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Combining Models in Discrete

Discriminant Analysis

Anabela Marques1 Ana Sousa Ferreira2 Margarida Cardoso3

Abstract. When conducting Discrete Discriminant Analysis, alternative
models provide different levels of predictive accuracy which has encouraged the
research in combined models. This research seems to be specially promising
when small or moderate sized samples are considered, which often occurs in
practice. In this work we evaluate the performance of a linear combination
of two Discrete Discriminant Analysis models: the First-order Independence
Model and the Dependence Trees Model. The proposed methodology also uses
a Hierarchical Coupling Model when addressing multi-class classification prob-
lems, decomposing the multi-class problems into several bi-class problems, using
a binary tree structure. The analysis is based both on simulated and real data
sets. Results of the proposed approach are compared with those obtained by
Random Forests, being generally more accurate. Measures of precision regard-
ing a training set, a test set and cross-validation are presented. The R software
is used for the algorithms’ implementation.

Keywords Combining models; Dependence Trees model; Discrete Discrimi-
nant Analysis; First-order Independence model; Hierarchical Coupling model.

1 Introduction

Discrete Discriminant Analysis (DDA) is a multivariate data analysis technique
that aims to classify multivariate observations of discrete variables into one of
K a priori defined classes.

In DDA a n-dimensional sample of multivariate observations is considered X =
(x1, x2, ..., xn), where xi represents the ith observation (i ∈ {1, ..., n}), described
by P discrete variables, xi = (xi1, xi2, ..., xiP ). The class of each observation
- one of K exclusive classes (C1, C2, ..., CK) - is assumed to be known and the
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corresponding prior probabilities are πk, k = 1, ...,K,
∑K

k=1 πk = 1.

DDA has two main goals:

1. To identify the variables that best differentiate the K classes;

2. To assign objects whose class membership is unknown to one of the K
classes, by means of a classification rule.

This work is focused on the second goal and we consider objects characterized
by binary variables, in the bi-class and in the multi-class case. Note that for P
binary variables there are S = 2P possible states (i.e. S = 2P possible obser-
vable vectors).
To derive the classification rule, based on the referred data, one should determine
the posterior probability of an observation. Based on the Bayes formula the
posterior probability of an observation - x∗ - being assigned to one of the a
priori known classes can be written as follows:

P (x∗ ∈ Ck|X,π) =
πkfk(x

∗|X)
K
∑

k=1

πkfk(x
∗|X)

, k = 1, . . . ,K (1)

where πk represents the priori probability of class Ck and fk(x) represents the
probability function of x in the same class. By applying this rule, an observa-
tion x∗ is classified in the class with the maximum posterior probability, thus
minimizing the assignment error.
The prior probabilities πk, often have to be estimated using the sample at hand.
When this sample is randomly selected from the population without taking into
account the observations class membership, maximum likelihood estimators are
used: πk = nk

n , where nk is the dimension of class Ck. Otherwise, if the sample
considered is the union of K independent samples of size nk, k = 1, ...,K, previ-
ously selected within each class Ck, equal prior probabilities are considered for
all classes, πk = 1

K . Usually, the states probability function in each class Ck is
unknown and must be estimated using the sample observations X.

In DDA, the multinomial model is considered the most natural model where
the states probability functions are estimated by the corresponding sample rel-
ative frequencies. This is the so called Full Multinomial Model (FMM) that
demands a large number of parameters to be estimated (Goldstein and Dillon,
1978).
To overcome this dimensionality problem, several variants of the FMM model
have been proposed. In this study, we work with two specific FMM variants
- the First-order Independence Model (FOIM) (Goldstein and Dillon, 1978),
which assumes that the P discrete variables are independent within each class
Ck - and an alternative model that takes into account the dependence between
variables - the Dependence Trees Model (DTM) (Celeux and Nakache, 1994).

In real classification problems, the classification errors resulting from differ-
ent models differ and are often associated with different subjects. Therefore,
researchers derive and compare several classification rules and recur to multiple
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models. The use of multiple models generally enhances the results accuracy.
These models may originate from diverse subsamples drawn from an original
dataset: e.g. Breiman (1996) uses the bagging strategy and Friedman (2001)
uses the boosting strategy for drawing the successive subsamples. As an alter-
native approach, when considering a fixed dataset, multiple models may result
from different parameterizations of a specific model type (e.g. a tree model with
different numbers of levels) or diverse types of models may be considered.
In this context the analyst often selects the classification rule that provides the
best classification accuracy. However, the selection of a single classification rule
means a high loss of information of the previously estimated models which could
be very relevant for classification. In fact, the classification results may be pro-
vided by a combination of models overcoming the referred loss of information
and enhancing classification results stability and accuracy, e.g. Friedman and
Popescu (2008).
Several combined methods can be found in the literature. Recently, (Kotsiantis,
2011), for example, proposed a combined model for classification - Random
Subspace using Näıve Bayes (Domingos and Pazzani, 1997) and C4.5 (Quin-
lan, 1993). Based on 26 well known data sets (with continuous predictors), the
author found the results of the proposed method encouraging. However, most
studies - (Kotsiantis, 2011) reviews several - refer to Discriminant Analysis in
general - DDA studies are rare.
In the present work, we address DDA problems considering a simple linear com-
bination of FOIM and DTM (Marques et al., 2013) and assess its performance in
numerical experiments based on real and simulated data sets. In order to deal
with multi-class problems, the Hierarchical Coupling Model that decomposes
the original multi-class problem in several bi-class problems, using a binary tree
structure, is also considered, (Sousa Ferreira et al., 2000).
We compare the performance of the proposed combined model - a non-generative
ensemble according to (Re and Valentini, 2011) - with the performance of Ran-
dom Forests (Breiman, 2001) - a generative ensemble (according to the same
authors), that generates sets of base learners acting on the structure of the
data set to try to actively improve diversity and accuracy of the base learners.
According to (Kotsiantis, 2013, p.278): ”Random forests (Breiman, 2001) are
one of the best performing methods for constructing Ensembles”. In addition,
Random Forests tend to perform better when dealing with discrete categorical
features (Kotsiantis et al., 2006).
The new DDA approach is presented in the second chapter after introducing
the models FOIM and DTM. In the third chapter, the performance of the new
model is analyzed, based both on simulated and real data sets, with small and
moderate sizes. Finally, conclusions are drawn and perspectives of future work
are indicated.

2 Methodological approach

2.1 Discrete Discriminant Analysis

In Discrete Discriminant Analysis the most usual classification rule is based on
the Full Multinomial Model (FMM) (Goldstein and Dillon, 1978; Celeux and
Nakache, 1994) where the within-classes states probability functions are multi-
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nomial. However, for the case where we have P binary variables, this model
involves the estimation of 2P−1 parameters in each class. Therefore this ap-
proach needs to rely on large samples which can be very difficult to obtain in
some application domains, such as health sciences and psychology.
As previously referred, the FOIM model assumes the independence of variables
within each class therefore reducing the number of parameters to estimate. How-
ever, this model may be unrealistic in some situations. Among alternative mod-
els that take into account the interactions between variables the Dependence
Trees Model (DTM) can be considered, (Celeux and Nakache, 1994).
These models, FOIM and DTM, are described next.

2.2 The First-order Independence Model

The First-order Independence Model - FOIM - (Goldstein and Dillon, 1978;
Celeux and Nakache, 1994) is one of the most commonly used DDA models.
It assumes that the P discrete variables are independent within each class Ck,
reducing to P the number of parameters needed to be estimated for each class
Ck.
The condicional probability of assigning x∗ to class Ck is estimated by:

f̂k (x
∗ | X) =

P
∏

p=1

#
{

xj ∈ Ck : xjp = x∗p
}

nk
, j = 1, . . . , n ; k = 1, . . . ,K (2)

where nk represents the Ck class sample dimension.

2.3 The Dependence Trees Model

The Dependence Trees Model - DTM - (Celeux and Nakache, 1994; Pearl, 1988),
takes into account conditional dependence relationships between the predictors.
DTM provides for each class an estimate of the conditional probability functions
based on the idea proposed by Pearl (1988). Pearl demonstrated that through
the knowledge of a graph G, where X1, ..., XP represent its P vertices, the
probability distribution fG, associated with this graph, can be calculated as the
product of the conditional probabilities:

fG(x1, ..., xP ) = f(xr(p))
P−1
∏

l(p)=1

f
(

xp | xl(p)
)

(3)

where xl(p) represents a variable that is linked to the variable xp in this graph,
arbitrarily choosing one vertex as the root of the graph, xr(p).
To construct the graph for each class, we rely on the algorithm of Chow and Liu
(Celeux and Nakache, 1994; Pearl, 1988), where the length of each edge referred
to the pair of variables (xp, xp′) represents a measure of the association between
the same variables, mutual information in particular. Mutual information - I -
is defined as follows:

I(Xp, Xp′) =
∑∑

f(xp, xp′) log
f(xp, xp′)

f(xp)f(xp′)
(4)
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where f(xp, xp′) is estimated using the maximum-likelihood approach.

After the calculation of the CP
2 mutual information values, the graph G, with

P − 1 edges, corresponding to the highest total mutual information is selected.
For example, take P = 5 variables and if the most important predictor relations
are (X2, X1), (X3, X2), (X4, X2) and (X5, X2), then Figure 1 represents an ex-
ample of a dependence tree

Figura 1: Example of a dependence tree for the case of P=5 variables

and the probability distribution of the first-order dependence tree is

f̂k (x
∗|X) = fCk (x∗|X) = f̂(x∗1|X)f̂(x∗2|x

∗
1, X)f̂(x∗3|x

∗
2, X)f̂(x∗4|x

∗
2, X)f̂(x∗5|x

∗
2, X)
(5)

where the marginal and conditional probability functions are determined simply
using the observed relative frequencies in sample X.

2.4 Combining Models

The idea of combining different models currently appears in a increasing number
of papers, aiming to obtain more robust and stable models - e.g. Leblanc and
Tibshirani, 1996; Opitz and Maclin, 1999; Wang et al., 2000; Sousa Ferreira et
al., 2004; Brito et al., 2006; Chrysostomou et al., 2008; Kotsiantis, 2011; Mar-
ques et al., 2013.
The present study develops from the contribution of Sousa Ferreira (2004) that
combines FMM and FOIM, using a single coefficient β, (0 ≤ β ≤ 1) to define
a linear combination and explores several strategies to estimate this coefficient,
including a regression approach using least squares minimization and likelihood
maximization. This approach reveals good performances, with intermediates
results between FOIM and FMM, in the small case setting - particularly when
data have independent structures in each class, or equal correlation structures.
Using an integrated likelihood ratio approach, interesting results are also ob-
served, particularly in the moderate or large case settings and when data have
different correlation structures in each class. However, in this FOIM-FMM com-
bination, the coefficient derived often tends to heavily weight FOIM, while re-
ducing substantially the contribution of FMM, even when considering smoothed
frequencies. Based on this empirical conclusion, we consider the replacement of
FMM, in the combination, by DTM. The corresponding conditional probability
function is thus estimated as follows:

P̂ (x∗ ∈ Ck|β,X) = βP̂FOIM (x∗ ∈ Ck|X) + (1− β)P̂DTM (x∗ ∈ Ck|X) (6)
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The performance of the FOIM-DTM linear convex combination is the focus of
the present paper. In addition, we consider the performance of the Hierarchical
Coupling Model (Sousa Ferreira et al., 2000) integrating this specific combina-
tion.

2.5 The Hierarchical Coupling Model

In the multi-class case, the Hierarchical Coupling Model - HIERM - (Sousa
Ferreira et al., 2000) may be considered as an alternative to the simple FOIM-
DTM convex combination.
HIERM decomposes one multi-class problem into several bi-class problems using
a binary tree structure and implements two decisions at each level of the tree:

1. Selection of the hierarchical coupling among the 2K−1 − 1 possible class
couple;

2. Choice of the model or combining model that gives the best classification
rule for the chosen couple.

In the beginning we have K classes corresponding to the samples that we want to
reorganize into two classes. So, we propose either to explore all the hierarchical
coupling solutions or to select the two new classes that are the most separable.
These classes can be selected using the affinity coefficient (Bacelar-Nicolau 1985;
Matusita 1955).

aff(Ck, Ck′) =

S
∑

s=1

√

f̂(xs ∈ Ck|X)

√

f̂(xs ∈ Ck′ |X) (7)

For each bi-class problem an intermediate position between FOIM and DTM
models may be considered. The process stops when a decomposition of classes
leads to a single class.
For example, when having three classes a priori, C1, C2 and C3, the following
combinations of pairs of classes can be considered: C1 vs C2∪C3 , C2 vs C1∪C3

and C3 vs C1 ∪ C2.
Therefore, we can derive the classification rules in these three cases and select
the one that yields the smallest misclassification error. Note that in this case
(K = 3) we only have three tree configurations to consider and so it is possible
to explore all the hierarchical coupling solutions (see Figure 2). E.g. in Tree
(a), one observation will be first classified into C1 vs C2 ∪C3 and if it proceeds
for the 2nd level it will be finally classified into C2 or C3 , according to a
minimum classification error criterion. However, when the number of classes is
large (greater than three) the number of admissible tree configurations becomes
larger and more difficult to handle. Then, a criterion to select trees to consider
is needed. In the present work we adopt a similarity coefficient based approach
and select the best tree using the affinity coefficient described above (Sousa
Ferreira, 2010).
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(a) Tree corresponding to the
1st combination

(b) Tree corresponding to the
2nd combination

(c) Tree corresponding to the
3rd combination

Figura 2: Binaries trees in the MHIERM model for the K=3 case setting.

2.6 Performance Measures

To evaluate the performance of a classification rule, according to a particular
model, one relies on performance measures which derive from classification re-
sults as depicted in a confusion matrix - a contingency table that associates
actual and predicted classes.
In the binary case - a priori classes labeled 0 and 1 - the contingency table is
as follows:
[

a b

c d

]

=

[

Number of 0´s classified as 0’s Number of 0´s missclassified as 1’s
Number of 1´s missclassified as 0’s Number of 1´s classified as 1’s

]

where N0 = a+ b and N1 = c+ d.
In order to find the most appropriate measure of performance several studies
have been carried out (Goodman and Kruskal, 1954, 1959; Marzban, 1997; Mur-
phy and Daan, 1985). In Discriminant Analysis the Total Success Rate - TSR
measure - is commonly used. It is the average of the group specific success rates
estimates weighted by the classes prior probabilities (McLachlan, 1992). And,
when the group prior probabilities are estimated by the relative group sizes this
measure is called Efficiency (EFF):

EFF =
a+ d

N
(8)

The EFF measure is simply the proportion of observations correctly classified
(based on the diagonal of the confusion matrix) and misses the use of the re-
maining available information on the confusion matrix. Since this information
can benefit the evaluation of performance of the proposed combined models, we
should consider an additional evaluation measure. In fact, according to (Paik,
1998), the EFF measure may, sometimes, over-estimate the ”true”success rate,
particularly when classes’ sizes are disproportionate or the success rates within
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the classes are very different. Therefore we use an additional measure of per-
formance in the present study - the Phi Statistic (φ) or index of mean square
contingency, based on all the data in the confusion matrix. (Goodman and
Kruskal, 1954)

φ =

√

χ2

N
(9)

where:

χ2 =
∑

i

∑

j

(nij −
ni.n.j
n )2

ni.n.j
n

(10)

nij - is the number of observations (n.o.) in the contingency table (c. tab)
ni. - is the n.o. in the ith row in the c. tab.
n.j - is the n.o. in the jth column in the c. tab.
n - is the total n. o.

3 Data Analysis and results

In the present work, we use of the FOIM-DTM combination to solve DDA prob-
lems. In addition, when multiple classes are considered, we suggest using HI-
ERM and also recurring to the FOIM-DTM combination to obtain intermediate
classification results in each tree node. Regarding the combination coefficient β,
we propose to use a grid of values of β ∈ [0, 1] with increments of 0.1, to weight
the contribution of each model.
The Random Forest (RF) algorithm (Breiman, 2001) is used for providing com-
parative performance evaluation of the proposed DDA approach. The imple-
mentation used is in the R package randomForest, (Liaw and Wiener, 2013).
For each RF we consider 500 trees, based on 500 bootstrap samples. Addition-
ally, for each sample with replacement, we build P RF derived from subsets of
features with 1 to P features. Finally, we combine all the RF into one large RF
and consider the votes of 500 ∗ P trees for classification.
In order to evaluate the performance of the proposed models, we consider both
real and simulated data sets.

3.1 Simulated data

We conduct numerical experiments for simulated data using small and moderate
sample sizes.

The data is simulated using the Bahadur model, as proposed in Goldstein and
Dillon (1978) and in Celeux and Mkhadri (1992). The data sets considered
derive from a previous study (Sousa Ferreira 2010; Sousa Ferreira et al. 2001).
In order to simulate the predictive binary variables’ values, this model defines
class conditional probabilities for Ck, (k = 1, ...,K) as

P (x|Ck) =
∏

p

θ
xp
kp(1− θkp)

(1−xp)[1 +
∑

g !=p

ρk(p, g)ZkpZkg] (11)
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where Xkp is a Bernoulli variable with parameter θkp = E(Xkp), p = 1, ..., P
such that

Zkp =
Xkp − θkp

[θkp(1− θkp)]1/2
and ρk(p, g) = E(ZkpZkg), (12)

considering two types of population structures, with P = 6 variables for the
case of K = 2 and K = 4 classes. For each structure, data sets generated have
60 observations for each class (small samples) or 200 observations for each class
(moderate sample).
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Tabela 1: Parameters for simulated Bernoulli variables

K=2 K=4
θ1 = (0.6, 0.4, 0.6, 0.5, 0.5, 0.6) θ1 = (0.6, 0.4, 0.6, 0.5, 0.5, 0.6)
θ2 = (0.5, 0.3, 0.5, 0.4, 0.4, 0.5) θ2 = (0.5, 0.3, 0.5, 0.4, 0.4, 0.5)

θ3 = (0.6, 0.3, 0.6, 0.4, 0.5, 0.5)
θ4 = (0.6, 0.4, 0.6, 0.5, 0.5, 0.6)

The first structure, denoted IND (Independent), is generated according to
FOIM, (ρk(p, p) = 1 and ρk(p, g) = 0 , if p 6= g, k = 1, ...,K; p, g = 1, ..., 6)
for all classes.

The second one, called DIF (Different), is implemented considering the exis-
tence of different relations among the variables, for different classes:

• in the bi-class case ρ1(p, p) = 1 and ρ1(p, g) = 0.2, if p 6= g, p, g =
1, ..., 6; ρ2(p, p) = 1 and ρ2(p, g) = 0.4, if p 6= g, p, g = 1, ..., 6;

• in the multiclass case ρk(p, p) = 1 and ρk(p, g) = 0.1, if p 6= g,

k = 1, 2, 3; p, g = 1, ..., 6; and ρ4(p, p) = 1 and ρ4(p, g) = 0.3, if p 6= g,

p, g = 1, ..., 6.

The prior probabilities are considered equal.

3.2 Real data

We conduct numerical experiments in a very small real data set that refers to
34 dermatological patients with a diagnosis of psoriasis, with chronic evolution,
(Prazeres, 1996). The relationship between three classes of patients with differ-
ent degrees of Alexithymia (referring to difficulty in expressing emotions) and
Rorschach test indicators (personality projective test indicators) is explored.
Nowadays, alexithymia is considered a risk factor for the process of somatic
and psychological illness. Since it is difficult to identify, due to the absence of
obvious mental symptoms, contributions that help to support its identification
are relevant.
One of the most commonly used measures of alexithymia is the Toronto Ale-
xithymia Scale (TAS-20). This test is a 20-items (5-point Likert) instrument.
Its final score is the sum of the values assigned to the 20 items (Prazeres 1996).
According to the test scores, the whole sample is divided into three small classes:
Nonalexithymics Class (C1, n1 = 14), Alexithymics Class (C2, n2 = 13), Inter-
mediate Class (C3, n3 = 7).

In this study, the goal is to explore the differences between the classes based on
the fact that the alexithymia manifestations often occur after the appearances
of an organic disease which, given its emotional significance and seriousness,
often reflects in the Rorschach psychological test. This is a psychological test in
which subjects’ perceptions of inkblots are recorded and analyzed. It consists
of a large number of variables measured in different scales, allowing us to know
person’s personality characteristics and emotional functioning.
In the present study, the characterization of each patient is based on six binary
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indicators of the Rorschach test (predictor variables). In this analysis, the char-
acterization of each patient is based on six binary variables (predictor variables)
of the Rorschach test indicators (Exner, 2001):

• CF+C > 0 - Dichotomization of the variable CF+C based on empirically
established value. The value 1 was assigned when the condition is checked
and 0 if not checked. CF + C is the sum of chromatic color responses in
which the formal element is secondary or absent. It indicates less affective
modulation;

• CF +C−FC > 0 - Dichotomization of the variable (CF +C)−FC. The
value 1 was assigned when the condition is checked and 0 if not checked.
A positive value in (CF + C) − FC indicates less affective modulation,
where FC represents the number of chromatic color responses in which
form features are of primary importance;;

• V > 0 - In pure vista responses the shading features are interpreted as
depth or dimensionality. No form is involved. The value 1 was assigned
when the condition is checked and 0 if not checked;

• C ′ > 2 - In pure achromatic color response the response is based on the
grey, black or white features of the blot, when they are used as color. No
form is involved. The value 1 was assigned when the condition is checked
and 0 if not checked;

• T = 1 - In pure texture response the shading components of the blot
are used to represent a tactual phenomenon, with no consideration to the
form features. The value 1 was assigned when T = 1 and the value 0 was
assigned when T 6= 1

• SumSH−SumC > 0 - Dichotomization of the variable SumSH−SumC,
that compares the sum of shading responses plus the achromatic responses
with the sum of chromatic color responses. The value 1 was assigned when
the condition is checked and 0 if not checked.

The variables involving the chromatic color, achromatic color and shading de-
terminants (C, C’, T, V) characterize the emotional functioning.
An increase in T relates to emotional loss (e.g., marital separation). An increase
in V relates to feelings of guilt or remorse. Y is related to situational stress. An
increase in C’ signifies the presence of disturbing negative feelings that result
from an inhibition of emotional expression.

Chromatic color responses (FC,CF,C) are related to the release or discharge
of emotion and to the extend to which the release is controlled or modulated.
Chromatic color responses are expected to be higher than achromatic responses
(FC’, C’F, C’). When SumC’ is greater than SumC the individual is inhibiting
the release of emotions and, as a result, is burdened by irritating feelings.

(CF + C)-FC offer information concerning the modulation of emotional dis-
charges. The FC responses relate to well controlled emotional experiences
whereas the CF and the C responses relate to less restrained forms of emo-
tional discharge. Adults without psychological problems are expected to yield
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higher FC than CF+C.

Since the data were not collected in a mixture model, we could not estimate
prior probabilities using relative frequencies, so the prior probabilities are taken
to be equal, πk = 1

K = 1
3 , k = 1, 2, 3.

3.3 Classification Results

The classification results concerning simulated data sets are presented in tables
2 to 7. The FOIM-DTM combination coefficients values (beta values) appear
in the tables’ first column, along with the Random Forests combination results.
The EFF and φ measures reported refer to the training and test samples (for
moderate sized samples) or to the training sample and two-fold cross-validation
results (for small sized samples).

• Simulated Data Results

Results referred to bi-class problems are presented in Tables 2 and 3. For the
large samples (DIF and IND data included) the performance measures agree on
the choice of the best model. For the DIF dataset the best results are attained
with β = 0.5 to 0.7 and for the IND dataset the FOIM model yields the best
results. For the small samples and the DIF dataset the DTM model attains the
best result, while for the IND dataset the best combination regards β = 0.9.
When four classes are considered (large sample) the performance measures un-
derline the advantage of the proposed combined models: for the DIF dataset
the best beta values range from β = 0.2 to 0.5; for the IND dataset the best
result is attained for β = 0.30 (though there is a tie for the FOIM EFF result).
Generally, in the multi-class case, the models performance tends to be very poor
when the HIERM approach is not considered. HIERM causes a sharp rise in
the classification rates: see Tables 6 and 7 as opposed to Tables 4 and 5.
In general, in the numerical experiments conducted, the proposed approach out-
performs Random Forests - it provides consistently better results when referring
to small samples and, in conjugation with the HIERM approach for multi-class
problems, it is clearly the winner classifier (see Table 9.).
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Table 2: Classification performance, sample DIF, 2 Classes.

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β n = 400 n = 120
EFFTrain EFFTest φTest EFFTrain EFF2−Fold φ2−Fold

0.00 0.765 0.680 0.363 0.767 0.792 0.607

0.10 0.765 0.680 0.363 0.767 0.750 0.535
0.20 0.770 0.685 0.383 0.767 0.750 0.535
0.30 0.770 0.685 0.383 0.767 0.758 0.549
0.40 0.770 0.685 0.383 0.767 0.758 0.549
0.50 0.755 0.685 0.390 0.767 0.758 0.549
0.60 0.755 0.685 0.390 0.700 0.650 0.300
0.70 0.760 0.685 0.390 0.683 0.617 0.236
0.80 0.620 0.580 0.160 0.650 0.617 0.232
0.90 0.595 0.575 0.149 0.617 0.584 0.161
1.00 0.560 0.520 0.039 0.583 0.567 0.128

R. Forest 0.780 0.685 0.385 0.767 0.775 0.574

Table 3: Classification performance, sample IND, 2 Classes.

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β n = 400 n = 120
EFFTrain EFFTest φTest EFFTrain EFF2−Fold φ2−Fold

0.0 0.590 0.600 0.199 0.783 0.533 0.061
0.10 0.590 0.600 0.199 0.783 0.525 0.045
0.20 0.590 0.600 0.199 0.783 0.550 0.094
0.30 0.590 0.600 0.199 0.750 0.533 0.064
0.40 0.590 0.600 0.199 0.750 0.533 0.061
0.50 0.590 0.595 0.189 0.750 0.533 0.061
0.60 0.590 0.595 0.189 0.750 0.558 0.106
0.70 0.580 0.590 0.179 0.717 0.550 0.085
0.80 0.575 0.595 0.189 0.700 0.575 0.130
0.90 0.570 0.605 0.210 0.683 0.583 0.145

1.0 0.570 0.610 0.220 0.667 0.567 0.108
R. Forest 0.730 0.560 0.121 0.833 0.542 0.083
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Table 4: Classification performance, sample DIF, 4 Classes

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β n = 800 n = 240
EFFTrain EFFTest φTest EFFTrain EFF2−Fold φ2−Fold

0.00 0.338 0.278 0.189 0.308 0.242 0.318
0.10 0.358 0.323 0.239 0.308 0.238 0.311
0.20 0.355 0.325 0.245 0.308 0.238 0.311
0.30 0.353 0.325 0.245 0.308 0.238 0.311
0.40 0.353 0.325 0.245 0.308 0.233 0.367

0.50 0.353 0.325 0.245 0.308 0.233 0.340
0.60 0.335 0.320 0.218 0.308 0.233 0.345
0.70 0.335 0.320 0.218 0.308 0.238 0.334
0.80 0.320 0.293 0.147 0.317 0.238 0.334
0.90 0.318 0.288 0.136 0.317 0.246 0.259
1.00 0.310 0.290 0.155 0.300 0.258 0.254

R. Forest 0.388 0.332 0.264 0.383 0.204 0.165

Table 5: Classification performance, sample IND, 4 Classes

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β n = 800 n = 240
EFFTrain EFFTest φTest EFFTrain EFF2−Fold φ2−Fold

0.00 0.395 0.293 0.236 0.500 0.267 0.246
0.10 0.395 0.293 0.236 0.500 0.267 0.240
0.20 0.400 0.298 0.224 0.492 0.263 0.222
0.30 0.408 0.328 0.260 0.492 0.258 0.219
0.40 0.405 0.323 0.257 0.492 0.271 0.225
0.50 0.405 0.315 0.124 0.500 0.263 0.211
0.60 0.393 0.318 0.210 0.492 0.271 0.248
0.70 0.370 0.308 0.190 0.483 0.267 0.241
0.80 0.368 0.320 0.214 0.475 0.250 0.255
0.90 0.340 0.315 0.197 0.442 0.250 0.291
1.00 0.310 0.328 0.219 0.408 0.250 0.296

R. Forest 0.512 0.380 0.353 0.625 0.267 0.172
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Table 6: Classification performance, sample DIF, 4 Classes

MHIERM : β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β n = 800 n = 240
C4vs.C1 ∪ C2 ∪ C3 e C1vs.C2 ∪ C3 C4vs.C1 ∪ C2 ∪ C3 e C3vs.C1 ∪ C2

EFFTrain EFFTest φTest EFFTrain EFF2−Fold φ2−Fold

0.00 0.710 0.633 1.168 0.558 0.458 0.918
0.10 0.648 0.563 1.043 0.567 0.437 0.926

0.20 0.648 0.563 1.043 0.567 0.437 0.926

0.30 0.633 0.560 1.037 0.567 0.437 0.926

0.40 0.633 0.560 1.037 0.500 0.412 0.861
0.50 0.628 0.555 1.025 0.508 0.412 0.861
0.60 0.625 0.560 1.037 0.517 0.413 0.869
0.70 0.615 0.550 1.016 0.517 0.392 0.847
0.80 0.615 0.583 1.053 0.517 0.396 0.856
0.90 0.605 0.560 1.048 0.500 0.387 0.833
1.00 0.615 0.570 1.073 0.492 0.400 0.857

R. Forest 0.388 0.332 0.264 0.383 0.204 0.165

Table 7: Classification performance, sample IND, 4 Classes

MHIERM : β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β n = 800 n = 240
C2vs.C1 ∪ C3 ∪ C4 e C4vs.C1 ∪ C3 C3vs.C1 ∪ C2 ∪ C4 e C1vs.C2 ∪ C4

EFFTrain EFFTest φTest EFFTrain EFF2−Fold φ2−Fold

0.00 0.595 0.500 0.909 0.717 0.467 0.854
0.10 0.595 0.500 0.909 0.708 0.471 0.862
0.20 0.595 0.500 0.911 0.717 0.483 0.891
0.30 0.615 0.528 0.946 0.717 0.483 0.889
0.40 0.630 0.528 0.946 0.708 0.487 0.879
0.50 0.643 0.530 0.957 0.708 0.500 0.924
0.60 0.645 0.535 0.966 0.700 0.500 0.913
0.70 0.618 0.510 0.908 0.700 0.492 0.896
0.80 0.600 0.493 0.860 0.675 0.471 0.901
0.90 0.593 0.505 0.906 0.658 0.488 0.955
1.00 0.553 0.488 0.884 0.617 0.488 1.000

R. Forest 0.512 0.380 0.353 0.625 0.267 0.172

• Real Data Results

As in the simulated data results, the HIERM approach clearly improves clas-
sification results. The best result in the real data set is attained for β = 0.2
to 0.4 according to the Phi measure, illustrating the potential of the proposed
combination approach to outperform the individual models-components per-
formances. Note that the best binary tree corresponding to the most sep-
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arable classes (see Figure 3) corresponds to the smallest affinity coefficient
(aff(C1, (C2 ∪ C3)) = 0.435). The first decomposition chosen by the HIERM
model, suggests that the union of the extremes classes forms a well-separated
class from the class composed by the intermediate patients, since these subjects
obtained balanced scores. Since the data set is very sparse (26 = 64 states and
only 17 observations) the HIERM model provides the lowest estimated misclas-
sification risk.

1C C C

Intermediate NonalexithymicsAlexithymics

2 3

Figura 3: Binary Tree for the Alexithymia data

Table 8: Classification performance, Real Data Results

β ∗ P̂FOIM + (1− β) ∗ P̂DTM

β

β ∗ P̂FOIM + (1− β) ∗ P̂DTM MHIERM : C1 vs. C2 ∪ C3

EFF2−Fold φ2−Fold EFF2−Fold φ2−Fold

0.00 0.471 0.562 0.412 0.546
0.10 0.412 0.532 0.500 0.716
0.20 0.382 0.698 0.470 0.812

0.30 0.382 0.698 0.470 0.812

0.40 0.353 0.707 0.470 0.812

0.50 0.382 0.703 0.442 0.630
0.60 0.324 0.570 0.442 0.630
0.70 0.353 0.623 0.442 0.630
0.80 0.353 0.623 0.442 0.630
0.90 0.353 0.623 0.442 0.630
1.00 0.294 0.547 0.500 0.527

R. Forest 0.441 0.151 0.441 0.151
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Table 9: The Winner classifiers according to EFF and φ measures

2 Classes n EFF φ 4 Classes n EFF φ

DIF 400 RF and FOIM-DTM DIF 800 H DTM H DTM
FOIM-DTM

120 DTM DTM 240 H DTM H FOIM-DTM
IND 400 FOIM FOIM IND 800 H FOIM-DTM H FOIM-DTM

120 FOIM-DTM FOIM-DTM 240 H FOIM-DTM H FOIM

4 Conclusions and Perspectives

In the present work we propose using a combination of two classification mod-
els - FOIM - First-order Independence Model and DTM - Dependence Trees
Model - to overcome the limitations of the individual models, namely in small
and moderate sized samples settings. In addition, we propose using the HIERM
-Hierarchical Coupling Model approach to address multi-class problems, recur-
ring to a binary tree decomposition scheme.
We conduct a experimental study based on 8 simulated data sets and 1 real data
set. We focus on small and moderately sized samples which tend to increase the
difficulty of classification problems. Since all features are categorical we perform
comparisons with a well known ensemble algorithm recognized to perform well
in this setting (Kotsiantis et al., 2006) - the Random Forests ensemble approach
(Breiman, 2001).
The results obtained are very encouraging - the performance of the proposed
FOIM-DTM combined approach consistently exceeds the Random Forests per-
formance when regarding small data sets. When conjugated with the HIERM
approach for multi-class problems, the proposed model outperforms Random
Forests in 7 out of the 8 simulated data sets.
In the real data set a very small sample is considered and, in this setting, the
HIERM approach outperforms the FOIM-DTM simple combination and Ran-
dom Forests as well.
We conclude that the FOIM-DTM combination is very flexible, being able to
deal with different data correlations structures. In the conditional independent
case - IND structure for simulated data - the FOIM naturally tends to yield the
best results but the combination FOIM-DTM sometimes emerges as a better
than the FOIM alternative, especially in the small sized sample cases. In the
conditional non-independent case - DIF structure for simulated data - the DTM
naturally tends to emerge although the combination FOIM-DTM sometimes
emerges as a better than the DTM alternative, namely in the moderate sized
sample cases. For the two-classes problems, the performance measures used
generally agree as to the selection of the best solution. For multi-class problems
with small sample sizes considered, the performance indicators may disagree.
Understanding the disagreement between performance indicators should thus
be the subject of future research.
The benefits of the proposed approach should be further investigated using sim-
ulated data sets with diverse correlations structures and considering imbalanced
data sets too. Also, the use of more real data sets should further evidence the
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advantage of the proposed combined approach.
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