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This paper presents a system for obstacle detection in railway level crossings from 3D point clouds acquired with tilting 2D laser
scanners. Although large obstacles in railway level crossings are detectable with current solutions, the detection of small obstacles
remains an open problem. By relying on a tilting laser scanner, the proposed system is able to acquire highly dense and accurate
point clouds, enabling the detection of small obstacles, like rocks laying near the rail. During an offline training phase, the system
learns a background model of the level crossing from a set of point clouds.Then, online, obstacles are detected as occupied space
contrasting with the background model. To reduce the need for manual on-site calibration, the system automatically estimates
the pose of the level crossing and railway with respect to the laser scanner. Experimental results show the ability of the system to
successfully perform on a set of 41 point clouds acquired in an operational one-lane level crossing.

1. Introduction

Railway level crossings (e.g., see Figure 1) are a safety weak
point in the railway infrastructure. To reduce the risk of
collision between trains and people, vehicles, or any other
goods, these are coordinated by half-barriers and traffic
signalling. However, there is always the risk that people do
not respect signalling or that an unexpected event results
in the unwanted presence of people or goods in the train’s
passageway. CCTV systems are often used to allow remote
operators to identify these situations and react promptly.
Despite the advantages of relying on human-based decision
making, the high number of trains and level crossings to
control posit this strategy error-prone. Thus, it is preferable
to have the human acting as a complement to sensor-based
automated solutions.

Traditionally, obstacle detection at level crossings is
done by means of inductive sensors laid on the pavement
detecting metallic structures. Another approach is to check
if any object interrupts the transmission of a radio or light
signal between an emissor and a receptor, strategically and
accurately installed on the level crossing. Despite detecting
a large set of obstacles to a train’s passage, these solutions

will disregard nonmetallic and small obstacles, such as the
ones depicted in Figure 2. A collision with such objects,
although not necessarily damaging to the train, may project
them off the railway endangering people or goods present
nearby. The aforementioned obstacle detection techniques
also require time-consuming installation and calibration of
the equipment. More importantly, even if the sensor detects
the obstacle, it will not be able to provide sufficiently discrim-
inatory data for a proper assessment of the alarm’s severity.
More details on the use of traditional obstacle detection
techniques in level crossings can be found in [1].

In recent years, techniques for higher acuity in obstacle
detection have been proposed.However, these present several
limitations in the detection of obstacles such as the ones
depicted in Figure 2, which include a basket, a laid down
jerrican, and a small rock. Of particular interest to this work
are the challenges imposed by the rock, which due to its low
volume (≈10 dm3) is largely occluded by the rail, rendering it
highly inconspicuous tomost detection techniques.The small
portion of the rock that stands out from the rail is insufficient
for a RADAR system (e.g., [2]) to detect without incurring
into unacceptable false alarm rates. A finer alternative to
RADAR is the use of static 2D laser scanners (e.g., [3, 4]).
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Figure 1:The level crossing considered for the field trials.

These provide a set of range radial measurements on a plane.
However, to provide long range data without returning hits
from the ground, these sensors must be accurately aligned
with it. Moreover, the sensor must be very close to the
ground in order to detect low obstacles, which are easily
occluded by any ground’s unevenness. Detailed analysis of the
level crossing can be done, in principle, by processing high
resolution imagery, provided by surveillance cameras (e.g.,
[5, 6]). However, the robustness of image-based solutions
is considerably challenged by the presence of shadows,
sudden light variations, and unknown objects. A volumetric
analysis of the level crossing should reduce the sensitivity to
these environmental factors, provided that enough detail is
available. Binocular vision is a low-cost solution to obtain
such a rich volumetric information about the environment
and, as a result, has been already studied in the context of
obstacle detection in level crossings (e.g., [7–9]). However, in
binocular vision, the accuracy and completeness of the volu-
metric data depend heavily on lighting conditions, materials’
textures, and distance to scene elements.The latter limitation
is particularly important when the goal is to detect partially
occluded small obstacles.

This paper presents a system that uses volumetric sensory
data to detect small obstacles in level crossings. For this
purpose it relies on the use of dense 3Dpoint clouds produced
by a tilting 2D laser scanner. This way the system is not as
dependent on lighting conditions and object’s appearance as
it would if relying on binocular vision, and it is also not
as dependent on ground planarity as are solutions based
on static 2D laser scanners. The system is composed of a
software layer that processes the 3D point cloud preceded by
an acquisition hardware layer. Obstacle detection is carried
out exploiting the assumption that a quasiplanar dominant
groundplane exists. A backgroundmodel of the level crossing
is learned from a set of training point clouds. Obstacles are
the objects that show up in the point clouds captured online
that are inexistent in the training dataset. To avoid cumber-
some and time-consuming manual on-site calibration, the
proposed system includes an automatic calibration process
that estimates the pose of both level crossing and railway with
respect to the laser scanner.

A commercial product from IHI Corporation uses tilting
2D laser scanners for obstacle detection in railway level
crossings [10]. The obstacle detection method operates on
a scanwise basis; that is, it does not integrate information

into a volumetric map, which limits its ability to engage
on a detailed and robust volumetric analysis. Moreover,
the method relies on the existence of a perfectly planar
ground, whose pose with respect to the sensor must be
known beforehand. This limits the ability of the method
in detecting small obstacles in uneven ground. As a result,
according to IHI, the product is designed to detect obstacles
whose volume is greater than 1m3. However, a rock as small
as the one depicted in Figure 2 occupies considerably less
than 1m3. Moreover, the method presented in [10] does not
report the ability to automatically estimate the pose of both
level crossing and railway with respect to the sensor. Hence,
our work is expected to contribute towards an increased
detection resolution and faster installation of current laser-
based obstacle detectors for railway level crossings.

This paper is organised as follows. Section 2 describes
the proposed system. Then, a set of experimental results are
presented in Section 3. Finally, in Section 4, some conclusions
are drawn and future work avenues are suggested.

2. The Proposed System

2.1. System Overview. The system’s software layer is com-
posed of three main stages: (1) calibration; (2) training; and
(3) online operation.The calibration phase is responsible for
determining, from a single reference point cloud, the pose of
the level crossing (see Section 2.3) and the pose of the railway
(see Section 2.4).The system assumes that the sensor will not
be moved until further calibration.

From the estimated pose of the level crossing, a set
of three zones is defined longitudinal to the railway (see
Figures 1 and 3). The goal is to allow separable system’s
parameterisation and, as a result, a better handling of the
speed-accuracy trade-off. Every point cloud to be processed
in both training and online operation stages is first segmented
into these three zones (see Section 2.5). Then, to define a
region of interest (ROI) for subsequent processing steps, the
points in each segment of little value for obstacle detection
are rejected (see Section 2.6). These points are those at the
ground level and too far from the railway medial axis.

In the training phase, the system learns a volumetric map
for each zone from the ROI of a set of acquired training
point clouds (see Section 2.7). This map includes all static
objects present in the level crossing and vicinities. During
learning, the level crossing must be free of obstacles. The
system must be retrained if the disposition of static obstacles
changes.

Once training is concluded, the system can be used
online. In this stage, a point cloud is acquired every time
the traffic management system needs to ensure that the level
crossing is free of unexpected obstacles.Then, the ROI of the
acquired point cloud is compared with the volumetric map
learned during the training phase to check for the presence of
obstacles (see Section 2.8). Afterwards, a set of simple fast to
compute metrics are obtained per obstacle (see Section 2.9).
This information aims at providing the traffic manage-
ment system with context information to assess the alarm
severity.
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Figure 2: Some of the obstacles used to validate the proposed system. The volumes occupied by the basket, jerrican, and rock are
approximately 20 dm3, 50 dm3, and 10 dm3, respectively.

Train’s upward
direction

Zone B

LIDAR HB-Z HB-Y

HB-WHB-X

Zone A Zone C

Z

Y

X

Figure 3: The level crossing model. The two horizontal lines represent the railway. The radial lines stemming from the LIDAR position are
representative of the laser beams generated when the sensor is not tilted. These lines give an intuition regarding the loss of point density as
a function of the distance to the sensor.The frame of reference represented is the one of the LIDAR.The four filled rectangles represent the
four half-barriers present in the site. Note that, in most situations, the barriers disposed in a nonsquare quadrilateral shape.

2.2. Hardware Setup. The equipment used to capture the
point cloud is based on a LIDAR sensor from SICK, LMS
111. This laser scanner provides, at 25Hz, 0.5m–20m range
measurements with an angular resolution of 0.25∘ over a
field of view of 270∘. The LIDAR is coupled with an Inertial
Measurement Unit (IMU) 1056-3/3/3, from PhidgetSpatial,
and is tilted by means of a MX-64 servo, from Dynamixel
(see Figure 4). Assuming that the tilt angle is zero when
the laser beams are parallel to the ground plane, the tilting
range during a full cycle is defined between −15∘ and 30∘.
The estimation of the laser’s pose is performed through an
optimal estimator [11] based on the IMU output. The laser’s
pose information, at every moment, is used to register the
set of points captured at any given instant with the previously
captured points.

To ensure a proper registration of the several 2D laser
scans, the full 3D point cloud acquisition process is set to
take on average 5 sec. This acquisition rate can be reduced
with a better synchronisation between IMUand servo, ideally
in hardware. Nevertheless, actual future deployments of the
proposed system would rely on a multibeam laser scanner,
such as a Velodyne LIDAR, which is able to provide full
3D point clouds at 15Hz. Figure 5 depicts a typical 3D
point cloud acquired with this setup at the level crossing.

The acquired point cloud encompasses ≈250 k 3D points.
Note the decrease in point density as a function of the
distance to the LIDAR. Note also that the point density
in the half-barriers (HB) changes considerably. All these
aspects impose serious challenges to the level crossing’s pose
estimation problem and obstacle detection thereafter.

The estimator, servo controller, and laser data registration
to produce a complete point cloud run as separate nodes on
theRobotOperating System (ROS) [12].The detection system
was tested on a 2.66GHz Intel Core 2 Duo-based MacBook
Pro with 8Gb of RAM, running the operating system OSX
10.9Maverick.The systemwas fully implemented inC++with
extensive use of the Point Cloud Library (PCL) [13] for low-
level point cloud processing tasks.

2.3. Level Crossing’s Pose Estimation. To detect obstacles and
classify their relevance, it is crucial to estimate from the
reference point cloud, #", the pose of the level crossing, that
is, its position and orientation in the sensor’s frame.The level
crossing’s pose is estimated from the configuration of the four
half-barriers (HB), which are assumed to be upwards in the
reference point cloud (see Figures 1 and 5). An HB in the
upwards position is expected to exhibit a height with respect
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Figure 4:The laser scanner being actively tilted by the servo so as to acquire a complete 3D point cloud (time flows from (a) to (d)).The laser
scanner tilting angle is estimated at each time step via the IMU mounted on the top of the sensor.
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Figure 5: A typical 3D point cloud acquired at the level crossing.

to the ground plane between 2m and 6.5m, depending on
the road’s width. Hence, the four HB are expected to standout
considerably from the other elements in the scene.

The first step to detect the four HB is to determine the set
of points in the reference point cloud#",$, that corresponds
to the ground plane and, hence, is surely not belonging to
any HB.This set of points are those whose signed orthogonal
distance to the ground plane is higher than an empirically
defined scalar, %. This value is typically high (e.g., 1.5m)
so as to ensure that the dominant ground plane is found,
despite potential ground’s unevenness. Formally, a point p =(&#,&$,&%) in the reference point cloud, p ∈ #", is added to
the set of ground points $, $ ← $ ∪ {p}, if* (p,+) < %, with * (p,+) = ,&# + -&$ + .&% + *√,2 + -2 + .2 , (1)

where the tuple + = (a, -, ., *) contains the set of coefficients
of the plane equation ,0 + -1 + .2 + * = 0 that defines the
ground plane.

The installation of the sensor may not ensure its strict
verticality and, thus, the ground plane’s orientation and
distance to the sensor are unknown without calibration.
This means that the ground plane’s coefficients need to be
estimated directly from the reference point cloud #". The
level crossing is not strictly planar, the input point cloud is
noisy, and there are many objects standing on the ground
plane. Therefore, the ground plane estimation process must
be robust to the strong presence of outliers.This is attained by

recurring to random sample consensus method (RANSAC)
[14]. In short, this method generates 3 plane hypotheses, that
is, tuples +& = (,&, -&, .&, *&), 4 = 1 ⋅ ⋅ ⋅ 3, and test which of
them induces a higher number of inliers in the data. An inlier
is a 3D point whose distance to the putative plane is below
threshold % (see (11)). The best hypothesis, called simply +
henceforth, is then refined with all data using a weighted
least-squares approach. Refer to [15] for further details on
the application of the RANSAC method for ground plane
estimation.

The unorganised set of points belonging to objects present
in the level crossing is composed of all nonground points,6 =#"\$. As this set is unorganised, there is no distance function
implicit in the order of the points in the set and, thus, there
is no spatial connectivity as well. To segregate the various
objects present in the scene, a segmentation procedure based
on the Euclidean distance between the points is applied [16].
The method clusters points in a way that each point within
a cluster is close to at least another point in the cluster and
it is far from any point from all other clusters. Closeness is
empirically defined in an Euclidean sense by a scalar *. At
this point, all nonground points contained in6 are separated
into a set of clusters (segments), 7.This set of clusters excludes
clusters that are unreasonably too small (<10 points) or too
large (>2500 points). Too small clusters are often caused by
the presence of noise whereas too large clusters are typically
resulting from faulty laser scans registration.

The set of segments 7 contains all objects that are present
in the level crossing, which includes walls, debris, traffic
control equipment, and HB themselves. A first screening to
separate the HB from all other objects is done by exploiting
the knowledge that the four HB are oriented upwards and
are surely taller than a given threshold 8. In this sense, and
assuming that the sensor is roughly vertically aligned, a
segment 9 is added to the set of putative HB segments, : ←: ∪ {9}, if the height of the cluster is higher than 8, ℎ(9) > 8,
with ℎ (9) = max∀p∈) {&%} −min∀p∈) {&%} . (2)

At this point, the set : is populated with an unordered
set of segments corresponding to the four HB present in the
scene and of segments potentially corresponding to non-HB
objects and noise that could not be rejected as a function of
its height. To reduce complexity in the next steps, these seg-
ments will be represented by their centroids projected onto



Journal of Sensors 5

v̂1 v̂2 v̂3̂
v4

Figure 6:The several objects detected when searching for the HB in
the same point cloud as the one depicted in Figure 5 (view aligned
with the railway). The coloured spheres on top of arrows represent
the centroid of each detected object and the unfilled circles at the
starting points of the associated arrows correspond to the projection
of the centroids on the ground plane. Note that only the objects
detected in left hand side of the figure correspond to the actual HB.

the ground plane. The set of these two-dimensional vectors
representing the position of a given object on the ground
plane is denominated by :*. Formally, for each segment 9 ∈: with unprojected centroid .(9) = (1/|9| )∑p∈) p, a two-
dimensional vector is added to :*, :* ← :* ∪ {Ψ(.(9),+)}:Ψ (c,+) = c − ((c − o+) ⋅ n+)n+, (3)

where n+ = (,, -, .)/‖(,, -, .)‖ is a unitary vector normal
to the ground plane defined by + = (,, -, ., *) and o+ =(0, 0,−*/.) is an arbitrary point on plane +.

The next step is to check which objects represented by
their two-dimensional positions in:* actually do correspond
to each of the four HB. That is, the previous step potentially
detectsmanymore objects than the ones corresponding to the
actual HB (see Figure 6). This association problem is solved
based on a model of the level crossing. This model assumes
that the four HB are disposed as a quadrilateral laid on the
ground plane, whose shape and dimensions are defined based
on prior knowledge available at the system’s commissioning
phase. This quadrilateral model is used to check how closely
the shape of a given quadrilateral, whose vertices are four
of the elements in :*, matches the shape of a quadrilateral
model.

The quadrilateral model is defined in terms of four two-
dimensional vertices, q = (k1, k2, k3, k4), each correspond-
ing to the position of an HB. The similarity between the
quadrilateral model q and a putative quadrilateral q* =(k*1, k*2, k*3, k*4) with geometric centre k* = (1/4)∑4&=1 k*i ,Φ(q, q*) is taken as the cumulative Euclidean distance
between the 4th vertexes in both quadrilaterals. The quadri-
lateral model is by definition centred in the origin, whereas
the putative quadrilateral is not. As a consequence, the
similarity metric Φ(q, q*) must be computed after bringing
the quadrilateral to the origin by means of translating its
vertices by k*: Φ(q, q*) = 4∑&=1 GGGGG(k*i − k*) − kiGGGGG . (4)

The combination of four object locations stored in :* that
render the quadrilateral that best fits the quadrilateral model
is the one, over the set all possible combinationsH, that builds
the quadrilateral minimising the similarity metric:

q̂A = argmin
q!∈,Φ(q, q*) . (5)

Figure 7 provides an illustration of the search proce-
dure. The vertices of the quadrilateral q̂A correspond to
the estimated locations of the four HB and, as a result, to
the pose of the railway level crossing. The points defining
this quadrilateral for a specific point cloud are depicted as
k̂1k̂2k̂3k̂4 in Figure 6.

2.4. Railway’s Pose Estimation. The quadrilateral defining the
level crossing’s pose, q̂A, is valuable information to determine
where obstacles cannot be present for safety reasons. Further
detail on which objects in the site can potentially be hit by
the train can be obtained by determining the pose of the
railway. A coarse approximation to the railway’s pose can be
geometrically obtained from the pose of the level crossing.
Concretely, the railway is expected to cross the level crossing
at its middle axis. To get an accurate estimate, the coarse
railway’s pose hypothesis must be refined according to local
sensory data.

Specifically, the railway’s middle axis is coarsely defined
as the line L that splits the quadrilateral q̂A into two equal
halves. Let us define the quadrilateral representing zone A,
q̂A, by centroids k̂1k̂2k̂3k̂4. Then, L is the line that connects
the points (1/2)(k̂1 + k̂3) and (1/2)(k̂2 + k̂4) (see Figure 8).

In actual level crossings, the quadrilateral defined by the
half-barriers does not predict accurately enough the location
of the railway. So as to compensate for this fact,L is used as a
starting point for an accurate search for both rails’ signature
in the point cloud. Rails are assumed to be distinguishable
from their close vicinities in terms of point density. Figure 5
shows that rails exhibit a higher point density than their
surroundings (see the areas indicated by the circles in the
figure). This is explained by the fact that a given surface is
sampled more densely if its normal vector is parallel with
respect to the laser beams than if it is perpendicular. The
figure also shows that the rail casts a laser-shadow onto the
vicinity ground, which lowers considerably the point density.

To estimate the lines that best represent both rails, L+
and L−, two points on each must be found based on the
rail’s point density signature.The search for these points starts
from two points sufficiently distant from each other and from
the central area of the level crossing (the pavement in the cen-
tral area renders the railway volumetrically inconspicuous)
along lines L, aL, and bL (see Figure 8). Then, four search
procedures start from these two points to look for the rails’
signature (see Figure 9).

The search procedure proceeds as follows. From the two
points aL and bL, two emanating search direction unitary
vectors are created perpendicular toL, d, and −d, such that
d ⋅ (aL − bL) = 0 (see Figure 10). Each of these direction
vectors is used to define a parametric semiline of the form

p (J) = s + Jk, (6)
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Figure 7: An illustration of the process employed to determine which detected objects represent the half-barriers (HB) in the point cloud.The
coordinate system represents the 2D projection of the LIDAR frame of reference.The filled circles correspond to detected objects described
in terms of the LIDAR frame of reference, that is, putative HB. (a) and (c) Four putative HB were randomly selected to form quadrilateral
k*1k*2k*3k*4, whose centroid is k*. (b) and (d)The quadrilaterals picked in (a) and (c) are centred in the origin by translating each vertex by the
corresponding quadrilateral’s centroid vector. After this transformation it is possible to compare each putative HB position, a given vertex k*i ,
with the corresponding expected position ki (unfilled circles). After averaging these distances, it is possible to state that the hypothesis picked
in (a) is most likely to be correct one when compared to the one picked in (c).

where s ∈ {aL, bL} represents the search’s starting point,
k ∈ {d,−d} represents the unitary search direction vector
perpendicular to the rail middle axis, and J ∈ R+ is a control
parameter that can be used to sample the semiline.

The parametric semilines are sampled by applying K
increments to the control parameter J in (6), J ← J+K. At each
sample point p(J), the set of neighbour points within a radius
of 2K is computed,L(p(J)). If the cardinality of this set shows
to be M times higher than the cardinality of the set obtained
in the previous sampling point, |L(p(J))| ≥ M|L(p(J −K))|, then the search procedure stops and returns the cen-
troid of the neighbour points as the result of the search.

For instance, let us consider the search procedure that starts
in aL towards direction d. Let us assume that the search
stops (the trail is found) when J in (6) takes the valueJ+. . In this case, the point on the rail resulting from this
search procedure is taken as .(L(aL + J+.d)) (see (6) and
Figure 10).

A O-* tree is built from the input point cloud and used
in the computation of L(⋅), that is, in the search for the
neighbours of a given point. Formally, a point p* is added to
the set of neighbours of p,L(p)← L(p)∪{p*}, if ‖p−p*‖ ≤ Q.
The use of a O-* tree speeds up the nearest-neighbour search
process considerably.
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Figure 8: Diagram representing the process used to obtain a first
rough approximation of the railway middle axis line, L, given the
quadrilateral k̂1k̂2k̂3k̂4 formed by the half-barriers.
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Figure 9: An illustrative representation of the rails search from two
points laid on the rails’ middle axis rough approximation, L. The
search direction is represented by the white arrows. The unfilled
circles represent the four points found on the rails as a result of the
search and, thus, that defines the estimated rails’ lines L+ and L−.
These two lines represent more accurately the railway’s middle axis
than the first approximationL.

2.5. Zones Segmentation. Point clouds acquired by a tilting
laser scanner exhibit a considerable decrease in point density
as a function of depth, which means that obstacles nearby
the sensor are represented muchmore densely than obstacles
distant from the sensor. To account for this factor, obstacle
detection is parameterised differently depending on the
distance to the sensor. Concretely, three zones are defined.
One of the zones, RA, corresponds to the level crossing core,
that is, the area covered by the quadrilateral q̂A.The two other
zones, RB and RC, are both side-by-side with RA along both
railway’s directions. The quadrilaterals defining these zones
are denominated as q̂B and q̂C, respectively.These two zones
represent the periphery of the level crossing. RB is assumed
to be the closest to the sensor and, thus, the zone with higher
density of points. Conversely, RC is the zone with the least
point density.

For a given input point cloud obtained during either
training or online operation phases, RA, RB, and RC are the
sets of 3D points encompassed by the cuboids whose base
are the quadrilaterals defining the respective zones. A point
p ∈ R3 is said to belong to a given zone 4 ∈ {A,B,C},
p ∈ R&, if its 2D projection onto the ground plane, p∗ ∈ R2,
is encompassed by the quadrilateral q̂i. By assuming that the
sensor is roughly vertically aligned, p∗ is p without its third
coordinate.

Let us assume that one of the quadrilateral sides is defined
by the two-dimensional vertices (01,11) and (02,12) and,
consequently, by the implicit function S(0,1) = (11 −12)0 + (02 − 01)1 + 0112 − 0211. A two-dimensional point

ℒ
aℒ

bℒ

bℒ + t+b d
aℒ + t+ad

d
−d

d
−d

bℒ + t−b d
aℒ + t−ad

ℒ−

ℒ+

Figure 10: A diagram representative of the rail search procedure.

p∗ is said to be below this line if S(p∗) < 0. Let us now
assume the existence of four implicit functions,S&∈{1,2,3,4}, one
representing each side of the quadrilateral.Then, a point p is
said to be encompassed by the quadrilateral if S&(p∗) < 0,∀4 ∈ {1, 2, 3, 4}.
2.6. Region of Interest. Obstacles are those objects that can
potentially interfere with train’s motion. A set of metrics can
then set the alarm relevance depending on, for instance, the
obstacle’s distance to the railway.Thismeans that the region of
interest for the detector is not limited to the train’s workspace;
it must also encompass its vicinities. In this sense, a point in
a given zone 4 ∈ {A,B,C}, p ∈ R&, is labelled as relevant if
its orthogonal distance to the railway middle lineL is below
half the train’s width plus a safety margin; the aggregate is
represented by the scalar U&:GGGG(p − aL) × (aL − bL)GGGGGGGGaL − bLGGGG < U&, (7)

where aL and bL are two points along the line L (see
Section 2.4). The index 4 in U& states that the width of the
region of interest changes according to the level crossing’s
zone.

Small obstacle detection is a challenging task due to
potential unevenness of the ground, sparsity of the point
cloud, and its noisy nature. To reduce sensitivity to noise,
the outliers present in all processed point clouds are filtered
out. A point is discarded from further processing if the
distribution of the distances between itself and its O nearest
neighbours is too dissimilar from the distribution computed
over all points in the point cloud [17]. That is, if the point
exhibits a local distribution that detaches from all other local
distributions then it must be an outlier. Concretely, let *p
represent the average Euclidean distance between a given
point p and its O nearest neighbours. Let W and X be the
mean and standard deviation, respectively, of these average
distances computed over the whole point cloud #0, W =(1/|#0|)∑p∈1" *p. With this principle in mind, a point p ∈ R&
already labelled as relevant keeps its label if [17]W − MX ≤ *p ≤ W + MX, (8)
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where M is an empirically defined scalar. Due to efficiency
purposes, the nearest neighbours search is performed on the
top of a O-* tree.

Points already labelled relevant are passed through a final
filtering process before being analysed for the presence of
obstacles. Ground points are by definition nonobstacles and,
thus, should be discarded using a RANSAC-like procedure.
The ground plane + has been determined for the whole
point cloud with a high distance threshold % (see Section 2.3),
meaning that it is just a rough approximation of the local
ground planarity. Therefore, the ground plane + is not well
suited for segmenting ground points from potentially small
obstacles. Instead, a ground plane is estimated for each zone
based only on the points present therein. Formally, for a
given zone 4 ∈ {A,B,C}, a RANSAC procedure is run on
the top of the subpoint cloud R& with distance threshold%& to determine the zone’s local ground plane +&. Then, a
given point p ∈ R& previously labelled as relevant only keeps
its label if its orthogonal distance to the ground plane +&
is above a given threshold %&, *(p,+&) > %& (see (11)). The
subscript 4 in %& denotes the fact that the threshold can be
set separately for each zone. This is useful for instant to
reduce the number of false positives in the farthest zone with
respect to the sensor. In this zone, the low point density
and signal-to-noise ratio induces large false positives if the
threshold is low. Conversely, a low threshold operates well in
the closest zones. As a result, distant obstacles must be large
to be detected.This is a limitation imposed by the sensor that
can be easily removed by registering point clouds acquired by
complementary laser scanners.

Let us callR"& the relevant point cloud, that is, the subset ofR& that only contains points labelled relevant. In short, these
are points of zone 4 that are nonoutliers, are included in the
zone’s region of interest, and are above the ground.Therefore,R"& potentially contains a few undetected ground points
and objects standing on the ground. Not all these objects
should be reported as obstacles. For example, a traffic control
equipment is a static object present in the level crossing that
is not an obstacle to the train, not even potential. Obstacles
are defined as unexpected objects present in the level crossing
and, thus, above-plane is not a sufficient condition to report
the presence of an obstacle. The next section presents an
additional step to identify unexpected objects in the region
of interest of each zone.

2.7. Training. To detect obstacles, a backgroundmodel is first
learned during a training phase for each zone 4 ∈ {A,B,C},R2& = R&,0 ∪ ⋅ ⋅ ⋅ ∪ R&,3, where O is the number of clouds
acquired for training. Hence, the backgroundmodel is simply
defined as the union of all point clouds in the training dataset
(see Section 2.6).This assumes that only static elements (e.g.,
ground, traffic control equipment, and walls) are present in
the level crossing during training and, therefore, represented
in the background model.

The training phase occurs during the installation of the
obstacle detector in the level crossing. It may be repeated
whenever new static obstacles are added to or removed from
the level crossing or when the sensor is moved.

2.8. Obstacle Detection. After training, the system enters in
the online operation stage, meaning that, prior to each train
passage, it obtains a new point cloud, builds a relevant point
cloud R"& per zone 4 ∈ {A,B,C} (see Section 2.6), and detects
the presence of obstacles in it (see below).

Obstacles are defined as objects present in the current
point cloud that were not present in the training dataset.
Therefore, a potential obstacle is present whenever a differ-
ence between point cloud, R"&∈{A,B,C}, and the corresponding
backgroundmodel,R2& , is found. Comparing the point clouds
directly is impractical as these are unorganised; that is, there
is no obvious implicit spatial order in their vector structures,
and their point densities differ considerably.

To reduce computation, a fine regular grid with cell
size ] is superposed onto each point cloud and all the
points encompassed by each grid cell are substituted by
their centroids. This results in two new downsampled point
clouds per zone 4 ∈ {A,B,C}, V(R"& ) and V(R2& ). Then, the
two downsampled point clouds in each zone are compared
according to the method proposed by Kammerl et al. [18]. In
short, the first point cloud,V(R"& ), is used to build the initial
structure of a double-buffered octree. Then, the double-
buffered octree’s structure is altered in order to accommodate
the contents of the second point cloud, V(R2& ). During this
process, new octree’s leaf nodes are added to the octree’s
structure so as to represent elements of the environment that
were not represented by the initial octree’s structure. The
centroids of these octree’s new leaf nodes are used to create a
point cloud representing the set of potential obstacle points.
This process is repeated so as to create a point cloud R∗& per
zone 4 ∈ {A,B,C}.

Finally, all points in R∗& are segmented into a set of spa-
tially separate objects according to their Euclidean distance
(see Section 2.3), that is, potential obstacles,6 = {Y0, . . . , Y4},
as in Section 2.3, whereZ is the number of separated objects
found in the process.This set of objects does not include too
small segments as these are likely to be caused by the presence
of noise.The size of the smallest acceptable segment depends
on the point density and range accuracy and, hence, it must
be defined per zone, [&, 4 ∈ {A,B,C}. As the segments are
built upon a downsampled point cloud, the point density of
the clusters is roughly homogeneous, which means that the
number of points in the segment is a rough approximation
of the segment’s surface area. As a result, small segments can
be safely, that is, in a density-invariant way, rejected if it is
supported by less than \ points.
2.9. Obstacle Characterisation. To be able to generate mean-
ingful alarms it is essential to characterise the obstacles found
in the train’s workspace and vicinity. This section presents
two simple metrics that can be computed rapidly. General
purpose object recognition techniques adequate for point
clouds (e.g., [19]) could also be applied to endow the alarming
systemwith additional semantics, at the expense of additional
computation.

The first metric is defined as the height and diame-
ter of a bounding cylinder of the obstacle. This provides
easy-to-interpret volume information that can be used by
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the alarming system to determine the relevance of the obsta-
cle from its approximate volume and outline. The bounding
cylinder is assumed to lay on the ground surface assuming
that the lower part of the obstaclemay be occluded.Moreover,
the cylinder is perpendicular to the ground plane and its
position is defined as the ground plane projected centroid of
the obstacle points:.5 (Y,+) = (Ψ (. (Y) ,+)) . (9)

The height and diameter of the cylinder with respect to
ground plane + for obstacle Y, ℎ5(Y,+), and its radius, Q5(Y,+),
are ℎ5 (Y,+) = max∀p∈6 {,&# + -&$ + .&% + *√,2 + -2 + .2 } ,Q5 (Y,+) = max∀p,q∈6 {‖p − q‖} . (10)

The third metric is the distance the cylinder is from
the railway’s middle axis, L. This information is crucial
to determine the likelihood that the obstacle may actually
be hit by the train. Formally, the third metric for object
characterisation is computed as follows:*5 (Y,+) = GGGG(.5 (Y,+) − aL) × (aL − bL)GGGGGGGGaL − bLGGGG . (11)

3. Experimental Results

To validate the proposed system a set of point clouds
were acquired in the level crossing of Sabugo, Portugal
(see Figure 1), with the setup presented in Section 2.2. To
estimate the level crossing (see Section 2.3) and railway (see
Section 2.4) poses, the calibration point cloud depicted in
Figure 5 was used. A set of similar 9 other point clouds were
used for learning the background model (see Section 2.7).
Another set of 32 point clouds was used to determine the
ability of the detection system to report the presence of the
obstacles depicted in Figure 2. In this set, 28 clouds contain
obstacles and 4 other clouds are free of obstacles.

The system’s parameters were empirically set as follows
(see Section 2): 3 = 1000, % = 1.5m, %A = 20 cm, %B = 15 cm,%C = 70 cm, [A = 32, [B = 35, [C = 55, UA = 4.25m,UB = UC = 1.75m, * = 10 cm, 8 = 2.5m, K = 3.5 cm, M = 2.5,
and O = 30. Finally, the volume of the minimum octrees’ leaf
size was set to 5 cm × 5 cm × 5 cm.

3.1. Pose Estimation Results. Figure 11 depicts the pose esti-
mation result obtained with the calibration point cloud.
The figure shows that the system managed to detect the
half-barriers properly (represented by the upwards directed
arrows), as well as the railway (represented by the parallel red
lines). The distance between these two lines was measured
to be 1755mm, which deviates only 5% from the expected
distance, which is 1668mm in Portugal and Spain. A little
offset between the estimated railway orientation and the
actual one is visible in the figure. This owes to the radius
used to check point density variations along sampled points.
A smaller radius would reduce the deviation but at the cost of
potentially failing to detect the density change.

Figure 11: Pose estimation results. Level crossing’s pose estimation
is represented by the arrows overlaid on the estimated half barrier
positions. Railway’s pose estimation is represented by the lines
overlaid on the rails’ regions. The red and green lines represent the
estimated pose of the rails and their medial axis, respectively.

Table 1: System’s partial average timings.

Processing step Section Phase Duration
Point cloud acquisition 2.2 Both 5000ms
Level crossing’s pose estimation 2.3 Offline 1930ms
Railway’s pose estimation 2.4 Offline 574ms
Training 2.7 Offline 210ms
Region of interest segmentation 2.6 Online 515ms
Obstacle detection 2.8 Online 100ms

3.2. Detection Results. Figure 12 presents the detection results
in four of the 32 tested point clouds. The results show the
ability of the system to detect a large variety of obstacles, from
large car parts to small rocks laid down near one of the rails.
Small-sized obstacles were disposed only on zones A and B
as they are by definition inconspicuous in zone C due to its
very low point density. A parameterisation that would enable
the system to detect small obstacles in zone C would also
result in unacceptable false alarm rates. The deployment of
a complementary laser scanner would suffice to remove this
constraint, meaning that the system would be able to detect
both large and small obstacles in the whole area of the level
crossing. The system detected all obstacles in the full set of
tested point clouds without generating false alarms.

3.3. Timings. Table 1 presents the average partial time (over
10 repetitions) spent by the system in each of the processing
steps that occur offline (calibration and training), online
(detection), or in both offline and online phases. Point cloud
acquisition time, which includes the mechanical tilting of
the sensor, is rather high. However, as already explained in
Section 2.2, it could be easily reduced to a small fraction of the
current one with state-of-the-art multibeam laser scanners.
Although this is not an issue in the calibration and training
phases, it can be problematicwhile operating online.The time
spent in pose estimation is clearly acceptable given the low
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(a) 4 persons (red blobs) in zone A

(b) 2 persons (red large blobs) and a basket (smallest red blob) in zone A, a
jerrican in zone B (green blob), and another person (blue blob) in zone C

(c) A car’s front (red blob) in zone A

(d) A rock (green blob) near the rail in zone B (a picture of this situation can
be depicted in Figure 2(c))

Figure 12: Detection results in typical point clouds from the testing
data set. The three quadrilaterals correspond to the quadrilaterals
that were estimated as defining zones A, B, and C. The grey points
correspond to the ground points present in the region of interest.
Coloured points are obstacle points (refer to subcaptions for color
coding).

time constraints of an offline calibration procedure. Finally,
although further code optimisations could be considered,
current detection time is acceptable for current safety stan-
dards. In sum, the system’s responsiveness is in line with the
requirements of level crossing safety standards.

4. Conclusions

A system for obstacle detection in level crossings from 3D
point clouds acquired with tilting 2D laser scanners was
presented. By allowing the detection of large and small
obstacles (≥10 dm3) despite lighting conditions, the system
contributes to reducing the number of casualties in level
crossings without reducing traffic flow. In addition to solving
the detection problem, the proposed system includes an
automatic mechanism to estimate the poses of both level
crossing and railway, which reduces installation time. A set of
experimental results on several point clouds acquired on an
operational level crossing shows the viability of the system.
As future work we intend to reduce point cloud acquisition
time, use more than one laser scanner, and include object
classification capabilities to trigger semantic alarms.
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