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Resumo 

 

Neste estudo examinamos o comportamento de longa memória na volatilidade dos 

principais índices de mercado dos PIIGS: PSI20, FTSE MIB, ISEQ, FTSE/ATHEX e 

IBEX 35. Para realizar a nossa análise aplicámos dois modelos do tipo FIGARCH, um 

derivado por Baillie, Bollerslev e Mikkelsen (1996) e outro desenvolvido por Chung 

(1999). Adicionalmente, o Local Whittle Estimator foi também estimado.  

Um conjunto de dados dos principais índices de mercado de acções dos PIIGS que 

inclui os preços de fecho diários desde 1 de Janeiro de 1998 até 8 de Março de 2013 foi 

utilizado.  

Os resultados sugerem que, independentemente do modelo FIGARCH adoptado 

existem evidências de longa memória na volatilidade do mercado. No entanto, o Local 

Whittle Estimator revela que o processo de criação de dados é uma combinação de 

longa memória e saltos/quebras estruturais. Assim sendo, esta característica dos dados 

tem de ser tida em conta na construção de modelos de previsão de volatilidade. 

 

Palavras-chave: Longa memória, Volatilidade, FIGARCH, Local Whittle Estimator 

JEL Classification System: G15; C13 
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Abstract 

 

In this study we examine the long memory behaviour of stock market volatility of the 

PIIGS major indices: PSI 20, FTSE MIB, ISEQ, FTSE/ATHEX and IBEX 35. In order 

to conduct our analyses we apply two FIGARCH-type models, one derived by Baillie, 

Bollerslev and Mikkelsen (1996) and another one developed by Chung’s (1999). In 

addition the Local Whittle estimator is also computed.  

A data set comprising the daily closing prices of the PIIGS’ major stock market indices 

spanning from 1
st
 January 1998 to 8

th
 March 2013 is used.  

The results suggest that, irrespective of the FIGARCH model adopted, there is evidence 

of long memory in stock market volatility. However, the Local Whittle Estimator 

reveals that the data generating process is a combination of long memory and 

jumps/structural breaks. Therefore, this feature of the data has to be taken into account 

when constructing models for volatility prediction.  

 

Key words: Long Memory, Volatility, FIGARCH, Local Whittle Estimator 

JEL Classification System: G15; C13 
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Sumário Executivo 

 

O presente estudo visa proceder à investigação do comportamento de longa 

memória em cinco índices Europeus, PSI 20 (Portugal), ISEQ (Irlanda), FTSE MIB 

(Itália), FTSE/ATHEX (Grécia) e IBEX 35 (Espanha). A razão pela qual escolhemos 

estes índices foi motivada pela falta de investigação dedicada aos mesmos. 

Uma série de dados apresenta longa memória se as observações que se 

encontram longe umas das outras estão fortemente correlacionadas, e as dependências 

entre observações sucessivas decaem a um ritmo lento. Este fenómeno teve as suas 

origens no Egipto, quando um consultor Hidrológico tentava desenvolver uma forma de 

prever as flutuações do fluxo do rio Nilo. Este desenvolveu um teste para detectar 

dependências de longo alcance, tendo encontrado correlações significativas de longo 

prazo entre as flutuações do fluxo do rio Nilo. As suas descobertas levaram outros 

autores a fazerem estudos em diferentes áreas, entre elas Economia e Finanças. 

Para realizarmos este estudo aplicamos dois modelos FIGARCH e o Local 

Whittle Estimator. Os modelos FIGARCH aplicados foram o de Baillie, Bollerslev e 

Mikkelsen e o de Chung. Estes modelos têm uma grande flexibilidade para modelar a 

variância condicional uma vez que acomodam o modelo GARCH e o modelo IGARCH. 

O teste semi-paramétrico Local Whittle Estimator é um teste bastante robusto no que 

diz respeito às dinâmicas de curto prazo e permite formas muito gerais de dinâmicas de 

curto prazo, enquanto os modelos ARFIMA e FIGARCH são mais sensíveis às 

especificações utilizadas para representar estas dinâmicas. É também um teste simples e 

neste caso foi utilizado como um teste adicional ao FIGARCH. 

Com os resultados obtidos com os modelos FIGARCH chegamos à conclusão 

que de facto existe longa memória na volatilidade dos índices estudados. Ao aplicarmos 

o Local Whittle Estimator, este sugere que embora exista longa memória na volatilidade 

não podemos descartar o facto de também poder existir saltos e/ou quebras estruturais 

no processo de criação de dados. Com isto em mente, ao construirmos os modelos de 

previsão de volatilidade não devemos ter apenas em conta a longa memória, mas 

também os saltos e/ou quebras estruturais. 
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1. Introduction 

 

The interest in long memory does not find its roots in Finance/Economics as one 

should expect, but falls instead in the domain of a distinct branch of knowledge called 

Hydrology. It all started in 1906, when Harold Edwin Hurst, a civil servant, who went 

to Cairo, Egypt, as a hydrological consultant, faced the problem of how to predict the 

river Nile floods from year to year. He developed then a test for long-range dependence, 

having found significant long-term correlations among the fluctuations of the river Nile 

outflow, which were described in terms of a power law. His methodology is known 

today as the rescaled range statistics, range over standard deviation or R/S statistics. 

Later, Hurst published a series of papers, where he described his findings regarding to 

the long memory property (Hurst, 1951). After this seminal paper, several studies were 

conducted where the same pattern emerged. These studies were conducted in quite a 

few areas, such as, Biology, Climatology, Geophysics and on other natural sciences. For 

further details, the interested reader is referred to Mandelbrot and Wallis (1968) and 

MacLeod and Hipel (1978), inter alia. 

Notwithstanding its origins there is a vast body of research on this topic in 

Finance, which covers several different areas, such as the volatility of stock market 

indices, currency, real estate and options. Fundamentally, a slow decay at a hyperbolic 

rate of its autocorrelation functions it is what characterizes a long memory series. In 

other words, the effects of volatility shocks decline over a long period, having long-

lasting effects, which can be detected by analyzing measures of volatility, such as 

absolute returns and squared returns. On the other hand, a short memory process 

exhibits a rapid decline in its autocorrelation function so that unanticipated shocks affect 

the series for a short period. Long memory is essential for risk management, investment 

portfolios and pricing derivatives since it relates to the predictability of volatility. 

Andersen and Bollerslev (1997a), demonstrated that the observed volatility 

process may exhibit long-run dependence, when they interpreted the volatility as a 

combination of several different short-run information arrivals. Thus, long memory 

property is an inherent feature of the return generating process, instead of the result of 

irregular structural shifts. The authors conducted a research on a one-year time series of 

five-minute Deutschemark-U.S. Dollar exchange rates. Ohanissian, Russel and Tsay 

(2005), derived a long memory test and applied it to intra-day foreign exchange data of 
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DM/$ and Yen/$. They concluded that volatility is a true long memory process. Lobato 

and Savin (1998) did not find any evidence of long memory in the returns. By contrast, 

they found strong evidence in the squared returns. Their analysis suggested that this 

evidence of long memory was real and not spurious. Liow (2009) analyzed 40 weekly 

real estate indices (original and hedged), having found long memory in the volatility 

structure of most securitized real estate markets. Additionally, Ding, Granger and Engle 

(1993), Baillie, Bollerslev and Mikkelsen (1996), Bollerslev and Mikkelsen (1996), 

Bollerslev and Wright (2000) and Bentes (2011), inter alia, found similar results. 

However, some other authors challenged the evidence of long memory. They 

claimed that structural changes can cause long memory. This means that structural 

changes can explain the persistence in volatility and may produce a series that appears 

to exhibit long memory, which, in reality is not persistent. Based on a mixture model, a 

stochastic permanent break model and a Markov-switching model, Diebold and Inoue 

(2001) argue that structural changes in general and stochastic regime switching, in 

particular, are intimately related to long memory and easily confused with it, as long as 

a small amount of regime switching occurs in an observed sample path. Granger and 

Hyung (2004) show that occasional breaks generate slowly decaying autocorrelations 

and other properties of       processes, where   can be a fraction. They offer some 

theoretical arguments and simulation results, which substantiate the claim that it is 

difficult in practice to distinguish between the occasional breaks process and the      

process. In order to analyze the S&P 500 absolute stock returns two-time series models 

were used, an occasional-break model and an      model. 

Other authors believe that both long memory and structural breaks can coexist 

and explain the persistence in volatility. Choi, Yu and Zivot (2010) focused on the daily 

realized volatility of the Deutschmark/Dollar, Yen/Dollar and Yen/Deutschmark spot 

exchange rates with observed long memory behavior and found that structural breaks in 

the mean can partly explain the persistence on realized volatility. They based their 

analysis on a VAR-RV-Break model. Furthermore, Morana and Beltratti (2004) tested 

the existence of long memory and structural breaks in the realized variance process for 

the DM/US$ and Yen/US$ exchange rates. They showed that neglecting the breaking 

process is not necessary for extremely short forecasting periods once a long memory 

component is allowed into the model, but better forecasts can be obtained at longer 

horizons by modeling both long memory and structural change. Baillie, Han, Myers and 

Song (2006) examined the long memory behavior of both daily and high-frequency 
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intraday future returns for six key commodities. They found that long memory in 

volatility is a pervasive and consistent feature of commodity returns, not just being 

caused by shocks or regime shifts to the underlying price processes. 

This research work aims to investigate the long memory behavior of five 

European stock indices, PSI 20 (Portugal), ISEQ (Ireland), FTSE MIB (Italy), 

FTSE/ATHEX (Greece) and IBEX 35 (Spain). What motivated one’s research was the 

lack of research devoted to the PIIGS countries. 

To conduct one’s research, we first estimate the FIGARCH model proposed by 

Baillie, Bollerslev and Mikkelsen (1996), then the FIGARCH model derived by Chung 

(1999) and, finally, employ the Local Whittle Estimator.  

The FIGARCH model has proven to be particularly useful in describing 

persistence. The semi parametric Local Whittle Estimator is also employed in order to 

produce an additional check for the presence of long memory. This estimator allows for 

quite general forms of short-run dynamics, whereas the ARFIMA and FIGARCH 

models are potentially sensitive to the specification used to represent the short-run 

dynamics (see Künsch, 1997 and Robinson, 1995). The same tests proposed by 

Shimotsu (2006) were used throughout one’s research. 

In order to perform the previous test, we split the sample into   subsamples and 

estimate   (long memory parameter) for each subsample. Splitting the sample would 

lead to the same value of   for each subsample as the one for the full sample or at least 

one close enough, given that the subsamples are sufficiently large. This property does 

not hold for spurious long memory processes, where the values of   for the subsamples 

would be different than the   of the full sample, and this difference would increase as 

the degree of sample splitting increases.  

The second test is based on the differencing property of     . Basically, we 

estimate   for the whole sample, and then we use the estimate to take the  th difference 

across the sample, and apply the KPSS test and the Phillip-Perron test to the differenced 

data and its partial sum. This seems to be a remarkably simple method, but provides a 

powerful tool to distinguish between the true      process and the spurious one. 

Spurious long memory processes are      or     . Thus, taking their  th difference 

would magnify its non-     properties. 

There are other alternative methods to account for long memory, such as, the 

Adaptive-FIGARCH of Baillie and Morana (2009), the two-step procedure of Morana 
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and Beltratti (2004) and the procedure derived by Ohanissian, Russel and Tsay (2005), 

inter alia. However, the tests employed throughout this research work have some 

advantages over the other ones. Firstly, there is no need for the identification of 

structural breaks when the underlying data generating process is unknown. Secondly, it 

is not necessary to enforce any restrictions on the types of structural breaks that can 

cause spurious long memory. Lastly, they are more detailed and fairly easy to 

implement, although their econometrics derivation seems to be more complex. 

However, they also have their shortcomings. We are only implementing Whittle-type 

long memory estimator. This means that, although it is computationally simple and 

straightforward, it is only just one type of long memory estimator. 

The remainder of the paper is organized as follows. Section 2 defines Long 

Memory. Section 3 presents the methodological background. Section 4 describes the 

data. Section 5 and 6 discusses the empirical results obtained from the estimation of 

FIGARCH and the Local Whittle estimator, respectively. Finally, Section 7 concludes. 
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2. Long Memory 

 

A time series is defined to exhibit long memory if observations far from each 

other are strongly correlated and dependence between successive observations decays at 

a slow rate. Specifically, this means that, with the presence of long memory, the market 

does not immediately respond to an amount of data flowing into the financial markets. 

Instead, it reacts slowly over time. With this in mind, to predict the future changes of 

prices we can use past prices as significant information. The main consequence of long 

memory is that shocks to the volatility tend to have long-lasting effects. Such 

persistence plays a vital role in risk management, investment portfolios and derivative 

pricing. 

 Harold Edwin Hurst was the first to discover this phenomenon while he studied 

the flow of the river Nile. Later, Hurst published a series of papers where he described 

his findings (Hurst, 1951). We can find other examples of the same phenomenon in 

biology, geophysics, climatology and other natural sciences. Some works that are worth 

mention are the works from Mandelbrot & Wallis (1968) and MacLeod and Hipel 

(1978). 

 Since then, the Hurst exponent,  , has been calculated extensively for several 

time series, such as stock prices, stock indices, exchange rates and commodities. In the 

majority of the cases, a Hurst exponent of  
 

 
     was found, indicating long 

memory correlation in the data. 

 Long memory can be expressed either in the time domain or in the frequency 

domain. In the time domain, long memory manifests itself as hyperbolically decaying 

autocorrelation functions. Therefore, observations far from each other are still strongly 

correlated and decay at a slow rate. A stationary process exhibits long memory or long-

range dependence if the autocorrelation function    at lag   satisfies 

    
   

  

[     ]
    (1) 

for some constants        and      . In contrast, a weakly stationary process 

has a short memory when its autocorrelation function is geometrically bounded  

 |  |     
| |  (2) 
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for            . 

 Fox and Taqqu (1985) presented a more generalized definition of expression (1) 

    
   

∑ |  |

 

    

    (3) 

where   denotes the number of observations. 

 In the frequency domain, the information comes as a form of a spectrum 

showing all the information within the interval - [   ]. In this matter, a stationary time 

series exhibits long memory if the spectral density   behaves as  

    
   

    

[  | |
  ]

    (4) 

for some constants        and      . 

There is a connection between expressions (1) and (4) and the Hurst exponent, 

 , if  
 

 
    , then        and       , which characterizes a classical 

long memory process. On the other hand, negative memory or antipersistence occurs 

when        holds. 

 Alternatively, the memory of process    can be expressed in terms of the 

behavior of its partial sum 

    ∑  

 

   

   (5) 

 Rosenblatt (1955) defined short-range dependence in terms of a process that 

satisfies strong mixing so that the maximal dependence between two points within a 

process becomes trivially small as the distance between these points increases. 

Therefore, a process    can be defined as having a short memory if 

       
   

       
     (6) 

exists and it is nonzero, and  

 [
 

  
 
 

]  [  ]
 
⇒                       [   ]  (7) 

where [  ] denotes the integer part of   ,      the standard Brownian motion and 
 
⇒ 

the convergence in a distribution. 

 Resnick (1987) provided a definition of long memory that includes any process 

which has an autocovariance function for large   such that 

              (8) 
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in which     is any slowly varying function at infinity. Helson and Sarason (1967) 

demonstrated that any process with     and the autocovariance function given by (8) 

violates the strong mixing condition, hence, it is a long memory process. Taqqu (1975) 

studied the weak convergence of a linear combination of a long memory process, where 

the weights are functions of Hermite polynomials. The study was conducted for a 

stochastic process ∑          [  ] , where    is Gaussian with a zero mean and an 

autocovariance function obeying (8),      , and    is the  th Hermite 

polynomial. For   [  (
 

  
)] then the normalized version of ∑          [  ]  will 

converge to the Brownian motion. However, if [  (
 

  
)]     , the limit depend 

on  , is non-Gaussian for     and coincides with the Rosenblatt process when 

   . Fox and Taqqu (1985) provided additional results for the quadratic form 

 ∑∑                

 

   

 

   

  (9) 

where    are finite constants. Similarly, the normalized sum of the quadratic form 

converges either to a Brownian motion or to a Rosenblatt process. Furthermore, a vector 

of quadratic forms with a long memory converges to a vector of independent Gaussian 

random variables. In this case,  the constants of the quadratic forms have to decay at 

sufficient speed to offset the long range dependencies in   . 

 Finally, the most recent article, to the best of one’s knowledge is due to Diebold 

and Inoue (2001), who noted that there is a strong connection between the variance of 

partial sum definition and the spectral and autocorrelation of long memory. 

  All the definitions used in this section can be found in Bentes and Menezes 

(2013). 
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3. Methodology 

 

3.1 FIGARCH Model 

 

The Autoregressive Conditional Heteroskedastic (ARCH) processes were 

presented by Engle (1982), where he used this model to estimate the means and 

variances of inflation in the U.K.. These are mean zero, serially uncorrelated processes 

with non-constant variances conditional on the past, but constant unconditional 

variances. Accordingly with Engle (1982), the time-series    and the associated 

prediction error                 are considered, where      is the expectation of the 

conditional mean on the information set at    . 

A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 

was proposed by Bollerslev (1986) and is as follows: 

                         
           

        
   (10) 

where    ,      and      are polynomials in the lag operator              of 

order   and  , respectively. Assuming that      and      for all  , the GARCH 

(   ) model in Eq. (10) can be rewritten in the form of an ARMA(   ) process: 

       
    [      ]    (11) 

where       
    

 , and      [           ]  The    process is interpreted as 

an innovation for the conditional variance, has a zero mean serially uncorrelated. In the 

GARCH model, the effect upon the past squared innovations on the current conditional 

variance decays exponentially with the lag length. This model presents some limitations 

since it assumes that the shocks decay at a fast geometric rate, thus only has short term 

persistence. 

To overcome this problem it was developed the Integrated GARCH (IGARCH), 

by Engle and Bollerslev (1986) and can be written as follows: 

            
    [      ]      (12) 

This model is characterized by having infinite memory. That is, the occurrence 

of a shock to the IGARCH volatility process will never die out. This feature may reduce 

its appeal to be used in asset pricing purposes, because this assumption would make the 

pricing functions for long-term contracts particularly prone to the initial conditions. To 
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overcome this Baillie, Bollerslev & Mikkelsen (1996) introduced the Fractionally 

Integrated Generalized Autoregressive Conditionally Heteroskedastic (FIGARCH). The 

FIGARCH (     ) model is given by:  

             
     [      ]      (13) 

where           is the fractional differencing parameter which measures the degree 

of long memory. 

This model imply a slow hyperbolic rate of decay for lagged squared 

innovations in the conditional variance function, although the cumulative impulse 

response weights associated with the influence of a volatility shock on the optimal 

forecasts of the future conditional variance eventually tend to zero, this is a feature that 

the model shares with the weak stationary GARCH process. 

This model has greater flexibility for modeling the conditional variance since it 

accommodates the covariance stationary GARCH model when       and the 

IGARCH model when      , as special cases. The advantage of the FIGARCH model 

is that, for           , it is a lot more flexible to allow for an intermediate range of 

persistence. One of the disadvantages of the FIGARCH model is that it assumes strict 

stationarity but not weak stationarity. 

Chung (1999) argues that Baillie, Bollerslev and Mikkelsen’s (1996) 

parameterization of the FIGARCH model may have a specification problem. He argues 

that the relations of BBM FIGARCH model with the ARFIMA models for the 

conditional mean are not perfect. The constant   it is different than the constant   in the 

ARFIMA models. This happens because the fractional integration operator exhibits an 

impact on  , but it is irrelevant to  . Additionally, for a given unconditional variance in 

  , the parameter   in equation (13) should be equal to zero regardless of the value of 

  .  With this in mind, Chung (1999) redefines the FIGARCH model as: 

              
      [      ]      (14) 

the relationship between the parameter   in equation (13) and the    parameter is: 

                  (15) 
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3.2. Local Whittle Estimation 

 

In this section, we consider covariance stationary long memory processes. We 

assume the spectral density      of the process    satisfies: 

                     (16) 

where   ( 
 

 
  

 

 
) and        . The most widely used long memory process is a 

fractionally integrated process, given by 

              (17) 

where   is the lag operator and    is a covariance stationary process whose spectral 

density is bounded away from zero at the zero frequency      

The discrete Fourier transform ( ft) and the periodogram of    evaluated at the 

fundamental frequencies can be defined as: 

  (  )        
 
 ∑   

    

 

   

     
   

 
            (  )  |  (  )|

 
  (18) 

Künsch (1987) and Robinson (1995) formulated the Local Whittle (Gaussian 

Semi Parametric) estimation. Robinson (1995) proposed a Gaussian objective function 

in terms of   and   

          
 

 
∑[   (    

   )   
  
  

 
  (  )]

 

   

  (19) 

where   is the number of the periodogram ordinates and is some integer less than  . 

The Local Whittle estimator  ̂ of    is obtained by minimizing (19), so that 

 ( ̂  ̂)        
          [     ]

         (20) 

where    and    are numbers such that  
 

 
         . Concentrating Equation 

(20) with respect to  , we have: 

  ̂        
  [     ]

      (21) 

where 

          ̂      
 

 
∑   (  )

 

   

   ̂     
 

 
∑  

        

 

 

 ̂   (22) 

The first test that we will apply is the sample Splitting-based diagnosis that was 

used by Shimotsu (2006). 
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We will split the samples into   blocks, let   be an integer and each block has 

    observations. We also assume that     is an integer. Define  ̂           , to be 

the Local Whittle estimator of   computed from the  th block of the observations, 

{     
      

 
     

  

 
}. 

The number of periodogram ordinates,  , used in the objective function, has a 

crucial role in the Local Whittle estimator, since it determines the width of the 

frequency band used in estimating  .  We defined the number of periodogram ordinates 

used in the subsample as     and we assume that is an integer. By doing the former, 

the subsample and the estimation of the entire sample will use an equal amount of 

frequency-domain information. This extenuates the effect of short-run dynamics on the 

test statistic since they have the same amount of bias from short-run dynamics. 

For the  th subsample, define 

  ̂        
  [     ]

         (23) 

where the objective function is constructed from the  th block of the observations: 

             ̂         
 

 
∑    ( ̃ )

 
 

   
  (24) 

  ̂        
 

 
∑  ̃ 

    
   ( ̃ )

   

 
  (25) 

   
   ( ̃ )         | ∑    

   ̃ 

  
 

            

|

 

  (26) 

  ̃  
   

   
                  (27) 

To check for spurious long-memory processes, we estimate   by taking the 

average of  ̂       ̂   . A simple visual assessment can be done to check if we are in 

the presence of  an      process. If the average of  ̂       ̂    it is close to the value of 

 ̂,then   is an      process. This does not happen with spurious long memory. We also 

used the same assumptions on         and  , found in Robinson (1995) and Shimotsu 

(2006), they are the Assumptions A1-A4. 

To formally testing true      versus spurious     , we use the same tests as 

Shimotsu (2006). This tests the hypothesis                   , where   

represents the number of subsamples,    and      are the true long memory parameters 
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for the full sample and each of the subsamples, respectively. Define a     vector  ̂  

and         matrix A as: 

  ̂  

(

 

 ̂    

 ̂      

 
 ̂      )

             (
     
    
     

)  (28) 

Shimotsu (2006), show that, under   , 

 √  ̂                       (  
 

 
 )    (

   
 

     
)  (29) 

where    is a     identity matrix and    is a     vector of ones. To test    we use 

the adjusted Wald statistic. Here, we have the Wald statistic for testing    as 

       ̂        (  ̂ )
 
   (30) 

where         denotes a generalized inverse of     . Then   has a chi-squared 

limiting distribution with     degrees of freedom. 

Hurvich and Chen (2000) reported that the finite sample variance of Local 

Whittle estimator tends to be larger than        and the Wald test tends to over-reject 

the null hypothesis. They found out that replacing   in the variance estimate by a 

number    improves approximation, where    is defined as: 

     ∑  
 

 

   

   (31) 

          
 

 
∑           

 

 
∑    

 

   

 

   

  (32) 

Since          as     , this modification does not alter the asymptotic 

distribution of the test statistic. Following Hurvich and Chen (2000), Shimotsu (2006) 

introduced the adjusted Wald statistic: 

                    ̂        (  ̂ )
 
  (33) 

One feature of this test is that each subsample-based estimator uses the same 

number of frequencies. This means that the bias of every elements of  ̂  are the same 

and allows us to choose larger values of   than in estimating  . Here, we use the same 

assumptions introduced by Shimotsu (2006). 

 The second test is based upon the premises that, if an      processes is 

differenced   times, then the resulting time series are an      process. This may seem 

simple, but some spurious long memory processes do not imitate this property. The 
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assumptions used here were the same used in Shimotsu (2006), and he shows that the 

 th differenced series is: 

  ̂        ̂ (    ̂( ̂))  ∑
 (  ̂   )

 (  ̂)  
(      ̂( ̂))

   

   

   (34) 

where 

  ̂( ̂)        ̅   (      )     (35) 

  ̅     ∑   

 

 
   (36) 

Once  ̂  is calculated, it is then tested for unit roots. We also use the Phillips and 

Perron (1988) unit root test (  ) and the KPSS test (Kwiatkowski et al., 1992). Since the 

tests are now dependent upon the estimated  ̂ instead of the true value, we must 

simulate their critical values, which are provided in Shimotsu (2006). 

The Local Whittle estimator is quite robust to short-run dynamics. It allows for 

quite general forms of short-run dynamics, whereas ARFIMA and FIGARCH models 

are more sensitive to the specifications used to represent the short-run dynamics, 

Künsch (1987) and Robinson (1995). The long memory parameter from Local Whittle 

estimate is related to, but usually is not expected to be identical to the long memory 

parameter of the FIGARCH model. Semiparametric estimation has its own problems of 

being extremely data-intensive and generally exhibiting poor performance in terms of 

bias and standard errors. The main advantage of the Local Whittle estimate is its 

computational simplicity and the invariance of their limiting distribution with respect to 

 . 
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4. Empirical Data 

 

The data set comprises the daily closing prices of the PSI 20, FTSE MIB, ISEQ, 

FTSE/ATHEX and IBEX 35 indices, spanning from 1
st
 January 1998 to 8

th
 March 2013. 

Data was collected from the Thomson Reuters DataStream database. 

To conduct one’s research the sample prices were converted into daily nominal 

percentage return series (not adjusted for dividends), given by 

          (
  
    

)   (37) 

for        , where    denotes the return at time t,    the current price and      the 

previous day’s price. Expression (37) can be rewritten as 

       [                ]   (38) 

According to Morana and Beltratti (2004), using daily data has the advantage 

that, from a statistical point of view, we gather a sample largely enough to make a 

statistically meaningful analysis. Also, from a practical point of view, daily returns are 

used by the financial industry and investors. Risk Management needs accurate forecasts 

of daily and weekly volatility for the implementation of value at risk models. In the case 

of quantitative asset allocation models, investors are interested in risk assessment at 

daily and sometimes even lower frequencies. 
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Fig. 1 gives us a visual representation of the daily log returns for the different 

indices. 
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Fig. 1. Daily log returns of the PSI 20, FTSE MIB, ISEQ, FTSE/ATHEX and IBEX 35 indices in the period 

ranging from 1st January 1998 to 8th March 2013. 
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Table 1  

Descriptive statistics and unit root tests for the PSI 20, FTSE MIB, ISEQ, FTSE/ATHEX, IBEX 35 

 PSI 20 FTSE MIB ISEQ FTSE/ATHEX IBEX 35 

Mean -0,00963 -0,01063 -0,00151 -0,026193 0,004518 

Median 0,021168 0,058486 0,063955 -0,01451 0,071608 

Maximum 10,19592 10,87592 9,733309 16,37415 13,48364 

Minimum -10,3792 -8,59813 -13,9636 -9,796319 -9,58587 

Std. Dev. 1,225171 1,590397 1,447493 2,10126 1,583419 

Skewness -0,3035 -0,07465 -0,5401 0,160014 0,02991 

Kurtosis 10,27641 7,063915 10,08522 6,757199 7,54639 

      

Jarque-Bera 8557,005** 2654,988** 8208,059** 2247,781** 3303,238** 

      

Q(5) 46,257** 30,45** 17,087** 31,742** 23,39** 

Q(20) 88,353** 59,651** 47,889** 51,701** 50,121** 

Qs(5) 650,52** 1113,7** 1272,7** 533,39** 775,43** 

Qs(20) 1809,5** 3112,9** 3939,3** 1359,3** 2090,1** 

BG 6,524621** 3,901525** 2,931605** 4,017901** 3,417802** 

      

ADF -56,2666** -61,8669** -58,3019** -56,47721** -45,663** 

PP -56,2492** -61,8766** -58,2133** -56,41895** -61,0825** 

KPSS 0,107018 0,200698 0,188479 0,559323 0,10378 

Notes: The Jarque-Bera corresponds to the test statistics for the null hypothesis of normality in sample returns 

distribution. The Ljung-Box statistics, Q(n) and Qs(n), seeks for the serial correlation in the return series and 

the squared returns up to the nth order, respectively. BG is the Breusch-Godfrey serial correlation test with 10 

lags. For the tests ADF and PP the 1% critical value is -3,43186. The critical value for the KPSS test is 0,739 at 

the 1% significance level. 

** Indicates a rejection of the null hypothesis at the 1% significance level.                                                

 

Table 1 presents, the descriptive statistics and the unit root tests for all indices. 

As we can see, the samples means are remarkably small and only in the IBEX 35 the 

mean is positive, for the remaining indices the mean is always negative. The standard 

deviation is higher in comparison to the mean. The PSI 20 has the lowest standard 

deviation, thus being the index with the lowest level of volatility and the FTSE/ATHEX 

has the highest standard deviation, consequently being the index with the highest level 

of volatility. The returns are not normally distributed as indicated by the skewness, 

kurtosis and Jarque-Bera test statistics. The PSI 20, ISEQ and the FTSE MIB show 
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negative asymmetry, and the FTSE/ATHEX and IBEX 35 are positively skewed. All 

samples are leptokurtic with a kurtosis value higher than 3. The Jarque-Bera test 

statistics also show significant deviations from normality. The null hypothesis of the 

Ljung-Box Q statistics states that there is no serial correlation in the time series. We 

applied this test to the returns and squared returns with a lag of 5
th

 and 20
th 

order. Since 

the null is rejected at 1% significance level we conclude that there is significant 

evidence of serial dependence. The Breusch-Godfrey LM tests also reveal linear 

dependence. 

We also performed three types of unit-root test: The Augmented Dickey-Fuller 

(ADF), Phillips-Perron (PP) and the Kwiatkowski-Phillip-Schmidt-Shin (KPSS). The 

tests ADF and PP null hypothesis checks if a time series contains a unit-root. Whereas, 

the KPSS tests it is used for testing a null hypothesis that an observable time series is 

stationary around a deterministic trend. All indices present a large negative number for 

the ADF and PP tests, rejecting the null hypothesis of a unit-root. In the KPSS test, we 

do not reject the null for any of the indices at a 1% significance level. Thus, the return 

series is a stationary process. 
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5. Empirical Findings 

 

In order to remove any serial correlations present in the data, we first estimate an 

AR(p) model. By analyzing the correlogram plots for the return series, we chose an 

AR(1) for the ISEQ and FTSE/ATHEX, an AR(5) for the IBEX 35 and FTSE MIB, and 

finally an AR(7) for the PSI 20. The plots are not reported to save space. However, they 

are available upon request. Moreover, to verify the suitability of a time series model to 

account for the conditional mean we computed a number of diagnostic tests (Table 2). 

 

Table  2 

Residual's analysis for the fitted AR(p) model  

 PSI 20 FTSE MIB ISEQ FTSE/ATHEX IBEX 35 

Mean 1,62E-14 4,34E-12 -1,35E-10 -4,30E-12 -4,52E-11 

Std. Dev. 1,215708 1,583554 1,445411 2,093298 1,578535 

Skewness -0,192550 -0,127344 -0,500479 0,196303 -042479 

Kurtosis 10,50615 6,829562 10,15679 6,78445 7,289270 

Jarque-Bera 9050,275** 2361,162** 8335,869** 2286,637** 2937,14** 

Q(10) 7,4247 7,5947 16,018 11,708 9.8585 

BG 1,087926 0,759622 1,534121 1,199055 1,188832 

ARCH-LM 105,7523** 118,1778** 231,1330** 117,0364** 131,4875** 

Qs(10) 986,28** 1816,2** 2456,3** 969,76** 1401,7** 

Notes: The diagnostic statistics Q(10) and Qs(10) are Ljung-Box statistics based on the first 10 autocorrelations 

of the standardized residuals and the autocorrelations of the squared standardized residuals respectively. BG 

is the Breusch-Godfrey serial correlation test with 10 lags. ARCH-LM refers to the ARCH-LM test of 

Homoscedasticity. 

** Indicates a rejection of the null hypothesis at the 1% significance level.     

                      

As observed on Table 2, the Jarque-Bera test of the AR(p) residuals indicate 

non-normality. The PSI 20, ISEQ, FTSE MIB and the IBEX 35 display negative 

asymmetry, and the FTSE/ATHEX is positively skewed. All samples are leptokurtic 

with a kurtosis value higher than 3. Furthermore, the Ljung-Box and the Breusch-

Godfrey are not statistically significant for all the indices, meaning that there is no serial 

correlation on the residuals. Finally, to check for heteroskedasticity, we employ the 

ARCH-LM test and the Ljung-Box statistics of the squared residuals, the null 

hypothesis of no Arch effects is rejected for all residual series at a 1% significance 



The Long Memory Behaviour of Stock Market Volatility 

19 

 

level, finding which is corroborated by the rejection of the Ljung-Box test at the same 

significance level for the squared residuals. 

 Having fitted an AR(p) model in order to capture linear dependence in the mean 

and since there is evidence of ARCH effects in the residual series we proceed with the 

estimation of the FIGARCH model. 

In the following sections, we present the results from the BBM’s FIGARCH 

model and Chung’s FIGARCH model. The FIGARCH (     ) and FIGARCH (     ) 

are the specifications that we are going to use in modeling the long memory property in 

the volatility of the five indices. The main advantage of the FIGARCH (     ) 

structure is that it parsimoniously decouples the long-run and short-run movements in 

the volatility. While the FIGARCH (     ) model nests a GARCH(1, 1) model, where 

shocks to the conditional variance either dissipates exponentially or persist indefinitely, 

for the FIGARCH (     ) model the response of the conditional variance to past shocks 

decay at a slow hyperbolic rate. Both these models are the most commonly used in 

empirical applications and also show satisfactory results. To estimate the FIGARCH 

model we used the OxMetrics6 software. 

After that, we are going to present the Local Whittle Estimator. To perform the 

Local Whittle Estimator, we used the MatLab software and the same codes used by 

Shimotsu (2006). 
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5.1. BBM FIGARCH model  

 

We begin by analyzing and comparing the BBM’s FIGARCH (     ) and 

FIGARCH (     ) specifications in modeling the long memory property in the 

volatility of the five indices. Table 3 and 4 report the results that we obtained under the 

Gaussian distribution. 

 

Table 3 

Estimation results of BBM FIGARCH (1,d,0) model under the Gaussian Distribution 

 PSI 20 FTSE MIB ISEQ FTSE/ATHEX IBEX 35 

  
0,060157** 

(0,013231) 

0,036675* 

(0,017411) 

0,072788** 

(0,016511) 

0,052744* 

(0,024669) 

0,062983** 

(0,018256) 

  
0,047289** 

(0,014348) 

0,043759** 

(0,011770) 

0,081443** 

(0,024334) 

0,134754** 

(0,033416) 

0,059511** 

(0,015507) 

       

  
0,311082** 

(0,078248) 

0,567677** 

(0,070786) 

0,334582** 

(0,069739) 

0,328623** 

(0,045944) 

0,552537** 

(0,11627) 

  
0,438744** 

(0,064096) 

0,592327** 

(0,068740) 

0,403276** 

(0,060234) 

0,387282** 

(0,037223) 

0,588261** 

(0,11261) 

Ln(L) -5530,465 -6469,97 -6093,308 -7564,605 -6558,591 

SIC 2,880051 3,366976 3,186342 3,996356 3,428994 

AIC 2,873554 3,360481 3,179821 3,989776 3,422473 

ARCH-LM 1,6910 1,0059 0,56628 0,38147 1,2111 

Q(20) 92,531** 14,7462 28,4595 64,1971** 20,3975 

Qs(20) 18,4619 30,4332* 14,3045 12,7253 29,8781 

Notes: Standard errors based on QMLE are in parentheses below the corresponding parameter estimates. Ln 

(L) is the value of the maximized Gaussian log likelihood. SIC and AIC refer to the Schwarz Bayesian 

Information Criterion and Akaike Information Criterion respectively. ARCH-LM refers to the ARCH-LM 

test of heteroskedasticity. The diagnostic statistics Q(20) and Qs(20) are Ljung-Box statistics based on the first 

20 autocorrelations of the standardized residuals and the autocorrelations of the squared standardized 

residuals respectively.  

* Indicates the rejection of the null hypothesis at the 5% significance level.  

** Indicates the rejection of the null hypothesis at the 1% significance level. 
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Table 4 

Estimation results of BBM’s FIGARCH (1,d,1) model under the Gaussian Distribution 

 PSI 20 FTSE MIB ISEQ FTSE/ATHEX IBEX 35 

  
0,058701** 

(0,013233) 

0,0306674* 

(0,017392) 

0,072216** 

(0,016611) 

0,053473* 

(0,024669) 

0,063261** 

(0,018323) 

  
0,031501** 

(0,011600) 

0,037922** 

(0,013046) 

0,062205 

(0,035879) 

0,102465* 

(0,032304) 

0,046044** 

(0,016097) 

  
0,167717* 

(0,065269) 

0,034133 

(0,041421) 

0,096580 

(0,11324) 

0,100688 

(0,060086) 

0,072023 

(0,044650) 

  
0,503439** 

(0,075058) 

0,587166** 

(0,056915) 

0,456601** 

(0,16546) 

0,440171** 

(0,074810) 

0,600442** 

(0,064112) 

  
0,481741** 

(0,062681) 

0,584147** 

(0,058809) 

0,436175** 

(0,083302) 

0,407912** 

(0,039892) 

0,578126** 

(0,069151) 

Ln(L) -5526,439 -6469,443 -6092,27 -7562,793 -6556,542 

SIC 2,880104 3,368848 3,187951 3,997573 3,430077 

AIC 2,871983 3,360729 3,1798 3,989348 3,421926 

ARCH-LM 0,37577 0,31005 0,13256 0,37829 0,079429 

Q(20) 91,6315** 14,6465 28,3321 63,077** 19,6795 

Qs(20) 13,8702 30,3714* 13,6966 13,0005 29,4865* 

Note: Standard errors based on QMLE are in parentheses below the corresponding parameter estimates. Ln 

(L) is the value of the maximized Gaussian log likelihood. SIC and AIC refer to the Schwarz Bayesian 

Information Criterion and Akaike Information Criterion respectively. ARCH-LM refers to the ARCH-LM 

test of heteroskedasticity. The diagnostic statistics Q(20) and Qs(20) are Ljung-Box statistics based on the first 

20 autocorrelations of the standardized residuals and the autocorrelations of the squared standardized 

residuals respectively.  

* Indicates the rejection of the null hypothesis at the 5% significance level.  

** Indicates the rejection of the null hypothesis at the 1% significance level. 

 

As shown in the previous tables, the parameter   and   are positive and found 

highly significant. Regarding the parameters   and   , we arise at a different pattern, 

that ranges from no significance, to 1% or 5% significance level. 

The FIGARCH (     )   values span from 0,387282 for the FTSE/ATHEX to 

0,592327 for the FTSE MIB, rejecting the null hypothesis of GARCH (   ) and 

IGARCH (   ) models at the 1% significance level. Therefore, these findings are 

consistent with a long memory process. Regarding the FIGARCH (     )   values, 

they span from 0,407912 for the FTSE/ATHEX to 0,584147 for the FTSE MIB, also 
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rejecting the null hypothesis of GARCH (   ) and IGARCH (   ) models at the 

1% significance level. These results are as well consistent with a long memory process.  

The results indicate dependencies between distant observations in the indices, 

which can be used to predict future volatility values. Such findings provide evidence 

against the efficient market hypothesis of Fama (1970). The efficient market hypothesis 

of Fama suggests that it is impossible to make any predictions from the past patterns 

and that the stock returns display a random walk. 

The FTSE/ATHEX Index which is the most volatile according to the standard 

deviation results, it is the one that exhibits the lowest persistence. Nevertheless, the 

Index that presents the higher persistence is not the one who has the lowest volatility. 

The PSI 20 is the lowest volatile Index, and his   value is 0,438744 and 0,481741 

according to the estimates of the FIGARCH (     ) and FIGARCH (     ) 

respectively. In the study of Bentes (2011), it is found an inverse relation between these 

two measurements, which might be explained by the fact that smaller markets are 

characterized by being less liquid, thus are less efficient in the sense of the EMH. 

Therefore, exhibiting higher persistence, this is consistent with the findings of Di 

Matteo, Aste and Dacorogna (2003) and Grau-Carles (2000). However, here we do not 

verify that. 

Comparing both models, the FIGARCH (     ) model ensures the positivity 

constraint in the conditional variance, Baillie, Bollerslev and Mikkelsen (1996) 

considered that these conditions,     and         , as necessary and 

sufficient to ensure for the conditional variance of the FIGARCH (     ) model to be 

positive almost surely for all  . Additionally, FIGARCH (     ) specification provides 

a better representation of a long memory volatility process, since the parameter   is 

insignificante in the majority of the cases, only in the PSI 20 the parameter   is 

significant at the 5% level. The FIGARCH (     ) in the majority of the cases presents 

a lower SIC value. The Ljung-Box statistic results are quite similar in both models. The 

ARCH-LM test does not reject the null hypothesis in any of the models. Finally, the 

AIC test results do not clearly show which one it is the best. Therefore, the FIGARCH 

(     ) model is superior to the FIGARCH (     ) model in capturing the long 

memory property of the volatility in these five indices stock returns. 
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5.2. Chung’s FIGARCH model 

 

In this section, we analyze and compared the Chung’s FIGARCH (     ) and 

FIGARCH (     ) specifications in modeling the long memory property in the 

volatility of the five indices like we did in the previous section. Table 5 and 6 report the 

results that we obtained under the Gaussian distribution. 

 

Table 5 

Estimation results of Chung’s FIGARCH (1, d, 0) model under the Gaussian Distribution 

 PSI 20 FTSE MIB ISEQ FTSE/ATHEX IBEX 35 

  
0,059728** 

(0,013160) 

0,037344* 

(0,017617) 

0,072942** 

(0,016410) 

0,053066* 

(0,024278) 

0,063508** 

(0,018567) 

  
2,431853* 

(1,2385) 

3,135498* 

(1,3007) 

2,236646** 

(0,73320) 

5,677339* 

(2,8476) 

3,128599* 

(1,3820) 

       

  
0,347249** 

(0,067095) 

0,511769** 

(0,04638) 

0,34626** 

(0,050734) 

0,391246** 

(0,060375) 

0,46485** 

(0,045630) 

  
0,47550** 

(0,050243) 

0,536481** 

(0,041103) 

0,411356** 

(0,040358) 

0,451420** 

(0,051136) 

0,501373** 

(0,045630) 

Ln(L) -5530,433 -6471,201 -6093,517 -7566,581 -6560,112 

SIC 2,880034 3,367617 3,186451 3,997398 3,429786 

AIC 2,873537 3,361122 3,17993 3,990818 3,423266 

ARCH-LM 1,8213 1,2578 0,56017 0,46136 1,3916 

Q(20) 89,9195** 14,7445 28,327 64,9674** 20,0857 

Qs(20) 18,0548 31,0886* 14,4141 13,7481 33,8839* 

Note: Standard errors based on QMLE are in parentheses below the corresponding parameter estimates. Ln 

(L) is the value of the maximized Gaussian log likelihood. SIC and AIC refer to the Schwarz Bayesian 

Information Criterion and Akaike Information Criterion respectively. ARCH-LM refers to the ARCH-LM 

test of heteroskedasticity. The diagnostic statistics Q(20) and Qs(20) are Ljung-Box statistics based on the first 

20 autocorrelations of the standardized residuals and the autocorrelations of the squared standardized 

residuals respectively.  

* Indicates the rejection of the null hypothesis at the 5% significance level.  

** Indicates the rejection of the null hypothesis at the 1% significance level. 
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Table 6  

Estimation results of the Chung’s FIGARCH (1, d, 1) model under the Gaussian Distribution 

 PSI 20 FTSE MIB ISEQ FTSE/ATHEX IBEX 35 

  
0,058509** 

(0,013204) 

0,037011* 

(0,017615) 

0,072166** 

(0,016649) 

0,054056* 

(0,024263) 

0,063314** 

(0,018665) 

  
2,359133* 

(1,1790) 

2,792068* 

(1,2392) 

2,231773** 

(0,74663) 

5,878645* 

(2,9204) 

2,838265* 

(1,2400) 

  
0,160543* 

(0,066382) 

0,046001 

(0,040104) 

0,091116 

(0,11615) 

0,098942 

(0,055597) 

0,086962* 

(0,042495) 

  
0,513506** 

(0,068603) 

0,556127** 

(0,049074) 

0,446628** 

(0,15230) 

0,500177** 

(0,077096) 

0,555900** 

(0,055116) 

  
0,500339** 

(0,046073) 

0,542068** 

(0,037949) 

0,430866** 

(0,057639) 

0,474645** 

(0,051826) 

0,517884** 

(0,041860) 

Ln(L) -5526,502 -6470,307 -6092,566 -7564,409 -6557,56 

SIC 2,880137 3,369296 3,188107 3,998425 3,43061 

AIC 2,872016 3,361177 3,179956 3,9902 3,422459 

ARCH-LM 0,41372 0,27933 0,13360 0,35013 0,087853 

Q(20) 89,7654** 14,6274 28,1595 63,489** 19,4692 

Qs(20) 13,7369 30,8596* 13,7058 13,9467 31,9707* 

Note: Standard errors based on QMLE are in parentheses below the corresponding parameter estimates. Ln 

(L) is the value of the maximized Gaussian log likelihood. SIC and AIC refer to the Schwarz Bayesian 

Information Criterion and Akaike Information Criterion respectively. ARCH-LM refers to the ARCH-LM 

test of heteroskedasticity. The diagnostic statistics Q(20) and Qs(20) are Ljung-Box statistics based on the first 

20 autocorrelations of the standardized residuals and the autocorrelations of the squared standardized 

residuals respectively.  

* Indicates the rejection of the null hypothesis at the 5% significance level.  

** Indicates the rejection of the null hypothesis at the 1% significance level. 

 

Commonly like in BBM’s FIGARCH models, in the Chung’s models the   and 

  parameters are positive and found highly significant. Regarding the parameters   and  

 , we arise at a different pattern, that ranges from no significance, to 1% or 5% 

significance level. 

The FIGARCH (     )   values span from 0,411356 for the ISEQ to 0,536481 

for the FTSE MIB, rejecting the null hypothesis of GARCH (   ) and IGARCH 

(   ) models at the 1% significance level. Thus, these findings are as well consistent 

with a long-memory process. Regarding the FIGARCH (     )   values, they span 

from 0,430866 for the ISEQ to 0,542068 for the FTSE MIB, also rejecting the null 
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hypothesis of GARCH (   ) and IGARCH (   ) models at the 1% significance 

level. Hence, the results are as well consistent with a long-memory process.  

These results like in the BBM’s case display dependencies between distant 

observations in the indices, which can be used to predict future volatility values. 

Therefore, such findings provide once again proof against the efficient market 

hypothesis of Fama (1970). However, here we do not observe the same relationship that 

we observed with the BBM’s FIGARCH, where the highest volatile market had the 

lowest persistence estimate. With this model, that relationship does not seem to hold. 

Comparing the two models, the FIGARCH (     ) it is superior to the 

FIGARCH (     ), for particularly the same reasons that we saw in the BBM’s case. 

The   parameter is insignificant is the majority of the cases, the SIC value is lower in 

the majority of the cases for the FIGARCH (     ) and this model ensures the 

positivity constraint in the conditional variance. 

Comparing the BBM’s model with the Chung’s Model, the   values have an 

higher amplitude using the BBM’s FIGARCH model. In the case of the ARCH-LM, 

SIC, AIC and Ljung-Box statistics, the results are quite similar. In the end, both models 

arise to the same conclusion that there is evidence of long memory features in the 

volatility of the indices. 

 

 

 

 

 

 

 

 

 

 



The Long Memory Behaviour of Stock Market Volatility 

26 

 

6. Local Whittle Estimator 
 

To perform the Local Whittle Estimator, we used the MatLab software and the 

same codes used by Shimotsu (2006). 

Table 7, 8, 9, 10 and 11 show the estimates for  ̂ and  ̅, the value of   ,    and 

 ̂  statistic from the log returns, for different values of  , spaning from 200 to 800 and 

         .  

 

Table 7  

Estimation and test results with PSI 20 log returns 

   ̂  ̅    
 

    ̂  

  
                

   
200 0,588 0,5918 0,617 0,2322 1,5133 

 
-1,9928 0,0507 

300 0,533 0,5386 0,5568 0,6936 3,3043 
 

-2,0247 0,0626 

400 0,5423 0,548 0,5602 1,0678 2,5089 
 

-1,974 0,0652 

500 0,5368 0,5443 0,5492 3,0989 5,4273 
 

-1,9413 0,0731 

600 0,5268 0,533 0,5362 2,5601 5,9357 
 

-1,9335 0,0792 

700 0,5359 0,5424 0,5506 4,0814* 11,4662* 
 

-1,8671 0,0824 

800 0,5375 0,5406 0,5494 2,032 8,1858* 
 

-1,8166 0,0884 

Note: * Indicates the rejection of the null at the 5% level.      
               

          

 

Table 8  

Estimation and test results with ISEQ log returns 

   ̂  ̅    
 

    ̂  

  
                

   
200 0,5144 0,5169 0,5526 0,0018 0,1656 

 
-1,624 0,1107 

300 0,5185 0,5335 0,5449 0,8382 3,0153 
 

-1,7277 0,1004 

400 0,5044 0,5151 0,5175 0,464 1,5552 
 

-1,7613 0,0972 

500 0,5014 0,5122 0,5214 0,6027 1,9517 
 

-1,7673 0,0981 

600 0,4943 0,4998 0,5118 0,284 1,3636 
 

-1,7391 0,1025 

700 0,5018 0,5113 0,5158 1,1812 5,082 
 

-1,7555 0,1043 

800 0,5108 0,5226 0,5269 1,9337 7,6387 
 

-1,8018 0,1047 

 Note: * Indicates the rejection of the null at the 5% level.      
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Table 9  

Estimation and test results with IBEX 35 log returns 

   ̂  ̅    
 

    ̂  

  
                

   
200 0,5372 0,5406 0,5649 0,1742 0,751 

 
-2,3255 0,0766 

300 0,4755 0,4778 0,49 0,0063 0,8817 
 

-1,9772 0,0991 

400 0,4682 0,4752 0,4847 0,4302 2,1514 
 

-2,0007 0,1 

500 0,4568 0,4636 0,4756 0,6555 1,8691 
 

-1,9993 0,1004 

600 0,4478 0,4494 0,4596 0,000059247 3,6645 
 

-1,9901 0,1013 

700 0,4463 0,4525 0,4606 1,2362 6,1001 
 

-1,9653 0,1065 

800 0,451 0,4542 0,4622 0,3308 3,6436 
 

-1,9808 0,1109 

Note: * Indicates the rejection of the null at the 5% level.      
               

          

 

 

 

 

Table 10  

Estimation and test results with FTSE MIB log returns 

   ̂  ̅    
 

    ̂  

  
                

   
200 0,5617 0,5559 0,5732 0,8763 2,5804 

 
-1,3732 0,1212 

300 0,5171 0,5121 0,517 0,0115 4,6819 
 

-1,3616 0,1788 

400 0,5104 0,5082 0,5125 0,0034 6,4451 
 

-1,4051 0,1812 

500 0,4952 0,496 0,4986 0,5296 4,1384 
 

-1,3821 0,1879 

600 0,4879 0,4848 0,4866 0,054 6,5574 
 

-1,3701 0,1937 

700 0,4862 0,4881 0,4878 1,3505 7,864* 
 

-1,3594 0,2041 

800 0,4863 0,4862 0,4886 0,5686 4,7829 
 

-1,3835 0,2108 

Note: * Indicates the rejection of the null at the 5% level.      
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Table 11  

Estimation and test results with FTSE/ATHEX log returns 

   ̂  ̅    
 

    ̂  

  
                

   
200 0,6036 0,589 0,6182 2,2199 1,9213 

 
-0,9852 0,2416 

300 0,5518 0,539 0,5573 1,2366 1,5062 
 

-0,8426 0,2756 

400 0,5459 0,5398 0,5555 0,2733 2,314 
 

-0,9128 0,2626 

500 0,5359 0,5315 0,5511 0,5334 3,6528 
 

-0,9708 0,2502 

600 0,5295 0,5287 0,5449 0,0079 5,2558 
 

-0,9902 0,2477 

700 0,5302 0,5339 0,5385 0,4447 3,8927 
 

-1,0171 0,2472 

800 0,53 0,5322 0,5425 0,1999 5,0637 
 

-1,0451 0,2472 

Note: * Indicates the rejection of the null at the 5% level.      
               

          

 

In all the indices, the value of  ̂ and  ̅ are close to each other, both  ̂ and  ̅ 

decrease as   increases, this suggests that there is a possibility of presence of jumps 

and/or structural breaks in the data. The    test rejects the null of the constancy of   on 

the PSI 20 when     and            , when     and       and for the 

FTSE MIB when     and      . The    and  ̂  statistics do not present rejections 

of a stationary  ̂th differenced series.  

Overall, the results here presented do not support a true long memory process. 

However, the evidence of spurious long memory is not compelling enough as it would 

be if long memory was generated only by structural breaks. So we can arrive at the 

conclusion that long memory and jumps and/or structural breaks co-exist in all the 

indices under the study. 

In table 12, 13, 14, 15 and 16, we divided the data from the indices into three 

subperiods of equal length and applied the same tests applied in the previous section to 

each of the subperiod to make an additional check. As it was mentioned before, splitting 

the sample would lead to the same   for each subsample as the one for the full sample 

or at least one close enough, given that the subsamples are sufficiently large. This 

property does not hold for spurious long memory processes, in which the values of   for 

the subsamples would be different than the   of the full sample, and this difference 

would increase as the degree of sample splitting increases. Therefore, we are going to 

see if this happens. 
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Table 12  

Estimation and results with PSI 20 log returns 

   ̂  ̅    
 

    ̂  

  
                

   
Subperiod 1:        

40 0,6626 0,6197 0,7244 0,0651 0,7147 
 

-0,6964 0,0753 

100 0,5825 0,5471 0,5706 0,0038 0,311 
 

-0,3398 0,1716 

160 0,6124 0,5932 0,5869 0,2846 0,4225 
 

-0,2062 0,1974 

Subperiod 2: 
       

40 0,5929 0,5565 0,7054 0,3819 0,9304 
 

-2,1017 0,1696 

100 0,5778 0,5671 0,6247 0,2088 1,3814 
 

-1,771 0,1403 

160 0,5612 0,5393 0,5679 0,743 2,5331 
 

-1,7529 0,1286 

Subperiod 3: 
       

40 0,5877 0,62 0,6648 0,0029 1,163 
 

-2,673 0,0744 

100 0,4634 0,4757 0,522 0,0034 2,9548 
 

-2,0033 0,0734 

160 0,4861 0,4903 0,5246 0,0451 0,5956 
 

-2,1885 0,068 

Note: * Indicates the rejection of the null at the 5% level.      
               

          

 

Table 13  

Estimation and results with ISEQ log returns 

   ̂  ̅    
 

    ̂  

  
                

   
Subperiod 1:        

40 0,5535 0,5898 0,567 0,9255 1,811 
 

-1,6756 0,1619 

100 0,5761 0,5995 0,5837 2,0373 2,1113 
 

-1,7963 0,1977 

160 0,5393 0,5457 0,5281 0,537 3,0203 
 

-1,3812 0,2919 

Subperiod 2:        

40 0,5462 0,5296 0,568 0,9957 1,7496 
 

-1,1281 0,2877 

100 0,4648 0,5081 0,545 0,2742 4,0898 
 

-1,3007 0,2399 

160 0,4729 0,5167 0,5442 0,2235 1,6996 
 

-1,461 0,2141 

Subperiod 3:        

40 0,6929 0,6866 0,5189 0,2811 4,5729 
 

-3,0837* 0,1762 

100 0,4892 0,4782 0,4297 0,0093 0,3289 
 

-1,0748 0,2277 

160 0,4868 0,4732 0,4451 0,1257 3,3944 
 

-1,1902 0,2109 

Note: * Indicates the rejection of the null at the 5% level.      
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Table 14  

Estimation and results with IBEX 35 log returns 

   ̂  ̅    
 

    ̂  

  
                

   
Subperiod 1:        

40 0,6593 0,601 0,6528 1,5503 2,2773 
 

-1,178 0,0775 

100 0,4982 0,4667 0,5404 0,003 3,4435 
 

-0,4732 0,3854 

160 0,5212 0,4969 0,5448 0,0472 1,5715 
 

-0,5439 0,4332* 

Subperiod 2: 
       

40 0,4301 0,3707 0,541 1,5342 2,1416 
 

-1,7029 0,0851 

100 0,4781 0,4735 0,5351 1,7172 5,4977 
 

-1,6271 0,1404 

160 0,4632 0,4704 0,4946 1,179 2,1754 
 

-1,5468 0,1651 

Subperiod 3: 
       

40 0,5326 0,5627 0,5565 0,4736 0,4201 
 

-2,8497* 0,0453 

100 0,4366 0,4429 0,4577 0,003 2,1748 
 

-2,2891 0,0562 

160 0,4349 0,4395 0,4502 0,1473 0,6931 
 

-2,2847 0,0605 

Note: * Indicates the rejection of the null at the 5% level.      
               

          

 

Table 15  

Estimation and results with FTSE MIB log returns 

   ̂  ̅    
 

    ̂  

  
                

   
Subperiod 1:        

40 0,5418 0,4894 0,5807 0,0573 0,7405 
 

-0,4581 0,3647 

100 0,5521 0,53 0,5641 0,0273 2,8373 
 

-0,5545 0,3434 

160 0,549 0,5343 0,5533 1,5723 4,0111 
 

-0,4882 0,4177 

Subperiod 2: 
       

40 0,4363 0,4165 0,4337 1,4184 2,3055 
 

-1,6256 0,209 

100 0,4305 0,4178 0,4484 3,5008 7,8018 
 

-1,4795 0,2189 

160 0,4254 0,4402 0,4688 3,021 5,7301 
 

-1,5272 0,2073 

Subperiod 3: 
       

40 0,5483 0,5829 0,6004 0,0101 0,7479 
 

-2,989* 0,0424 

100 0,4799 0,4919 0,507 0,0051 1,7925 
 

-2,5209 0,0531 

160 0,495 0,4992 0,5003 1,6605 1,6907 
 

-2,6659 0,0566 

Note: * Indicates the rejection of the null at the 5% level.      
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Table 16  

Estimation and results with FTSE/ATHEX log returns 

   ̂  ̅    
 

    ̂  

  
                

   
Subperiod 1:        

40 0,6771 0,5359 0,5334 2,1119 3,254 
 

-1,0914 0,3228 

100 0,521 0,4629 0,4806 0,038 2,537 
 

0,0214 0,5688* 

160 0,5207 0,5155 0,5208 1,7212 4,5612 
 

0,0721 0,5918* 

Subperiod 2:        

40 0,5043 0,4301 0,4884 0,3957 3,4742 
 

-2,3961 0,0812 

100 0,5254 0,5434 0,5601 2,7365 1,933 
 

-2,2441 0,1005 

160 0,5312 0,5545 0,5608 1,8276 2,4487 
 

-2,1549 0,1405 

Subperiod 3:        

40 0,6115 0,6397 0,7201 0,7737 0,6051 
 

-1,9155 0,056 

100 0,5395 0,5517 0,5679 0,1376 0,3319 
 

-1,8863 0,0704 

160 0,5359 0,5454 0,5681 0,1123 0,7404 
 

-1,9101 0,0774 

Note: * Indicates the rejection of the null at the 5% level.      
               

          

 

The estimates of   are different across subperiods mainly because of sampling 

variation and small   values. The    and  ̂  statistics do not reject the null of a 

stationary  ̂th differenced series for the majority of the cases, and the    test does not 

reject the null for any of the indices. 

Again, these results do not show strong evidence of a true long memory process 

in the volatility of the indices. They also suggest that there is a possibility of presence of 

jumps and/or structural breaks in the data, but they are not strong enough so that we 

could argue that we are in the presence of a spurious long memory process. 

Overall, results of the Local Whittle Estimator do not show that we are in the 

presence of a pure long memory process, but they also do not support the opposite view 

that structural breaks account for all the observed persistence. 
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7. Conclusion 

 

 In this study we examine the long memory behavior of stock market volatility of 

the PIIGS major indices: PSI 20, FTSE MIB, ISEQ, FTSE/ATHEX and IBEX 35. To 

achieve this, we applied two FIGARCH-type models, one proposed by Baillie, 

Bollerslev and Mikkelsen, and the other by Chung, and the semi parametric Local 

Whittle Estimator to the indices. 

 A preliminary analysis uncovers non-normality, serial correlations and 

heteroskedasticity in all indices. As a consequence, we fitted an AR(1) for the ISEQ and 

FTSE/ATHEX, an AR(5) for the IBEX 35 and FTSE MIB, and finally a AR(7) for the 

PSI 20. A diagnostic analysis of the residuals shows that the serial correlation is no 

longer present in all the indices. Additionally, the ARCH-LM test and the Ljung-Box 

statistic of the squared residuals unfold heteroskedasticity. Having fitted an AR(p) 

model in order to capture linear dependence in the mean and since there is evidence of 

ARCH effects in the residual series we proceed with the estimation of the FIGARCH 

model. 

 Analyzing the results from the BBM’s and Chung’s FIGARCH models, we can 

see that the FIGARCH (     ) is superior to the FIGARCH (     ) model in capturing 

the long memory property of the volatility in the five indices stock returns. The models 

also show that the results are consistent with a long memory process. Therefore, there 

are dependencies between distant observations in the indices, which can be used to 

predict future volatility values. When comparing the BBM’s model with Chung’s model 

the main difference that we found was that the   values have higher amplitude in the 

BBM’s FIGARCH model. However, in the end both arise to the same conclusions 

regarding the existence of long memory processes in these indices volatility. In terms of 

which of the models, it is the best, results were quite similar, so we cannot assert with 

confidence which one it is the best. 

 Turning to the results of the Local Whittle Estimator, they do not show that we 

are in the presence of a true long memory process, but they are not strong enough to 

convey the opposite view that structural breaks account for all the persistence in the 

markets. Therefore, these results suggest that the data generating process perhaps is a 
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combination of both. These results seem to coincide with the results obtained by 

Shimotsu (2006) and the view of Granger and Hyung (2004) and Choi and Zivot (2007). 

 To conclude, according to the Local Whittle Estimator results we are not in the 

presence of a true long memory process, although there is evidence of long memory. 

However, they are not sufficient so that we could say with confidence that all the 

persistence it is explained only by a long memory process. Even though the FIGARCH 

models showed strong evidence of long memory in volatility, we should also take into 

account jumps and/or structural breaks when constructing models for volatility 

prediction. 
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