisjavafx/.

Mavproxy. QGroundControl. [Online] [Cited: 18 September 2016.]

http://qgroundcontrol.org/mavlink/mavproxy_startpage.

References

C

McHale, John. 2010. Ground control stations for unmanned aerial vehicles (UAVs). Military

Aerospace. [Online] 18 June 2010. [Cited: 28 August 2016.] Available from:

http://www.militaryaerospace.com/articles/2010/06/ground-control-stations.html.

Pawlan, Monica. 2013. What is JavaFX: Oracle. Oracle. [Online] April 2013. [Cited: 20

September 2016.] Available from: http://docs.oracle.com/javafx/2/overview/jfxpub-

overview.htm.

Pixhawk Autopilot. PX4 Autopilot. [Online] [Cited: 03 September 2016.] Available from:

https://pixhawk.org/modules/pixhawk.

QGroundControl MAVLink. QGroundControl. [Online] [Cited: 09 October 2016.] Available

from: http://qgroundcontrol.org/mavlink/start.

QGroundControl. QGroundControl: Waypoint protocol. QGroudControl. [Online] [Cited: 16

October 2016.] Available from: http://qgroundcontrol.org/mavlink/waypoint_protocol.

Raspberry Pi Camera Module. Raspberry Pi. [Online] [Cited: 19 September 2016.] Available

from: https://www.raspberrypi.org/documentation/raspbian/applications/camera.md.

RaspberryPi: Raspberry Pi 3 Model B. RaspberryPi. [Online] 2016. [Cited: 29 September

2016.] Available from: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

Redko, Alla. 2014. Adding HTML content to JavaFX: Oracle. Oracle. [Online] January 2014.

[Cited: 20 September 2016.] Available from:

http://docs.oracle.com/javafx/2/webview/jfxpub-webview.htm.

The Utilization of Unmanned Aerial Vehicles (UAV) for Military Action in Foreign Airspace.

Ronconi, Giordano B. Antoniazzi, Batista, Thais Jessinski and Merola, Victor. 2014. 2014,

UFRGSMUN, pp. 138-139.

Unmanned Aerial Vehicles An Overview . Bento, Maria de Fátima. 2008. 2008. InsideGNSS.

pp. 54-56.

Welcome to Raspbian. Raspbian. [Online] [Cited: 19 September 2016.] Available from:

https://www.raspbian.org/.

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

D

This page was intentionally left in blank

Annexes

E

ANNEXES

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

F

Annex A – Scene builder and UI screens

Figure A. 1 Scene Builder

Annexes

G

Figure A. 3 Monitoring View

Figure A. 2 Controlling View

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

H

Annex B – Monitoring tests

Figure B. 2 User monitoring [one drone]

Figure B. 1 Admin monitoring [two drones]

Annexes

I

Annex C – Manual control tests

Figure C. 1 Throttle up

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

J

Figure C. 2 Throttle down

Annexes

K

Figure C. 3 Drone moving and turning

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

L

Annex D – Overriding test

Figure D. 1 Confirming the overriding

Annexes

M

Figure D. 2 Drone overriden

ISCTE-IUL

Software platform to control squads of unmanned vehicles in real-time

N

Figure D. 3 Giving control information window

Annexes

O

Figure D. 4 Control given back

