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Abstract

Of interest is comparing the out-of-sample forecasting performance of two compet-
ing models in the presence of possible instabilities. To that e¤ect, we suggest using
simple structural change tests, sup-Wald and UDmax as proposed by Andrews (1993)
and Bai and Perron (1998), for changes in the mean of the loss-di¤erences. Giacomini
and Rossi (2010) proposed a �uctuations test and a one-time reversal test also applied
to the loss-di¤erences. When properly constructed to account for potential serial cor-
relation under the null hypothesis to have a pivotal limit distribution, it is shown that
their tests have undesirable power properties, power that can be low and non-increasing
as the alternative gets further from the null hypothesis. The good power properties
they reported is simply an artifact of imposing a priori that the loss di¤erentials are
serially uncorrelated and using the simple sample variance to scale the tests. On the
contrary, our statistics are shown to have higher monotonic power, especially the UD-
max version. We use their empirical examples to show the practical relevance of the
issues raised.
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1 Introduction

Testing for the relative forecasting performance of two, or more, competing models has been
the subject of substantial research. Important contributions include Diebold and Mariano
(1995), West (1996), Clark and West (2006) and Giacomini and White (2006). These are
based on assessing whether the out-of-sample loss di¤erentials are signi�cantly di¤erent from
zero. They di¤er with respect to the exact speci�cation of the null hypothesis (loss functions
evaluated at the population values of the parameters or the in-sample estimates), having
nested or non-nested models, using an unconditional perspective or one that conditions on
some covariates. Being based on averages of the loss di¤erentials, these tests may have little
power when the relative forecasting performance is changing over time.
Of interest is comparing the out-of-sample forecasting performance of two competing

models in the presence of possible instabilities. To that e¤ect, we suggest using simple
structural change tests, sup-Wald and UDmax as proposed by Andrews (1993) and Bai and
Perron (1998), for changes in the mean of the loss-di¤erences. The tests e¤ectively look at the
entire time path of the models�relative performance, which may contain useful information
not available when using tests that focus on the average relative performance.
Giacomini and Rossi (2010), henceforth GR, proposed a �uctuations test and a one-time

reversal test also applied to the loss-di¤erences. When properly constructed to account for
potential serial correlation under the null hypothesis to have a pivotal limit distribution, it
is shown that the tests proposed by GR have undesirable power properties, power that can
be low and non-increasing as the alternative gets further from the null hypothesis. In the
terminology of Perron (2006), these tests belong to the so-called �partial sums�type tests.
These have repeatedly been shown to be inadequate for structural change problems. The
good power properties reported in GR is simply an artifact of imposing a priori that the loss
di¤erentials are serially uncorrelated and using the simple sample variance to scale the tests.
We replicate the power properties of their tests with the appropriate Heteroskedasticity

and Autocorrelation (HAC) correction using exactly the same design they used. In the
case of a one-time change in the relative forecasting performance of two models, the power
functions of the tests are substantially lower than what they report. More importantly, the
power functions are non-monotonic. The power does not tend to one as the magnitude of
the di¤erence between the models�relative forecasting performance increases and may even
decline. These are clearly undesirable features of test statistics, which makes their usage in
practice unreliable. On the contrary, the test statistics we now propose are shown to have
higher monotonic power, especially the UDmax version.
We also revisit their empirical results related to assess the forecasting performance of
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the UIRP (Uncovered Interest Rate Parity) model relative to a simple random walk model
for the UK pound and German Deutsche Mark exchange rate relative to the US$. We
show that their tests have little power to discriminate between the models they considered,
while the sup-Wald and UDmax provide a strong rejection in the case of the UK Pound.
However, there is no evidence that the UIRP model performed signi�cantly better than a
simple random walk model in any part of the sample. This illustrates the practical relevance
of the power problems of the tests proposed by GR and the fact that the sup-Wald and
UDmax tests for changes in the mean of the loss-di¤erences yield more powerful procedures.
This note is structured as follows. Section 2 reviews the framework considered by GR,

our suggested tests and those proposed by GR. Section 3 reevaluates the power functions
of the tests when a HAC correction is applied. Section 4 does the same for the empirical
applications. Section 5 provides brief concluding remarks.

2 The framework and the tests

The interest is in comparing h-step-ahead forecasts from two competing models characterized
by parameters � and 
; respectively. There is a sample size of T observations available, which
is divided into an in-sample portion of size R and an out-of-sample portion of size P . The
two models yield two competing sequences of h-step-ahead out-of-sample forecasts and, for
a given loss function L, these yield a sequence of P out-of-sample forecast loss di¤erences
f4Lt(�̂t�h;R; 
̂t�h;R) = fL(1)(yt; �̂t�h;R) � L(2)

�
yt; 
̂t�h;R

�
gTt=R+h, where �̂ and 
̂ are the in-

sample parameter estimates. A rolling scheme method of estimation is used whereby the
parameters are re-estimated at each t = R + h; :::; T over a window of length R including
data indexed t�h�R+1; :::; t�h. The local relative loss for the two models is the sequence
of out-of-sample loss di¤erences computed over centered rolling windows of size m given
by (for m even): m�1Pt+m=2�1

j=t�m=24Lj(�̂j�h;R; 
̂j�h;R) for t = R + h +m=2; :::; T �m=2 + 1.
The simulations and applications are restricted to the case with a quadratic loss function
Lt = (yt � ft)2, where ft is the forecast and to the case of a one-step-ahead forecast.
The null hypothesis is constant forecast accuracy:

H0 : E[4Lt(�̂t�h;R; 
̂t�h;R)] = c for all t = R + h; :::; T , (1)

for some c versus the alternative hypothesis of changing relative forecast accuracy. The tests
considered are 1) the simple sup-Wald test for a single change (e.g., Andrews, 1993, denoted
supW ) and 2) the UDmax test of Bai and Perron (1998) which allows up to 5 breaks. These
are applied to test for changes in the mean of the loss-di¤erences sequence. Let SSR be the
sum of the squared demeaned loss di¤erences over the full sample and SSR(i; j) be the sum
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of the squared demeaned loss di¤erences over a sample involving the observation i to j. The
supW and UDmax tests take the form

supW = sup
t2�1

W1(t)

where W1(t) = �̂�2W (SSR� SSR(1; t)� SSR(t+ 1; P )), �1 = f[�P ]; :::[(1 � �)P ]g and we
use � = 0:15, �̂2W is the HAC estimator of the demeaned loss di¤erences under the alternative
hypothesis. The UDmax test which allows for up to 5 breaks is

UDmax = max
1�b�5

sup
(t1;:::;tb)2�b

Wb(t1; :::; tb);

where Wb(t1; :::; tb) = b
�1�̂�2b (SSR �

Pb+1
i=1 SSR(ti�1 + 1; ti)), where we use the convention

that t0 = 0 and tb+1 = P . Also,

�b = f(t1; :::; tb) : jtk+1 � tkj � [�P ]; k = 1; :::; b� 1; t1 � [�P ]; tb � [(1� �)P ]g

and �̂2b is the HAC estimator of the demeaned loss di¤erences under the alternative hypothe-
sis. See Bai and Perron (1998) for further details. It is straightforward to show that the tests
have the same limit distributions as in Andrews (1993) and Bai and Perron (1998) under the
same assumptions used in GR. As we shall show, these tests have much higher power and,
in particular, the UDmax version always has a monotonically increasing power function.
Our tests will not have power against alternatives with unequal but constant forecast

accuracy (since we do not set c = 0 under the null hypothesis) but in such cases the original
test of Giacomini and White (2006) or that of Clark and West (2006) will have higher power
than the tests proposed by GR. The way to use the tests together is as follows. First use
the sup-Wald or UDmax that we propose. If there is a rejection, conclude that there is a
change in forecast accuracy between the models. If there is no rejection, apply the statistic
of Giacomini and White (2006) or that of Clark and West (2006) to test if there is non equal
but constant relative forecasting performance. When 5% size tests are used, under the null of
equal forecast accuracy this strategy will have a nominal size slightly less than 5% (.95�.05).
So there is no size problem related to the use of multiple tests. Second, the power of the
sup-Wald or UDmax will be the same as reported since it is used �rst. The power of the
Giacomini and White (2006) or that of Clark and West (2006) will also nearly be the same
as when used individually for the alternative hypothesis it is intended to detect, though in
5% of the cases a constant non-equal relative forecasting performance will be classi�ed as a
time-varying one.
The null hypothesis adopted by GR is that of equal forecast accuracy

H0 : E[4Lt(�̂t�h;R; 
̂t�h;R)] = 0 for all t = R + h; :::; T ,

3



versus the alternative hypothesis that one model provides better forecasts, i.e.,

H1 : E[4Lt(�̂t�h;R; 
̂t�h;R)] 6= 0:

Tests for this null hypothesis were provided by Diebold and Mariano (1995) and the uncon-
ditional version of the statistics proposed by Giacomini and White (2006). The �rst test
proposed by GR is the out-of-sample �uctuations test de�ned by maxt jFOOSt;m j where

FOOSt;m = �̂�1m�1=2
t+m=2�1X
j=t�m=2

4Lj(�̂j�h;R; 
̂j�h;R) (2)

for t = R + h + m=2; :::; T � m=2 + 1, with �̂2 a HAC estimate of the long-run variance
�2 = limP!1E(P

�1=2PT
t=R+h4Lt(�̂t�h;R; 
̂t�h;R))2. They suggest the use of a kernel-based

method using the Bartlett window, i.e.,

�̂2 =

q(P )�1X
i=�q(P )+1

(1� ji=q(P )j)P�1
TX

j=R+h

4L�j(�̂j�h;R; 
̂j�h;R)4L�j�i(�̂j�i�h;R; 
̂j�i�h;R) (3)

where q(P ) is a bandwidth that grows with P . GR make no recommendation about how
to select q(P ). Following state-of-the art good practice, in the simulations and applications
we use a data-dependent method, speci�cally the one advocated by Andrews�(1991) based
on an AR(1) approximation. Also, correcting for an omission in GR, the demeaned loss
functions are

4L�j(�̂j�h;R; 
̂j�h;R) = 4Lj(�̂j�h;R; 
̂j�h;R)� P�1
TX

j=R+h

4Lj(�̂j�h;R; 
̂j�h;R):

This statistic is referred to as the GW-�uctuations test since it is based on the maximum (over
some range) of the sequence of tests FOOSt;m , which are equivalent to the test of Diebold and
Mariano (1996) and the unconditional version of the Giacomini and White (2006) test. The
second test they propose is the one-time reversal (OTR) test de�ned by QLR�P = supt�

�
P (t),

t 2 f[0:15P ]; :::; [0:85P ]g, with ��P (t) = LM1 + LM2(t) where

LM1 = �̂
�2P�1[

TX
j=R+h

4Lj(�̂j�h;R; 
̂j�h;R)]2

LM2(t) = �̂
�2 1

P
(
t

P
)�1(1� t

P
)�1[

tX
j=R+h

4Lj(�̂j�h;R; 
̂j�h;R)�(
t

P
)

TX
j=R+h

4Lj(�̂j�h;R; 
̂j�h;R)]2

and �̂2 is again de�ned by (3).
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For all tests, the framework can be adapted to a di¤erent null hypothesis in which the
concern is about the forecast losses evaluated at the population parameters as considered in
Clark and West (2006). In this case, one simply apply an adjustment to the forecast losses.
For example, when one model speci�es yt to be a martingale di¤erence sequence and the
other is a linear regression model of the form yt = �Xt+1 + et, the adjusted mean-squared
loss-di¤erences are

�Lt = y
2
t � [(yt � ft)

2 � f 2t ]

where ft is the forecast from the regression model. GR refer to the �uctuations test applied
to such corrected loss functions as the CW-�uctuations test.
For both tests, the use of a HAC estimator for the long-run variance is essential. To

illustrate, we generated loss di¤erences as an AR(1) process with coe¢ cient 0.75. Such type
of serial correlation can arise as the result of serial correlation in the second order moments
of the residuals and/or the regressors, including, but not restricted to, GARCH processes. In
this case, the size of all tests with a �xed number of lags q (P ) = 2 is near 70%. When using
Andrews�s data dependent method to select q (P ), the size of the GR tests (OTR and Fluc-
tuations) is between 5 and 10%. Hence, it is important to appropriately correct for potential
serial correlation in the loss di¤erences. Also, if instabilities are present under the alternative
hypothesis, a situation that indeed motivates the tests proposed, the loss di¤erentials will
exhibit features akin to serial correlation in the sense that a test for serial correlation would
tend to reject the absence of correlation. This is simply a consequence of the results in
Perron (1989, 1990) that a change in the mean (or slope) of a time series biases the sum of
the autoregressive coe¢ cients upwards when such changes are not explicitly modeled. Yet,
GR impose a priori that the loss di¤erentials are serially uncorrelated and use the simple
sample variance as the estimate of �2, namely �̂2 = P�1

PT
j=R+h4L�j(�̂j�h;R; 
̂j�h;R)2. They

do so for both the simulations reported and the applications. As we document in the next
sections, the properties of their tests are very di¤erent when the test is properly constructed
with a HAC estimate and the conclusions of their empirical applications are also di¤erent.

3 The simulations

We adopt the same simulation setup as in GR in order to avoid any potential biases due
to the selection of particular DGPs. We also used their code available at the Journal of
Applied Econometrics website in order to correct some inaccurate reporting or typos in their
paper. The results obtained and the documented power reversal of the tests could be much
more severe using other DGPs. Two forecasting models are considered. For the �rst, there
is a covariate Xt that potentially helps to forecast Yt so that f

(1)
t;R = �̂t;RXt+1 (assuming
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that Xt+1 is known when constructing the forecast) where �̂t;R is the in-sample parameter
estimate from a regression of Yt on Xt based on a rolling window of size R. For the second
model, Yt is assumed to be a zero-mean white noise process so that f

(2)
t;R = 0. Hence, under

the GW framework the loss di¤erentials are

4LR;t+1 = Y 2t+1 � (Yt+1 � �̂t;RXt+1)
2;

while under the CW framework, they are

4LR;t+1 = Y 2t+1 � [(Yt+1 � �̂t;RXt+1)
2 � (�̂t;RXt+1)

2]:

We consider simulations pertaining to assess the performance of the tests when the forecast-
ing performance of the models is time varying such that there is a one-time break in the
relative performance during the out-of-sample period induced by a break in the DGP. Under
the GW framework this is achieved by setting (with a proper correction for an error in GR)

Yt = (�� + 1=
p
R)XtI (t � R + �P ) + (� + 1=

p
R)XtI (t > R + �P ) + "t;

where Xt = 0:5Xt�1 + vt with vt � i:i:d: N (0; 1) and "t � i:i:d: N (0; 1) uncorrelated with
vt. Hence, the relative performance changes at t = R+ �P . We use the parameters � = 1=3
or � = 2=3 and � = m=P = 0:3, 0:7. The results with a HAC correction are presented in
Figures 1 (� = 1=3) and 2 (� = 2=3). The left panel considers the same values of � as in
GR (0 to 1), while the right panel shows the power functions for values of � up to 10. In all
cases, we consider 5% two-sided tests. Consider �rst the case with � = 1=3. When � = 0:3,
the GW �uctuations test has more power than the OTR test, as in GR, but the power is
much lower than they reported. More importantly, both tests su¤er from non-monotonic
power, none have power 100% no matter how large � is. The power of the �uctuations test
reaches a maximum value of about 0:90 when � is near 1, while the OTR test reaches a
maximum power of about 0:6 when � gets large. The supW does not have monotonic power
either with a power function in between that of the GW �uctuations and the OTR test. The
UDmax, on the other hand, has monotonic power that approaches 1 quickly and is the most
powerful overall. When � = 0:7, the OTR test has more power than the �uctuations test, as
in GR. But here with the HAC correction, the power decrease is even more pronounced. The
power of the �uctuations test reaches a maximum value of about 0:37, while the OTR test
reaches a maximum power of about 0:55. The supW does not have monotonic power either
but its power function is now higher than the GW �uctuations and the OTR tests. The
UDmax test again has monotonic power that approaches 1 quickly and is the most powerful
overall. Consider now the case with � = 2=3 presented in Figure 2. For both � = 0:3 or
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0:7, the supW has highest power followed closely by the UDmax, both having monotonic
power functions. As in GR, the OTR test has high power whether � = 0:3 or � = 0:7. In
all cases, the OTR and GW �uctuations tests su¤er from non-monotonic power which does
not reaches 1 even for very large values of �. When � = 0:3, the power of the OTR test
achieves a maximum near but below one when � is near 0.8 and the power remains the same
as � increases. The power of the GW �uctuations test reaches a maximum near 0.85 when
� is near 1 but it decreases to about 0.70 as � increases further. When � = 0:7, the power
function of the OTR test is similar but that of the GW �uctuations test is considerably
reduced when a HAC correction is applied reaching a maximal value near 0.15.
Under the CW framework the model used is:

Yt = ��XtI (t � R + �P ) + �XtI (t > R + �P ) + "t:

We again set � = 1=3 or � = 2=3 and � = m=P = 0:3, 0:7, but also present results for the
case � = 1=2 as GR report results for this case only. The results with a HAC correction are
presented in Figures S1 (� = 1=3), S2 (� = 1=2) and S3 (� = 2=3) in a separate appendix
to this paper, Martins and Perron (2015). The �rst thing to note is that in all cases, the
supW and UDmax tests have nearly identical monotonic power functions that approach one
quickly. On the other hand, the power of the CW �uctuations test never increases to one no
matter how large the change is. The maximal power achieved depends highly on the exact
speci�cations. When � = 0:3, it is between .85 and .90 for the three values of � considered.
However, when � = 0:7, it is near one when � = 2=3 but not above .25 when � = 1=2 and
essentially zero when � = 1=3.
In summary, the simulations show important problems of non-monotonic power for the

GW or CW �uctuations and the OTR tests. The UDmax test always has power functions
approaching one quickly. In most cases, the power of the supW is comparable to that of
the UDmax though it can also be subject to power functions �attening below one as the
alternative gets large. Hence, in the presence of unequal time-varying forecast accuracy, the
UDmax test for changes in the mean of the loss-di¤erences is clearly the preferred test.
A comment about the bandwidth selection is in order. It is well known that the reason

for the non-monotonic power is the fact that a relatively large bandwidth is selected via
Andrews�method under the alternative (see, e.g., Kim and Perron, 2009). It may be argued
that with large breaks, the bandwidth selected is �too high�. This is not the case. The
average (over all replications) value of the bandwidth q (P ) selected by Andrews�method
ranges between 4 and 6 when � varies between :5 and 1 for which the power reversal is present.
These values are near the default value of Stata, say, which is 5 when T=100 (Newey-West
option).
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While a data-dependent method is highly preferable over a �xed rule for the selection
of q (P ) to ensure the proper size (asymptotically and in �nite samples), one may have a
strong prior that the loss di¤erentials are weakly correlated under the null hypothesis and
therefore use a �xed rule to select q (P ). Figures S4.a and S4.b in Martins and Perron (2015)
present the results corresponding to Figures 1 and 2 when setting the popular rule of thumb
of q (P ) = 5 to construct the statistics. The results show that some of the power functions
of the tests are no longer non-monotonic but that overall the sup-Wald and, especially, the
UDmax tests have higher power, sometimes by a high margin. Hence, the superiority of the
proposed tests holds under both a �xed or data dependent rule to select q (P ). Of course,
the power problems are less with a �xed value q (P ) = 3 but they are also much worse with
a �xed value q (P ) = 9. This is trivial since if q (P ) is very small, the estimate becomes
similar to using the standard sample variance.
It has by now become standard (good) practice to use a data-dependent method to select

the bandwidth. It has the advantage of providing a selection method that is not ad hoc or
arbitrary and that, in general, delivers tests with good �nite sample size for a wide range of
possible DGPs. As stated earlier, using a low �xed value would invariably lead to tests with
size distortions for a wide variety of DGPs.

4 The applications revisited

GR applied the tests they proposed to assess the forecasting performance of the UIRP
(Uncovered Interest Rate Parity) model relative to a simple random walk model for the
UK pound and German Deutsche Mark exchange rate relative to the US$. Large positive
values of the �uctuations test provide evidence that the UIRP model is superior to the
random walk model. Again, the tests were constructed without a HAC correction assuming
a priori uncorrelated forecast losses. They also departed way from the �uctuations test they
proposed. Instead of (2), they reported results for the following version of the test

FOOSt;m = m�1=2
t+m=2�1X
j=j�m=2

4Lj(�̂j�h;R; 
̂j�h;R)=�̂t

where �̂2t = m
�1=2Pt+m=2�1

j=t�m=24L�j(�̂j�h;R; 
̂j�h;R)2. In what follows, we consider the original
statistic de�ned with the long-run variance estimated using the full sample. We consider
two-sided 5% tests.
Consider �rst the results for the German Deutsche Mark presented in Figure 3. Here,

none of the tests are signi�cant, including the OTR and UDmax not reported. This contrasts
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with the results of GR who reported a signi�cant rejection using the CW-�uctuations test
without a HAC correction.
Consider now the results for the UK pound presented in Figure 4. Here also the OTR is

not signi�cant, as well as the supW and UDmax based on the GW loss-di¤erences. On the
other hand, the fuctuations-based tests o¤er a contrasting picture. The GW-�uctuations test
is barely signi�cant but in favor of the random walk model, contrary to what was reported in
GR. On the other hand, the CW-�uctuations test is barely signi�cant in favor of the UIRP,
consistent with the result in GR. Based on the CW loss-di¤erences, the supW and UDmax
are both very highly signi�cant at less than the 1% signi�cance level, which illustrates the
higher power of these tests. The estimate of the break date (that which maximizes the
sequence of Wald tests for a single change) is 1990:09. To assess the nature of the change in
forecasting performance, we estimated the mean of the loss-di¤erences pre and post-1990:09.
These are 0.0002 and -0.00004. Hence, this points to better forecasting performance for the
UIRP pre-1990:09 and vice-versa post 1990:09. However, a standard CW test applied to the
pre 1990:09 sample yields a t-statistic of 0.33. Hence, there is no evidence that the UIRP
performed signi�cantly better than the RW in any part of the sample.

5 Conclusions

When constructed properly, it is shown that the tests proposed by GR have undesirable
power properties, power that can be low and non-increasing as the alternative gets further
from the null hypothesis. In the terminology of Perron (2006), these tests belong to the
so-called �partial sums�type tests. These have repeatedly been shown to be inadequate for
structural change problems. Tests based on standard Wald statistics are much less prone to
such problems. This is again the case here. We have shown that to detect changing relative
forecasting accuracy the supW , and in particular, the UDmax, tests applied to test for
changes in the mean of the loss-di¤erences have much higher power. Of course, these are
not appropriate to test for unequal but constant relative forecast accuracy. In such cases,
the original tests of Giacomini and White (2006) and Clark and West (2006) are to be used.
The �uctuations versions of these tests, and the OTR test o¤er no power gains in this case.
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Figure 1.a: Power functions of the GW tests with a break in the relative performance at
� = 1=3, � = 0:3.

Figure 1.b: Power functions of the GW tests with a break in the relative performance at
� = 1=3, � = 0:7.
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Figure 2.a: Power functions of the GW tests with a break in the relative performance at
� = 2=3, � = 0:3.

Figure 2.b: Power functions of the GW tests with a break in the relative performance at
� = 2=3, � = 0:7.
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Figure 3: Empirical Results, Deutche Mark.

Figure 4: Empirical Results, UK Pound.
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